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No problem can be solved until it is reduced to some simple form.

The changing of a vague di�culty into a speci�c, concrete form is a

very essential element in thinking.

(J.P. Morgan)
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Notions used

M monomer unit (symbol only)

n the smallest number of monomer units that can form a kinetically e�ective

nucleus (positive integer)

i, j auxiliary variables, i is typically the number of monomer units in a speci�c

nanoparticle (non-negative integers)

Ci nanoparticle containing exactly i monomer units (symbol only)

P external inductor (symbol only)

t time

υM the rate of nucleation (mol dm−3s−1)

υg,i the growth rate of a nanoparticle with i monomer units (mol dm−3s−1)

υP the rate of the induced nucleation (mol dm−3s−1)

kM the rate constant of nucleation (mol1−ndm3n−3s−1)

kg the second order rate constant of particle growth (mol−1dm3s−1)

kP the rate constant of the induced nucleation (s−1)

K(i) the kernel function describing how the growth rate constant of a nanoparticle

depends on its size

ci dimensionless concentration of nanoparticle Ci

m dimensionless concentration of monomer units

p0 dimensionless concentration of the external inductor

τ dimensionless time
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α dimensionless ratio of nucleation and growth rate constant

β dimensionless ratio of the induced nucleation and growth rate constant

µq the qth moment of variable ci

rC the cube-root number-average size of the nanoparticles

rA the number-average size of the population of the nanoparticles

rW the mass-average size of the nanoparticles

rZ the Z-average size of the nanoparticles

M̄ the average number of monomer units present in a nanoparticle

PD∗ polydispersity of nanoparticles

x0 the number of monomer unit particles

xi the number of ci particles

N the total number of monomer units in the system

Q the number of realizations

p(N) the partition function

S the stoichiometric matrix

pi the propensity of i reaction step in dimensionless time

rndi the random numbers with uniform distributions between [0, 1]

S1, S2, . . . , SN species

R1, R2, . . . , RM reactions

ym, y
′
m vectors of the source and product complex

Cm reaction vector

sm stoichiometric vector

κi stochastic rate constant

∆ time change

Tm internal time

L the number of �ring reactions in a τ -leap

bm individual reaction count

Λm independent sample of a tau-leap algorithm
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Ym unit Poisson process

Sm new jump time of the �ring reaction of the mNRM algorithm

T temperature (K)

kB Bolzmann constant (1.38× 10−23J/K)

Di density of nanoparticles

V volumen ([dm3])

η viscosity of �uid (Pa ∗ s)

f(t) transformed phase fraction of the Johnson�Mehl�Avrami�Kolmogorov model

(a+ 1) Avrami's exponent

θ shaping factor (4π/3 for spherical particles)
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1
Introduction

Nanoparticles hold tremendous potential for a wide range of applications, from catal-

ysis[1, 2] and electronics[3] to medicine[4�8] and environmental remediation[9�11].

Spherical nanoparticles, typically ranging from 1 to hundreds of nanometer in di-

ameter, exhibit remarkable characteristics distinct from their bulk counterparts.

Due to their small size and large surface area-to-volume ratio, nanoparticles pos-

sess enhanced reactivity[12] and unique optical, magnetic, and electrical properties,

making them highly desirable for numerous applications. Nanoparticles can be ob-

tained from both natural and synthetic sources[13]. Natural sources such as volcanic

eruptions, forest �res, and cosmic dust produce nanoparticles through physical and

chemical processes in the environment. On the other hand, synthetic methods in-

volve the deliberate fabrication of nanoparticles in laboratories using techniques such

as chemical precipitation, and vapor condensation. The ability to precisely control

their size, shape, and composition is crucial for tailoring their properties to speci�c

needs. In this context, understanding the kinetics of nanoparticle formation becomes

paramount, as it directly in�uences the size distribution and overall characteristics

of these particles.

Nanoparticles have emerged as valuable tools in the �eld of green chemistry[9�11,

14�16], providing speci�c opportunities to develop more sustainable and environmen-

tally friendly processes. Their large surface area-to-volume ratio and tailored prop-

erties enable e�cient catalysis[1], reducing the need for harsh reaction conditions

and toxic reagents. The particles can act as catalysts, accelerating chemical reac-

tions and promoting selective transformations, while minimizing waste production.

Additionally, nanoparticle-based catalysts can often be more easily recovered than

homogeneous ones, enhancing the overall e�ciency of chemical processes. By har-

nessing the potential of nanoparticles, green chemistry aims to develop greener and

more sustainable pathways for the synthesis of chemicals[11], pharmaceuticals[16],

and materials[9], contributing to a cleaner and more environmentally conscious ap-
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Figure 1.1: Illustration representing di�erent types of spherical nanoparticles across
a size spectrum spanning from 1 to 1000 nanometers. (Illustration edited using
BioRender)

proach to chemical synthesis.

Nanomedicine[4�7, 16�18], the �eld that combines nanotechnology and medicine,

holds great promise for innovating healthcare by enabling precise diagnosis, targeted

therapy, and advanced drug delivery systems. Nanoparticles play a pivotal role in

nanomedicine, providing distinct characteristics that render them well-suited for a

wide range of biomedical applications. Their small size and large surface allow ef-

�cient interaction with biological systems at the cellular and molecular levels. One

key area of nanomedicine is targeted drug delivery[6�8, 17] as they can be func-

tionalized with speci�c ligands or antibodies that selectively bind to biomarkers

present on the surface of diseased cells, such as cancer cells. These particles can also

�nd applications in medical imaging[4, 5], providing enhanced contrast and resolu-

tion compared to traditional imaging techniques, and they can be used for various

imaging modalities, including magnetic resonance imaging (MRI), and computed

tomography (CT). Moreover, they have shown potential in regenerative medicine

and tissue engineering[4, 19] because they can serve as sca�olds for cell growth and

tissue regeneration, o�ering structural support and promoting cellular interactions.

It is also important to note that, although nanoparticles hold signi�cant possi-

bilities for various applications, it is essential to take into account their potential

toxicity[3, 12, 13, 19, 20] and environmental consequences[9, 11, 15]. Due to their

special physicochemical properties, they may pose risks to human health and the

environment. When these tiny particles are released into the environment, either

through intentional applications or as byproducts, they can interact with living or-

ganisms and ecosystems. The small size allows nanoparticles to penetrate biological

barriers, such as cell membranes, and interact with cellular components, potentially
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leading to cellular dysfunction or damage[13]. Furthermore, nanoparticles are able

to induce oxidative stress, in�ammation, and genotoxicity, which can have adverse

e�ects on living organisms[15]. Moreover, nanoparticles can accumulate in the envi-

ronment and bioaccumulate in the food chain, leading to potential long-term e�ects

on ecosystems and biodiversity[9]. It is essential to thoroughly assess the toxicity

and environmental behavior of nanoparticles to ensure their safe and sustainable

use. Robust studies are needed to understand the mechanisms of nanoparticle tox-

icity, evaluate their potential risks, and develop appropriate mitigation strategies.

By addressing the potential risks associated with nanoparticles, we can harness their

bene�ts while minimizing their adverse e�ects, promoting the responsible develop-

ment and application of nanotechnology.
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2
Literature overview

2.1 Thermodynamic versus kinetic control

The dynamic process of nanoparticle formation is in�uenced by both thermody-

namic and kinetic factors, which has long been a subject of debate in the scienti�c

literature. Understanding the balance between them is essential for controlling the

size, shape, and properties of nanoparticles.

The thermodynamic control in nanoparticle formation refers to a situation where

the formation of the particles is primarily driven by the thermodynamic stability of

the resulting system, which is determined by the lowest free energy, corresponding

to the most stable con�guration[21]. Nanoparticles with appropriate size, shape,

and composition could be achieved using thermodynamically controlled synthesis

because the system can reach a stable con�guration with improved thermal stability,

minimizing the propensity for aggregation or phase transformation[22].

In the kinetic control scenario, the reaction conditions and the kinetics of the

process primarily determine the �nal nanoparticle structure. The most thermo-

dynamically favored state may not be reached in a su�cient time, leading to the

formation of kinetically favored particles instead. Using kinetic factors allows for the

synthesis of metastable or non-equilibrium nanoparticles with distinctive properties.

The reaction conditions, such as reactant concentrations, temperature, time,

presence of stabilizing agents or additives, and the nature of the precursor materi-

als, primarily in�uence the dominance of either kinetic or thermodynamic control in

particle formation[23, 24]. By carefully manipulating them, we can in�uence the re-

action to achieve a desired kinetic state. Another important aspect is to comprehend

the importance of the balance between the thermodynamic and kinetic control[25]

which is essential for nanoparticle synthesis and design. The ability to adjust the

characteristics of nanoparticles relies on manipulating the formation methods and
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controlling the stability of the particles. By understanding the thermodynamics and

kinetics involved, the synthesis conditions can be optimized properly to achieve the

desired nanoparticle attributes, leading to applications in �elds such as catalysis,

electronics, energy storage, and biomedicine.

Continued research is needed to uncover the underlying mechanisms to explore

new synthesis strategies, and to elucidate the relationship between the properties

of nanoparticles and the kinetic and thermodynamic factors[26]. By harnessing the

interplay between thermodynamic and kinetic factors, the �eld of nanoparticle syn-

thesis continues to evolve, o�ering exciting opportunities for scienti�c developments

and technological innovations.

2.2 Mechanisms of nanoparticle formation

2.2.1 Smoluchowski model

Studies on nanoparticle formation initially focused on kinetic models that could ex-

plain the underlying processes and factors in�uencing particle size and distribution.

The Smoluchowski model, based on the Einstein�Smoluchowski theory, is a valu-

able tool for understanding and predicting the di�usion and aggregation behavior of

nanoparticles in a �uid environment. However, this approach requires some simpli-

fying assumptions, such as spherical nanoparticle shapes. More complex scenarios

may require more sophisticated models[27�29].

The Einstein�Smoluchowski theory interprets the random motion of particles

suspended in �uids, known as Brownian motion. It derives a mathematical rela-

tionship between the mean square displacement of a particle and the time elapsed.

The Smoluchowski equation explains how particles disperse and cluster together in

a �uid. The Langevin equation serves as a link between the two approaches[30].

The Smoluchowski model can be approached both stochastically and determinis-

tically[31], depending on the type of process needed to be described. Under stochas-

tic conditions, the molecular aggregation and fragmentation steps in a �nite system

can be correctly depicted. There is already a modi�ed version of the Smoluchowski

model[32], which fails for smaller systems but becomes available when it converges to

in�nity. Some researchers have used the Bayesian inference method to discretize the

equation in one dimension as a system of rate equations[33]. On the other hand, the

deterministic description ignores the in�uence of �uctuations, and although there

are several equilibrium states, the deterministic process relaxes at one of them. For

some simple cases, analytical solutions can be derived. The model uses kernel func-

tions for the aggregation and fragmentation to represent the size dependence of the
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rate constant. The in�uence of these kernels depends on the type of aggregation. For

example, in the reaction-limited aggregation process, the e�ect of the self-assembly

of the particles is less pronounced than in the di�usion-limited case[34].

The process describing the model can take into consideration reversible or irre-

versible reactions, both of which start with the formation of small clusters ([Ci]),

and the latter can be given in the following way:

Cj + Ci−j
ki−j,j−−−→ Ci

Ci + Cj
ki,j−−→ Ci+j

(2.1)

where Ci and Cj represent the two spherical particles with size i and j, respectively,

and which ones collide and form a new aggregate. The time evolution of the reaction

is given by the di�erential equation below:

d[Ci]

dt
=

1

2

i−1∑
j=1

ki−j,j[Cj][Ci−j]− [Ci]
∞∑
j=1

ki,j[Cj] (2.2)

Here, the 1/2 is for a correction to avoid the double counting of the particle collisions,

and the ki,j is the second-order rate constant of the bimolecular reaction.

The reversible case can be assumed to be an extended version of the aforemen-

tioned one. Here, the formation of small clusters also involves the fragmentation

process. The rate constant of the fragmentation of the clusters is represented by

fi,j.

Cj + Ci−j

ki−j,j−−−⇀↽−−−
fi−j

Ci

Ci + Cj

ki,j−−⇀↽−−
fi,j

Ci+j

(2.3)

The time-dependence of [Ci] is modi�ed accordingly:

d[Ci]

dt
=

1

2

i−1∑
j=1

(ki−j[Cj][Ci−j]− fi−j[Ci])−
∞∑
j=1

(ki,j[Ci][Cj]− fi,j[Ci+j]) (2.4)

2.2.2 From the Becker�Döring equations to the Lifshitz�Slyozov�

Wagner equation

It is possible to describe the size distribution of stable particles/clusters from super-

saturated solutions using the well-known Becker�Döring equations, which model a
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reversible coagulation process with non-zero rate constants (kn, fn, ki, fi+1)[35]:

nM
kn−−⇀↽−−
fn

Cn

M+Ci
ki−−⇀↽−−

fi+1

Ci+1

(2.5)

The model was �rst established by Becker and Döring[36], and their version

of the model requires the monomer concentration to be constant, while the total

particle concentration can vary. From a chemical perspective, this aligns with the

Classical Nucleation Theory, which originally explains the formation of stable nu-

clei/particles from supersaturated solutions[37]. The theory outlines �ve key steps

involved in the formation of particles from a supersaturated solution (or vapor[38]).

