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I. LIST OF ABBREVIATIONS 

 

 

AEC   3-amino-9-ethylcarbazole 

APC   adenomatosus polyposis coli 

bFGF   basic fibroblast growth factor 

BMP   bone morphogenetic protein 

BRCA   breast cancer 

bZIP   basic-leucine zipper 

CamK   Ca++/calmodulin dependent protein kinase 

CBA   cytometric bead array 

Cdc42   cell division control protein homolog 42 

ChIP   chromatin immunoprecipitation 

DABCO  1, 4-diazabicyclo [2.2.2] octane 

DAG   diacyl glycerol 

Dkk   Dickkopf 

DMEM  Dulbecco’s Modified Eagle’s Medium 

DTT   dithiothreitol 

Dvl   dishevelled 

EGF   epidermal growth factor 

EGTA   ethylene glycol-bis (2-aminoethylether)-N,N,N′,N′-tetraacetic acid 

ERK   extracellular signal-regulated kinase 

FAK   focal adhesion kinase 

Fzd   frizzled 

γC   common gamma chain 

gp130   glycoprotein 130 

GPI   glycosyl-phosphatidyl-inositol 

GSK-3ß  glycogen synthase kinase 3 beta 

GTPase  guanine triphosphatase 

HB-EGF  heparin-binding EGF-like growth factor 

hCG   human chorionic gonadotropin 
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HEPES  4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid 

hPL   human placental lactogen 

HRPO   horse radish peroxidase 

IGF   insulin-like growth factor 

IL-4R  interleukin-4 receptor alpha 

IRS   insulin receptor substrate 

JAK   Janus kinase 

JNK   c-Jun N-terminal kinase 

KLF-5   Kruppel-like factor-5 

LEF   lymphoid enhancer binding factor 

Leu Zip  leucine zipper 

LPS   lipopolisaccharide 

LRP   low-density lipoprotein receptor-related protein 

LTR   long terminal repeat 

MAPK   mitogen-activated protein kinase 

MAPKK  mitogen-activated protein kinase kinase 

MAPKKK  mitogen-activated protein kinase kinase kinase 

MβCD   methyl- β-cyclodextrin 

MMP   matrix metalloproteinase 

NK   natural killer 

NLS   nuclear localization signal 

ORF   open reading frame 

PAK   p21 activated kinase 

PBMC   peripheral blood mononuclear cells 

PBS   phosphate buffered saline 

PE   phycoerythrin 

PHA   phytohemagglutinin 

PIBF   progesterone-induced blocking factor 

PIBFR   PIBF-receptor 

PMSF   phenylmethylsulfonyl fluoride 

PI3K   phosphoinositide 3-kinase 
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PIP2   phosphatidylinositol 4,5-bisphosphate 

PIP3   phosphatidylinositol 3,4,5-triphosphate 

PI-PLC  phosphatidylinositol-specific phospholipase C 

PKC   protein kinace C 

PlGF   placental growth factor 

PLC   phospholipase C 

PR   progesterone-receptor 

Raf   rapidly accelerated fibrosarcoma 

Ras   rat sarcoma 

RhoA   Ras homolog gene family, member A 

ROCK   Rho-associated protein kinase 

rhuPIBF  recombinant human PIBF 

RPMI   Roswell Park Memorial Institute 

SDS   sodium dodecyl sulphate 

SH2   src-homology 2 

SOCS   suppressor of cytokine signaling 

STAT   signal transducer and activator of transcription 

TCF   T-cell factor 

TGF   tumor growth factor 

Th1/2   T-helper 1/2 

TIMP   tissue inhibitor of metalloproteinases 

VEGF   vascular endothelial growth factor 

Wnt   Wingless and Int 
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II. INTRODUCTION 

 

1. General features of trophoblast and tumor invasion 

 

Trophoblast and tumor cells share several features [1-4] (Table 1.). Both cell types 

have lost the capacity of contact inhibition and express telomerase activity ensuring high 

proliferation rate. Both tumor and trophoblast cells possess migratory and invasive 

properties and acquire angiogenic potential; moreover, there is an analogy in the 

mechanism of invasion (i.e. adhesion molecules, proteases, matrix metalloproteinases, 

autocrine and paracrine regulation etc.). Finally, both trophoblast and tumor cells are 

capable to suppress the immune system e.g. by expressing non-classical HLA molecules [5-

12], Th2-type cytokines [13-16], immunosuppressive factors [16-18], by inducing 

regulatory T cells [19-28] or by other mechanisms [29-31]. 

 

TABLE 1. Similarities and differences between trophoblast and tumor cells 

TROPHOBLAST TUMOR 

Common features 

Telomerase activity 

High proliferation rate 

Loss of contact inhibition 

Migratory and invasive properties 

Similarities in the mechanism of invasion 

Extensive vascularization 

Ability to suppress the immune system 

Distinctions 

Cell differentiation 

Well differentiated 

Undifferentiated, 
transformed, immortal cells 
with altered morphological 

features 
Invasion 

Physiological process Pathological process 

Regulation of invasion 
Strictly regulated in time 

and space 
Uncontrolled invasion, 

metastatic capacity 
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The major differences between trophoblast and tumor cells reside in cell 

differentiation and spatio-temporal regulation of invasion. 

Trophoblast cells remain well-differentiated during their lifespan; in contrast, 

malignancies consist of undifferentiated, transformed, immortal cells that have lost their 

original morphological features. Furthermore, tumor invasion is a pathological process, 

characterized by uncontrolled invasive behavior and unlimited metastatic capacity, while 

trophoblast invasion is a physiological event that is rigorously regulated, restricted in time 

to the first trimester of pregnancy and localized in space to the endometrium and the 

proximal third of the myometrium. The slightest disturbances of the fine tuning of 

trophoblast invasion may manifest in pathological pregnancies [32-37] (Table 2.). 

 

 

TABLE 2.Clincal consequences of aberrant trophoblast invasion 

REDUCED TROPHOBLAST INVASION 

Early pregnancy loss 

Pre-eclampsia 

Intrauterine growth retardation 

INCREASED TROPHOBLAST INVASION 

Abnormally deep attachment of the placenta 

Placenta accreta 

Placenta increta 

Placenta percreta 

Gestational trophoblastic tumors 

Partial / Complete hydatidiform mole 

Invasive mole 

Choriocarcinoma 

Placental site trophoblastic tumor 

Epithelioid trophoblastic tumor 
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2. Invasive differentiation of trophoblast cells 

 

Trophoblast progenitor cells residing at the basement membrane of placental villi 

(Fig.1.) give rise to distinct epithelial cell types. 

 

 

FIGURE 1. Trophoblast differentiation at the maternal-fetal interface. CT: cell column; A: 
spiral arteries; T: interstitial trophoblast cells; F: fibrinoid; E: endovascular trophoblast 
cells; GC: placental bed giant cells. [38] 
 

 

Fusion of cytotrophoblasts generates the multinucleated syncytium which is mainly 

responsible for protein transport and hormone (progesterone, hCG, hPL) production. 
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Cytotrophoblasts of anchoring villi acquire a transiently invasive phenotype and invade the 

decidualized endometrium while the cytotrophoblasts of floating villi (in the extravillous 

space surrounded by maternal blood) remain attached to the villous basement membrane. 

The inner layer of villous cytotrophoblast grows out at focal points to form cell 

columns. These are prominent at the anchoring villi, where attachment to the maternal 

decidua occurs. At the fetal–maternal boundary, the columns form a partially continuous 

shell. From this shell, extravillous trophoblast cells enter the decidua as interstitial 

trophoblast to encircle and destroy the arterial media, which is replaced by fibrinoid 

material. These cells interact with different maternal cell types including decidual cells, 

leukocytes and endothelial cells. Then, endovascular trophoblast cells move down the 

arteries in a retrograde manner to replace the maternal endothelial lining [38-39]. 

A new subset of extravillous trophoblast cells, the endoglandular trophoblast [40], 

breaks through the basement membrane of uterine glands to open their lumen towards the 

intervillous space. This might enable histiotrophic nutrition of the embryo during the first 

trimester of pregnancy prior to onset of the maternal blood flow. 

The trophoblast cells move as far as the inner myometrium, where they fuse to 

become placental-bed giant cells. 

 

 

3. Common regulators of trophoblast and tumor invasion 

 

Several enzymes, hormones, cytokines, growth factors and extracellular matrix 

glycoproteins have been reported to play a role in both trophoblast and tumor invasion. Few 

selected molecules are addressed below. 

 

3.1 Matrix metalloproteinases 

 

Invasion of surrounding tissues is mediated by a set of proteolytic enzymes, among 

others, matrix metalloproteinases (MMPs). MMPs are zinc-dependent endopeptidases with 

the capacity of degrading extracellular matrix components. In humans, there are 23 MMPs 

and their expression is transcriptionally controlled by inflammatory cytokines, growth 
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factors, hormones, cell-cell and cell-matrix interactions [41-43]. MMP activity is also 

regulated by activation of the precursor zymogens (most MMPs are secreted as inactive 

pro-enzymes) and inhibition by the endogenous tissue inhibitors of metalloproteinases 

(TIMP1,-2,-3,-4). TIMPs bind to the highly conserved zinc-binding site of active MMPs.  

The involvement of MMP-9 and MMP-2 – also known as gelatinases – in tumor cell 

migration and invasion as well as in embryo implantation is well documented. Gelatinases 

are capable to cleave type IV collagen, the main component of basal membranes [44-50]. 

While MMPs and TIMPs are strictly regulated during trophoblast invasion, tumor invasion 

and metastases occur as a result of an imbalance between MMPs and TIMPs [51]. 

 

3.2 Hormones 

 

Progesterone is one of the hormones to control trophoblast invasiveness by reducing 

the secretion of MMP-9 by trophoblasts [48-50]. A set of progesterone-induced genes (p53, 

Indian Hedgehog, BMP-2, galectin-1 etc. [52-58]) also possesses a vital role in 

implantation and decidualization.  

Another molecule that has been implicated in control of trophoblast invasiveness is 

leptin; a 16-kDa peptide hormone secreted by adipose tissue, that participates in the 

regulation of energy homeostasis [59]. Leptin is synthesized by the human placenta [60] 

and its receptors are expressed in the trophoblast and endometrium during pregnancy [61]. 

Human chorionic gonadotropin (hCG) induces leptin expression in trophoblast cells 

probably involving the MAPK signal transduction pathway [62-63]. Leptin also promotes 

the expression of MMP-2 and MMP-9 in cultured human cytotrophoblast cells [64]. Leptin 

inhibits the secretion of progesterone by cytotrophoblast. Abnormal leptin levels in 

preeclampsia are associated with reduced trophoblast invasion. Overexpression of leptin-

receptor was found in ovarian cancer and leptin promotes resistance to apoptosis in lung 

carcinoma. 

 



13 

 

3.3 Growth factors and cytokines 

 

Growth factors and their receptors which play a central role in proliferation show a 

similar expression pattern in trophoblasts and malignant tumors. 

Epidermal growth factor (EGF)-receptors are present in villous cytotrophoblast 

cells, syncytiotrophoblast and decidual cells. The ligands for EGF-receptor - EGF, TGF-α 

and amphiregulin - have been shown to enhance extravillous trophoblast proliferation. EGF 

has been demonstrated in uterine epithelial cells and decidual cells, as well as in cyto- and 

syncytiotrophoblast of the chorionic villi. Tumor growth factor α (TGF-α) has been 

detected in decidual cells and nearly all trophoblast subpopulations. Amphiregulin has been 

demonstrated in syncytiotrophoblast cells of the early placenta. EGF regulates early 

placental growth and function in an autocrine manner. Furthermore, the TGF-α-EGFR 

autocrine loop has been implicated in the uncontrolled proliferation of malignant 

trophoblast cells [65-66]. 

EGF-like growth factors – among others heparin-binding EGF-like growth factor 

(HB-EGF) - are expressed throughout gestation in villous and EVT populations of the 

human placenta. Disruption of the EGF signaling network in human first trimester 

cytotrophoblast cell lines reduced, while supplementation with these growth factors 

increased trophoblast invasiveness [67-68]. 

During tumor growth, angiogenesis is initiated by basic fibroblast growth factor 

(bFGF) and vascular endothelial growth factor (VEGF), which signal nearby vessels to 

send out new branches [69-70]. VEGF is a potent angiogenic factor which plays a role in 

the vascularization process and promotes invasive trophoblast proliferation during embryo 

implantation. Invading extravillous cytotrophoblast cells express the VEGF receptor [71]. 

VEGFR can also be bound by the trophoblast-derived placental growth factor (PlGF); a 

member of the VEGF family of angiogenic factors, to affect cell proliferation, invasion 

and/or other metabolic activities in an autocrine manner. 

Interleukin-6 (IL-6) modulates the expression of genes involved in cell cycle 

progression, apoptosis and angiogenesis. IL-6 has been implicated in the pathogenesis of 

several types of tumors including lymphoma, gastric carcinoma, prostate cancer, ovarian 
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cancer and multiple myeloma. Trophoblast also expresses IL-6 as well as IL-6R and its 

associated signal transducer gp130 [72]. 

