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1. Introduction

Nanoparticles ranging from a few to a few hundred nanometers play an increasingly promi-
nent role, especially in the fields of catalysis, electronics, medicine, and environmental re-
mediation. This is due to their small size and high surface-to-volume ratio, which endows
these particles with unique properties, making them highly suitable for various applica-
tions. Although they can be obtained both naturally and synthetically, the latter is more
significant, with nanoparticles primarily synthesized from noble metals, platinum metals,
or transition metal oxides or sulfides.

In the context of green chemistry, the development of catalysis becomes increasingly
important, as it not only accelerates the outcomes of reactions but also supports selective
transformations, minimizing unnecessary by-products. Meanwhile, nanomedicine, com-
bining nanotechnology and medical sciences, holds great promise for healthcare, playing a
significant role in diagnostics (CT, MRI) and serving as drug delivery systems. However,
it is essential to consider their potential toxicity and environmental impact, derived from
their unique physicochemical properties.

The exceptional properties of nanoparticles mentioned above are largely influenced
by their size and distribution, making it inevitable to understand the kinetics of particle
formation. Among the existing models, notable ones include the Finke–Watzky model,
which can be considered an advanced version of the well-established Smoluchowski model,
and the LaMer model. It is also worth examining the Becker–Döring model and its extreme
case known as the Lifshitz–Slyozov–Wagner model. Furthermore, the average size and
distribution of nanoparticles are determined by kinetic factors and are thermodynamically
unstable compared to the bulk solid phase. Therefore, controlling their size requires a
careful consideration of kinetics.
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2. Research objectives

The formation kinetics of nanoparticles shows similarities with polymerization processes.
However, adapting existing models for a precise description of nanoparticle formation
remains an ongoing challenge. It is now evident that the sizes of the particles play a crucial
role in their potential applications, significantly influencing their catalytic properties and
toxicity.

One of the main key goals of the research is to apply and compare various kernel
functions, such as mass, surface, Brownian, and diffusion kernels, to determine the most
appropriate approximation for the final nanoparticle size distribution. These kernels serve
as mathematical representations of the underlying mechanisms of nanoparticle formation,
allowing for a deeper understanding of the role of different kinetic factors in determining
the size and its distribution of the nanoparticles.

Additionally, the thesis aims to develop a robust methodology for interpreting exper-
imental data related to nanoparticle size distribution. By comparing advanced model-
ing techniques with experimental results, we can validate and refine theoretical predic-
tions, leading to a more comprehensive understanding of the complex kinetics involved in
nanoparticle formation.

2



3. Assumptions and methods

The model

In the generalized nucleation-growth model, the first step involves a few monomer units
forming a nucleus, which then grows through a much faster, second-order reaction by
adding one monomer unit to a single nanoparticle. The reaction steps and their corre-
sponding rate equations are defined as follows:

nM kM−−→ Cn n ∈ Z+ υM = kM[M]n

Ci +M
K(i)kg−−−→ Ci+1 i ≥ n υg,i = K(i)kg[M][Ci]

(1)

Here, the notation represents a high number of possible models. The symbols M and
Ci represent the monomer unit and a nanoparticle containing exactly i monomer units,
respectively. The parameter n is a positive integer, and determines the minimum number
of monomer units that can form a nucleus. The constants kM and kg represent the rate
constants for nucleation and growth, respectively, while υM and υg,i denote the rates of
these steps. The function K(i) expresses the kernel functions determining how the rate
constant of nucleus growth depends on the particle size. In this work, four different kernel
functions are assumed: mass kernel (directly proportional to mass or volume, K(i) = i),
surface kernel (directly proportional to surface, K(i) = i2/3), Brownian kernel (directly
proportional to linear size, K(i) = i1/3), and diffusion kernel (size-independent, K(i) = 1).