Obviously, the �rst step regards reaching the supersaturated solution, in which the

individual monomers can start to aggregate and form small nuclei or clusters (second

step) that are thermodynamically unstable. The third step is the critical nucleus

size[39] representing the minimum number of monomers required for further growth.

Above all these, for the formation of stable nuclei, the energy barrier must be over-

come. Finally, the last step is the growth step which occurs by attracting additional

monomers from the surroundings.

Later, the model was modi�ed by Penrose et al.[40]. This version assumes the

total concentration of the monomers in all particles to be constant. From a deter-

ministic point of view, the system is spatially homogeneous with a large number of

nanoparticles and reckons mass action kinetics. On the other hand, the stochastic

version is a continuous time Markov chain model on a �nite state space[41]. Here,

the time evolution of the concentration of the species is given by the number of

particles per unit of volume, so the in�nite system of di�erential equations can be

represented in this manner:

dm(t)

dt
= −nknm(t)n −

∞∑
i=n

kim(t)ci(t) + fi+1

∞∑
i=n

ci+1(t) + nfncn(t)

dci(t)

dt
= ki−1m(t)ci−1(t)− fici(t)− kim(t)ci(t) + fi+1ci+1(t) ∞ > i ≥ n

(2.6)

In the above equations, m(t) means the number of monomer units, and consequently

ci(t) is the number of nanoparticles containing i monomer units.

The classical Becker�Döring model is designed to conserve density over �nite

time, ensuring the total number of particles (N) remains constant, as has been
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already explained:

m(t) +
∞∑
i=n

ici(t) = m(0) +
∞∑
i=n

ici(0) = N = const. t ∈ [0,∞) (2.7)

The model is also known as digestive ripening resulting in small particles that

grow at the expense of the larger ones, and the rate constant for the growth step is

of the order of 1/N :

ki ∼ O (1/N) (2.8)

This implies that at the end of the process, numerous small monodisperse nanopar-

ticles are produced[42].

While the classical model has various steady-state solutions, it is more practical

to consider solutions with long lifetimes. Numerous research groups have investi-

gated this aspect over the past 30 years[40, 43, 44].

From an alternative perspective, the Becker�Döring equations describe the early

stages of the growth step, and so then the Lifshitz�Slyozov�Wagner model gives the

late stages of the growth, i.e. coarsening[45], so the latter can be interpreted as the

limit case of the �rst model[43, 46, 47]. Moreover, it can also be viewed as a nu-

merical representation of the Ostwald ripening process[48�50], where larger particles

grow by dissolving smaller ones. In nanoparticle formation, this often characterizes

the aging process[26, 51], involving aggregation and the Ostwald ripening.

These processes typically occur near equilibrium conditions, resulting in the �-

nal state of a single large particle in equilibrium with the solution. Considering the

�uctuations of the process, it would be more appropriate to approach this model

stochastically rather than deterministically[52, 53]. Since the resulting growth pro-

cess is reversed to the Becker�Döring equations, the scaling of the coarsening rate

constant is taken in the following way:

ki ∼ O (N) (2.9)

The classical Lifshitz�Slyozov�Wagner model for spherical particles corresponds

to the following continuity equation:

∂N(t, r)

∂t
+

∂ (υ(t, r)N(t, r))

∂r
= 0 (t, r) ∈ R2

+ (2.10)

where N refers to the number of particles, while υ is the growth rate of the particles,

and r is the radius of the particle. Solutions can be found in several ways, one

method usually selects globally stable solutions from all the allowed ones[50], and
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some others approach the problem by expressing the size distribution in terms of

the mass, rather than the radius[54, 55], not to mention that the generalized model

is assumed to be independent of the particle size.

2.2.3 Johnson�Mehl�Avrami�Kolmogorov model

The well-established Johnson�Mehl�Avrami�Kolmogorov model is often applied to

the isothermal (∆T = 0) crystallization process and hydrolysis reactions which play

through nucleation and growth steps of spherical particles[56]. The rates of these

two steps are assumed to be constant throughout the reactions, and the predicted

transformed fraction can only be correct if the system is large enough[57]. This

transformed phase fraction (f(t)) is depicted by the given equation:

f(t) = 1− e−(kt)a+1

(2.11)

Here, k denotes the overall rate constant:

k =

(
θυMυ

a
g

a+ 1

)1/a+1

(2.12)

where υM and υg are the rate of the nucleation and growth, respectively. The

nucleation rate is often referred to as a Dirac delta function leading to a process

where the nuclei start growing simultaneously[58], other than that, the determined

critical size of the nucleus has to be reached in order to grow further steadily[59�61].

The growth rate is often calculated from the half-life of the reaction. (a + 1) is

the Avrami's exponent which is related to the dimensionality of the growth process,

i.e. the dimension of the crystal domain, usually, it should be between 3 and 4[62].

Furthermore, θ is a shaping factor, which is obviously 4π/3 for spherical particles

as it appears in the volume of a particle:

V (r, z) = θr3 (2.13)

By the aforementioned concepts, the rate equation has to be determined as:

df(t)

dt
= (a+ 1)k (1− f(t)) [− ln (1− f(t))]a/a+1 (2.14)

Regarding nanoparticles, the model is often used to describe the size distribu-

tion of the nanoparticles[63, 64]. Using the Fokker�Planck evolution law leads to

lognormal distribution, speci�cally in the case of ferrite nanoparticles[65], and in the

growth process of some gold nanoparticles, a modi�ed version of the model involv-
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ing the Ostwald ripening can be applied[66]. Nonetheless, there are some proven

results for nonisothermal case[67], as well. Beyond materials science, the model has

turned out to be useful in the �elds of cancer and genetics studies, ecology, and

epidemiology, too[68].

2.2.4 LaMer model

The LaMer model[69, 70] expresses the formation of nanoparticles through in-

stantaneous nucleation followed by subsequent growth steps with the addition of

monomers. The key point in this scheme is that the two steps are supposed to be

separated in time. It was �rst applied to the theory and production methods of

colloidal suspensions with uniform sizes. The chemical reaction can be shown in

this form:
nM

k1−−→ Cn

Cn +M
k2−−→ Cn+1

Ci +M
ki−−⇀↽−−
fi+1

Ci+1

(2.15)

In these equations, M denotes the n number of monomer species and C means the

growing nanoparticle with size i. The rate constants are denoted by k1, k2, ki, respec-

tively, and fi+1 is the rate constant of the fragmentation step. The so-called �burst�

nucleation is usually a second-order step (so n=2), and it decreases the concentra-

tion of the monomers in the solution, even though, it is described as �e�ectively

in�nite�, so the rate of this step is proportional to in�nity (υM), and after the step,

there are hardly any monomers left to form a nucleus but to grow the others. Some

experimental studies, however, show this process to be an autocatalytic step[71].

The growth step is considered to happen under a di�usion-controlled reaction. The

system of ordinary di�erential equations describing this model is given as follows:

d[M]

dt
= −nk1[M]n − k2[M][Cn]−

∞∑
i=n

(k3[M][Ci] + f3[Ci+1])

d[Cn]

dt
= k1[M]n − k2[M][Cn]

d[Ci]

dt
= ki−1[M][Ci−1]− fi[Ci]− ki[M][Ci] + fi+1[Ci+1]

(2.16)

The last equation is the same as the already presented growth step of the Becker-

Döring model.

According to LaMer et al., the size distribution of the particles can be controlled

by manipulating the rates of nucleation and growth. Moreover, this �nal distribution
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is a lognormal distribution. This theoretical framework is still in use, especially in

the study of metal and semiconductor nanoparticles[49].

2.2.5 Finke�Watzky model

The general two-step Finke�Watzky model describing nanoparticle formation con-

sists of a slow nucleation step followed by a fast autocatalytic growth step, and the

two steps are well-separated in time[72, 73]. The second step is a monomer addition

until the agglomeration becomes kinetically competitive. In the nucleation step,

species M forms a kinetically e�ective nucleus (C).

M
k1−−→ C

M+C
k2−−→ 2C

(2.17)

There are two important assumptions in the Finke�Watzky model:

1. k1 << k2[M]0, showing that the rate of nucleation is much slower than the

rate of the second step[73]

2. [M] < [M]0, specifying that the concentration of species M decreases over time

The di�erential equation of the time-dependence of the monomer units and the

nanoparticles is given as follows:

−d[M]

dt
=

d[C]

dt
= k1[M] + k2[M][C] (2.18)

The exact analytical solutions for the monomer unit and the nanoparticle can be

found analytically:

[M]t =
k1
k2

+ [M]0

1 + k1
k2
[M]0 exp (k1 + k2[M]0) t

[C]t = [M]0

(
1− k1 + k2[M]0

k2[M]0 + k1 exp (k1 + k2[M]0) t

) (2.19)

This model is often applied in the study of transition-metal nanoclusters (e.x.,

Ir(0)∼300), where the size is monodisperse (narrow size distribution)[74]. By Finke et

al., it was shown that it can be an alternative solution to the Avrami�Erofe'ev model

for describing the kinetics of nanoparticle formation[75]. The Avrami�Erofe'ev

model assumes random nucleation and growth processes despite the Finke�Watzky

model. Another important result by them is that a bimolecular nucleation step is

still possible, while a termolecular step has been proven not to be feasible[76, 77].
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The technique used in this model is called lumping, whose aim is to reduce the

dimensionality of the model by combining species and/or reactions. This is a sort

of simpli�cation that allows us to have an easier interpretation of the system. The

model also incorporates pseudo-elementary steps[78], which are representations of

complex systems. Above these, there are several extensions and modi�ed versions

of the original two-step Finke�Watzky model[79], some take into account the ag-

gregation[80], or some contain one or two additional steps, such as the following

here:
M

k1−−→ C

M+C
k2−−→ D

M+D
k3−−→ 1.5D

(2.20)

In this particular model, M is still the monomers, while C represents the "small"

particles, and D gives the "larger" nanoparticles. According to this model, the

smaller nanoparticles grow faster than the larger ones, i.e. k2 > k3.

A signi�cant achievement in the �eld is the use of mechanism-enabled popu-

lation balance modeling, which has been extensively studied in Handwerk's works

[79, 81, 82]. This technique allows for the accurate prediction of particle size and

distribution based on various initial conditions and reaction parameters. Using this

special technique, all the processes of nucleation, growth, and aggregation can be

accounted for. The nucleation can be explained through an nth order step, and the

main assumption is that the growth reaction can only be considered as a monomer

addition if the aggregation process is not kinetically e�ective.

2.2.6 Exploring beyond classical models

Understanding the process of nucleation, growth, and aggregation is inevitable for

nanoparticle synthesis since it not only in�uences the particle size distribution but

also plays a signi�cant role in determining their behavior and toxicity. While many

approaches have been proposed in the literature to describe these processes, none of

them is a universal method that can be applied. Several factors have a huge impact

on these steps, such as the temperature, pH, solvent properties, concentrations,

surface properties, and the presence of stabilizing agents or surfactants[49, 83, 84].

The initial and most fundamental step in nanoparticle formation is the nucleation

process [38], which typically occurs much more rapidly than the following growth

steps, involving the emergence of the critical size nuclei[39, 85]. The nucleation step

can happen through a heterogeneous or a homogeneous process, i.e. either on a pre-

existing surface or in a uniform medium spontaneously. Furthermore, a preliminary
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step can occur before the nucleation, which could be necessary for certain cases[78].

Nucleation can also be classi�ed as either spontaneous or induced, where external

factors, conditions, or reagents trigger the reaction[86, 87], and in some cases, like

with quantum dots, the reversible nucleation step can also be possible[88].

The slower reactions are the growth steps[71, 89] in nanoparticle synthesis, which

can be categorized by di�erent mechanisms. The more favorable one is the monomer

addition, where individual monomer units are added step-by-step to the growing

nanoparticle. In this way, precise nanoparticle size distribution and composition

can be achieved.

The other possibility is called the coalescence of smaller nanoparticles, i.e. when

two particles collide with each other, the repulsive force between them is overcome

by their Brownian motion, leading to their fusion. However, coagulation often gives

broader size distributions of nanoparticles[90].

Aggregation is another widely studied phenomenon[83, 85], involving the forma-

tion of larger clusters through the attraction of nanoparticles. This type of reaction

can occur in reversible (then fragmentation also occurs)[91, 92], or irreversible form.

The agglomeration reactions usually depend on factors, such as the collision speed of

the di�erent particles and the size of the attractive forces between them[28]. The lit-

erature describes many types of aggregation models that can be di�erentiated based

on their mechanism. In reaction-limited aggregation[93], the attachment of particles

is determined by chemical reactions. The di�usion-limited aggregation is governed

by the Brownian motion and the di�usion of the particles. Another current type

is cluster-to-cluster aggregation[84] in which the pre-existing clusters collide and

attach.

In the context described, population balance modeling[90, 92] seems to be a

valuable method for predicting the size distribution of the particles. The modeling

equations form a system of partial di�erential equations which are generally solved

numerically using computational methods, but in certain cases, analytical solutions

may be obtained.