 

 

4. Signaling cascades mediating proliferation, migration and invasion 

 

Extracellular stimuli initiate signal transduction that controls proliferation, 

differentiation, migration and apoptosis through the mitogen-activated protein kinases 

(MAPKs), focal adhesion kinase (FAK), the phosphoinositide 3-kinase (PI3K) - Akt 

pathway, Signal Transducers and Activators of Transcription (STATs) (Fig.2.) or the Wnt 

pathway (Fig.3.). 

 

4.1 Mitogen-activated protein kinase (MAPK) cascades 

 

 Upon ligand binding to receptor tyrosine kinases or G-protein coupled receptors, a 

highly complex network of protein kinases and small GTPases (e.g. Ras) regulates the 

activity of MAPKs through sequential phosphorylations at critical Ser, Thr and Tyr 

residues. Proteins of the MAPK-kinase-kinase (MAPKKK) family such as Raf 

phosphorylate MAPK-kinases (MAPKKs) including MEKs. The MAPKKs then activate 

the four major families of MAPKs including the ERK family. 

ERKs have been shown to play an important role in growth-factor-dependent 

regulation of trophoblast growth and migration [73]. In the placenta, the expression of 

ERK1 and ERK2 was detected in villous cytotrophoblasts, but their active phosphorylated 

forms were only present until the 12th week of gestation, suggesting a predominant role 

during early pregnancy [74]. Chorionic gonadotropin uses ERK pathway to facilitate 

trophoblast invasion and migration due to inducing MMP-2 expression [75]. EGF-induced 

trophoblast migration also requires ERK signaling cascades [76]. MAPK signaling is 

dysregulated in various malignancies [77-79]. 
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4.2 PI3K/Akt pathway 

 

The Akt cascade is activated by receptor tyrosine kinases, integrins, cytokine 

receptors, G-protein coupled receptors and other stimuli that induce the phosphoinositide 3-

kinase (PI3K) mediated transition of phosphatidylinositol 4,5-bisphosphate (PIP2) to 

phosphatidylinositol 3,4,5 triphosphate (PIP3). Elevated PIP3 recruits and activates the 

protein-serine/threonine kinase Akt at the membrane. Once activated, Akt phosphorylates a 

number of target proteins, including direct regulators of cell growth, proliferation, survival, 

and migration, transcription factors and other protein kinases. 

Akt regulates invasive differentiation of trophoblast cells [73]. In many tumors, Akt 

promotes metastasis [80-82]. EGF is a potent activator of PI3K-Akt and Akt-dependent 

migration of trophoblastic HTR-8/SVneo cells [76]. PI3K-Akt is also required for hCG- 

and EGF-dependent expression of MMP-2 and MMP-9 in trophoblasts [75-76], Since these 

enzymes are also targets of ERK signaling, PI3K-Akt and MAPK signaling may have 

synergistic effects on protease expression and trophoblast invasion. 

 

4.3 JAK/STAT pathway 

 

Phosphorylation, dimerization and nuclear translocation of STAT transcriptional 

factors are achieved upon growth factor or cytokine-dependent activation of receptor-

associated Janus kinases (JAKs). Cytokine binding induces receptor dimerization and 

activates associated JAK proteins which phosphorylate themselves and the receptor. 

Phosphorylated sites on both receptor and JAKs serve as docking sites for the SH2-

containing STAT proteins. Receptor-bound STATs phosphorylated by JAKs dimerize and 

translocate to the nucleus to regulate target gene transcription. 

The role of STAT3 in trophoblast [83-85] as well as in tumor invasion and 

metastasis has been regularly affirmed [86-88]. Among others, IL-6 and leptin were shown 

to increase STAT3 activity in cytotrophoblast cells. Dysregulation of JAK/STAT pathway 

leads to increased angiogenesis, enhanced survival of tumors and immunosuppression. 

Malignant choriocarcinoma was found to possess high level of STAT3 activity [84]. Xie et 

al reported that STAT3 upregulates the transcription of MMP-2 through direct interaction 
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with the MMP-2 promoter [89], in addition, transfection of human melanoma cells with a 

dominant-negative STAT3 suppressed brain metastasis in animal models [90]. 

 

 

 

FIGURE 2. Signaling pathways in control of proliferation, differentiation, cell growth, 
apoptosis, migration and invasion 
 

 

4.4 Wnt signaling 

 

The Wnt proteins belong to a family of secreted morphogenes that play a key role in 

embryonic development and tumorigenesis. In the canonical pathway, Wnt ligands bind to 

the heterodimeric low-density lipoprotein receptor-related protein (LRP) and Frizzled 

(Fzd). Signaling from LRP/Fzd leads to activation of a cytoplasmic protein called 

Dishevelled (Dvl) and inhibition of the complex composed of axin, adenomatous polyposis 

coli (APC) and glycogen synthase kinase 3β (GSK-3β). In the absence of Wnt ligands, 

active GSK-3β phosphorylates β-catenin, leading to its ubiquitination and degradation. Wnt 

signaling results in increased β-catenin levels. β-catenin acts as a direct regulator of gene 
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expression by forming a complex with members of the T-cell factor (TCF)/lymphoid 

enhancer binding factor (LEF) family of transcription factors. To control canonical Wnt 

signaling, secreted Dickkopf (Dkk) members inhibit the pathway upon interaction with 

LRP-5/6. 

Several Wnts activate β-catenin independent signaling pathways (non-canonical 

Wnt signaling pathways), known as the planar cell polarity pathway and Wnt/calcium 

pathway. Furthermore, non-canonical Wnts can antagonise the functions of canonical Wnts. 

 

 

 

FIGURE 3. Wnt signaling. Canonical Wnt signaling pathway (left panel): In the presence 
of the Wnt molecule, Dvl inhibits GSK-3β and β-catenin translocates to the nucleus and 
induces the transcription of the target genes. Two major non-canonical Wnt signaling 
pathways, the planar cell polarity and Wnt/calcium pathways are shown on the right panel.  
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Fourteen out of 19 Wnt ligands and 8 out of 10 Fzd receptors were detectable in the 

human placenta, indicating that Wnt signaling might be involved in trophoblast 

differentiation. Wnt-dependent transcription factors were found to be predominantly 

expressed in p57/Kip2-positive, invasive trophoblasts [91]. Moreover, Wnt-3a promoted 

trophoblast proliferation, migration and invasion through both canonical and non-canonical 

signaling, the latter was manifested through activation of Akt, which is also a well-known 

target of the invasion-promoting factors: EGF and IGF-II in trophoblasts. In complete 

mole, the majority of extravillous trophoblasts were shown to contain nuclear β-catenin, 

suggesting that aberrant Wnt signaling could be involved in excessive trophoblast invasion. 

 

4.5 Other pathways 

 

Focal adhesion kinase (FAK) is a widely expressed non-receptor protein tyrosine 

kinase that has a growth/migration-promoting role. The activation of FAK is achieved by 

phosphorylation at different amino acid residues, in particular by phosphorylation at Tyr-

397. FAK activity was shown to be associated with tumor progression of cancer cells 

towards a malignant phenotype [66, 92]. 

FAK also has an impact on activities of Rho proteins, a family (RhoA, Racl, Cdc 

42) of particular GTPases regulating diverse biological processes such as cell cycle, cell–

cell/focal adhesions, polarization and cell migration [66, 93]. The downstream effectors of 

Rho include p21-activated kinase (PAK), which cross-talks to the MAPK pathway by 

modulating Raf and Rho-associated, coiledcoil containing protein kinase (ROCK). The 

functionality of the RhoA–ROCK signaling cascade has also been suggested during 

trophoblast migration. 

 

 

5. Progesterone-dependent immunomodulation: pregnancy-protective effect 

of PIBF 

 

During pregnancy, the immunological effects of progesterone are mediated by the 

progesterone-induced blocking factor (PIBF). Following recognition of fetal antigens, 



19 

 

maternal lymphocytes get activated and express progesterone receptors [94-98]. In the 

presence of progesterone these cells produce PIBF [99-100]. PIBF is also widely expressed 

in the decidua, in the placenta as well as in the amnion. [101]. 

The gene coding for PIBF is situated on chromosome 13 between loci 13q21 and 

13q22 in the neighbourhood of the homeobox gene, KLF-5 and KIAA1008 [102]. The 

PIBF1 gene, containing 18 exons, is 2765 bp in length with an open reading frame of 2271 

bp and encodes a 90-kDa protein consisting of 757 amino acids (Fig.4.). 

 

 

 

FIGURE 4. The structure of PIBF1 gene. (C: Chromosome, ORF: open reading frame, 
bZIP: basic-leucine zipper, NLS: nuclear localization signal, E: exon). NLS: on exon-7 and 
exon-13; LeuZip: on exon-8 and exon-15/16; bZip: on exon-14. 
 

 

In recurrent miscarriage and in women showing clinical symptoms of threatened 

preterm pregnancy termination, the percentage of PIBF positive peripheral lymphocytes is 
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significantly lower than in healthy pregnant women [99, 103-104], suggesting that PIBF 

production is related to the outcome of pregnancy [105]. This concept is further supported 

by the finding that neutralizing endogenous PIBF in pregnant mice results in fetal 

resorptions [106]. 

PIBF supports the pregnancy via inhibiting NK activity [106-108], facilitating the 

production of asymmetric antibodies [109] and altering the Th1/Th2 cytokine balance [110-

112]. (Fig.5.) 

 

 

 

FIGURE 5. PIBF activates the Jak1/STAT6 and PKC/Ca++ - pathways which results in 
Th2-type cytokine production. PIBF induces SOCS3 which inhibits STAT4 
phosphorylation, thus inhibits Th1 response through binding to the IL-12R. PIBF has the 
capacity to alter the arachidonic acid metabolism, and to inhibit NK activity. 
 

 

Successful pregnancy is characterized by Th2 dominant cytokine pattern [113-114]. 

Activated lymphocytes cultured in the presence of PIBF produce increased amounts of the 

Th2-type cytokines IL-3, IL-4 and IL-10 [112], and decrease the production of the Th-l 

cytokine IL-12. Based on our data, PIBF induces Th2-biased cytokine production via the 

Jak1/STAT6 [115] and PKC/Ca++ - pathways [116]. 
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Jak1/STAT6 pathway 

 

PIBF induces the phosphorylation and nuclear translocation of STAT6 

transcriptional factors and inhibits the phosphorylation of STAT4 molecules, which results 

in Th2 dominant cytokine balance. 

Activation of the STAT6 pathway was known to be initiated through the IL-4 

receptor uniquely, but previously we have demonstarted a novel type of IL-4R composed of 

the alpha chain of IL-4 receptor and the PIBF-receptor. PIBF does not bind to IL-4Rα but 

to its own receptor [115]. The STAT6 activating effect of PIBF can be abolished by 

blocking of IL4-R subunit. In addition, PIBF activates JAK1 (associated with IL-4Rα, 

suggesting that IL-4R is involved in PIBF signaling. PIBF does not phosphorylate Jak3 

(associated with the common γ chain) and anti-IL-13Rα treatment has no effect on PIBF 

induced STAT6 activation, suggesting that the common γ-chain and the IL-13R subunits 

of IL-4 family do not take part in the signaling process of PIBF. 

 

PKC/Ca2+ pathway 

 

PIBF also affects the PKC/Ca2+ pathway which is involved in the regulation of Th1 

and Th2 immune responses. High levels of PKC activity combined with low calcium 

signals favour Th2 development, while predominance of calcium signaling with low PKC 

activity favours Th1 development [116]. 

In peripheral lymphocytes, PIBF induces the phosphorylation of PKCζ and PKCΘ 

isoforms without affecting the intracellular Ca2+ level supporting a Th2-type cytokine 

pattern. 

 

SOCS1 and SOCS3 

 

Suppressor of cytokine signaling (SOCS) proteins negatively regulate the signal 

transduction of several cytokines [117]. PIBF-induced SOCS-3, through binding to the IL-

12R, inhibits STAT4 phosphorylation and Th1 responses in peripheral lymphocytes[115]. 
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6. A possible role for PIBF in tumor progression and in regulation of 

invasion 

 

Recent literature shows that PIBF is not only expressed during pregnancy, but it is 

also produced by undifferentiated, proliferating cells and a set of malignant tumors. 

Lachmann et al. reported that various breast tumors overexpress PIBF compared to normal 

breast tissues both at the mRNA and protein levels. Moreover, MCF-7 mammary 

carcinoma cells produce PIBF in the absence of progesterone [118]. 

In vitro data showed that human leukemia cell lines express mRNA for PIBF, and 

some of these cell lines also express the PIBF protein. In these cell lines PIBF production 

was up regulated by progesterone and down regulated by mifepristone [119]. 

Rozenblum et al. [120] identified the PIBF1 gene on the chromosomal region 

13q21-q22 which has been implicated as a common site for somatic deletions in a variety 

of malignant tumors. 

Lachmann et al. [118] demonstrated that the full-length form of PIBF is associated 

with the centrosome. A number of proteins shown to be involved in tumorigenesis are 

associated with the centrosome. The most prominent example is the best-characterized 

breast cancer susceptibility gene BRCA1 that is linked to the development of breast and 

ovarian cancers. Recent genetic studies indicated PIBF among the candidate genes for 

breast cancer predisposition and cancer progression. 