Simplifications

To simplify the mathematical treatment and reduce the number of parameters, dimen-
sionless quantities are introduced. These quantities enable us to express the differential
equations describing the concentration of nanoparticles over time in a simpler form:

dm

dτ
= −nαmn −

∞∑
j=n

K(j)mcj

dcn
dτ

= αmn −K(n)mcn

dci
dτ

= K(i− 1)mci−1 −K(i)mci i > n

(2)

In the equations, m represents the dimensionless concentration of monomer units, and ci

represents those of the nanoparticles. The symbol α denotes the ratio of nucleation and
growth constants, while τ symbolizes the dimensionless time.
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In mathematical descriptions, the use of moments is often advantageous for popula-
tions such as the one under investigation. The qth moment of nanoparticle concentrations
is defined by the following equation, where q can be any real number:

µq =
∞∑
j=n

jqcj (3)

The physical meaning of the first moment is the sum of the amount of monomer units
in all of the nanoparticles. This quantity remains constant in the system according to the
law of conservation of mass. The solution to the differential equation describing this is
given below:

µ1 +m = 1 (4)

The physical meaning of the zeroth moment is the concentration of nanoparticles ex-
pressed in dimensionless quantities. However, finding an analytical solution to the differ-
ential equation for this moment requires more substantial efforts, including simplification
procedures.

For both the Brownian and surface kernel cases, introducing the 1/3 and 2/3 moments
proves worthwhile. These moments can be estimated as the weighted geometric means of
the first and the zeroth moments.

Stochastic approach

In the continuous-time, discrete-state stochastic approach, we work with molecule counts
instead of concentrations, which can be considered a continuous-time Markov chain (X(τ) =

(X0(τ), X1(τ), . . . , XN(τ))). The sum of all monomer units and the number of nanopar-
ticles containing exactly i monomer units gives the total molecular count in our model:

x0(τ) +
∞∑
i=n

ixi(τ) = N (5)

Due to the law of mass conservation, the above equation holds at any time moment, and
by counting the possible solutions (the number of solutions for a Diophantine equation),
the number of states can be obtained. Solving the ordinary differential equation system
describing the temporal changes in the state probabilities is challenging in this case, so our
calculations are based on Monte Carlo simulations using the Gillespie algorithm. Here,
the propensities for each step are defined in a manner analogous to the deterministic rate
equations.

The essence of the Gillespie simulation lies in generating two independent, uniformly
distributed random numbers between 0 and 1 at each step. The first random number is
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used to update the time according to the following equation:

τnew = τ old − ln rnd1
N∑
j=1

pj(τ old)

(6)

The second random number is used to determine which step occurs out of the possibilities
with non-zero propensity. Step i happens only if the following inequality is satisfied:

i−1∑
j=1

pj(τ
old)

N∑
j=1

pj(τ old)

≤ rnd2 <

i∑
j=1

pj(τ
old)

N∑
j=1

pj(τ old)

(7)

This step induces changes in the molecule counts, repeating until all propensities become
zero (such a final state exists as there are no reversible steps in the scheme).

x0(τ
new) = x0(τ

old)− n;xn(τ
new) = xn(τ

old) + 1, if i = 1

x0(τ
new) = x0(τ

old)− 1;xi(τ
new) = xi(τ

old)− 1;

xi+1(τ
new) = xi+1(τ

old) + 1, if i > n

(8)

We conducted the simulations using codes written in Matlab for all four different kernel
functions, specifying different values for n in the nucleation step. The initial molecular
counts were chosen between 106 and 108 values. These, while small compared to real
cases, are computationally manageable and still provide sufficiently conclusive results
when compared to deterministic calculations. The ratio of rate constants, i.e., α, was
always chosen to be much smaller than 1, as the growth step needs to be much faster to
reach meaningful particle sizes.
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4. Results

In order to determine the dimensionless total concentration of nanoparticles, the analytical
solutions for the zeroth moment need to be found for different kernel functions. As a
first approximation, we consider the dimensionless concentration of monomer units as a
function of µ0:

dm

dµ0

∼= −
m

∞∑
j=n

K(j)cj

αmn
(9)

The solutions obtained using the approximate method for the final size of nanoparticles,
as well as their non-scaled forms, are summarized in Table 1.