Sometimes, the aggregation kernels can be introduced, which describe the prob-

ability of two clusters coming into contact to form larger aggregates[28, 93]. The

rate of di�usion-limited aggregation can be de�ned using the following equation:

υAG(1, 2) = KAG D1D2 =

[
3η

2kBT (1/r1 + 1/r2)(r1 + r2)
+

1

kAG

]−1

∗D1D2 (2.21)

Here, Di represents the density of the nanoparticles of hydrodynamic radius ri, η

means the viscosity of the �uid [Pa s], kB is the Boltzmann constant with temper-
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ature T [K], while kAG implies a constant [m3s−1] which depends on the solution

composition and the radii, and KAG gives the aggregation kernel. In the case of

reaction-limited aggregation, the latter term can be simpli�ed to:

KAG = kAG (2.22)

2.3 Stochastic kinetic approach

Stochastic chemical kinetics plays an important role in having a more accurate de-

scription of chemical processes by taking into account the inherent �uctuations and

randomness in molecular interactions. Its signi�cance mostly appears in small sys-

tems characterized by low molecule numbers where the e�ects of molecular discrete-

ness and stochasticity cannot be ignored. The application of stochastic modeling

involves various biological processes, including gene regulation[94, 95], virus kinet-

ics[95], enzyme kinetics[94�97], ligand migration in biomolecules[98], and membrane

noise[99], as well as chirality[100�102], and the Frank model[103, 104], asymmetric

autocatalysis[105�109], all of which heavily rely on the discrete nature of molecular

interplays.

Stochastic modeling emerged from the investigation of �uctuation phenomena,

notably the renowned research on Brownian motion by Einstein[110]. This work

paved the way for the initial development of the �uctuation-dissipation theorem. By

regarding the movement of Brownian particles as a trajectory that lacks memory

and di�erentiability, a signi�cant result was achieved in establishing the ground-

work for the theory of stochastic (Markovian) processes. Early advancements in

stochastic kinetics were reached by Leontovich[111], Delbrück[112], Kramers[113],

and Rényi[114], and since then, huge progress has been achieved in this �eld.

Stochastic chemical kinetics puts a great emphasis on understanding and mod-

eling the e�ects of noise and �uctuations[115]. In this context, noise refers to the

irregularities and disturbances in the system, while �uctuations arise from the ran-

dom behavior of molecules. Two types of noises can be given in the case of stochastic

kinetics: external noise, which is outside the control of the observer, and internal

noise, which is directly related to the internal structure of the system.

2.3.1 Continuous time discrete state stochastic model

The needed reaction network is composed of N chemical species denoted by S1, . . . ,

SN and M reactions denoted by R1, . . . , RM . Each reaction Ri can be represented
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as:
N∑
i=1

yimSi →
N∑
i=1

y′imSi (2.23)

where ym, y
′
m ∈ ZN

≥0 are vectors representing the source and product complexes[95,

99, 116, 117], respectively, and Cm := y′m − ym ∈ ZN is the reaction vector giving

the change in the number of molecules for each species. The system state at time t

is represented by the vector X(t) = (X1(t), . . . , XN(t)) ∈ NN
0 whose ith component

Xi(t) is the number of molecules of Si at time t.

In the continuous-time discrete-state stochastic approach, the system consists

of a discrete set of states connected by transitions, each with an associated rate

of an exponential distribution[94, 95, 98, 99, 116, 117]. In each state, transitions

compete in a race condition: the fastest one determines the new state and the time

elapsed. The next reaction only depends on the current con�guration of the system,

exhibiting a memoryless property.

The propensity function[117] (or intensity function[95]) pi(x) determines the rate

at which reaction Ri �res when the system is in state x, where pi : NN
0 → R≥0. If the

reaction i �res at time t, the system's state jumps from X(t) to X(t+ = X(t) + sm

where sm = (y′1m − y1m, . . . , y
′
Nm − yNm) is the stoichiometric vector representing

the change in the state due to the reaction. From this, the stoichiometric matrix

can be given in the following form: S = N × M for the reaction network by S =

[s1s2 . . . sM ]. The column of this matrix is the stoichiometric vector for all the

reactions. The propensity function pi(x) is generally arbitrary but must satisfy the

condition that if pi(x) > 0 for a given state x ∈ NN
0 , then (x + sm) ∈ NN

0 , ensuring

that the model stays inside the nonnegative integer orthant, NN
0 . The general form

of this function can be de�ned in the following way:

pi(x) = κi

N∏
i=1

yim!

(
xi

yim

)
= κi

N∏
i=1

xi(xi − 1) . . . (xi − yim + 1)

yim!
(2.24)

for each x = (x1, . . . , xN) ∈ NN
0 . Here κi > 0 denotes the rate constant for the ith

reaction.

Often mass-action kinetics is assumed. This form of propensities implies that the

rate at which the reaction �res is proportional to the number of ways the required

number of reactant molecules can be chosen from the population[118]. This makes

sense if the system is well-stirred.

The order of reaction i is the total number of reactant molecules it requires, i.e.
N∑
i=1

yim. Reactions with order three or more are considered untypical[119, 120].
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From rate functions, we can derive a set of di�erential equations that gives how

the probability of being in di�erent states varies over time, and this is the chemical

master equation (or Kolmogorov forward equation)[95, 99, 116, 117]. The CME

is described by a set of di�erential equations that determines how the probability

distribution of being in di�erent states changes over time:

dP(X, t)

dt
=

M∑
i=1

pi(X − sm)P(X − sm)︸ ︷︷ ︸
A reaction Rihappened in time [t,t+dt]

−
M∑
i=1

pm(X)P(X)︸ ︷︷ ︸
No reaction happened in [t,t+dt]

(2.25)

While the master equation provides a complete description of the stochastic process,

solving it is actually impossible or at least challenging. To �nd the solution, it

might be helpful to know the number of states, which can be found as the number

of solutions of a Diophantine equation[117]. There are some approaches that can

be employed, like the symbolic Laplace transformation[116], the numerical direct

matrix operation, or the Poisson representation[117] as an approximate method. In

many applications, only the �rst two moments (mean and variance) of the probability

distribution[95, 116, 117] are necessary, reducing the computational complexity.

2.3.2 The link between stochastic and deterministic kinetics

In the deterministic approach, the system of ordinary di�erential equations repre-

sents the rates of change of concentrations with respect to time and it considers

a continuous variation in concentration is often used for large volumes or concen-

trations[119�121]. On the other hand, the stochastic model assumes discrete states

and probabilistic transitions between these states, plus it takes into account the

particulate nature of matter. Regarding the Kurtz theorem[122�124], the stochas-

tic model provides a microscopic description that becomes increasingly consistent

with macroscopic behavior described by the deterministic model as the size of the

system increases. In other words, as the volume of the system approaches in�nity,

the stochastically described model converges to the deterministic one. This theorem

helps us to understand the relationship between these two approaches and to bridge

the gap between the continuous and discrete descriptions of the systems.

Deterministic kinetics uses autonomous and non-linear di�erential equations that

describe the time-dependent rates as a function of concentrations. Each concentra-

tion of the particles can be altered at most inM di�erent reactions, resulting in each

di�erential equation having a maximum of M additive terms. On the other hand,

this property can be described in the stochastic kinetics by a Markov process. The

transition rates here are independent of time and instead depend on the molecule
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numbers. The master equation is always linear and homogenous, and the positive

transition rates incorporate the probabilities of M states, while the negative term

does as well.

In this section, the concept of deterministic continuation[117] needs to be men-

tioned, which involves solving the deterministic di�erential equation directly using

the initial concentration vector obtained from stochastic calculations. In this ap-

proach, the particle numbers are treated as dependent variables adjusting them by

Avogadro's constant and the volume. Because of the autonomous nature of the

master equation, time dependence can sometimes be omitted and one of the par-

ticle numbers can be selected as an independent variable. The signi�cance of this

technique can be evident in situations when a static property of the system, such

as the �nal state, holds more importance than the time dependence of the particle

numbers. However, this technique requires selecting a type of particle number that

changes monotonously over time. By doing so, the numerical integration methods

get improved in more accurate and e�cient solutions.

2.3.3 Simulation methods

As it is known, �nding an explicit solution to the master equation can be extremely

di�cult, especially for complex systems with large state space, simulation methods

are crucial as an e�ective alternative. By generating multiple random trajecto-

ries, the following simulation methods can approximate the probability distribution.

Monte Carlo simulations[95, 98, 99, 116, 117] are usually applied to simulate stochas-

tic processes.

Monte Carlo estimator is based on the law of large numbers, which states that if

we have independent realizations as a random variable X, denoted as X[1], X[2], . . . ,

when the number of realizations converges to in�nity, the average of the function

f(X) over these realizations approaches to the expected value of f(X). To approxi-

mate the expected value of f(X), a large number of independent realizations can be

generated, represented as {X[i]}Qi=1, and use the approximation where the expected

value is estimated by the average of f(X) over these realizations. The estimate is

given by:

E[f(X)] ≈ 1

Q

Q∑
i=1

f(X[i]) (2.26)

As the number of realizations Q is increased, the standard deviation of the approx-

imation scales inversely with the square root of Q, while the computational costs

increase linearly with Q.

The Stochastic Simulation Algorithm (SSA), also known as Gillespie's algo-

22



Rebeka Szabó: Modeling the kinetics of nanoparticle formation

rithm[94, 95, 116, 125�127], operates by simulating a discrete time Markov chain

embedded within the model, considering transition probabilities to account for state

transitions. At each jump time, two random variables are needed to be generated.

The �rst random number is used to determine the time of the next reaction, while

the second one is for �nding which speci�c reaction takes place at that time.

Gillespie's algorithm

Given: Initial time t0, Final time tf , Initial state X(t0) = x0 ∈ ZN
≥0.

Step 0: Set the jump counter j = 0, the initial time t0 = 0, and the initial state

X(t0) = x0 ∈ ZN
≥0.

Step 1: Calculate pm(X(tj)) for all m ∈ {1, . . . ,M}.

Step 2: Set p0(X(tj)) =
M∑

m=1

pm(X(tj)).

Step 3: Generate two independent random numbers rnd1 and rnd2 from a uniform

distribution over the interval (0, 1).

Step 4: Set ∆ = ln(1/rnd1)/p0(X(tj)).

Step 5: Find σ ∈ [1, . . . ,M ] such that

1

p0(X(tj))

σ−1∑
m=1

pm(X(tj)) < rnd2 ≤
1

p0(X(tj))

σ∑
m=1

pm(X(tj)) (2.27)

Step 6: Update the state as Xj+1 = Xj + sm and tj+1 = tj +∆.

Step 7: If tj+1 > tf STOP; otherwise, set j = j + 1 and go to Step 1.

Output: The list of jump times and states (tj, Xj) for j = 0, 1, . . . , (j + 1).

When the reaction rates are relatively high, the First Reaction Method[98] (or

First Reaction Monte Carlo method) can be applied, which is less e�cient than

Gillespie's direct method but is still quite e�cient and capable of handling complex

systems with large numbers of reactions and species. In this case, M independent

exponential random variables need to be generated.

First Reaction Method

Given: Initial time t0, Final time tf , Initial state X(t0) = x0 ∈ ZN
≥0.

Step 0: Set the jump counter j = 0, the initial time t0 = 0, and the initial state

X(t0) = x0 ∈ ZN
≥0.

Step 1: Calculate pm(X(tj)) for all m ∈ {1, . . . ,M}.
Step 2: Draw samples tm = ln(1/rndm)/pm(X(tj)) for all m ∈ {1, . . . ,M}.
Step 3: Calculate ∆ = minm{tm} and l = argminm{tm}.
Step 4: Update the state as Xj+1 = Xj+sm and the next time jump as tj+1 = tj+∆

Step 5: If tj+1 > tf STOP; otherwise, set j = j + 1 and go to Step 1.

Output: The list of jump times and states (tj, Xj) for j = 0, 1, . . . , (j + 1).

23



Rebeka Szabó: Modeling the kinetics of nanoparticle formation

The Next Reaction Method[98, 116, 128] is particularly advantageous for sys-

tems with low reaction rates or when individual reactions have a huge in�uence

on the system dynamics. It can handle systems with varying reaction rates, and

adapt to changes in the reaction network. A modi�ed version of the Next Reac-

tion Method[128], introduced by Anderson et al., further enhances computational

e�ciency by reducing the number of propensity updates during simulation. Instead

of recalculating the propensities of all reactions at each simulation step, only the

propensities of the reactions involving the reactants that have changed since the

previous reaction are updated. As a result, only one independent random variable

needs to be generated at each jump time.

modi�ed Next Reaction Method

Given: Initial time t0, Final time tf , Initial state X(t0) = x0 ∈ ZN
≥0.

Step 0: Set the jump counter j = 0, the initial time t0 = 0, and the initial state

X(t0) = x0 ∈ ZN
≥0.

For each m ∈ {1, . . . ,M}, internal time Tm = 0 and the �rst jump time of

Ym (unit Poisson process) as Sm = ln(1/rndm0).

Step 1: Calculate the time-step ∆tm = Sm−Tm

pm(Xj)
for each m ∈ {1, . . . ,M}.

Step 2: Calculate ∆ = minm{∆tm} and r = argminm{∆tm}.
Step 3: Update the state as Xj+1 = Xj+sm and the next jump time as tj+1 = tj+∆

Update the internal times as Tm = Tm+ pm(Xj∆) for each m ∈ {1, . . . ,M}.
Set the new jump time for the �ring reaction as Sm = Sm + ln(1/rndj).