The distribution of PIBF within the first trimester decidua coincides with sites of 

trophoblast invasion showing the strongest PIBF positivity at the extravillous trophoblast 

[101]. Check et al reported that early detection of PIBF may be related to premature 

trophoblast invasion possibly into an endometrium not yet prepared for the trophoblast and 

might lead to early immune rejection of the fetus [121]. 

Based on these data, the aim of my research project was to uncover a possible role 

of PIBF in regulation of invasion. 
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III. AIMS OF THE PROJECT 

 

 

This work aims to investigate the involvement of Progesterone-Induced Blocking 

Factor (PIBF) in the regulation of invasion; and to identify the signaling networks via 

which it affects the invasive behavior of tumor cells, contributes to the success of 

implantation during pregnancy by regulating trophoblast invasion and participates in the 

pathogenesis of trophoblastic diseases. 

 

Specific aims: 

 

I. To confirm the involvement of PIBF in trophoblast and tumor invasion 

 To analyse PIBF expression in trophoblast cells with different degrees of 

invasiveness; 

 To investigate the effect of PIBF knock down on trophoblast and tumor 

invasion; 

 To determine, whether PIBF has a role in matrix remodelling. 

 

II. To analyse PIBF-induced invasion-related signaling pathways 

 To characterize the PIBF-receptor; 

 To uncover PIBF-induced signaling pathways involved in invasion; 

 To investigate the subcellular localization of PIBF; 

 To identify the function of nuclear PIBF. 
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IV. MATERIALS AND METHODS 

 

 

1. Separation of lymphocytes 

 

Peripheral blood mononuclear cells (PBMC) were separated from heparinized 

venous blood of healthy, non-pregnant volunteers by Ficoll-Hypaque discontinuous density 

gradient centrifugation. 

 

2. Cell lines 

 

The immortalized human first-trimester extravillous trophoblast cell line 

HTR8/SVneo was a kind gift from Charles H. Graham (Queen’s University, Kingston, 

Ontario, Canada). HT-1080 fibrosarcoma cell line was purchased from ATCC. 

Cell lines were kept at 37°C in a humidified atmosphere of 5% CO2 under the 

following conditions: HT-1080 cell line was cultured in DMEM (Sigma-Aldrich) 

supplemented with L-Glutamine, MEM Non Essential Amino Acid Solution (Sigma-

Aldrich), 10% heat inactivated fetal bovine serum (Gibco), penicillin and streptomycin 

(100 IU/ml and 100 µg/ml, respectively); HTR-8/SVneo cells were cultured in RPMI 

(Gibco) supplemented with 10% heat inactivated fetal bovine serum, 100 IU/ml penicillin 

and 100 µg/ml streptomycin. 

 

3. Recombinant human PIBF and PIBF antibodies 

 

The recombinant human PIBF was produced in our laboratory according to a 

method described earlier [102]. Briefly: Based on the previously described structure of 

PIBF1 cDNA, a 1255 bp length segment of the N-terminal PIBF was ligated into a 

gluthatione S-transferase fusion vector (pGex-4T1), and transformed into E. coli BL21pLys 

host strain. PIBF was purified on a Glutathione-Sepharose 4B affinity column. 

Fluorescein-isotiocyanate conjugated N-terminal recombinant human PIBF (PIBF-

FITC) was also generated. 
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Polyclonal anti-PIBF antibodies and anti-exon17 were generated in our laboratory 

by immunizing rabbits with the 48-kDa N-terminal recombinant human PIBF or exon-17. 

The antibody titers were determined by ELISA. IgG was affinity purified on protein A 

columns. 

Monoclonal anti-PIBF antibodies were generated in the Department of Immunology 

and Biotechnology, University of Pecs by immunizing mice with the 48-kDa N-terminal 

recombinant human PIBF. 

 

4. Treatment of cells 

 

After 4 h starving lymphocytes were incubated at 37°C for 20 minutes with the 

following:  

 E. coli lysate (that had undergone the same purification procedure as the 

recombinant human PIBF) in a concentration of 200 ng to 5x107 cells, as a control 

to exclude the effect of LPS contamination on cytokine production; 

 48-kDa N-terminal recombinant human PIBF at a concentration of 20, 100, 200 or 

500 ng to 5x107 cells; 

 recombinant human IL-4 (RD Systems Europe Ltd) at a concentration of 200 ng 

to 5x107 cells. 

After 16 h starving HTR8/SVneo and HT-1080 cells were incubated at 37°C for 5, 

20 minutes, 1, 6 or 24 hours with the following:  

 RPMI medium 1640 or DMEM as a control; 

 E. coli lysate at a concentration of 100 ng to 6x105 cells; 

 48-kDa N-terminal recombinant human PIBF at a concentration of 100 ng to 6x105 

cells. 

 

5. Placental sections and immunohistology 

 

Paraffin-embedded sections from hydatiform moles and choriocarcinomas were 

obtained from archives at the University of the Philippines (Manila, Philippines), the 

Gynaecology and Oncology Department of the Jagiellonian University (Krakow, Poland), 
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the Gynaecology and Oncology Department of the Lukaszczyk Oncological Center 

(Bydgoszcz, Poland) and the Clinical Gynaecology and Obstetrics Department (Rzeszow, 

Poland). 

Five micrometer tissue sections of the formalin-fixed, paraffin-embedded blocks 

were mounted on gelatine-coated (Sigma-Alrich) slides. Sections were deparaffinized and 

rehydrated through graded alcohols to water. Endogenous peroxidase activity was blocked 

with 1% H2O2 in methanol. Antigen retrieval was carried out with 10 mM citrate buffer in a 

microwave oven. After pre-blocking with 1% BSA (Sigma-Aldrich) the sections were 

reacted with polyclonal anti-PIBF (diluted 1:100), 1:50 diluted polyclonal anti-leptin 

(Abcam) or 1:100 diluted monoclonal anti-leptin receptor antibodies (LifeSpan 

Biosciences). 

Peroxidase-conjugated secondary antibodies (diluted 1:100) were applied 

(DakoCytomation) followed by incubation with AEC (3-amino-9-ethylcarbazole) substrate 

(Beckton Dickinson). The slides were counterstained with haematoxylin and coverslipped. 

Images were visualized with a Nikon FXA microscope. Images were taken with a digital 

camera (Nikon) using SPOT Advanced computer software program (SPOT Imaging 

Solutions). 

 

6. Co-capping of IL-4R and PIBF receptor 

 

One million lymphocytes were incubated with 5 µg of recombinant human PIBF-

FITC for 30 min at 4oC. Then cells were washed twice in PBS containing 1% FCS and 

incubated with 5 µg of mouse monoclonal anti-human IL-4Rα or 10 µl of PE-labelled 

mouse anti-human CD45-RA antibody for 45 minutes at 37°. Cells were washed twice and 

incubated with 20 µl of PE-labelled rat anti-mouse IgG2A+B or PE-labelled rat anti-mouse 

IgG1 for 20 minutes at 37°C. Then cells (1x105) were plated on poly-L-lysine coated slides 

and incubated at 37 oC for further 10 minutes, then washed twice in PBS containing 1% 

FCS and fixed with freshly prepared 3% paraformaldehyde in PBS for 10 minutes at room 

temperature. After washing the slides were mounted with DABCO (Sigma Aldich). 

To control the specificity of the capping formation, we performed all steps at 4C. 
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Ligand-induced capping was also investigated. First, one million cells were 

incubated with 5 µg of FITC-conjugated 48-kDa rhuPIBF for 20 min at 37oC. One hundred 

thousand cells were plated on poly-L-lysine coated slides and incubated at 37oC for further 

10 minutes then washed twice in PBS containing 1% FCS and fixed with freshly prepared 

3% paraformaldehyde in PBS for 10 minutes at room temperature. Cells were washed twice 

and incubated with 2 µl of PE-labelled mouse monoclonal anti-human IL-4Rα for 45 

minutes at room temperature. After washing the slides were mounted with DABCO. 

Microscopic analysis was performed with a BioRad confocal microscope with 100x 

objective, using laser excitation at 473 nm and filters 580+/-16 nm for phycoerythrin and 

522+/-17.5 nm for FITC. Images were analysed using the Adobe Photoshop 7.0 program.  

 

7. Digestion of lymphocytes with phosphatidylinositol-specific 

phospholipase C (PI-PLC)  

 

Five million PHA-pretreated PBMC was incubated with 2.5 units of 

phosphatidylinositol-specific phospholipase C (Sigma-Aldrich) for cleaving of the GPI-

anchor in 1 ml of RPMI for 20 min at 37°C.  

 

8. Depletion of plasma membrane cholesterol by methyl-β-cyclodextrin 

(MβCD) 

 

To determine the effect of disrupting lipid rafts on PIBF-induced STAT6-activation, 

five million PHA-pretreated PBMC was incubated with 10mM of methyl- β-cyclodextrin 

(Sigma-Aldrich) in 1 ml of RPMI for 20 minutes at 37C. The effect of MβCD on cell 

viability was controlled by Trypan blue. This concentration of MCD depletes cholesterol 

but does not kill the cells. 

 

9. Flow cytometry 

 

 For the detection of PIBF-receptor positive cells, lymphocytes, HTR-8/SVneo and 

HT-1080 cells were washed with PBS and one million cells were labeled with 1 µg FITC-
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conjugated recombinant 48-kDa PIBF in 100 µl PBS supplemented with 1% FCS and 0.1% 

azide for 20 minutes at 4°C. After washing with PBS for 5 min, 2000 rpm at 4°C, cells 

were fixed with 2% paraformaldehyde. 

 For Annexin V staining, HTR-8/SVneo and HT-1080 cells were washed with PBS 

twice and one million cells were resuspended in 1X Binding Buffer (BD Biosciences). 

Then 1x105 cells were incubated with 5 µl Annexin V-FITC for 15 min at room 

temperature. Finally, 200 µl of 1x Binding Buffer was added. 

Labeled cells were analysed with a FACSCalibur flow cytometer (Beckton 

Dickinson Immunocytometry Systems) equipped with the CellQuest software program 

(Becton Dickinson) for data acquisition and analysis. 

 

10. Silencing of PIBF, IL-4Rα or HB-EGF by siRNA 

 

Oligonucleotides were pre-designed to interfere with IL-4Rα, PIBF or HB-EGF 

mRNA (Ambion). Cells were washed with OptiMEM (Invitrogen Life Technologies). 

Specific oligonucleotides or scrambled siRNA (control) were incubated for 20 min at room 

temperature with Oligofectamine (Invitrogen Life Technologies). This mixture was added 

dropwise to the cells. After 4 h incubation at 37°C, DMEM containing 30% FCS and L-

glutamine was added to cultures and Western blot analyses for IL-4Rα, PIBF or HB-EGF 

expression were performed after 24, 48 or 72 hours subsequent to siRNA transfection. 

 

11. Western blotting 

 

After washing, treated cells were lysed in three volumes of high salt buffer 

containing 20 mM HEPES (pH 7.9), 20 mM NaF, 1mM Na3VO4, 1 mM Na4P2O7, 1mM 

EDTA, 1mM EGTA, 5mM DTT, 0.5mM PMSF, aprotinin (0.01g/mL), leupeptin 

(0.025g/mL), 400 mM NaCl and 20% glycerol at 4ºC. Samples were frozen and thawed 

three times, then incubated on ice for 20 minutes. After centrifugation at 15000 rpm at 4C 

for 30 minutes the supernatants were collected and its protein content was determined. 

Following SDS-PAGE (40 min, 120 V) proteins were transferred to nitrocellulose 

using a Hybond ECL membrane (Amersham Biosciences) at 54 mA overnight. Membranes 
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were blocked with TBS-Tween (pH 7.4) containing 5% non-fat dried milk for an hour and 

incubated with rabbit polyclonal phospho-specific (Tyr-641) anti-human STAT6, rabbit 

polyclonal anti-human STAT6, rabbit polyclonal phospho-specific (Tyr-980) anti-human 

Jak3, rabbit polyclonal phospho-specific (Ser473) anti-human Akt antibodies (all from 

Santa Cruz Biotechnology Inc.) in TBS-Tween with 3% non-fat dried milk for an hour, 

mouse anti-β-catenin (Santa Cruz Biotechnology Inc.), rabbit anti-human phospho-STAT3 

(Tyr705), rabbit anti-human phospho-STAT3 (Ser727), rabbit anti-human phospho-p44/42 

MAPK (Thr202/Tyr204), rabbit anti-human Wnt5a, rabbit anti-human phospho-PKCζ/λ, 

rabbit anti-human phospho-PKCδ (all from Cell Signaling Technology Inc.), mouse anti-

leptin-receptor (LifeSpan Biosciences) antibodies in TBS-Tween with 5% BSA overnight 

at 4°C or as control with rabbit anti-human -actin (Sigma) in TBS-Tween with 3% non-fat 

dried milk for an hour. After washing (3x10min in TBS-Tween) bound antibodies were 

detected with 1:2000 diluted horseradish peroxidase-conjugated goat anti-rabbit IgG or 

goat anti-mouse IgG (1 hour at room temperature) followed by development with ECL 

reagents (Perkin Elmer Life Sciences). Semi-quantification of the bands were performed by 

densitometry using ImageJ software. 