Table 1: Final size of nanoparticles for different kernel functions
Kernel functions Average final particle size (M̄∞)

Diffusion kernel
√

nkg

2[M]n−2
0 kM

Surface kernel 4

√
27
64

(
[M]n−2

0 kM
nkg

n∏
j=1

3j
3j−2

)−3/4

Brownian kernel
(
3
5

)3/5( [M]n−2
0 kM
nkg

n∏
j=1

3j
3j−1

)−3/5

Mass kernel (n = 1) [M]0kg

ln
(
1+

[M]0kg
kM

)
kM

Mass kernel (n > 1)
[M]−n

0 ([M]20+[M]n0nkM)
(
1+

[M]n−2
0 nkM
kg

)−n

ln

(
1+

[M]2−n
0 kg

nkM

)
kM

n−1∑
i=1

1
i

[M]2−n
0 kg

(
1+

[M]n−2
0 kM
kg

)1+i−n

kM

To validate the accuracy of our calculations, we compared them with the results of
precise stochastic simulations, as shown in Figure 1 for five different cases of the Brownian
kernel (n = 1, 2, 3, 4, 5).

For the temporal evolution of nanoparticle concentrations, exact analytical solutions
could be found in only three cases. The first is the case of the diffusion kernel with
first-order nucleation (n = 1):

[Ci] = −
1

[M]0kg

e

kM

kM−[M]0kg

√√√√ kM(2[M]0kg+kM)
[M]20k2

g

 tanh

ArcTanh

[√
kM

2[M]0kg+kM

]
+1

2
[M]0tkg

√√√√ kM(2[M]0kg+kM)
[M]20k2

g


[M]20k2

g − 1



kM

i−1∑
j=0

1

j!

 [M]0kg

√
kM(2[M]0kg+kM)

[M]20k
2
g

tanh

(
1
2
[M]0tkg

√
kM(2[M]0kg+kM)

[M]20k
2
g

+ tanh−1
(√

kM
2[M]0kg+kM

))
kM

− 1


(10)

Symbolic solutions were also successfully found for the mass kernel when nucleation is
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Figure 1: Average final nanoparticle size as a function of the ratio of the nucleation and
growth rate constants for the Brownian kernel with n = 1, 2, 3, 4, 5. The markers represent
the results of stochastic simulations, while the lines depict the deterministic formulas.

first- (n = 1) and second-order (n = 2):

[Ci] =

(
1− e

− t([M]0kg+kM)

[M]20

)
kM

i ([M]0kg + kM)
(11a)

[Ci] =
[M]02k

i−2
g k2

M(i− 1)

(2kM + (kg − 2kM)e−[M]0kgt)

i∏
j=2

(2kM − kgj − kg)

+ [M]0

i∑
j=2

kM (j2 − 1)

(2kM − kgj − kg) j

(
i− 1

j − 1

)
(−1)j( kg

2kM + (kg − 2kM)e−[M]0kgt

) kg
2kM−kg

− 1

 (11b)

In all other cases, numerical calculations are required to determine the time-dependent ci
variables.
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5. Thesis points

1. A family of generalized nucleation-growth models for the kinetic descrip-
tion of nanoparticle formation has been introduced, in which the size-
dependent reactivity of individual nanoparticles is represented by a ker-
nel function. In the first step, a few monomer units (n) form a nucleus, which
then grows further in second-order steps by attaching other single monomer units
consecutively. We assumed four types of kernel functions: mass, surface, Brownian,
and diffusion kernels. The system of differential equations describing the tempo-
ral change in concentrations was provided with dimensionless quantities and, for
simplicity in mathematical treatment, the moments were also applied.

2. General symbolic solutions for the temporal evolution of concentrations
were found for the diffusion kernel (n = 1) and two cases of the mass
kernel (n = 1, 2). For all other cases, numerical computations and often also
approximations are necessary.

3. An appropriate approximate differential equation for the zeroth moment
(total nanoparticle concentration) has been introduced. We obtained sym-
bolic solutions for the average final nanoparticle size for all four kernel functions,
regardless of the value of n.

4. The developed approximations have been validated against Gillespie sim-
ulations. We carried out exact stochastic simulations for all the kernel functions
with all possible values of n employing the Gillespie algorithm. A code in Matlab
was written to implement the method. The error caused by the approximations
were characterized by comparison with the exact stochastic simulations and were
found to be practically negligible.
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