Step 4: If tj+1 > tf STOP; otherwise, set j = j + 1 and go to Step 1.

Output: The list of jump times and states (tj, Xj) for j = 0, 1, . . . , (j + 1).

The most common stochastic simulation algorithm to approximate the dynamics

of chemical systems is called the tau-leaping method[95, 116, 117, 129]. It is quite

advantageous for systems with fast reactions and high molecular populations, where

simulating each individual reaction event would be computationally unfeasible. In

the algorithm, the simulation time is divided into discrete intervals, or �leaps" of

�xed size, represented as τ , and the system state is updated in larger increments

instead of simulating each individual reaction event. The method shares some simi-

larities with the Euler method used for solving ordinary di�erential equations, as it

supposes that the propensity is approximately constant between t and t+ τ . How-

ever, an approximation error is introduced due to the discreteness of reaction counts

and neglecting the inherent stochasticity of individual reaction events. The accu-

racy of the method can be increased by selecting an appropriate time step size that

balances the simulation accuracy and the computational e�ciency.

Tau-leaping method
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Given: Initial time t0, Final time tf , Initial state X(t0) = x0 ∈ ZN
≥0.

Step 0: Set the jump counter j = 0, the initial time t0 = 0, and the initial state

X(t0) = x0 ∈ ZN
≥0.

Step 1: Calculate pm(X(tj)) for each m ∈ {1, . . . ,M} and choose a time-step τj.

Step 2: Draw independent samples Λm = E[P (pm(X(t))τ)] from the Poisson distri-

bution for each m ∈ {1, . . . ,M}.

Step 3: Update the state as Xj+1 = Xj +
M∑

m=1

smΛm and the next jump time as

tj+1 = tj + τj.

Step 4: If tj+1 > tf STOP; otherwise, set j = j + 1 and go to Step 1.

Output: The list of jump times and states (tj, Xj) for j = 0, 1, . . . , (j + 1). The

generated negative populations due to an unbounded Poisson random variable can

be a huge problem, and in order to prevent it, some modi�cations can be found in

the literature, such as applying postleap checks[130], which are highly e�ective in

preventing the occurrence of unrealistic states. In some other cases, the accuracy of

the method can be increased by using binomial distribution[131].

The R-leaping is an alternative simulation method to accelerate the Stochastic

Simulation Algorithm (SSA). In this approach, the propensities are approximately

the same during each simulation step as in the previous method, however, instead

of using a �xed time step, the leap parameter is determined by the number of �ring

reactions (L) [117, 132]. The necessary time step for those L reactions to happen is

governed by the gamma distribution, whereas the number of �rings for each reaction

can be sampled e�ectively using the correlated binomial distribution which follows

a multinomial distribution. This sampling technique turns out to be a great way to

reduce the possibility of decreasing the appearance of negative species. In R-leaping,

at leastM−1 degree of random variable needs to be generated. The exact version of

R-leaping was obtained by utilizing the upper and lower bounds on the probabilities

of multiple reactions sampled by the Gillespie algorithm. This method is combined

with rejection sampling and adaptive multiplicity for reactions[133]. It is worth

noting that considering the conditions for both the tau-leaping and the R-leaping

leads to the outperforming S-leaping[134]. Despite some drawbacks of R-leaping,

the S-leaping method is still e�cient in cases like large and sti� systems.

R-leaping method

Given: Initial time t0, Final time tf , Initial state X(t0) = x0 ∈ ZN
≥0.

Step 0: Set the jump counter j = 0, the initial time t0 = 0, and the initial state

X(t0) = x0 ∈ ZN
≥0.

Step 1: Calculate the propensity function pm(X(tj)) for each reactionm ∈ 1, 2, . . . ,M .

Step 2: Determine the number of reaction steps L by summing the individual re-
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action counts bm. The bm values are randomly generated based on a multinomial

distribution with individual probabilities pm(X(tj))∑M
m=1 pm(X(tj))

.

Step 3: Generate a gamma-distributed random variable with shape parameter L

and rate to obtain the time step τj.

Step 4: Update the state as Xj+1 = Xj +
M∑

m=1

smbm, where sm is the stoichiometry

of species m in the reaction.

Step 5: Update the next jump time as tj+1 = tj + τj.

Step 6: If tj+1 > tf , STOP; otherwise, set j = j + 1 and go to Step 1.

Output: The list of jump times and states (tj, Xj) for j = 0, 1, . . . , (j + 1).
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3
Research objectives

The formation of nanoparticles, from a kinetic point of view, has been elucidated by

various models. However, the adaptation of existing models to accurately describe

nanoparticle formation is still an ongoing challenge[66, 72, 135]. It is now evident

that particle size plays a crucial role in their potential applications, as it greatly

in�uences their catalytic properties and toxicity. Moreover, the average size and

distribution of nanoparticles are determined by kinetic factors[77] and are thermo-

dynamically unstable compared to the bulk solid phase. Therefore, controlling their

size requires careful consideration of kinetics.

Previous research on nanoparticle formation has employed deterministic models,

which yielded approximate solutions. These solutions not only align with stochastic

simulations for cases involving small particle numbers but are also applicable for

calculating the temporal evolution of nanoparticle concentration under the same

synthesis conditions.

One key objective of this research is to explore and compare various kernel func-

tions, such as mass, surface, Brownian, and di�usion kernels, to identify the most

appropriate approximation for the �nal nanoparticle size distribution. These ker-

nels serve as mathematical representations of the underlying mechanisms driving

nanoparticle formation, enabling us to gain deeper insights into the role of di�erent

kinetic factors in determining nanoparticle size and distribution.

Additionally, this thesis aims to develop a robust methodology for interpreting

experimental data on nanoparticle size distributions. By comparing advanced mod-

eling techniques with experimental results, we can validate and re�ne the theoretical

predictions, leading to a more comprehensive understanding of the complex kinetics

involved in nanoparticle formation.

The outcomes of this research will not only contribute to the fundamental under-

standing of nanoparticle synthesis but also have practical implications for various
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�elds, including catalysis, nanomedicine, sensing, and renewable energy. By unrav-

eling the intricate relationship between kinetic factors and nanoparticle size, we can

pave the way for enhanced control over nanoparticle properties, opening up new

possibilities for designing and optimizing nanomaterials for speci�c applications.

In conclusion, this thesis endeavors to advance our knowledge of nanoparticle

kinetics by integrating stochastic modeling techniques, experimental data analysis,

and theoretical insights. By overcoming the limitations of traditional deterministic

models, this research aims to provide a comprehensive framework for understand-

ing and predicting nanoparticle size distributions, thus contributing to the broader

�eld of nanoscience and enabling the rational design of nanomaterials with tailored

properties.
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4
Assumptions and methods

4.1 The nucleation-growth type model

Kinetic models of nanoparticle synthesis can be complex due to the large number of

concentration variables involved. To simplify the model, a technique called lumping

is often employed. Lumping involves grouping together chemical species with similar

kinetic properties into a single �lumped� species, reducing the number of indepen-

dent variables in the system of ordinary di�erential equations. One such model

is the mechanism-enabled population balance modeling developed by Handwerk et

al.[79, 81]. However, the model discussed in this chapter is a non-lumped version,

speci�cally a generalized nucleation-growth model that incorporates two types of

steps with mass action kinetics.

The �rst step in this model is nucleation, where monomer units form kinetically

e�ective nuclei[39]. The second step involves second-order particle growth, which oc-

curs through the stepwise addition of monomer units. Notably, this model excludes

the possibility of aggregation, which is the reaction between di�erent nanoparticles.

The chemical reactions and their rate equations[121] can be described as follows:

nM
kM−−→ Cn n ∈ Z+ υM = kM[M]n

Ci +M
K(i)kg−−−→ Ci+1 i ≥ n υg,i = K(i)kg[M][Ci]

(4.1)

The simple notation in the above equation actually re�ects a large number of possible

steps. Here M denotes a single monomer unit of a nanoparticle, whereas Ci stands

for a nanoparticle containing exactly i (which is a positive integer) monomer units.

The other positive integer n gives the lowest number of monomer units that form

a kinetically e�ective nucleus. υM is the rate of nucleation, kM is nth order rate

constant, [M] is the concentration of the monomer unit M. Analogously, υg,i the rate

of the growth step, kg is the growth rate constant and [Ci] means the concentration
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of Ci. The function K(i) denotes the kernel function, which describes how the

growth rate constant of a nanoparticle depends on its size. The fundamental role

and the exact physical meaning of K(i) will be explained in much more detail in

an upcoming subsection. It is seen that the seemingly simple formulation used

here actually comprises a large number of di�erent kinetic models using the kernel

functions and n values.

It is important to note that reversible reactions cannot be considered in this

model, as their inclusion would yield the �nal state without the need for kinetic

calculations, solely determined by the equilibrium constant. Under typical thermo-

dynamic conditions of nanoparticle formation, the �nal state would be the bulk solid

phase[72].

The system of simultaneous ordinary di�erential equations describing this gen-

eralized model can be written as:

d[M]

dt
= −nυM −

∞∑
j=n

υg,j = −nkM[M]n −
∞∑
j=n

K(j)kg[M][Ci]

d[Cn]

dt
= υM − υg,n = kM[M]n −K(n)kg[M][Cn]

d[Ci]

dt
= υg,i−1 − υg,i = K(i− 1)kg[M][Ci−1]−K(i)kg[M][Ci] i > n

(4.2)

As written, these equations feature an in�nitely large number of dependent variables.

The �rst equation contains all the dependent variables of the system, while [M]

appears on the right-hand side of all the other equations. Consequently, this type of

model cannot be solved using the conventional methods developed for the numerical

integration of kinetic di�erential equations. For this system, typical initial conditions

assume that all the mass of the system is present in the monomer units:

[M](t = 0) = [M]0

[Cn](t = 0) = 0

[Ci](t = 0) = 0 i > n

(4.3)

These initial conditions re�ect the state of the system at the beginning of the syn-

thesis process, where all the material is in the form of monomer units, and no

nanoparticles of size n or greater are present.

Another signi�cant point to consider in this model is that Equations 4.1 and 4.2

use the common formulation of isothermal solution-phase kinetics. In an isothermal

reactor, the temperature does not change and cannot appear as a parameter in the

di�erential equations. Otherwise, the temperature would modify the rate constants
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of the two steps. The model here also assumes a unidirectional, irreversible reaction

for the growth of a nanoparticle using concentrations, which originally implies that

the nanoparticles are considered to be part of the homogeneous system. However,

this is by no means a necessary condition: if the di�erential equations can capture

the time-dependent changes, this method can be applied to other cases as well.

Reversible steps and possible reactions of two nanoparticles (aggregation) are

not included in the model at all. The reason for this omission is that both kinds of

processes would lead a kinetically viable way to the thermodynamically stable �nal

state of the system, which is the bulk solid instead of a collection of nanoparticles.

In such a model, nanoparticles in reasonable concentrations could only appear as

intermediates.

In chemical kinetics, approximations such as the method of �ooding, the pre-

equilibrium approach, or steady-state approximation are often employed to simplify

the solution procedure. These approximations typically aim to provide a symbolic

solution with an error smaller than the typical error of experimental concentration

determination. The considerations in obtaining solutions of the deterministic ap-

proach in this work will occasionally rely on such approximations, but these will be

more sophisticated than the two common techniques mentioned. The approxima-

tions developed in this work will be validated against exact stochastic simulations.

4.1.1 Kernel functions

As previously discussed, the kernel functions play a crucial role in determining the

particle size dependence of the growth rate constant in this model[136]. In this

section, we introduce four commonly used kernels, which are summarized in Table

4.1.

Table 4.1: Di�erent kernel functions used in this model
Name kernel function

mass kernel K(i) = i

surface kernel K(i) = i2/3

Brownian kernel K(i) = i1/3

di�usion kernel K(i) = 1

The �rst kernel is the mass kernel, which assumes that the reactivity of a

nanoparticle is directly proportional to its mass. This implies that larger parti-

cles will grow more rapidly than smaller particles, as they contain a greater number

of monomer units (i). The mass kernel is given by the function K(i) = i, which is a

simple linear relationship between the growth rate constant and the particle mass.
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The second kernel is the surface kernel, which assumes that the reactivity of a

nanoparticle is proportional to its surface area. As nanoparticles are assumed to be

roughly spherical as the �rst approach, the surface area is proportional to the 2/3th

power of the particle mass. Therefore, the surface kernel is given by the function

K(i) = i2/3. With this kernel, larger ones still grow more rapidly than smaller ones.

As the surface area-to-volume ratio decreases with increasing size, this enhancement

of reactivity is less steep than in the case of the mass kernel.

The third kernel is the Brownian kernel[26, 137], which assumes that the reactiv-

ity of a nanoparticle is proportional to its linear size. As the radius or diameter of a

spherical nanoparticle is proportional to the 1/3th power of its mass, the Brownian

kernel is given by the function K(i) = i1/3. This still gives an enhanced relative

reactivity for larger particles, but the increase is even less steep than for the surface

kernel.