 

12. Invasion assay 

 

OrisTM Cell Invasion and Detection Assay (Platypus Technologies) was used to 

detect invasion in PIBF-silenced cells (Fig.6.). Basement membrane extract at the 

concentration of 3 mg/ml was applied on collagen-coated 96-well plates and the latter 

populated with OrisTM Cell Seeding Stoppers which restrict cell seeding to the outer 

annular regions of the wells. Then wells were seeded with 75000 cells with or without 

siRNA (final cc. 25 nM). The stoppers were removed after 24 hours and OrisTM basement 

membrane extract at the concentration of 12 mg/ml with 15% FBS was overlayed on the 

cells. Removal of the stoppers reveals a 2 mm diameter unseeded region in the center of 

each well, i.e., the detection zone, into which the seeded cells may then invade. The plate 

was incubated in a humidified chamber for 72 hours to permit cell invasion. 

After 72 hours, supernatants were collected for substrate zymography then cells 

were labelled with Calcein AM. After applying the mask that blocks the outer seeding 
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region from view, images were captured using multi area scan by an Olympus Fluoview 

FV-1000 confocal microscope (OBJ: 20x, NA:0.45; excitation: 488 nm, detection: 500-600 

nm). 

 

 

 

FIGURE 6. The principle of OrisTM Invasion and Detection Assay. 

 

 

13. Substrate zymography 

 

Cell-conditioned media (20 μl from the OrisTM plates) were subjected to 

electrophoresis under nonreducing conditions in a 7.5% acrylamide gel containing 1 mg/ml 

(0.01%) gelatin to detect MMP-2 and MMP-9 secretion. After electrophoresis, gels were 

washed twice in 2.5% Triton X-100 for renaturation and then incubated at room 

temperature then at 37 °C overnight in buffer containing 50 mM Tris–HCl, 5 mM CaCl2 

(pH 7). Thereafter, gels were stained with 0.5% (wt/vol) Coomassie Blue G-250 for 40 min 

and destained in 50% (vol/vol) methanol/10% (vol/vol) acetic acid until lysed bands were 

visible. Semi-quantification of the bands corresponding to 92-kDa gelatinase (MMP-9) and 

72-kDa gelatinase (MMP-2) was performed by densitometry using ImageJ. 

 

14. Confocal microscopy 

 

Twenty thousand cells of HTR-8/SVneo or HT-1080 were plated on poly-L-lysine 

coated slides and incubated at 37oC for 20 minutes, then washed with PBS containing 1% 

FCS. Cells were fixed and permeabilized with acetone for 10 minutes at -20°C. Cells were 
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blocked with PBS containing 1% BSA and 10 mM HEPES for 20 minutes and incubated 

with anti-48kDa PIBF or anti-phospho-PKCδ antibody for one hour at room temperature. 

After washing the slides with PBS containing 1% BSA and 10 mM HEPES three times for 

5 min, cells were incubated with Cy3-conjugated anti-rabbit-Ig for 30 minutes at room 

temperature. After washing nucleus was stained by Hoechst 33258 for 20 minutes at room 

temperature then cells were mounted with DABCO and slides were closed by nail polish. 

Microscopic analysis was performed with an Olympus Fluoview FV-1000 confocal 

microscope with 60x oil immersion objective, using laser excitation at 405 nm and 

detection at 425-475 nm for Hoechst staining and laser excitation at 543 nm and detection 

at 555-655 nm for Cy3 dye. Images were analysed using the Olympus Fluoview 1.7 

software. 

 

15. Immunocytochemistry 

 

Cytocentrifuge-prepared cultured cells of HT-1080 and HTR-8/SVneo were used to 

study PIBF expression. Samples were fixed in acetone at 4 °C for 10 min then washed with 

TBST. Peroxidase blocking reagent was added for 10 min, then rinsed twice with destilled 

water and twice with TBST. Non-specific binding sites were blocked with 1% BSA-TBST 

for 20 min. The primary antibody anti-48kDa PIBF and preimmune rabbit IgG as negative 

control were diluted 1:100 in 0.5% BSA-TBST for 1 h, then incubated with HRPO-

conjugated anti-rabbit IgG for 30 min before addition of DAB chromogenic substrate 

(Dako) for 8 min. Cells were counterstained with Mayer’s hematoxylin. Slides were 

mounted with glycerol gelatin and viewed through a Nikon microscope. 

 

16. Protein arrays 

 

Cells were treated with human recombinant PIBF (100ng/1x107 cells) in RPMI at 

37°C for 20 min. As control, treatment with the lysate of E. coli that had undergone the 

same purification procedure as the recombinant human PIBF was used. Then cells were 

solubilized in lysis buffer (1x107 cells/ml) containing 1% NP-40, 20 mM Tris-HCl (pH 

8.0), 137 mM NaCl, 10% glycerol, 2 mM EDTA, 10 µg/ml aprotinin, 10 µg/ml leupeptin, 
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and 10 µg/ml pepstatin. Samples were analysed by Proteome Profiler Antibody Array 

(Human Angiogenesis Array Kit, R&D Systems) according to the manufacturer’s 

instructions. Briefly, nitrocellulose membranes bearing capture antibodies in duplicates 

were blocked for one hour at room temperature while samples were diluted (400 µg protein 

content) and mixed with a cocktail of biotinylated detection antibodies. Sample/antibody 

mixtures were incubated with the membranes at 4°C overnight. Following wash, 

Streptavidin-HRP and chemiluminescent detectiom reagents were added sequentially. 

Array data on developed X-ray film were quantitated by ImageJ software. 

 

17. Isolation of nuclear fractions 

 

 2.5x107 HTR-8/SVneo and HT-1080 cells were pelleted and resuspended in 500 µl 

Puffer A (pH 7.2) containing 5 mM Tris-HCl (pH 8.0), 1 mM EGTA, 50 mM EDTA, 

protease and phosphatase inhibitors and incubated for 15 min on ice. After centrifugation at 

800 g for 15 min at 4°C, supernatants were collected and frozen (cytosol fraction) while 

pellets were resuspended in 1 ml Puffer A supplemented with 0.5% Triton X-100 and then 

centrifuged with 800 g for 15 min at 4°C. Pellets were sonicated in 1 ml Buffer A on ice, 

then proteins were precipitated with 170 µl 72% trichloroacetic acid for 10 min on ice. 

After centrifugation at 13200 rpm for 10 min, pellets were resuspended in acetone (-20°C), 

sonicated and kept on ice for 2 min, - these steps were repeated three times. Finally, the 

pellet was resuspended in 1X SDS buffer, sonicated, and kept at 4°C overnight. After 

centrifugation, samples were boiled and subjected to SDS-PAGE and Western blot. 

 

18. Cytometric Bead Arrays 

 

IL-6 concentrations were determined by Cytometric Bead Array (CBA). 

Supernatants of PIBF silenced cells were incubated with labeled capture beads and 

detection reagent for 3 h in the dark at room temperature, and analyzed with flow cytometer 

(FACSCalibur; BD Biosciences) by using the respective CBA Analysis software (BD 

Biosciences). 
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19. Chromatin immunoprecipitation (ChIP) 

 

 1x108 HTR-8/SVneo and HT-1080 cells were grown to confluency then cross-

linked with 1% formaldehyde for 10 min at room temperature. Cells were scraped into cold 

PBS containing protease inhibitors. Cells were pelleted for 10 min at 1500 rpm at 4°C then 

lysed in Cell Lysis Buffer containing 5 mM HEPES (pH 8.0), 85 mM KCl and 0.5% NP-40 

for 10 min on ice. After centrifugation at 4500 rpm for 5 min, pellet was resuspended in 

Nuclei Lysis Buffer (1%SDS, 10 mM EDTA, 50 mM Tris-HCl pH 8.1) for further 10 min 

on ice. Lysate was sonicated on ice/ethanol bath to shear DNA to lengths between 200 and 

1000 basepairs. Samples were centrifuged for 15 min at 13200 rpm at 4 °C and four 200 µl 

aliquots were diluted 10-fold with ChIP Dilution Buffer (0.01% SDS, 1.1% TritonX-100, 

1.2 mM EDTA, 16.7 mM Tris-HCl (pH 8.1), 167 mM NaCl, protease inhibitors) while one 

50 µl aliquot was frozen for input. After pre-clearing with 50 µl blocked (BSA and salmon-

sperm DNA) Protein-G Agarose beads (Sigma) for 2 hours at 4°C, chromatin was 

incubated with 10 µg monoclonal anti-PIBF antibody or control IgG overnight at 4°C. 

Antibody/protein/DNA complex were isolated by immunoprecipitation with 60 µl of 

blocked Protein-G Agarose beads. After extensive washing, the pellets were treated with 

freshly prepared elution buffer (1% SDS; 0.1 M NaHCO3) and  

 

 the eluted protein/DNA complexes were decrosslinked with 20 µl 5 M NaCl for 6 

hours at 65°C, then eluates were concentrated 4-fold by Amicon® Centricon® 

Centrifugal Filter Devices. 30 µl of eluates were separated on SDS-PAGE and the 

protein content of eluates were analysed by Western blotting; or 

 the eluted protein/DNA complexes, together with the 10-fold diluted inputs were 

treated with 10 µl EDTA (pH 8.0), 20 µl 1 M Tris-HCl (pH 6.5) and 1 µl of 20 

mg/ml Proteinase K for 2 hours at 55°C to digest the protein content, then 20 µl 5 M 

NaCl was added and samples were further incubated overnight at 65°C. DNA was 

recovered by using Qiagen PCR Purification Kit (Qiagen) and used as a template 

for PCR. The PCR primers for the ChIP assay were designed to correspond to the 

promoter regions of Wnt5a, EGF, IL-6 and FGF-1 (Table 3.). 
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TABLE 3. Sequences of PCR primers used in ChIP assays. 

Gene  Chromosome  No.  Product Position Sequence  Tm
IL‐6  Chr.7  # 1  494 bp 22766592‐22767085 5’‐CGCTAGCCTCAATGACGACC‐3’ 58,0

              5’‐GAAGGCAACTGGACCGAAGG‐3’  58,4

      # 2  308 bp 22766304‐22766611 5’‐CATAATCCCAGGCTTGGGGG‐3’ 58,1

            5’‐GGTCGTCATTGAGGCTAGCG‐3’ 58,0

      # 3  238 bp  22765324‐22765561  5’‐CAGAGGACCACCGTCTCTGT‐3’  58,5

               5’‐GCTGAAACCAGACCCTTGCA‐3’  58,1

PlGF  Chr.14     107 bp  75422381‐75422487  5’‐GTCTGGACCTGCCGAGAG‐3’  57,5

               5’‐AGGTTCCCGAGCCGAGTT‐3’  59,0

EGF  Chr.4     290 bp  110833882‐110834171  5’‐AGCGAGTTATCTCCTCTTTGGCAGT‐3’  59,8

              5’‐ACAGAGCAAGGCAAAGGCTTAGAGA‐3’ 60,2

FGF‐1  Chr.5  # 1  186 bp  142067460‐142067645  5’‐ACAGGGTTTCACAACTGGACATAA‐3’  56,5

              5’‐CCAGATTCCCCCCCTCCTA‐3’  58,1

      # 2  166 bp  142066039‐142066204  5’‐GCAGGGATGCCAGATGACA‐3’  57,6

               5’‐TGTGTGAGCCGAATGGACTTC‐3’  57,4

      # 3  177 bp  142064721‐142064897  5’‐TCAGGGTTTTGGTAGGGTGGTA‐3’  57,8

               5’‐GATGTGGGTGTGGATAGTGTATGTG‐3’ 57,1

Wnt5a  Chr.3  # 1  457 bp  55521340‐55521796  5’‐GAGAGGCGCTCCGTTTCCAA‐3’  60,1

              5’‐CTTGTGCGTTTTCAGCGGCA‐3’  59,4

      # 2  246 bp  55502025‐55502270  5’‐GCCACAGTTGGCTGAGGTGA‐3’  60,2

            5’‐TGCAGAATGGAAACCCATGCCT‐3’ 59,6

      # 3  116 bp  55524169‐55524284  5’‐AATAAAGGTTTGTGGTTGGGTA‐3’  52,3

              5’‐AAGGCAGTTCGTGTAGAGGAT‐3’  55,7

      # 4  109 bp  55521321‐55521429  5’‐AAGGTCTTTTGCACAATCACG‐3’  54,0

               5’‐CGCAGGCAACTGTTCCAC‐3’  57,2

      # 5  149 bp  55518933‐55519081  5’‐CCAGCAAATGGGACTCGG‐3’  56,2

               5’‐AAGCGGGAAAGCAACACT‐3’  55,1
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V. RESULTS 

 

 

1. The role of PIBF in invasiveness 

 

 

1.1 Expression of PIBF in normal first trimester trophoblast and trophoblastic 

diseases 

 

Controlled trophoblast invasion is a key process during human placentation and a 

prerequisite of successful pregnancy. 

In case of gestational trophoblastic tumors, trophoblast invasion is increased. 

Hydatidiform mole or molar pregnancy arises when the sperm and egg join but do not 

develop into a fetus, however, the placental elements continue to grow forming a tissue that 

resembles grape-like cysts. Hydatidiform moles may be partial (containing some embryonic 

or fetal tissue) or complete (containing no fetal tissue). They rarely metastasize but they 

may develop into invasive mole or into the more aggressive, rapidly growing, metastatic 

choriocarcinoma. 