The fourth and �nal kernel is the di�usion kernel, which assumes that the re-

activity of a nanoparticle is independent of its size. This is analogous to the size

independence of the di�usion-controlled rate constant, as the lower mobility of larger

particles is compensated by their larger reactive cross-section [119, 120]. Therefore,

the di�usion kernel is given by the constant function K(i) = 1. This kernel implies

that all particles will grow at the same rate, regardless of their size.

The choice of kernel function is an important consideration in modeling nanopar-

ticle growth. The mass, surface, and Brownian kernels all introduce size dependence

in the growth rate constant, while the di�usion kernel assumes size independence.

Researchers should carefully select the kernel function that best �ts their experi-

mental system, taking into account the underlying physical processes that govern

nanoparticle growth.

Some further discussion is appropriate here to re�ect on the possibility of ex-

tending this model to nanoparticles whose shapes are signi�cantly non-spherical.

Kernel functions themselves do not assume anything about the shape of a particle.

The precise mathematical condition of using this approach is that if two nanopar-

ticles contain the same number of monomer units, then the reactivity must be the

same. This is a condition that is often met in actual synthesis processes as the

particle shapes are seldom entirely random (inability to distinguish between growth

directions would give spherical shapes anyway) but are governed by the inherent

properties of the particles. Overall, this means that the model and the concept of

kernel functions are still valid in these cases, although the actual mathematical form

of the kernel function might be di�erent from those given in Table 4.1.
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4.2 Dimensionless quantities

In order to simplify the solution procedure and address issues related to the physical

dimensions of the variables (concentration, time, rate constants), it is useful to

introduce scaled variables [89, 120, 136]. These new variables are de�ned as follows:

m =
[M]

[M]0
, ci =

[Ci]

[M]0
, τ = kg[M]0t, α =

kM([M]0)
n−2

kg
(4.4)

Here, m represents the dimensionless concentration of the monomer units, [M]0 is

the initial concentration of the monomer units, ci denotes the dimensionless concen-

tration of nanoparticles containing i monomer units, τ represents the dimensionless

time, and α is the dimensionless ratio of the nucleation and growth rate constants.

It is important to note that these variables are non-negative real numbers due to

their physical interpretation.

Using these scaled variables, the system of ordinary di�erential equations de-

scribing the model can be simpli�ed as follows:

dm

dτ
= −nαmn −

∞∑
j=n

K(j)mcj

dcn
dτ

= αmn −K(n)mcn

dci
dτ

= K(i− 1)mci−1 −K(i)mci i > n

(4.5)

These equations represent the time evolution of the dimensionless concentrations.

The initial conditions when the dimensionless time is zero are typically given as:

m(τ = 0) = 1

ci(τ = 0) = 0 i > n n ∈ Z+
(4.6)

In the following calculations and results, we will use these scaled variables.

Forming meaningful nanoparticles typically requires small values of alpha (α ≪
1). This condition implies that the growth step must be much faster than the seed

formation step.

4.3 Moments

In the mathematical description of the model outlined in the previous subsections,

it is convenient to introduce the qth moment of the dimensionless concentration ci
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[54, 86, 136, 138], which is de�ned as:

µq =
∞∑
j=n

jqcj (4.7)

Here, q can be any real number, it is not necessarily positive or integer. The initial

conditions are such that all dimensionless nanoparticle concentrations (ci values) are

zero at τ = 0, so the initial value of every moment is zero independently of q:

µq(τ = 0) = 1 (4.8)

The time dependence of the moments can be easily calculated by multiplying the

ith term of the system of di�erential equations (Equation 4.5) with iq and summing

up all resulting equations. This yields the following expression:

nq dcn
dτ

+
∞∑

i=n+1

iq
dci
dτ

= nqαmn − nqK(n)mcn

+
∞∑

i=n+1

iqK(i− 1)mci−1 −
∞∑

i=n+1

iqK(i)mci

(4.9)

The above equation can be stated in a somewhat more concise form:

∞∑
i=n

iq
dci
dτ

= nqαmn +
∞∑
i=n

[(i+ 1)q − iq]K(i)mci (4.10)

The �rst moment, µ1, has a clear physical meaning as it represents the total

number of monomer units present in the nanoparticles:

µ1 =
∞∑
i=n

i1ci =
∞∑
i=n

ici (4.11)

The time derivative of the �rst moment can be expressed as:

dµ1

dτ
=

∞∑
i=n

i
dci
dτ

= nαmn +
∞∑
i=n

K(i)mci (4.12)

Notably, the derivative of the �rst moment is the negation of the di�erential equation

for the monomer units in Equation 4.5. Therefore, the following expression holds:

dµ1

dτ
+

dm

dτ
= 0 (4.13)
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Since the initial condition at τ = 0 is known (all ci values are zero and m = 1 due to

scaling introduced earlier), this equation can be easily integrated into the following,

highly useful form:

µ1 +m = 1 (4.14)

Given the fact that the time derivative of the �rst moment is always positive, it

must be a monotonically increasing function, whereas the function of m (scaled

concentration of the monomer units) is a monotonically decreasing function of the

dimensionless time (τ).

The physical meaning of the zeroth moment is also known: it represents the sum

of the concentrations of the nanoparticles of di�erent size. Similarly to the �rst

moment, it is a monotonically increasing function. Furthermore, it is easily seen

from the de�nitions that the �rst moment is always greater than the zeroth moment

as ci values are non-negative at all times. The zeroth moment can be expressed by

comparing Equation 4.11 with the following de�nition equation:

µ0 =
∞∑
i=n

i0ci =
∞∑
i=n

ci (4.15)

The di�erential equation for the zeroth moment can be obtained by summing all

the di�erential equations in the model (Equation 4.5) and is written as:

dµ0

dτ
= αmn (4.16)

Clearly, µ0 is an increasing function of time as its �rst derivative is non-negative. The

analytical solutions for the zeroth moment will be explored in each kernel function

in the following subsections.

For the Brownian kernel, a new concept needs to be introduced, which is the

1/3rd moment. In the later parts of this work, it will be shown that it is very

advantageous to approximate it by the weighted geometric mean of the zeroth and

�rst moments:

µ1/3 =
∞∑
i=n

i1/3ci ∼= µ
2/3
0 µ

1/3
1 (4.17)

Similarly, for the surface kernel, the 2/3rd moment is very favorably approxi-

mated as the weighted geometric mean of the �rst and zeroth moments:

µ2/3 =
∞∑
i=n

i2/3ci ∼= µ
1/3
0 µ

2/3
1 (4.18)

These moments provide additional information about the distribution of nanopar-
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ticles and can be used to analyze the system dynamics. Also, their introduction

facilitates �nding analytical and approximated solutions of Equation 4.5.

4.4 Average sizes and polydispersity

The model studied here was initially expanded to interpret the time dependence

of the average particle size in a quantitative manner. The size of a nanoparticle

population can be described using several properties. Assuming that a particle is

approximately spherical, its radius or diameter must be proportional to the cube root

of the number of monomer units in it. Various approaches exist to de�ne the average

sizes for the nanoparticle population, including the cube-root number-average size

(rC), the number-average size (rA), the mass-average size (rW), and the Z-average

size (rZ).

The cube-root number-average size (rC) can be characterized analytically in the

easiest way and helps characterize the typical size of the nanoparticles in terms of the

number of monomer units they contain assuming spherical shapes for the particles.

The number-average size (rA) represents the average size of individual nanopar-

ticles in the population, weighted by the number of particles of each size. It is useful

for understanding the typical size of the particles in the population, but it does not

consider the relative abundance of particles of di�erent sizes. Typically, it is used

in combination with another measure, such as the mass-average size or the polydis-

persity, to fully characterize the size distribution of a nanoparticle population.

The mass-average size (rW ) is based on the weight of the particles in a given

sample. It assigns more weight to larger particles and is often used in applications

where particle mass is important, such as in catalysis.

Another important measure is the Z-average size (rZ), which can be directly

determined from dynamic light scattering methods. It is calculated by measuring

the intensity of scattered light from the nanoparticles as a function of time and

analyzing the �uctuations in this intensity. The Z-average size represents the hydro-

dynamic diameter of the nanoparticles, taking into account their shape, size, and

surface charge. This measure is particularly useful for characterizing nanoparticles

in solution, where they may undergo Brownian motion and other dynamic e�ects.
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The average sizes can be approximated using the following equations:

rC = r0
3

√√√√√√√
∞∑
i=n

ici

∞∑
i=n

ci

rA = r0

∞∑
i=n

i1/3ci

∞∑
i=n

ci

rW = r0

∞∑
i=n

i4/3ci

∞∑
i=n

ici

rZ = r0

∞∑
i=n

i2ci

∞∑
i=n

i5/3ci

(4.19)

Here, r0 represents the reference size, which is the radius of the hypothetical nanopar-

ticle containing a single monomer unit only. Typically, this reference r0 falls within

the range of 0.1 and 0.2 nm. The four types of average sizes are usually quite

close to each other, for which the mathematical condition is that the distribution

needs to be relatively narrow and unimodal. Throughout this work, the cube-root

average number will be employed because it can usually be calculated with fewer

approximations than all the others.

The moments have particular signi�cance in relation to the calculation of aver-

age size. First of all, the average number of monomer units in a nanoparticle can

be determined by dividing the total number of monomer units by the number of

nanoparticles:

M̄ =
µ1

µ0

=
1−m

µ0

(4.20)

Here, M̄ represents the average number of monomer units. However, in most exper-

imental studies, this variable is examined at the end of the process, so it is advisable

to calculate its limiting value at in�nite time:

M̄∞ =
1

lim
m→0

µ0

(4.21)

The di�erent average sizes (Equation 4.19) can also be expressed in terms of mo-

ments:

rC = r0 3

√
µ1

µ0

rA = r0
µ1/3

µ0

rW = r0
µ4/3

µ1

rZ = r0
µ2

µ5/3

(4.22)

Another measure used to characterize the size distribution is polydispersity,

which provides information about the variability of particle sizes. It is calculated as
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follows:

PD∗ = 3

√
µ2µ0

µ2
1

− 1 (4.23)

Polydispersity is a measure of the width of the particle size distribution, re�ecting

the degree of variation in particle sizes within the population.

In summary, these measures provide insights into di�erent aspects of the size

distribution and are useful for characterizing nanoparticles in various applications

and conditions. Additionally, the moments and polydispersity are important param-

eters that help quantify the size distribution and variability within the nanoparticle

population.

4.5 Stochastic approach

A few years ago, the lumped kinetic model of Finke and coworkers was criticized

by J. Martin[139�141], who highlighted a problem that got our attention: the im-

portance of a nucleation rate constant for a single nucleated particle scenario is

unknown. Classical chemical kinetics works with concentrations as continuous vari-

ables, whereas in reality, stochastic kinetics refers to the study of chemical reactions

and processes at the molecular level, taking into account the inherent randomness

and �uctuations associated with such systems. In this context, the molecule numbers

represent the number of speci�c molecular species involved in the system.

In the context of stochastic kinetics, instead of continuous concentrations, the

number of molecules is applied, and it can be considered as a continuous time Markov

chain model (X(τ) = (X0(τ), X1(τ), . . . , XN(τ)). The sum of all the monomer units

and all the nanoparticles present gives the total molecule number as can be seen:

x0(τ) +
∞∑
i=n

ixi(τ) = N (4.24)

The determination of the number of all possible states can be obtained by counting

the number of solutions for this equation. Each state can be uniquely identi�ed by

summing the numbers of all particle types. Consequently, counting the feasible states

implies a so-called combinatorial problem, which involves determining the number of

solutions for a set of simultaneous Diophantine equations. The number of solutions

for these equations is often referred to as a partition function, symbolized by p(N).

Unfortunately, there does not exist any closed-form expression for calculating this

function. In particular, the most signi�cant known prime number among p(N) is

p(1289844341), which consists of almost 40000 digits[142], which makes it impossible
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to handle all potential states by solely improving computational power, leading to

situations when it becomes unfeasible to deal with every possible state.

The stoichiometric matrix can also be de�ned for this model in the given way:

S((N − n+ 2)×M) =



−n −1 −1 · · · −1 −1

+1 −1 0 · · · 0 0

0 +1 −1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 −1

0 0 0 · · · 0 1



→ x0

→ xn

→ xn+1

...

→ xN−1

→ xN

(4.25)

The propensities pi(τ) determine the likelihood of di�erent molecular events

occurring at a given time τ . In this case, there are three possible types of events:

nucleation, growth, and no event (i.e., when i = 0). The propensities are de�ned as

follows:

pi(τ) =


α

(
x0(τ)

n

)
if i = 0

0 if n > i ≥ 1

K(i)x0(τ)xi(τ) if i ≥ n

(4.26)

The Gillespie algorithm is a stochastic simulation algorithm used to model the

time evolution of the system. It generates a series of stochastic events that simulate

individual molecular events. The algorithm follows the steps outlined below:

1. Initialize the system with the given initial conditions.

2. Enter a loop that iterates until a speci�ed endpoint is reached or a termination

condition is met.

3. Calculate the total propensity
N∑
j=1

pj(τ
old), which represents the sum of all

propensities at the current time point τ old.

4. Generate two random numbers rnd1 and rnd2.

5. Update the time to the next event τnew using the equation:

τnew = τ old − ln rnd1
N∑
j=1

pj(τ old)

(4.27)
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6. Determine the index i of the event that occurs using the inequality:

i−1∑
j=1

pj(τ
old)

N∑
j=1

pj(τ old)

≤ rnd2 <

i∑
j=1

pj(τ
old)

N∑
j=1

pj(τ old)

(4.28)

This step randomly selects the event type based on the relative propensities.

rnd2 is a random number between 0 and 1.

7. Update the system state based on the selected event:

x0(τ
new) = x0(τ

old)− n;xn(τ
new) = xn(τ

old) + 1, if i = 1

x0(τ
new) = x0(τ

old)− 1;xi(τ
new) = xi(τ

old)− 1;

xi+1(τ
new) = xi+1(τ

old) + 1, if i > n

(4.29)

These equations update the molecular numbers after each event. If i = 1, it rep-

resents the nucleation event, so the number of monomers decreases by n while the

number of nanoparticles with size n increases by 1. For i > n, it represents a growth

event, so the number of monomers and nanoparticles with size i decreases by 1, and

the number of nanoparticles with size i+ 1 increases by 1.

The Gillespie algorithm repeats steps 3 to 7 until a speci�ed endpoint is reached

or a termination condition is met. At each iteration, the algorithm outputs several

variables that provide information about the system's dynamics at that particular

time point. These variables can be further analyzed to understand the behavior of

the system over time. All the necessary simulations were implemented in Matlab,

the sample codes for each of the kernel functions can be found in the Appendices.
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Results and discussions

Exact analytical solutions are obtained for the time-dependent concentrations of

all di�erent types of nanoparticles in three scenarios. For all other combinations

of kernel function and minimum seed sizes, feasible approximations are employed

which then are compared with simulation results using the Stochastic Simulation

Algorithm (SSA), which is applied for di�erent kernels as well.

5.1 Exact analytical solutions

5.1.1 Di�usion kernel with �rst-order nucleation

When the di�usion kernel is applied, the reactivities of the particles are considered

to be independent of the size, i.e. K(i) = 1. The in�nite sum presented in the time

derivative of m in the �rst line becomes equivalent to the zeroth moment:

dm

dτ
= −nαmn −

∞∑
j=n

mcj

dµ0

dτ
= αmn

(5.1)

As already noted, the zeroth moment is always a monotonically increasing function.

Therefore, the dependent variable m can be regarded as a function of the zeroth

moment (µ0) rather than the dimensionless time (τ):

dm

µ0

= −n− µ0

α
m1−n (5.2)

This transformation is useful because it decreases the number of variables. At the

same time, the initial and �nal values of µ0 are both known, so the equation will still

be useful in predicting the �nal distribution. Also, if all variables are known as a

41



Rebeka Szabó: Modeling the kinetics of nanoparticle formation

function of µ0, then the time dependence can also be handled through this selected

variable. The ordinary di�erential equation in Equation (5.2) looks challenging to

solve for general values of n. However, it has a particularly favorable form when the

minimum size seed is one monomer unit (n = 1):

dm

dµ0

= −1− µ0

α
(5.3)

This case is straightforward because the right-hand side is independent of m, al-

lowing for a simple integration to solve the equation taking into consideration the

initial condition (µ0 = 0 when m = 1):

m = − 1

2α
µ2
0 − µ0 + 1 (5.4)

Since all the monomer units are consumed in the �nal state (τ = ∞), the �nal value

of the zeroth moment can be determined by substituting m = 0 into Equation 5.4,

which yields the following result:

lim
τ→∞

µ0 =
√
α2 + 2α− α (5.5)

Upon substituting the solution for m into Equation 5.1, the following separable

ordinary di�erential equation can be obtained:

dµ0

dτ
= −µ2

0

2
− αµ0 + α (5.6)

Standard but extensive calculations lead to the analytical solution of the zeroth

moment:

µ0 = −α +
√

α(2 + α) th

(
τ
√
α(2 + α)

2
+ arth

(√
α

2 + α

))
(5.7)

Here the notation th stands for the hyperbolic tangent function, arth for the inverse

hyperbolic tangent function. After �nding this solution of the zeroth moment, the

same technique can be used for other dependent variables as well, ci is regarded as

the function of µ0 instead of τ , which leads to a system of linear, �rst-order ordinary

di�erential equations:
dc1
dµ0

= 1− c1
α

dci
dµ0

=
ci−1

α
− ci

α
i > 1

(5.8)
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The exact solution of this equation for ci is the following:

ci = α− αe−µ0/α

i−1∑
j=0

1

j!

(µ0

α

)j
(5.9)

Eventually, the non-scaled variables are determined for later uses. The concen-

tration of the monomer units takes this form:

[M] =
2[M]0kg + kM

[M]0kg + [M]0ch
(
2arth

(√
kM

2[M]0kg+kM

)
+ [M]0kgt

√
kM(2[M]0kg+kg)

[M]20k
2
g

)
kg

(5.10)

For the nanoparticle concentrations, the following form is obtained:

[Ci] = −
1

[M]0kg

e

kM

kM−[M]0kg

√√√√ kM(2[M]0kg+kM)
[M]20k2

g

th

arth

[√
kM

2[M]0kg+kM

]
+1

2
[M]0tkg

√√√√ kM(2[M]0kg+kM)
[M]20k2

g


[M]20k2

g − 1



kM

i−1∑
j=0

1

j!

 [M]0kg

√
kM(2[M]0kg+kM)

[M]20k
2
g

th

(
1
2
[M]0tkg

√
kM(2[M]0kg+kM)

[M]20k
2
g

+ arth
(√

kM
2[M]0kg+kM

))
kM

− 1


(5.11)

And at last, the average size of the nanoparticles and the cube-root number-average

size can be formed in the following ways:

M̄∞ =

√
[M]30k

3
g

2k3M−[M]20k
2
g

(5.12a)

rC = r0

6

√
2k3

M
−kg[M]20

k3g[M]30

(5.12b)

5.1.2 Di�usion kernel with second-order nucleation

Equation 5.2 can be given for the case of a second-order nucleation step (when

n = 2):
dm

dµ0

= −1− µ0

αm
(5.13)

For this ordinary di�erential equation, only an implicit solution can be derived:

2

√
α

4− α
arctan

(√
α

4− α

µ0 + 2m

µ0

)
= π

√
α

4− α
+ ln

(
µ2
0

α
+mµ0 +m2

) (5.14)

It is noted that this implicit form cannot be directly applied at m = 1, where the

initial conditions directly give µ0 = 0. In addition, the above equation is somewhat
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constrained by the condition α ̸= 4, but this limitation has no signi�cance as α << 1

is true in all practically important cases. The �nal value of the zeroth moment (i.e.

at time in�nity) can be given by substituting m = 0 into Equation 5.14:1

lim
τ→∞

µ0 =
√
αe

√
α

4−α

(
arctan

(√
α

4− α

)
− π

2

)
(5.15)

General solutions could not be found for larger integer values of n.

However, a numerical solution can be easily depicted for this scenario. First,

the ordinary di�erential equation system is considered again, which describes the

time-dependence of the concentration of all species:

d[M]

dt
= −2kM[M]2 −

∞∑
j=2

kg[M][Ci]

d[C2]

dt
= kM[M]2 − kg[M][C2]

d[Ci]

dt
= kg[M][Ci−1]− kg[M][Ci] i > 2

(5.16)

All equations, except for the �rst one, are summed:

∞∑
j=2

d[Cj]

dt
= kM[M]2 (5.17)

This equation and the �rst part of Equation 5.16 form a separate system that con-

tains no other variables.

d[M]

dt
= −2kM[M]2 − kg[M]

∞∑
j=2

[Cj]

d

dt

∞∑
j=2

[Cj] = kM[M]2
(5.18)

This method is suitable for calculating the time dependence of the concentration of

the monomer unit ([M]).

It is important to note that this technique, most unfortunately, cannot determine

the �nal value of the in�nite sum, nor can it determine the individual concentrations

of Ci. One possible solution is to consider the in�nite sums as a function of the

1Equations 5.14 and 5.15 appear as Equations 23 and 24 in the original paper connected to the
thesis (Journal of Mathematical Chemistry, Vol. 59 p. 1808) with some unfortunate typos. The
forms shown in this dissertation are the correct ones.
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concentration of M:

d

dt

∞∑
j=2

[Cj] =
−kM[M]2

2kM[M]2 + kg[M]
∞∑
j=2

[Cj]
(5.19)

Numerical integration can accurately determine the sum value down to [M] = 0 as

the initial conditions are known (the sum is zero when [M] = [M]0). Once the value

of the sum is calculated, [C2] has to be taken as a function of [M] as well.

d[C2]

d[M]
=

kg[M][C2]− kM[M]2

2kM[M]2 + kg[M]
∞∑
j=2

[Cj]
(5.20)

The numerical values of the in�nite sum in the denominator are already known as a

function of [M]. Therefore, by using numerical integration, we can �nd the value of

[C2] at [M] = 0, which will be the �nal result. To obtain additional [Ci] functions,

we can numerically integrate the following equations one after another:

d[Ci]

d[M]
=

kg[M][Ci]− kM[M]2[Ci−1]

2kM[M]2 + kg[M]
∞∑
j=2

[Cj]
i > 2 (5.21)

Numerical results up to i = 100, 000 can be obtained in a reasonable computation

time. These are suitable for comparison with Gillespie simulation results.

First, the half-lives of the concentration of the monomer units are determined

from 100 individual stochastic simulation results and the numerical calculations,

and this is presented in Figure 5.1. The �nal nanoparticle size distribution is also

illustrated in Figure 5.2 and proves that the predictions of the two approaches are in

great agreement. Finally, the same distribution for the mass of the particles rather

than the size is displayed in Figure 5.3.

5.1.3 Mass kernel with �rst-order nucleation

This is a speci�c case of the mass kernel (when K(i) = i) since the kinetically

e�ective nucleus can be formed using only one single monomer unit. The in�nite

sum present in the �rst part of Equation 4.5 (representing the time dependence of

m) is identical to the solution of the �rst moment (Equation 4.14). Accordingly, the

aforementioned equation can be transformed into a separable ordinary di�erential

equation determining the dependence of the scaled concentration of the monomer
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Figure 5.1: The cumulative distribution function of the half-lives for the dimension-
less concentration of the monomer units. Parameters: N = 107, α = 5× 10−8

Figure 5.2: The �nal particle size distribution in stochastic simulation runs in com-
parison with the deterministic prediction for di�usion kernel, n = 2 with the follow-
ing parameters: N = 107, α = 5× 10−8.

units on the scaled time:

dm

dτ
= −nαmn −m(1−m) (5.22)
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Figure 5.3: The �nal particle mass distribution (using the number of monomer units,
i, as an independent variable) in stochastic simulation runs in comparison with the
deterministic prediction for di�usion kernel, n = 2 with the following parameters:
N = 107, α = 5× 10−8.

A general solution to this equation (for all values of n) seems to be very challenging

to �nd. For this particular scenario (n = 1), this ordinary di�erential equation

converts to the following form:

dm

dτ
= −αm−m(1−m) (5.23)

The solution can be deduced quite easily:

m =
α + 1

αe(α+1)τ + 1
(5.24)

Our study revealed that it is more suitable to represent the ci concentrations as

a function of the dimensionless concentration of the monomer unit (m) rather than

the dimensionless time (τ). With this change in the independent variable, which is

made possible by the fact that m is a strictly monotonic function of τ , the ordinary

di�erential equation describing cn takes the following form:

dcn
dm

=
ncn − αmn−1

nαmn−1 + (1−m)
(5.25)

For the case speci�cally dealt with in this subsection (n = 1), this di�erential equa-
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tion simpli�es to the following one:

dc1
dm

=
c1 − α

α + (1−m)
(5.26)

Once more, a general solution for Equation 5.25 could not be found despite our

extensive e�orts. For the particular form in Equation 5.26, however, a speci�c

formula could be given:

c1 =
α− αm

1 + α−m
(5.27)

With the same change of independent variable, so considering the scaled concen-

trations of the nanoparticles as a function of m rather than τ , the part of Equation

4.5 describing ci can be stated as:

dci
dm

=
ici − (i− 1)ci−1

nαmn−1 + 1−m
i > n (5.28)

The particular equation for the case n = 1 is the following then:

dci
dm

=
ici − (i− 1)ci−1

α + 1−m
(5.29)

Once the solution of the �rst one is known (i.e. cn is known), the equation enables

the straight calculation of variables ci, and so thus the general solution is obtained,

as well:

ci =
α

i

(
1−m

α + 1−m

)
(5.30)

In the context of the mass kernel, the zeroth moment is only important for

calculating the average particle size. This feature can be derived by integrating the

proper form of the Equation 4.16:

dµ0

dτ
= αm (5.31)

On the other hand, merging Equation 4.16 and 5.22 can help to determine the zeroth

moment as the function of the m, and additionally, for the �rst-order nucleation,

the following di�erential equation is de�ned as the second part:

dµ0

dm
= − α

nα + (1−m)m1−n
(5.32)

For the particular case of n = 1, the equation is:

dµ0

dm
= − α

α + 1−m
(5.33)
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Equation 5.33 is a separable di�erential equation, for which the solution is relatively

easily given for the initial condition µ0(τ = 0) = 0 or µ0(m = 1) = 0:

µ0 = α(α + 1)τ + α ln

(
1 + α

1 + αe(α+1)τ

)
= α ln

(
1 +

1

α
− m

α

)
(5.34)

Since the �nal size distribution of nanoparticles is usually obtained by experimental

studies, the concentration of nanoparticles at the �nal state has to be determined

for this purpose:

lim
τ→∞

ci =
α

i

(
1

α + 1

)i

(5.35)

In order to simplify future comparisons with experimental data sets, it is in-

evitable to convert, at the very least, the �nal results into the non-scaled, original

parameter set. The concentration of the monomer unit is sought to have this for-

mula:

[M] =
[M]0kg + kM

[M]0kg + e
t([M]0kg+kM)

[M]20 kM

(5.36)

The concentration of the nanoparticles takes the following form:

[Ci] =

(
1− e

− t([M]0kg+kM)

[M]20

)
kM

i ([M]0kg + kM)
(5.37)

The �nal average number of monomer units in a nanoparticle and the cube-root

number-average size can be calculated in these ways:

M̄∞ = [M]0kg

ln
(
1+

[M]0kg
kM

)
kM

(5.38a)

rC = r0
[M]0kg

ln
(
1+

[M]0kg
kM

)
kM

(5.38b)

Many experimental studies track the time dependence of the concentration of

monomer units[86]. The graph in Figure 5.4 illustrates the dimensionless concentra-

tion of monomer units as a function of dimensionless time for the mass and di�usion

kernel with �rst-order nucleation steps. The graph suggests that the time depen-

dence has some similarities with the induction behavior[143, 144] observed in certain

experimental results[72�74, 145].
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Figure 5.4: m (dimensionless concentration of the monomer units) as a function
of the dimensionless time (τ) in the case of the mass kernel(M1) and the di�usion
kernel(D1), both with n = 1 and α = 10−4.