In order to investigate the possible cross-talk between PIBF and leptin in regulation 

of trophoblast invasion, paraffin embedded sections from healthy first trimester placentae, 

partial moles, complete moles and choriocarcinomas were analysed by 

immunohistochemistry. Sections were reacted with PIBF, leptin or leptin-receptor specific 

antibodies. 

PIBF was expressed in both normal first trimester villous trophoblast and in partial 

mole, while PIBF expression was markedly decreased in complete mole and absent in 

choriocarcinoma. Neither leptin, nor leptin-receptor was detected in partial mole, whereas 

both of these molecules were present in complete mole and choriocarcinoma (Fig. 7.). 
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FIGURE 7. Immunohistochemical detection of PIBF (A), leptin (B) and leptin-receptor 
(C) expression in healthy 1st trimester trophoblast (1), partial mole (2), complete mole (3) 
and choriocarcinoma (4). (50X) 
 
 

To confirm the inverse relationship between PIBF and leptin/leptin-receptor 

expression, PIBF deficient trophoblast cells were generated with siRNA technique and 

leptin-receptor was detected by Western blotting in normal and PIBF knock down cells 

(Fig. 8.A.). Moreover, leptin expression was detected in the lysates of PIBF-treated cells 

with a protein array (Fig. 8.B.). 

Leptin-receptor expression was upregulated in PIBF deficient cells (Fig. 8.A.), 

while leptin expression was decreased in PIBF-treated cells (Fig. 8.B.), suggesting that 

PIBF controls the expression of leptin and its receptor in the trophoblast. 
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FIGURE 8. PIBF controls trophoblast invasion by down-regulating the expression of 
leptin-receptor (A) and leptin (B). A representative experiment of three is shown. Lysates 
from PIBF knock down and control (scr: scrambled siRNA) HTR-8/SVneo cells were 
reacted with anti-PIBF or anti-leptin-receptor antibodies in Western blotting. Equal loading 
was controlled with anti-β-actin antibody (A, upper panel). Densitometric evaluation of the 
presented Western blots is shown on the lower panel. B: Leptin expression in control and in 
PIBF-treated cells. (Protein array - upper panel; densitometric evaluation of the presented 
spots - lower panel)  

 

 

1.2 The effect of PIBF-knock down on invasion of trophoblast and tumor cell lines 

 

To further investigate the possible role of PIBF in regulating invasion, we used 

trophoblast and tumor cell lines, rendered PIBF deficient by siRNA technique. 

To study trophoblast invasion, HTR-8/SVneo cell line was selected which had been 

generated by transformation of HTR-8 cells with simian virus 40 large T antigen. The 
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primary HTR-8 cultures were obtained after plating and outgrowth of cells from tissue 

pieces of human first trimester villi. The resulting cell line (HTR-8/Svneo) shares 

phenotypic properties with the progenitor cells [122] and its proliferation, migration and 

invasiveness are regulated by the same signaling molecules that modulate extravillous 

trophoblast cell responses in vitro [123-125]. 

 

 

 

FIGURE 9. Immunocytochemical demonstration of PIBF in HT-1080 (A, B) and HTR-
8/SVneo cells (C, D). The cells were reacted with polyclonal anti-48kDa PIBF antibody 
(A, C) or the second antibody only (B, D). 
 

 

For modelling tumor invasion, the highly invasive fibrosarcoma cell line HT-1080 

was selected. Both cell lines express and secrete PIBF (immunocytochemistry, Fig. 9, 

Western blotting, 10.B.) and its receptor (Flow cytometry, Fig. 10.A.). 
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FIGURE 10. A. Flow cytometric analysis of PIBF-receptor expression on the surface of 
HTR-8/SVneo and HT-1080 cells. FITC-conjugated ligand was used to visualize the PIBF-
receptor. B. The supernatants of the cultured cell lines were reacted with anti-PIBF 
antibody (lane 1) or second antibody for control (lane 2). 
 
 

Platypus Oris cell invasion assay (Fig. 6.) was used to determine the invasive 

potential of PIBF knock down HTR-8/SVneo trophoblast and HT-1080 fibrosarcoma cells. 

Silencing of PIBF increased invasivity in HTR8/SVneo cells, and decreased 

invasive behaviour in HT-1080 cells as shown on Fig. 11.A. 

 
 

1.3 PIBF affects the activity of matrix metalloproteinases 

 

Invasion of surrounding tissues is mediated by a set of proteolytic enzymes, among 

others, matrix metalloproteinases (MMPs). MMP-9 and MMP-2 cleave type IV collagen, 

(the main component of basal membranes), thus play a crucial role in trophoblast and tumor 

invasion. 
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Cell conditioned media from the invasion assay were subjected to gelatine 

zymography to measure MMP-2 and MMP-9 activity. In trophoblast cells, PIBF silencing 

resulted in increased MMP-2 and MMP-9 secretion; while PIBF knock down tumor cells 

showed reduced levels of secreted MMP-2 and MMP-9 matrix metalloproteinases (Fig. 

11.B.). 

 
 

 

FIGURE 11. A: Invasion of HTR-8/SVneo and HT-1080 cells after silencing of PIBF. 
Detection zones (3 mm in diameter) in which the seeded sells invaded are shown on the 
confocal images 72 hours after removing the Cell Seeding Stoppers. Cells were stained 
with Calcein AM dye. Invasion assays were repeated at five times. (scr: scrambled siRNA) 
B: Supernatants from the OrisTM Assay were subjected to gelatine zymography to detect 
MMP-2 and -9. A representative experiment is shown on the upper panel. Densitometric 
evaluation of three zymograms are shown on the lower panel. Data are represented as mean 
± SEM. In trophoblast cell line HTR-8/Svneo, silencing of PIBF resulted in increased 
production of MMP-2 and MMP-9 and increased invasion. In tumor cell line HT-1080, 
knock down of PIBF had an opposite effect: production of MMP-2 and 9 as well as 
invasion was decreased. 
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Lysates of PIBF-treated and control samples were analysed by protein arrays 

(Fig.12.). After 24 h PIBF treatment MMP-9 expression increased in fibrosarcoma cells 

while decreased in trophoblast cells. TIMP-1 - which has the capaity to inhibit MMP-9 - 

was downregulated in tumor cells while in trophoblast cells its level increased after 24 h 

PIBF treatment. These findings coincide well with the results of gelatin zymography. 

 

 

 

FIGURE 12. MMP-9 and TIMP-1 expression in PIBF-treated (24 h) trophoblast and 
fibrosarcoma cells was analysed by protein arrays. In tumor cells MMP-9 expression was 
increased and TIMP-1 expression was reduced after 24 h PIBF treatment whereas in 
trophoblast cells MMP-9 expression was decreased and TIMP-1 was increased after PIBF 
treatment. A representative experiment is shown. 
 
 

To sum up, PIBF down-regulates MMP-2,-9 secretion, up-regulates TIMP-1 

expression thus decreases invasion of trophoblast cells; while it facilitates the production of 

MMP-2,-9 and inhibites the secretion of TIMP-1 thus increases invasion in tumor cells. 
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2. PIBF-induced signaling networks and invasive behaviour 

 

 

2.1 Characterization of PIBF-receptor 

 

2.1.1. PIBF-receptor associates with IL-4Rα 

 

Earlier we showed that the engaged PIBF receptor associates with the α-chain of the 

IL-4 receptor for signaling. To further verify the involvement of IL-4R in PIBF signaling, 

IL-4Rα deficient cells were created by siRNA technique. Silencing of IL-4Rα by siRNA 

reduced the STAT6 activating effect of PIBF in peripheral lymphocytes (Fig. 13.), 

confirming that the α-chain of the IL-4 receptor was indeed indispensable for PIBF 

signaling. 

 

 

 

FIGURE 13. Silencing of IL-4Rα reduced the STAT6 activating effect of PIBF in 
lymphocytes. Lysates from IL-4Rα knock down and control cells were reacted with anti-
phospho-STAT6 antibody on Western blot. Loading was controlled by reactivity with anti-
STAT6 antibody. NT=untreated. 
 
 

Capping experiments were performed to detect co-localization and co-capping of 

IL-4R and PIBFR on peripheral blood mononuclear cells. 
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When FITC-labelled PIBF is added to the cells, it binds to the PIBF-receptor, and 

might induce complex formation of the PIBF receptor and IL-4R. Receptor cross-linking 

by anti IL-4R specific antibody might also induce complex formation. To investigate 

these effects, both antibody- and ligand-induced cross-linking was performed. 

 

 

 

FIGURE 14. Confocal microscopy analysis to investigate the complex formation of IL-

4R and the PIBF-receptor (100x). Both anti-IL-4R antibody induced cross-linking (A) 

and ligand-induced capping (B) resulted in co-localization and co-capping of the two 

binding sites. 1: FITC-PIBF labelled PIBFR; 2: PE-anti IL-4R-labelled IL-4R; 3: merged 

picture. C: Simultaneous labelling of lymphocytes with PE-antiCD45RA (red), cross-
linked by anti-mouse IgG1-PE (1) and FITC-PIBF (green) (2), resulted in capping of the 
CD45RA molecule but no co-capping of the PIBFR (3). D: All steps were performed at 
4°C. (All confocal images were taken with identical settings and at least 50 cells were 
counted in each slide. In each experiment more than 90% of the capped cells showed the 
indicated phenotypes.) 
 

 

Antibody-induced cross-linking by anti-IL-4R and PE-conjugated anti-IgG2A+B at 

37ºC results in capping of the IL-4R and simultaneus co-capping of the PIBF receptor, as 

shown on Fig. 14.A. No capping occurred, when all steps were performed at 4°C (Fig. 

14.D.). 
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Ligand-induced cap-formation (Fig. 14.B.) was tested by incubating the cells with 

FITC-PIBF at 37°C. After ligand binding, the cells were fixed and incubated with anti-IL-

4R-PE at room temperature. It was found that PIBF ligand induced capping resulted in co-

capping of the IL-4R. 

To test the specificity of co-capping induced by PIBF ligand or IL-4R specific 

antibody, simultaneous labelling of CD45RA and PIBF receptor was performed. Antibody-

induced CD45RA crosslinking resulted in capping of the CD45RA molecule but no co-

capping with the PIBFR, as shown on Fig. 14.C. 

These data suggest that the PIBF receptor forms a complex with IL-4R and this 

process is initiated by PIBF binding. 

Competition between IL-4 and PIBF was also tested. JAK3 is present on the γ-chain 

of the IL-4R, thus IL-4 signaling involves JAK3 phosphorylation (Fig. 15.A.). In the 

presence of PIBF, IL-4 induced JAK3 phosphorylation was reduced in a concentration-

dependent manner, confirming that the PIBF-receptor is capable of replacing the γ-chain of 

IL-4R (Fig. 15.B). 

 

 

 

FIGURE 15. A: Type I. IL-4R consists of IL-4Rα and the common γ-chain and binds IL-4. 
Upon ligation, the GPI-anchored PIBF-receptor combines with IL-4Rα. B: PIBF-receptor 
replaces the γ-chain in the IL-4 receptor. The lysates of lymphocytes treated with increasing 
PIBF concentrations in the presence of equal concentration of IL-4 were reacted on 
Western blots with anti-phospho-JAK3 antibody. Loading was controlled by anti-actin 
reactivity. A representative experiment of three is shown. 
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2.1.2 The PIBF receptor is a raft-associated, GPI-anchored protein 

 

The above findings raise the question, why IL-4R is needed for PIBF signaling. A 

plausible explanation would be that the PIBF receptor has no transmembrane and 

intracellular domains thus it uses the intracellular tail of IL-4R for signal transduction. 

Assuming that the PIBF receptor is a GPI-anchored protein, we digested the 

putative anchoring-region with phosphatidylinositol-specific phospholipase C (PI-PLC). 

PIBF-induced phosphorylation of STAT6 molecules was tested by Western blotting in 

intact and in PI-PLC digested lymphocytes. 

In PI-PLC digested lymphocytes, PIBF did not induce STAT6 phosphorylation 

while IL-4 retained its effect (Fig. 16.A.), indicating that PIBFR is indeed a GPI-anchored 

molecule. 

Furthermore, capping of IL-4R could still be induced in PI-PLC digested 

lymphocytes but labelling of PIBF receptor was lost (Fig. 16.B.). 

 

 

 

FIGURE 16. A: PIBFR is a GPI-anchored protein. Digestion with PI-PLC cleaves the 
anchoring regions of GPI-anchored PIBFR and results in loss of PIBF induced STAT6 
activation while the effect of IL-4 remains intact. A representative experiment of three is 
shown. (Western blot: anti-phospho-STAT6 Ab, loading: anti-STAT6 Ab. NT: untreated 
cells.) B: Capping of the IL-4Rα (1) in PI-PLC digested cells in the absence of PIBF-
receptor (2). Confocal microscopy, 100x. 
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GPI-anchored proteins are enriched in the leukocyte membrane within 

glycosphyngolipid-cholesterol rafts. These submicron domains need cholesterol to 

function, therefore the hypothesis that receptors of PIBF float in lipid rafts was tested by 

depletion of cholesterol, using methyl--cyclodextrin (MβCD). 