5.1.4 Mass kernel with second-order nucleation

In this scenario, the nucleation step is bimolecular similarly to the later growth steps,

and Equation 5.22, which gives the dependence of the dimensionless concentration

of the monomer unit (m) on dimensionless time, can be expressed in the given form

(n = 2 in Equation 5.22):

dm

dτ
= −2αm2 −m(1−m) (5.39)

Finding the solution to this equation does not require special e�orts. It must be kept

in mind that the initial condition is m(τ = 0) = 1. However, the case of α = 0.5

is a special one, which must be dealt with separately. The main coe�cient of the

quadratic term on the right-hand side of Equation 5.39 becomes zero, hence the

equation shortens to the description of a �rst-order process. The general solution

(including the case of α = 0.5) is given in the following equation:

m =
1

1− 2α + 2αeτ
if α ̸= 0.5

m = e−τ if α = 0.5

(5.40)

Figure 5.5 presents the solutions given in Equation 5.40 for various α values.

In this �gure, it is evident that the loss of the monomer units at high values of

α exhibits an �ordinary� kinetic curve. Nevertheless, at low α values, the shape
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has similarities with that of the clock reactions or autocatalytic reactions[143�145].

This behavior is comprehensible since in this scheme, a very small amount of initially

formed nanoparticles reacts with the monomer units in a fast reaction.

Figure 5.5: The scaled concentration of the monomer units as a function of scaled
time for some di�erent values of the ratio of the nucleation and growth rate constants
in the case of the mass kernel with n = 2.

Since the concentration of the monomer units is considered to be a monotonically

decreasing function, all the concentrations of the nanoparticles can be examined as

a function of the m rather than the dimensionless time. This approach makes it

possible to �nd the analytical solution without sacri�cing any information, as the

time dependence of the monomer units can already be derived in Equation 5.40. So

converting m to be the independent variable, the rate equation takes this form:

dc2
dm

=
2c2 − αm

2αm+ (1−m)

dci
dm

=
(i− 1)ci−1 − ici
(1− 2α)m− 1

i ≥ 3

(5.41)

The above equation exhibits an interesting property, which facilitates the analytical

solution of the entire in�nite system of di�erential equations. The �rst line gives

the derivative of c2 only involving the m and c2 variables on the right-hand side.

Consequently, it can be solved without depending on the other functions. Actually,

for the solution of the c3 and c4, the method is very similar, e.g. the equation for c3
solely relies on the functions of c2, c3, and obviously on them. Thus, it is noteworthy
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that the analytical solutions of all these simultaneous di�erential equations can be

obtained consecutively, as ci only depends on itself, the ci−1, and evidently on the

independent variable, m. Additionally, all the individual equations are considered

to be nonhomogeneous �rst-order linear di�erential equations, which have a solution

using a general strategy, leading to the following formula:

ci = C[1− (1− 2α)m]i/(2α−1)

− [1− (1− 2α)m]i/(2α−1)(i− 1)

∫
[1− (1− 2α)m]−i/(2α−1)−1ci−1dm

(5.42)

Applying the above formula yields the solution of c2:

c2 = − α

4α− 6
(1 + 2m) +

3α

4α− 6

(
1

2α
− m

2α
+m

)2/(2α−1)

(5.43)

And with this, the function for c3 can be found without di�culties:

c3 = −α(−3 + α− 3m)

3(α− 2)(α− 2)
+

3α

2α− 3

(
1−m

2α
+m

)2/(2α−1)

− 4α

3(α− 2)

(
1−m

2α
+m

)3/(2α−1)
(5.44)

The same technique leads us to the function of c4:

c4 =
α (−18 + 11α− 2α2 − 12m)

4(2α− 5)(2α− 3)(α− 2)
+

9α

2(2α− 3)

(
1−m

2α
+m

)2/(2α−1)

− 4α

α− 2

(
1−m

2α
+m

)3/(2α−1)

+
15α

4(2α− 5)

(
1−m

2α
+m

)4/(2α−1)
(5.45)

The previous three formulas (Equations 5.43, 5.44, 5.45) enable it to �nd the general

solution of the ci function. Obviously, the special case (α = 0.5) has a simpler

solution:

ci =
α(i+ 1)!(−1)i−1(m− 1)

i∏
j=2

(2α− j − 1)

+
i∑

j=2

α(j2 − 1)

j(2α− j − 1)

(
i− 1

j − 1

)
(−1)j

[(
1−m

2α
+m

)j/(2α−1)

− 1

]
if i ≥ 2, α ̸= 0.5

ci =
1

i
(m− 1) +

i∑
j=2

j2 − 1

j2
(−1)j−1

(
i− 1

j − 1

)
[ej(m−1) − 1] if α = 0.5

(5.46)
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The proof of this solution can also be accomplished by mathematical induction (see

Proofs and derivations). Since the �nal distribution of the nanoparticle population

is of great importance in most cases, which can be interpreted as the limit of the ci
functions at in�nite time (when m = 0 and α ̸= 0.5):

lim
τ→∞

ci =
α(i− 1)!(−1)i

i∏
j=2

(2α− j − 1)

+
i∑

j=2

α(j2 − 1)

j(2α− j − 1)

(
i− 1

j − 1

)
(−1)j

[(
1

2α

)j/(2α−1)

− 1

] (5.47)

As already stated before, the condition for the formation of large nanoparticles

is equivalent to the very small values of α. Thus Equation 5.47 can be simpli�ed to

the following form in these practically meaningful cases:

lim
τ→∞

ci ∼= α
i− 1

i(i+ 1)
if α << 1 (5.48)

Figure 5.6 illustrates the �nal distribution as a function of i as de�ned by Equa-

tions 5.47 and 5.48. This �gure clearly shows that there is a signi�cant di�erence

in the results of Equation 5.48 in the case where α is above 0.01. The observed

deviation does not appear for smaller values of α. Basically, Equation 5.48 can be

used as an approximate form in most practical cases in nanoparticle synthesis. It

should be emphasized that direct numerical use of the complete formula (Equation

5.48) for performing computations with values i > 40 requires special treatments

because the calculations of sums involving binomial terms with alternating signs

become complicated. These problems originate from the necessity to handle small

di�erences between very large numbers for precise calculations, which can be highly

challenging from the point of view of computational number representation. It is

usually desirable to rely on some further analytical formulas on binomial coe�cients

to enhance the e�ciency of such calculations.

The zeroth moment (given in Equation 5.32) has the following form in this

speci�c case:
dµ0

dm
= − αm

1 + (2α− 1)m
(5.49)

Since the right-hand side does not even contain the zeroth moment, this di�erential

equation can be solved simply by integrating the function on the right-hand side.

Taking into consideration the initial condition (when m = 1, then µ0 = 0), the
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Figure 5.6: The limiting values of the dimensionless concentrations of nanoparticles
Ci at in�nity time as a function of i in the case of the mass kernel with n = 2.
Di�erent colors mean di�erent values of the ratio of the nucleation and growth rate
constant (α) as given in the �gure. Solid lines were calculated by the full formula,
whereas the dashed lines show the simpli�ed formula for α << 1.

general form of the solution is as follows:

µ0 =
α

(1− 2α)(1− 2α + 2αeτ )
+

ατ − α + 2α2

(1− 2α)2
− α ln(1− 2α + 2αeτ )

(1− 2α)2
=

=
αm− α

1− 2α
+

α ln( 1
2α

− m
2α

+m)

(1− 2α)2
if α ̸= 0.5

µ0 = −1

4
m2 +m+

1

4
if α = 0.5

(5.50)

The average number of monomer units (average size of nanoparticles) is expressed

in Equation 4.21 and Figure 5.7 shows this value as a function of the ratio of the

two rate constants.

The requirement of forming large nanoparticles is the small value of α which is

just veri�ed by Figure 5.7. Actually, particles containing fewer than 100 monomer

units are typically not regarded as nanoparticles, so it seems that restricting the

analysis of similar models to the case where α << 1 is entirely acceptable in prac-

tice since the larger values would imply the absence of meaningful nanoparticle

formation.

Finding the analytical solution for larger integer values of n has been attempted

but remained unsuccessful. Some limited progress was made for n = 3, where the
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Figure 5.7: The average size of the nanoparticles in the �nal state as the function
of the ratio of the nucleation and growth rate constants (α) in the case of the mass
kernel with n = 2.

separable di�erential equation for the time dependence of m (Equation 5.22) takes

the following form:
dm

dτ
= −3αm3 −m(1−m) (5.51)

In this case, the integration after the separation of variables can be accomplished,

but it yields an overall formula that remains implicit for m:

τ =
1√

1− 12α

[
arth

(
6αm− 1√
1− 12α

)
− arth

(
6α− 1√
1− 12α

)]
+

1

2
ln

(
1− 1

3αm
+

1

3αm2

) (5.52)

This formula could be still useful in a scenario where the role of the variables is

reversed, so all of the other concentrations are given as a function of m and time

is calculated by the above equation for the speci�c m values. However, analytical

formulas giving the ci concentrations as a function of m could not be found for

n = 3. Returning to the case of n = 2, Equation 5.32 for the zeroth moment has

the following speci�c form:

dµ0

dm
= − αm2

1 +m(3αm− 1)
(5.53)

As seen, this di�erential equation can again be solved by simply integrating the
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right-hand side. The analytical solution is:

µ0 =
1−m

3
+

(1− 6α)

9α
√
1− 12α

arth

(
(1−m)

√
1− 12α

1 + 6αm−m

)
− 1

18α
ln

(
1

3α
− m

3α
= m2

) (5.54)

For higher values of n (i.e. n ≥ 4), no analytical formulas have been found for the

dependence of the zeroth moment on m.

Transforming the �nal results into the primary, non-dimensionless forms is often

important for analyzing actual experimental results. This is done here for n = 2.

First, the concentration of the monomer units displays the following time depen-

dence:

[M] =
[M]0kge

−[M]0kgt

2kM + (kg − 2kM)e−[M]0kgt
(5.55)

Then, the concentration of the nanoparticles can be gained, as well:

[Ci] =
[M]02k

i−2
g k2

M(i− 1)

(2kM + (kg − 2kM)e−[M]0kgt)

i∏
j=2

(2kM − kgj − kg)

+ [M]0

i∑
j=2

kM (j2 − 1)

(2kM − kgj − kg) j

(
i− 1

j − 1

)
(−1)j[(

kg
2kM + (kg − 2kM)e−[M]0kgt

)kg/(2kM−kg)

− 1

] (5.56)

Finally, the average size of the nanoparticles at the end of the process and the

cube-root number-average size assembled into these forms:

M̄∞ = −(kg−2kM)2

kM(kg−2kM)+kgkM ln
(

2kM
kg

) (5.57a)

rC = r0 3

√
4k2M−4kMkg+k2g

kM(kg−2kM)+kgkM ln
(

2kM
kg

) (5.57b)

The Gillespie algorithm, as introduced in the previous section, is initially applied

for this type of model, and compared with the exact analytical solution. These

simulations are implemented using MATLAB. Figure 5.8 illustrates the dependence

on the di�erent initial numbers of monomer units.

Comparing the stochastic simulation results of the dimensionless concentration

of the monomer units with the analogous deterministic calculations is shown in

Figure 5.9 under �xed parameter values of α = 10−6 and N = 106. The results
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Figure 5.8: The e�ect of di�erent initial numbers of monomer units in simulation
runs with α = 10−6.

of the �ve separate Gillespie simulations clearly exhibit di�erences, which are very

similar to the autocatalytic reactions. Moreover, it is also observable that some of

them proceed at a faster rate than others.