The STAT6 inducing effect of PIBF was abolished in MβCD-treated lymphocytes 

in a concentration-dependent manner. In MCD treated cells neither PIBF, nor IL-4 was 

able to Tyr-phosphorylate STAT6 (Fig. 17.), suggesting that not only the PIBF receptor but 

also the  chain of the IL-4 receptor might be raft-associated. 

 
 

 

FIGURE 17. Disruption of raft integrity by MβCD abrogates PIBF and IL-4 induced Tyr-

phosphorylation of STAT6, suggesting that PIBFR and IL-4R are associated with lipid 

rafts. Western blot: anti-phospho-STAT6 Ab. Loading: anti-STAT6 Ab. NT: untreated 
cells. The experiment was repeated at three times. 

 

 

2.1.3. Internalization of PIBF-receptor  

 

Since the GPI-anchored receptors were found to cluster and recycle at the cell 

surface, we examined the effect of ligand-binding on PIBFR internalization by confocal 

microscopy. Lymphocytes were labeled with FITC-conjugated PIBF and incubated at 37°C 
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for 0, 15, 30 or 60 min (Fig. 18.). Internalization was detectable after 15 min and reached 

the maximum at 60 min. 

 

 

 

FIGURE 18. Internalization of PIBF-receptor starts within 15 minutes after adding its 
ligand at 37°C. Confocal microscopy, 60x oil immersion. Nuclei: Hoechst stained. PIBFR 
was visualized with FITC-labeled PIBF. 
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2.2 PIBF-induced signaling pathways which might affect invasive behaviour 

 

Silencing of IL-4Rα abrogated the effect of PIBF on invasion in both cell lines, 

suggesting, that the invasion-related signaling of PIBF is initiated by the IL-4Rα/PIBFR 

complex (Fig. 19.). 

 

 

 

FIGURE 19. Invasive behaviour of IL-4Rα knock down HTR-8/SVneo and HT-1080 cells. 
IL-4Rα knock down abrogated the effect of PIBF on invasion in both cell lines. (Confocal 
microscopy, 20x.) 
 

 

The next purpose included identifying the signaling networks that might be involved 

in PIBF regulated invasion. Based on the fact, that the GPI-anchored PIBF receptor forms a 

complex with IL-4Rα and uses its intracellular tail for signaling, we focused on IL-4Rα 

associated cascades that might be induced by PIBF (Fig. 20.). 
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IRS, associated with IL-4Rα, can activate the Akt and ERK pathways. Both of these 

play a role in controlling invasive differentiation of trophoblast cells and promote 

metastatic potential of tumors. Therefore, the effect of PIBF treatment on phosphorylation 

of ERK and Akt were investigated in HTR-8/SVneo and HT-1080 cells by Western 

blotting. 

 

 

 

FIGURE 20. IL-4Rα associated signaling pathways that might be activated by PIBF. 

 

 

In trophoblast cells PIBF phosphorylated Akt and ERK in a fast, transient way, 

whereas, in the tumor cell lines PIBF treatment resulted in sustained and late activation of 

Akt and ERK molecules (Fig. 21, 23.). 

 



50 

 

 

FIGURE 21. In trophoblast cells PIBF phosphorylates Akt (A) and ERK (B) in a fast, 
transient way while in HT-1080 fibrosarcoma cell line PIBF treatment resulted in sustained 
activation of these molecules. Densitograms of the presented Western blots are shown. 
Each sample is normalized with its actin pair. 
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Since many papers reported STAT3 as a key molecule in trophoblast and tumor 

invasion, we also investigated the effect of PIBF treatment on STAT3 Ser727 and Tyr705 

phosphorylation in the same cell lines. 

 
 

 

FIGURE 22. In trophoblast cells PIBF treatment decreased Ser727-phosphorylation of 
STAT3 and did not affect the Tyr 705 phosphorylation of STAT3. PIBF treatment resulted 
in late phosphorylation of both Ser727 and Tyr705 residues of STAT3 in HT-1080 
fibrosarcoma cell line. Densitograms of the presented Western blots are shown. Each 
sample is normalized with its actin pair. 
 
 

In trophoblast cells PIBF did not significantly alter the level of Tyr-phosphorylated 

STAT3 and decreased the amount of Ser-phosphorylated STAT3 molecules after 24 hours 

treatment (Fig. 22, 23.). In tumor cells PIBF treatment resulted in late STAT3 Ser and Tyr 

phosphorylation suggesting an indirect role of PIBF in STAT3 induction. 
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FIGURE 23. The effect of PIBF treatment on Akt, ERK and STAT3 phosphorylation in 
trophoblast and fibrosarcoma cells. Statistical analysis of Western blots from three different 
experiments are shown. Data are represented as mean relative density ± SEM. 
 

 

Finally, we examined whether PIBF treatment alters the level of Wnt5a molecules 

which has been shown to be involved in invasion of many tumors [126,127]. 

In HT-1080 fibrosarcoma cells PIBF induced the activation of Wnt5a molecules 

after 6 hours incubation thus we analysed the Wnt5a signaling pathways in tumor cells in a 

more detailed fashion (Fig. 24.). 

In fibrosarcoma cells the level of β-catenin was reduced with 60% after 6 h PIBF 

treatment suggesting that Wnt5a inhibits the canonical, β-catenin-mediated pathway. 

Moreover, after 6h PIBF treatment PKCζ and PKCδ [128] - the two isoforms which might 

be involved in the non-canonical signaling processes of Wnt5a - were also phosphorylated.  

 PKCδ might be associated with Wnt5a signaling or apoptosis. Nuclear localisation 

of PKCδ is required for its apoptotic function [129], while membrane-association of PKCδ 

shows its involvement in Wnt5a signaling [130]. 
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FIGURE 24. After 6 h PIBF treatment the increased Wnt5a induces the degradation of β-
catenin and signals with the help of PKCζ and PKCδ. Densitograms of the presented 
Western blots are shown. Each sample is normalized with its actin pair. Experiments were 
repeated at three times. 
 

 

To confirm that PKCδ is associated with Wnt5a signaling and not with the apoptotic 

pathway, confocal microscopy was performed to detect the subcellular localization of 

phosphorylated PKCδ after 6h PIBF treatment and cells were Annexin stained to detect 

early signs of apoptosis (Fig. 25.). Phospho-PKCδ was associated with the membrane after 
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6 h treatment supporting the hypothesis that it has a role in Wnt5a signaling. Significant 

apoptosis was not detectable after 6 h PIBF treatment (data not shown). 

 

 

 

FIGURE 25. Subcellular localisation of phospho-PKCδ after 6h PIBF treatment in HT-
1080 cells. Phospho-PKCδ was visualized by anti-phospho-PKCδ Ab and further stained 
with Cy-3-conjugated anti-rabbit Ig; nuclei were labelled by Hoechst. Confocal 
microscopy, 60x oil immersion. 
 

 

 

2.3. Subcellular localization of PIBF 

 

The late signaling events observed in tumor cells are not likely to be due to direct 

PIBF action, rather to that of new PIBF-induced proteins. The full-length PIBF contains 

leucine-zippers, nuclear localization signals and bZIP motives, which enable the molecule 
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to bind to DNA and regulate gene transcription (Fig. 4.). If PIBF induces proteins which 

bind to growth factor receptors, further signal pathways might be activated. 

 

 

 

FIGURE 26. Subcellular localization of PIBF in HTR-8/SVneo (1) and HT-1080 (2) and 
cells by confocal microscopy. A: Merged images of nucleus staining (Hoechst, shown as 
blue) and labeling of PIBF (shown as red; 1st Ab: anti-PIBF, 2nd Ab: anti-rabbit Ig-Cy3) 
B: Merged images of nucleus staining and the secondary control without the first anti-PIBF 
antibody. Confocal microscopy, 60x oil immersion. 
 

 

To confirm that PIBF enters the nucleus, subcellular localization of PIBF was 

visualized in trophoblast and tumor cell lines by confocal microscopy and in fractionated 

cells by Western blotting. For confocal microscopy PIBF was labelled with the fluorescent 

dye Cy3 and nuclei were counterstained by Hoechst (Fig. 26.). PIBF reactivity was 

detected in the nucleus as well as in the cytoplasm of both cell lines. 



56 

 

Then nuclear fraction was isolated from the cells to detect PIBF by Western blotting 

(Fig. 27.). PIBF was present in the nucleus of both cell lines, however, the ratio of nuclear 

versus cytoplasmic PIBF was higher in the tumor, than in the trophoblast cells. 

 

 

 

FIGURE 27. Subcellular localization of PIBF in trophoblast and tumor cell lines. Nuclear 
and cytosol fractions were reacted with anti-48kDa PIBF or anti-exon-17 antibodies by 
Western blotting. A representative experiment of three is shown. 
 

 

 

2.4. PIBF-induced genes 

 

To identify PIBF-induced genes, protein arrays (for detection of 55 angiogenesis- 

and invasion-related molecules) were performed on lysates of PIBF-silenced and 24 h 

PIBF-treated trophoblast and fibrosarcoma cells. In PIBF knock down tropoblast cells, no 

significant alteration was found, suggesting that in trophoblast cells PIBF does not induce 

the genes of the tested proteins and the events are due to by receptor-mediated effects of 

PIBF. 

In fibrosarcoma cells PIBF induced the transcription of HB-EGF, PlGF, FGF-1, 

endothelin-1 and angiogenin (Fig. 28.). Either of these can initiate the observed late 

signaling pathways. 
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To confirm this possibility, we investigated the effect of PIBF treatment on STAT3 

activation in HB-EGF silenced HTR-8/SVneo and HT-1080 cells. In HB-EGF knock down 

fibrosarcoma cells the STAT3-activating effect of PIBF was reduced compared to the 

control (scrambled) suggesting that late STAT3 activation might have been caused by 

PIBF-induced HB-EGFF (Fig. 29.). 

 

 

 

FIGURE 28. After silencing of PIBF, HT-1080 cells were analysed by protein arrays. 
PIBF induced angiogenin, endothelin-1, HB-EGF, PlGF, FGF-1 production. A 
representative experiment is shown. 
 

 

IL-6 is also an important activator of STAT3 signaling pathway. Therefore, secreted 

IL-6 was measured in the supernatants of PIBF silenced trophoblast and fibrosarcoma cells 

by cytometric bead array. IL-6 production was increased in PIBF knock down trophoblast 

cells compared to the control sample, whereas IL-6 secretion of PIBF-silenced HT-1080 

cells was reduced, suggesting that PIBF might regulate IL-6 expression (Fig. 30.). 
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FIGURE 29. STAT3 activation by 24 h PIBF treatment in HB-EGF-silenced HT-1080 
cells. Densitogram of the presented Western blots is shown. Each sample is normalized 
with its actin pair. A representative experiment of three is shown. 
 
 

 

FIGURE 30. IL-6 secretion of intact and PIBF knock down trophoblast and fibrosarcoma 
cells. Silencing of PIBF resulted in increased IL-6 secretion in trophoblast- and decreased 
IL-6 secretion in tumor cells. Data are represented as mean ± SEM. (n=3/group)  
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We also investigated the effect of PIBF knock down on Wnt5a expression. After 

silencing of PIBF, the levels of Wnt5a decreased in tumor cells and increased in trophoblast 

cells suggesting that Wnt5a might be a PIBF-regulated gene (Fig. 31.). 

 

 

 

FIGURE 31. Wnt5a expression in intact and PIBF knock down trophoblast and 
fibrosarcoma cells. Western blots of a representative experiment are shown together with 
their densitogramic evaluation. Each sample is normalized with its actin pair. (scr: 
scrambled siRNA) 
 

 

To verify that PIBF is capable to regulate the transcription of these molecules, 

chromatin immunoprecipitation (ChIP) was performed with anti-PIBF antibody. During 

testing the possible promoter-binding sites for PIBF by the primers shown in Table 3., 

ChIP assay revealed that PIBF has the capacity to bind to the promoter of Wnt-5a and EGF 

both in trophoblast cells (not shown) and fibrosarcoma cells (Fig. 32.). 

The protein profile of the protein/DNA complex precipitated by anti-PIBF antibody 

was different in HTR-8/SVneo tophoblast and HT-1080 fibrosarcoma cells: in trophoblast 

cells the 50-kDa and 67-kDa PIBF isoforms were present in the complex while in 
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fibrosarcoma cells the complex also included the full-length PIBF isoform (Fig. 33.) 

suggesting that the composition of the transcription complexes are different in trophoblast 

and tumor cells and regulate gene expression in a tissue specific manner. 

 

 

FIGURE 32. Chromatin Immunoprecipitation from HT-1080 cells shows that PIBF might 
bind to the promoter region of EGF and Wnt5a genes. 
 
 

 

FIGURE 33. Western blot analysis of protein complex immunoprecipitated by anti-PIBF 
(ChIP). In trophoblast cells the complex contains the 50- and 67-kDa PIBF isoforms, while 
in tumor cells the 90-kDa isoform is also included in the complex. 
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VI. DISCUSSION 

 

 

During the first trimester of pregnancy, trophoblast cells invade the uterine tissue 

and vessels in an invasive and eroding manner and establish the foundation of human 

pregnancy and foetal development. Invasive trophoblasts anchore the placenta to the uterine 

wall, modulate implantation as well as secretion of hormones and cytokines and most 

importantly play a crucial role in remodelling of maternal spiral arteries. The latter is 

required to increase blood flow to the placenta to provide sufficient oxygen and nutrient 

supply for the developing fetus [131]. 

Invasiveness is a common feature of trophoblast and malignant tumors. Embryo 

implantation is similar to the growth of cancer cells. Similarly to tumor invasion of the host 

tissue, trophoblast invasion of the uterus is a multi-step process. It involves attachment of 

the trophoblast cells to the extracellular matrix (ECM) components, degradation of the 

ECM and migration through the eroded connective tissue. However, unlike tumor invasion, 

trophoblast invasion is precisely regulated. It is limited in space and only possible during 

the implantation window (6th - 9th day after fertilization in humans). 

 Among others, progesterone and progesterone-induced genes possess a crucial role 

during implantation via governing trophoblast invasion. Progesterone decreases invasion 

and gelatinase expression in early first trimester trophoblast cells [132]. 

 Progesterone-Induced Blocking Factor was first described as a progesterone-

induced molecule that mediates the immunological effects of progesterone. Recently, PIBF 

has also been found in rapidly proliferating cells, malignancies and in the trophoblast. This 

raised the question wheather PIBF is involved in regulation of invasion. To investigate this, 

we used an extravillosus trophoblast cell line (HTR-8/SVneo) and tumor cell lines (e.g. 

HT-1080) as model. 

 PIBF-silenced HTR-8/SVneo cells showed increased invasivity together with 

increased MMP-9, MMP-2 and decreased TIMP-1 activation while knocking down of PIBF 

in the tumor cell line resulted in decreased invasive potential as well as decreased MMP-9,  

MMP-2 and increased TIMP-1 activity (Fig.34.). These findings confirm that PIBF is 

involved in invasion and matrix remodelling by altering the activity of gelatinases (MMP-9 
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and MMP-2). The data also suggest a different role of PIBF in trophoblast and tumor 

invasion. 

 

 

 

FIGURE 34. The role of PIBF in regulation of invasion. In trophoblast cells PIBF is 
responsible for decreased production of MMP-9, MMP-2 and increased production of 
TIMP-1, suggesting its role in controlling trophoblast invasion. PIBF induces MMP-9, 
MMP-2 activity and inhibits TIMP-1 expression in fibrosarcoma cells, thus facilitates 
invasion. 

 

 

 These data are in line with the finding that progesterone suppresses the production 

of MMP-9 during the implantation period. To explore the underlying mechanisms, we first 

characterized the PIBF-receptor.  

Both HTR-8/SVneo and HT-1080 cells express PIBF-receptors on their surface and 

secrete PIBF, thus autocrine regulation of PIBF is possible. Many transformed cells 

continuously produce both growth factors and their receptors, thereby providing themselves 

an auto-stimulatory growth impulse. Autocrine regulation of the human trophoblast has 

also been described, for instance, via the VEGF/VEGF-receptor system. [66, 72]. 
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 We showed that the PIBF-receptor is a GPI-anchored, lipid-raft associated protein 

that can form a heterodimer with IL-4Rα and uses the intracellular domain of the latter for 

signaling. 

 IL-4 is able to induce Akt [133-135] and ERK [136-138] and these molecules might 

be involved in invasion and tumorigenesis [139-140] thus we tested wheather PIBF can 

activate these pathways. In trophoblast cells PIBF activated Akt and ERK molecules 

transiently (at 20 min), while in the tested tumor cells sustained Akt and ERK 

phosphorylation was observed. 

 STAT3 phosphorylation was also investigated in these cells since it is a key player 

in invasion [87-90]. In trophoblast cells Ser-phosphorylation of STAT3 was inhibited after 

PIBF treatment, while in tumor cells we experienced late activation of STAT3 (both Ser 

and Tyr phosphorylation) transcription factors after 6 and 24 hours PIBF treatment. 

Wnts have a role in cancer progression, furthermore, they are implicated in 

implantation and early trophoblast developement as well as in pathogenesis of trophoblastic 

diseases. Recent studies reported that various Wnts (Wnt5a, Wnt11) are detectable in the 

pre-implanting embryo and a shift was demonstrated from non-canonical signaling in the 

pre-implantation period towards canonical signaling in activated blastocysts during 

implantation [141]. 

Dickkopf-related protein-1 (Dkk1), a major secreted Wnt signaling antagonist is up-

regulated by progesterone in the endometrium during the implantation window, 

furthermore, progesterone-dependent induction of Dkk1 inhibited Wnt signaling [142-143], 

suggesting that repression of the pathway plays a role in decidualisation.  

Wnt5a has distinct roles in development and tissue homeostasis. Recent data point 

to a critical role of Wnt5a in malignant progression, but its role is controversial: Loss of 

Wnt5a signaling is related to development of lymphoid malignancies, whereas 

constitutively active Wnt5a signaling is involved in invasion or metastasis of several 

cancers [127, 144]. 

Wnt5a is thought to primarily signal through non-canonical pathways. The 

Wnt5a/PKC pathway mediates motility and initiates an epithelial to mesenchymal 

transition [145]. 
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In tumor cells, 6h PIBF treatment resulted in Wnt5a activation together with 

reduced β-catenin levels, suggesting that the canonical Wnt pathway is inhibited. 

Moreover, 6 hours PIBF treatment increased PKCζ and PKCδ phosphorylation. PKCζ is 

known to be involved in non-canonical Wnt5a signal transduction.  

 

 

 

FIGURE 35. A: Canonical Wnt signaling pathway. In the presence of the Wnt molecule, 
Dvl inhibits GSK3β and β-catenin translocates to the nucleus and induces the transcription 
of the target genes. B: PIBF induced non-canonical Wnt5a signaling pathway. A possible 
signaling event in HT-1080 fibrosarcoma cells: 6h PIBF treatment induces Wnt5a and 
phosphorylation of PKCδ and PKCζ while β-catenin is degraded. Wnt5a supports invasion 
via non-canonical pathways with the help of PKCζ and PKCδ. 
 
 

PKCδ might be associated with Wnt5a signaling or apoptosis. Nuclear localisation 

of PKCδ is required for its apoptotic function while membrane-association of PKCδ shows 

its involvement in Wnt5a signaling [129, 130]. To assess the function of PKCδ in PIBF 

induced signaling, PIBF-treated fibrosarcoma cells were analyzed for PKCδ localization by 
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confocal microscopy. After 6 h PIBF treatment, PKCδ was found to be membrane-

associated suggesting its role in Wnt5a induced signaling. Moreover, 6 h PIBF treatment 

did not result in early signs of apoptosis (Annexin staining).  

In summary, PIBF induced Wnt5a inhibits the canonical Wnt pathway by promoting 

degradation of β-catenin and signals via non-canonical mechanisms in which PKCζ and 

PKCδ are involved (Fig.35.). 

 The sustained activation of Akt and Erk, the late STAT3 phosphorylation and 

Wnt5a activation in tumor cells suggest that in addition to the receptor-mediated effects of 

PIBF there might be other mechanisms with which PIBF participates in invasion. 

Since PIBF possesses NLS, LeuZip and bZIP sequences, we analysed the 

subcellular localisation of PIBF. PIBF was present not only in the cytoplasm but also in the 

nucleus thus it is conceivable that PIBF induces genes which might be responsible for the 

experienced sustained and late signaling events in case of tumor cells. 

 Lysates of PIBF-silenced trophoblast and fibrosarcoma cells were analysed with 

protein arrays for 55 invasion and angiogenesis related molecules. In PIBF knock down and 

control trophoblast cells there were no significant alterations between the levels of the 

tested invasion and angiogenesis related proteins. 

 In PIBF silenced fibrosarcoma cells the expression of bFGF, HB-EGF, PlGF, 

angiogenin and endothelin-1 were reduced, supporting the hypothesis that PIBF might 

induce the genes of these growth factors and angiogenesis associated molecules. 

 In order to confirm, that late PIBF signaling was indeed due to gene induction, HB-

EGF knock down fibrosarcoma cells were created. In these cells the STAT3 activating 

effect of PIBF was reduced compared to the control. Moreover, IL-6 secretion and Wnt5a 

production of PIBF knock down HT-1080 cells were reduced compared to the control 

sample. In contrast to this, PIBF knock down in trophoblast cells resulted in increased IL-6 

production together with increased Wnt5a and leptin-receptor expression. 

 Finally, chromatin immunoprecipitation with anti-PIBF antibody showed that PIBF 

could bind to the promoter of Wnt5a and EGF both in trophoblast and tumor cells. 

However, while in trophoblast cells the promoter-binding complex contains the 50-kDa and 

67-kDa PIBF isoforms, in tumor cells the full length PIBF is also included in the 
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transcription complex (Fig.36.). The differential effect of PIBF might be due to this 

difference. 

 

 

 

FIGURE 36. PIBF binds to the promoter regions of certain genes. In fibrosarcoma cells 
PIBF induces FGF, HB-EGF, PlGF and Wnt-5a while in trophoblast cells there is no gene 
induction. 
 

 

In conclusion, in tumor – but not in trophoblast – cells PIBF promotes invasion by 

gene activation, e.g., that of EGF, IL-6, Wnt5a. The secreted proteins (IL-6, EGF) bind 

then to their own receptors and induce Akt, ERK and STAT3 phosphorylation which in 

turn further activates transcription of invasion promoting molecules (e.g. MMP-9, MMP2). 

(Fig.37.) 
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FIGURE 37. Signaling pathways that lead to PIBF-induced invasion in HT1080 
fibrosarcoma cells.  
 
 
 

Based on our findings, it can not be ruled out, that PIBF suppresses the transcription 

of leptin-receptor, IL-6 and Wnt5a genes in trophoblast cells and as an intrinsic control 

molecule negatively regulates trophoblast invasion. In line with this, in choriocarcinoma, 

the loss of PIBF results in increased invasive behaviour since the genes (leptin-receptor, IL-

6, Wnt5a) normally suppressed by PIBF will be transcribed (Fig.38.). 

 



68 

 

 

FIGURE 38. In trophoblast cells PIBF might suppress the genes of leptin-receptor, HB-
EGF, Wnt5a and IL-6. In the absence of PIBF-mediated inhibition these genes will be 
activated. 
 
 

 Our data provide evidence that PIBF is not only responsible for modulating the 

immunological effects of progesterone but it also has a vital role in tumor invasion as well 

as in controlling trophoblast invasion at a physiological level. Invasion is known to be 

closely associated with angiogenesis. Preliminary data from our laboratory suggest that 

PIBF might affect the production of angiogenic factors (e.g. VEGF, angiogenin etc.) and in 

lymphocytes increases the expression and phosphorylation of tumor suppressor molecules 

(e.g. p53). The precise signaling events of these processes need to be further investigated. 

 These findings might be implemented in therapeutical approaches. Designing 

receptor agonists might be a promising anti-abortive therapy in those pregnancies which are 

characterized by low PIBF levels and receptor antagonists or PIBF inhibitors might be 

useful in the treatment of PIBF-positive tumors. 
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VII. SUMMARY OF THESES 

 

 

I. PIBF is implicated in the regulation of both trophoblast and tumor invasion. 

II. In trophoblast cells PIBF down-regulates the expression of the pro-invasive leptin 

and its receptor, suggesting that PIBF might be involved in the control of 

trophoblast invasion. 

III. In the normal trophoblast  partial mole  complete mole  choriocharcinoma 

transition there is a shift towards uncontrolled invasive behaviour characterized by 

gradual loss of PIBF and an increasing leptin/leptin-receptor expression pattern, 

suggesting an inverse relationship between PIBF and leptin/leptin-receptor 

expression. 

IV. In trophoblast, the lack of PIBF is associated with increased invasion, suggesting 

that PIBF regulates the physiological trophoblast invasion. In HT-1080 tumor cells 

PIBF knock down results in restricted invasion suggesting that PIBF might facilitate 

invasive behaviour of tumor cells. 

V. PIBF takes part in matrix remodelling by altering the activity of MMP-9 and MMP-

2 matrix metalloproteinases. In trophoblast cells, silencing of PIBF induces the 

secretion of gelatinases (i.e. MMP-9 and MMP-2) and inhibits TIMP-1 expression, 

while in fibrosarcoma cells downregulation of PIBF results in decreased gelatinase 

activity together with increased TIMP-1 level. 

VI. HTR-8/SVneo and HT-1080 cells secrete PIBF and express PIBF-receptors on their 

surface, thus autocrine regulation of PIBF is a possibility. 

VII. PIBF is capable to activate the Akt and ERK pathways via binding to the PIBF-

receptor/IL-4Rα heterocomplex in both trophoblast and fibrosarcoma cells.  

VIII. In trophoblast cells the effect of PIBF on Akt and ERK phosphorylation is transient, 

while in fibrosarcoma cells PIBF induces sustained activation of these molecules. 
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IX. In trophoblast cells PIBF inhibits Wnt5a activation and Ser-phosphorylation of 

STAT3 and it does not alter STAT3-Tyr phosphorylation. 

X. In HT-1080 tumor cells PIBF induces late activation of Wnt5a and late 

phosphorylation of STAT3 (both Tyr and Ser) molecules. 

XI. In HT-1080 cells after 6 h PIBF treatment the amount of β-catenin is reduced while 

PKCζ and PKCδ isoforms are activated together with Wnt5a, suggesting that Wnt5a 

inhibits the canonical pathway and might use these two PKC isoforms for signaling. 

XII. In trophoblast and HT-1080 tumor cells PIBF is present in the nucleus. 

XIII. In fibrosarcoma cells PIBF might activate molecules involved in invasion and 

angiogenesis (e.g. FGF-1, HB-EGF, IL-6, PlGF, endothelin and angiogenin etc.) at 

the gene level as a transcription factor. 

XIV. PIBF is capable to bind specifically to certain promoter regions, among others, to 

the promoter of Wnt5a and EGF in both trophoblast and fibrosarcoma cells. 

XV. Silencing of PIBF results in reduced Wnt5a and IL-6 production in fibrosarcoma 

cells. In contrast to this, Wnt5a and IL-6 expression is increased in PIBF knock 

down trophoblast cells. These data suggest that PIBF might induce the transcription 

of Wnt5a and IL-6 genes in fibrosarcoma cells, while PIBF might suppress the 

transcription of Wnt5a and IL-6 genes in trophoblast cells. 

XVI. The differential effect of PIBF might reside in the composition of the protein 

complex which binds to the promoter region of the above mentioned genes. While 

in trophoblast cells the promoter-binding complex contains the 50-kDa and 67-kDa 

PIBF isoforms, in tumor cells the full length PIBF is also included in the 

transcription complex. 
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N Kozma, G Par, B Polgar, T Palkovics, M Halasz, M Keszei, Cs Szalai, A Falus, J 
Szekeres-Bartho 
June 4-10, 2005; Malinska, Croatia 
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5. Awarded Lectures 

 
 

1.) 2nd Prize  
Ph.D. Conference organized by the Regional Committee of the Hungarian 
Academy of Sciences at Pecs 
2010, Pecs, Hungary 
 
 

2.) 1st Prize, Royan Award in Female Infertility  
Royan International Twin Congress 
10th Congress on Reproductive Biomedicine, 5th Congress on Stem Cell Biology 
and Technology 
What harbours the cradle of life? The Progesterone-Dependent Immunomodulation 
M Halasz, B Polgar, N Kozma, T Berki, J Szekeres-Bartho 
Sept 23-25, 2009; Tehran, Iran 
 

3.) 2nd Prize, Best Abstract in Basic Immunological Research by Sigma-Aldrich 
37th Congress of the Hungarian Society for Immunology 
Identifying the receptor-binding part of PIBF 
M Halasz, B Polgar, N Kozma, G Berta, G Toth, J Szekeres-Bartho 
Oct 29-31, 2008; Budapest, Hungary 
 

4.) Top Selected Abstract 
4th EMBIC Summer School: Advances in embryo implantation and pregnancy. 
Identifying the receptor-binding part of PIBF 
M Halasz, B Polgar, N Kozma, G Berta, G Toth, J Szekeres-Bartho 
June 2-6, 2008; Barcelona, Spain 
 

5.) Young Signaling Researcher of 2005 
13th Symposium on Signals and Signal Processing in the Immune System  
PIBF is the ligand of a novel type of IL-4-receptors 
M Halasz, N Kozma, B Polgar, NHalidi, L Grama, M Nyitrai, B Somogyi, J 
Szekeres-Bartho  
Sept 7-11, 2005; Balatonoszod, Hungary  
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6. Additional Papers 

 
 

1.) Immunology of HCV infection: the causes of impaired cellular immune response 
and the effect of antiviral treatment 
G Par, T Berki, L Palinkas, P Balogh, L Szereday, M Halasz, J Szekeres-Bartho, A 
Miseta, G Hegedus, Gy Mozsik, B Hunyady, A Par 
Orvosi Hetilap (2006); 147(13):591-600. 

 
2.) Cloning of Metallothionein: A Senescence Associated Gene in Arabidopsis thaliana 

M Halasz 
Students’ Scientific Reports (2000); p: 63-68. 

 
 

7. Additional Published Abstracts 

 
 

1.) Altered surface expression of inhibitory KIR2DL3 and activating CD160, NKG2D 
receptors on NK and cytotoxic T cells in chronic HCV hepatitis 
G Par, L Szereday, T Berki, M Halasz, A Miseta, J Szekeres-Bartho, G Hegedus, 
Gy Mozsik, B Hunyady, A Par 
Journal of Hepatology (2008); 48:S51. (IF:7.056) 

 
2.) Cytokine profiles of peripheral blood monocytes may predict rapid virological 

response in chronic hepatitis C 
G Par, T Berki, L Palinkas, M Halasz, L Szereday, A Miseta, Zs Faust, G Hegedus, 
Gy Mozsik, B Hunyady, A Par 
Folia Hepatologica (2007); 11:S24. 
 

3.) Increased Th1 cytokine production may predict rapid virological response in 
chronic HCV hepatitis  
G Par, T Berki, L Palinkas, M Halasz, L Szereday, A Miseta, Zs Faust, G Hegedus, 
Gy Mozsik, B Hunyady, A Par 
Hepatology International (2007); 1:137. 

 
4.) Pretreatment increased T helper 1 type cytokine production of peripheral blood 

monocytes may predict rapid virological response to PEG-IFN+RBV therapy in 
patients with chronic hepatitis C 
G Par, T Berki, L Palinkas, M Halasz, L Szereday, A Miseta, Zs Faust, G Hegedus, 
Gy Mozsik, B Hunyady, A Par 
Journal of Hepatology (2007); 46:S174. (IF: 6.642) 
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5.) Rapid virological response is associated with increased pretreatment Th1 type 
cytokine production of Toll-like receptor 4 stimulated monocytes in HCV1 patients 
G Par, T Berki, L Palinkas, M Halasz, L Szereday, A Miseta, Zs Faust, G Hegedus, 
Gy Mozsik, B Hunyady, A Par 
German Journal of Gastroenterology (2007); 44:440.  (IF: 0.632) 
 

6.) Transforming growth factor-beta 1 downregulates NKG2D killer activator receptor 
expression on cytotoxic cells in patients with chronic HCV hepatitis 
G Par, T Berki, L Palinkas, L Szereday, M Halasz, A Miseta, G Hegedus, Zs Faust, 
Gy Mozsik, B Hunyady, A Par  
Liver International (2006); 26(S1):8. (IF: 2.344) 

 
7.) Increased TGFβ1 secretion via down-regulating NKG2D killer activator receptor 

expression results in impaired natural killer cell activity in patients with chronic 
HCV hepatitis 
G Par, T Berki, L Palinkas, L Szereday, M Halasz, J Szekeres-Bartho, A Miseta, G 
Hegedus, Zs Faust, Gy Mozsik, B Hunyady, A Par 
Journal of Hepatology (2006); 44(S2): S164-165. (IF: 6.073) 

 
8.) Th-1 type cytokine production of the macrophages may predict the virological 

response of IFN in chronic hepatitis C 
G Par, A Par, T Berki, L Palinkas, Zs Faust, M Halasz, Gy Mozsik, B Hunyady 
German Journal of Gastroenterology (2005); 43:505. (IF: 0.800) 

 
9.) Pretreatment T-helper1/T-helper2 cytokine profile may predict virological response 

in chronic hepatitis C patients and the effect of IFN plus ribavirin treatment 
G Par, A Par, T Berki, L Palinkas, M Halasz, Zs Faust, G Hegedus, B Hunyady 
Canadian Journal of Gastroenterology (2005); 19 (Suppl C): R0746. (IF: 1.421) 

 
 
8. Additional Presentations 

 
 

1.) 43rd Annual Meeting of the European Association for the Study of the Liver 
Altered surface expression of inhibitory KIR2DL3 and activating CD160, NKG2D 
receptors on NK and cytotoxic T cells in chronic HCV hepatitis 
G Par, L Szereday, T Berki, M Halasz, A Miseta, J Szekeres-Bartho, G Hegedus, 
Gy Mozsik, B Hunyady, A Par 
April 23-27, 2008; Milan, Italy 

 
2.) 49th Annual Meeting of  Hungarian Society of Gastroenterology 

Rapid virological response is associated with increased pretreatment Th1 type 
cytokine production of Toll-like receptor 4 stimulated monocytes in HCV1 patients 
G Par, T Berki, L Palinkas, M Halasz, L Szereday, A Miseta, Zs Faust, G Hegedus, 
Gy Mozsik, B Hunyady, A Par 
June 1-6, 2007; Tihany, Hungary 
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3.) 6th Congress of European Federation of Internal Medicine (EFIM)  
Cytokine profiles of monocytes predict rapid virological response to PEG-
IFN+RBV therapy in patients with chronic hepatitis C 
G Par, T Berki, L Palinkas, M Halasz, L Szereday, A Miseta, Zs Faust, G Hegedus, 
Gy Mozsik, B Hunyady, A Par 
May 23-26, 2007; Lisboa, Portugal 
 

4.) 42nd Annual Meeting of European Association of the Study of the Liver (EASL) 
Pretreatment increased T helper 1 type cytokine production of peripheral blood 
monocytes may predict rapid virological response to PEG-IFN+RBV therapy in 
patients with chronic hepatitis C 
G Par, T Berki, L Palinkas, M Halasz, L Szereday, A Miseta, Zs Faust, G Hegedus, 
Gy Mozsik, B Hunyady, A Par 
April 11-15, 2007; Barcelona, Spain 

 
5.) Congress of Asian and Pacific Association of the Study of the Liver (APASL)  

Increased Th1 cytokine production may predict rapid virological response in 
chronic HCV hepatitis  
G Par, T Berki, L Palinkas, M Halasz, L Szereday, A Miseta, Zs Faust, G Hegedus, 
Gy Mozsik, B Hunyady, A Par 
March 26-29, 2007; Kyoto, Japan 

 
6.) Congress of the Hungarian Society for Hepatology  

Cytokine profiles of peripheral blood monocytes may predict rapid virological 
response in chronic hepatitis C 
G Par, T Berki, L Palinkas, M Halasz, L Szereday, A Miseta, Zs Faust, G Hegedus, 
Gy Mozsik, B Hunyady, A Par 
Feb 20-24, 2007; Bukfurdo, Hungary 
 

7.) 4th Central European Gastroenterology Meeting 
TGF-beta 1 downregulates NKG2D killer activator receptor expression on cytotoxic 
cells in patients with chronic hepatitis C 
G Par, T Berki, L Palinkas, L Szereday, M Halasz, A Miseta, G Hegedus, Zs Faust, 
Gy Mozsik, B Hunyady, A Par 
June 29 - July2, 2006; Visegrad, Hungary 

 
8.) 41st Annual Meeting of European Association of the Study of the Liver (EASL) 

Increased TGF-beta1 secretion via down-regulating NKG2D killer activator 
receptor expression results in impaired natural killer cell activity in patients with 
chronic HCV hepatitis 
G Par, T Berki, L Palinkas, L Szereday, J Szekeres-Bartho, M Halasz, A Miseta, Zs 
Faust, G Hegedus, Gy Mozsik, B Hunyady, A Par 
26-30 April 2006; Wien, Austria 

 



94 

 

9.) World Congress of Gastroenterology 
Pretreatment T-helper1/T-helper2 cytokine profile may predict virological response 
in chronic hepatitis C patients and the effect of IFN plus ribavirin treatment 
G Par, A Par, T Berki, L Palinkas, M Halasz, Zs Faust, G Hegedus, B Hunyady 
Sep 10-13, 2005; Montreal, Canada 

 
10.) 52nd Annual Meeting of the Hungarian Society for Internal Medicine 

IFN és ribavirin terápia hatása a Th1/Th2 cytokin profilra krónikus C hepatitisben 
G Par, T Berki, L Palinkas, M Halasz, Zs Faust, G Hegedus, Gy Mozsik, A Par, B 
Hunyady 
June 23-25, 2005; Bukfurdo, Hungary. 

 
11.) 47th Annual Meeting of  the Hungarian Society of Gastroenterology 

Th-1 type cytokine production of the macrophages may predict the virological 
response of IFN in chronic hepatitis C 
G Par, A Par, T Berki, L Palinkas, Zs Faust, M Halasz, Gy Mozsik, B Hunyady 
June 7-11, 2005; Balatonaliga, Hungary 
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XI. PAPERS 

 

 

 

Paper 1 

 

Progesterone -induced blocking factor (PIBF) and trophoblast invasiveness 

E Miko*, M Halasz*, B Jericevic-Mulac, L Wicherek, P Arck, G Arato, J Skret Magierlo, D 

Rukavina, J Szekeres-Bartho 

(Joint first authors: *) 

Journal of Reproductive Immunology (2011); Published online 25 May, 2011 

Impact Factor: 2.519 

 

Paper 2 

 

Progesterone in pregnancy: receptor-ligand interaction, signaling pathways 

J Szekeres-Bartho, M Halasz, T Palkovics 

Journal of Reproductive Immunology (2009); 83(1-2):60-4. 

Impact Factor: 2.519 

 

Paper 3 

 

Progesterone-Induced Blocking Factor activates STAT6 via binding to a novel IL-4 

receptor 

N Kozma, M Halasz, B Polgar, TG Poehlmann, UR Markert, T Palkovics, M Keszei, G 

Par, K Kiss, J Szeberenyi, L Grama, J Szekeres-Bartho 

The Journal of Immunology (2006); 176(2): 819-826. 

Impact Factor: 6.293 