Figure 5.9: The scaled concentration of the monomer unit as a function of the
(scaled) time in �ve repetitive simulation runs with the parameters: N = 106,
α = 10−6. The deterministic results for the same process are shown by the black
diamond-shaped markers.
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Figure 5.10 demonstrates the impact of the di�erent ratios of the rate constants

on the scaled concentration of the monomer units as a function of the dimensionless

time.

Figure 5.10: The e�ect of the rate constant ratio as a function of the scaled con-
centration of the monomer unit in a simulation run at N = 106. The stochastic
simulation results are shown by solid line, while the deterministic calculations are
represented by dashed lines.

The scaled average sizes of the two approaches are also presented from the same

�ve simulations, which are already used in Figure 5.11, along with the deterministic

calculation. In the stochastic results, the curves are not strictly monotonic. Despite

the overall general increase in the average size, short regions of decline can sometimes

be observed in small time intervals. Obviously, this phenomenon can be attributed

to single nucleation events: when a new seed is formed whose size is tiny, the average

size is reduced because the other particles do not grow in this step.

In order to illustrate the extent of the deviations generated by stochastic �uc-

tuations, the simulation runs were launched with the same set of parameters 100

times. From each of the simulation results, the half-life values (t1/2) were collected

as characteristic time descriptors. The half-life is the time in which the initial con-

centration of the monomer unit is reduced to half of the original value. It must be

emphasized that this half-life is not similar to the half-life of �rst-order reactions in

that it depends on the initial concentration.

When it comes to representing such data, displaying the cumulative distribution

functions is much more useful than showing histograms. This is because histograms
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Figure 5.11: The scaled average size in �ve repetitive simulations runs as a function
of the (scaled) time with the following parameters: N = 106, α = 10−6

categorize events in an arbitrary way, which can signi�cantly a�ect the �nal out-

come. The use of cumulative distribution functions completely avoids these issues.

In Figure 5.12, the ordinate de�nes the cumulative distribution function, indicat-

ing the probability of obtaining a half-life shorter than t1/2 in a simulation run. In

deterministic kinetics, the initial condition uniquely determines the kinetic curves,

resulting in a single half-life value without any distribution, which is represented

by a single grey vertical line and this is very close to the time of 50% probability.

Moreover, a red continuous curve displays the best �tting normal distribution to the

curve, which �ts the simulation points well. The small �uctuations from stochastic

kinetics follow a normal distribution due to the central limit theorem of probabil-

ity theory[117]. This adherence of the half-life distribution to normal distribution

suggests that the relative �uctuations should be smaller as the initial number of

monomer units increases. It is also noteworthy that even at a low particle num-

ber of 108, no signi�cant deviations from the normal distribution are observed. In

many cases, where stochastic e�ects are present in macroscopic systems, signi�cant

deviations can be observed at small molecule numbers.

Figures 5.13 and 5.14 demonstrate the analogous results for two di�erent α values

(10−6 and 10−8). The distributions of the half-lives are di�erent in both cases,

but the overall pattern and the strict adherence to the normal distribution remain

consistent.

As stated before, the size distribution obtained from a nanoparticle synthesis
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Figure 5.12: The cumulative distribution function of the half-lives for the dimen-
sionless concentration of the monomer units. Parameters: N = 108, α = 10−7

Figure 5.13: The cumulative distribution function of the half-lives for the dimen-
sionless concentration of the monomer units. Parameters: N = 108, α = 10−6

method is a crucial descriptor. The size distribution can be calculated for the

�nal state by both stochastic simulations and deterministic formulas. Figure 5.15

compares both methods, using the cumulative distribution function instead of the

probability density function, as explained in Figure 5.12. The ordinate of Figure

5.15 shows F (r), which is the probability that the size of a randomly selected particle
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Figure 5.14: The cumulative distribution function of the half-lives for the dimen-
sionless concentration of the monomer units. Parameters: N = 108, α = 10−8

in the �nal mixture is smaller than r. The graph highlights only three simulations

as they are very similar to each other. However, a larger number of simulations

were performed, and the same unique distribution was always reached as the �nal

result. Moreover, the distribution obtained in the stochastic run is almost identical

to the one predicted by the deterministic approach. Although some deviations can

be observed above the scaled particle size of 60, these are minor artifacts that might

be associated with number representation issues in calculating the alternately signed

sum of large binomial coe�cients in Equation 5.56.

It is important to note that the original calculation for Figure 5.15 was based

only on 108 monomer units which is still considered to be a very small amount

of substance in chemical synthesis methods. However, even with this small sam-

ple size, the stochastic runs produce results that closely match the deterministic

prediction. This de�nitely demonstrates the Kurtz theorem[122] for the nucleation-

growth mechanism with autocatalytic phenomena is valid, as it provides a practical

agreement between the two approaches.

The results also show some detectable �uctuations in reaction time, which are

similar to those seen in simple autocatalytic reactions [109] and are not speci�c to

nanoparticle formation. The results also prove that even with an initial number of

monomer units as low as 107, the stochastic and deterministic approaches predict

nearly identical particle size distribution. This comparison validates the determin-

istic kinetic approach and calculations for the size distribution in such systems.
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Figure 5.15: The �nal particle size distribution in stochastic simulation runs is
compared with the deterministic prediction for the system with the same parameters:
N = 108, α = 10−6

5.2 Approximated solutions of the zeroth moment

The possibilities of �nding the analytical solution of the simultaneous system of

di�erential equations have probably been exhausted in the previous subsections. A

full solution was given for the di�usion kernel with n = 1, as well as for the mass

kernel with n = 1 and n = 2. Some partial results were reported for other cases.

Nothing could be derived for the Brownian and surface kernels, the fact that ker-

nel function involves non-integer powers of i in Table 4.1 seems to preclude any

such attempts. However, as usual in chemical kinetics, some plausible approxima-

tions might facilitate �nding formulas that are not precise but are still useful for

practical purposes as they are so close to the exact solutions that the di�erence is

experimentally undetectable.

Taking the dimensionless concentration of the monomer units as a function of

the zeroth moment rather than τ is considered to be a kind of simpli�cation (and it

is not yet an approximation). With this idea in mind, the general formula (without

specifying the kernel function) that describes the dependence of the dimensionless

monomer unit concentration (m) on the zeroth moment (µ0) can be given in the

following form:

dm

dµ0

= −n−
m

∞∑
j=n

K(j)cj

αmn
(5.58)
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It is important to highlight that the �nal distribution of the total concentration of

the particles can be derived by examining the state when all the monomer units

are used up. Furthermore, the nanoparticles can reach a meaningful size if the

growth step is much faster than the nucleation step. This condition can be expressed

mathematically as the following inequality:

n <<

m
∞∑
j=n

K(j)cj

αmn
(5.59)

With this criterion in mind, the �rst additive term from the right-hand side of

Equation 5.58 can be dropped and the following general approximation yields:

dm

dµ0

∼= −
m

∞∑
j=n

K(j)cj

αmn
(5.60)

The further kernel-speci�c derivations start from this di�erential equation. These

will be presented in separate subsections.

5.2.1 Di�usion kernel

The conditions of the di�usion kernel function entail the size independence of the

particles, so the in�nite sum in Equation 5.60 is identical to the zeroth moment, so

this di�erential equation can be written in the following speci�c form now:

dm

dµ0

= − µ0

αmn−1
(5.61)

Finding the solution to this equation is quite straightforward considering the initial

condition (µ0 = 0 if m = 1):

α

n
mn − α

n
= −1

2
µ2
0 (5.62)

Obviously, the function of m can be easily derived from the above solution:

µ0 =

√
2α

n
(1−mn) (5.63)
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The �nal value of the zeroth moment can be determined from the above equation

readily by setting m = 0 in it:

lim
m→0

µ0 =

√
2α

n
(5.64)

From this, the average number of monomer units in the nanoparticles (as in Equation

4.21) and the cube-root number-average size (de�ned in Equation 4.19) in the �nal

state can be directly obtained as follows:

M̄∞ =
√

nkg

2[M]n−2
0 kM

(5.65a)

rC = r0 6

√
nkg

2[M]n−2
0 kM

(5.65b)

The latter result can be compared to stochastic Gillespie simulations which are

already presented in Figure 5.16 for this kernel function. In the present dissertation,

this testing was carried out for �ve di�erent values of n (n = 1, 2, 3, 4, 5). Figure

Figure 5.16: Average �nal particle size as a function of the ratio of the nucleation and
growth rate constants for the di�usion kernel, n = 1, 2, 3, 4, 5. Markers represent the
stochastic simulation results, whereas the lines show the deterministic approximation
formula.

5.16 proves that the two approaches are in excellent agreement with each other.

The previous sections already showed that the exact solutions of the deterministic

model match the stochastic simulations nicely, which means that no problems arise

from the assumption that the concentrations are continuous functions of time. The
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agreement seen in Figure 5.16 underlines the fact that no major error is caused by

simplifying the assumption of the inequality stated in Equation 5.59.

It should be mentioned that the α values were selected in a way that ensured

the formation of at least 100 nanoparticles in each simulation run (and with each

n value of the kernel function) entailing the fact that the largest average size of

the nanoparticles can be 105. This kind of restriction is inevitable to avoid a great

amount of signi�cant intrinsic noise. Actually, these �uctuations can already be seen

in Figure 5.16, meaning that as the values of α reduce, the relative di�erence of the

mean from a consistent trend rises. Nevertheless, the extremely low overall number

of particles present in the system for cases of very low α values would also impose

serious problems on the accuracy of any deterministic computations. This e�ect is

demonstrated by Figure 5.17, which shows how the average particle size depends on

the total number of particles generated in stochastic Gillespie simulations.

Figure 5.17: The dependence of the average particle size on the total number of
nanoparticles formed in stochastic Gillespie simulations.

Because of the implications of Figure 5.17, the requirement calling for the for-

mation of at least 100 nanoparticles in the �nal state was applied in forthcoming

simulations with the other kernel functions as well. This selection is necessary be-

cause when the total number of nanoparticles is lower, stochastic �uctuations become

the dominant factor in determining the average size, making it di�cult to calculate

reasonably accurate expectations from a limited number of single simulation runs.

The 1/3th moment (µ1/3), which is signi�cant for calculating one of the average

sizes, can be calculated with an additional approximation already introduced in

Equation 4.17 in an earlier section. The 1/3th moment is given as the function of
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m as follows:

µ1/3 = µ
2/3
0 µ

1/3
1 =

3

√
(1−m)(1−mn)

2α

n
(5.66)

The �nal value of this moment for the case, when time tends to in�nity (and m = 0

holds), is therefore:

lim
m→0

µ1/3 =
3

√
2α

n
(5.67)

These results deduced above can be used to give the formula for the number-

average size of the population of nanoparticles (rA), which can be expressed in the

following form:

rA = r0
µ1/3

µ0

= r0
6

√
n

2α
= r0

6

√
nkg

2kM[M]n−2
0

(5.68)

The 2/3th moment is less important from a practical point of view, but its value

can be determined using analogous ways of thought. The formula for m-dependence

is given as follows:

µ2/3 = µ
1/3
0 µ

2/3
1 = (1−m)2/3

6

√
2α

n
(1−mn) (5.69)

The �nal value can be obtained by substituting m = 0 into the above equation,

which yields:

lim
m→0

µ2/3 =
6

√
2α

n
(5.70)

5.2.2 Surface kernel

For this kind of kernel function, as was stated in Section 4.3, a separate approxi-

mation needs to be considered for calculating the value of the 2/3th moment as the

weighted geometrical mean of the zeroth and �rst moments (Equation 4.18). With

this additional assumption, the di�erential equation giving the dependence of m on

µ0 takes the following simpli�ed form:

dm

dµ0

= −µ
1/3
0 (1−m)2/3

αmn−1
(5.71)

This ordinary di�erential equation can be rearranged into a form where the variables

are separated:
αmn−1dm

(1−m)2/3
= −µ

1/3
0 dµ0 (5.72)
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Integrating the right-hand side is straightforward, which yields the following equa-

tion: ∫
αmn−1

(1−m)2/3
dm = −3

4
µ
4/3
0 (5.73)

A general integral of the left-hand side is not easy to �nd. In order to obtain the

solution, a useful strategy is to solve the equation for individual, low values of n

�rst. When these solutions are obtained, some patterns can be observed within

them, which imply a regularity with increasing n values. In this way, the form of

the general solution can be conjectured and then proved by simply substituting it

into Equation 5.71. The general solution found with this strategy is the following:

µ0 = α3/4(1−m)1/4

(
n−1∑
i=0

(
4

3n

n∏
j=i+1

3j

3j − 2

)
mi

)3/4

(5.74)

The �nal value of the zeroth moment can be found by substituting m = 0 into the

above equation. This will yield a very simple formula, as only the zeroth order term

of the summation remains in it:

lim
m→0

µ0 =

(
4α

3n

n∏
j=1

3j

3j − 2

)3/4

(5.75)

Employing the formulas derived above, the average number of monomer units

and the cube-root number-average size take the following forms:

M̄∞ = 4

√
27
64

(
[M]n−2

0 kM
nkg

n∏
j=1

3j
3j−2

)−3/4

(5.76a)

rC = r0
4

√
3
4

(
[M]n−2

0 kM
nkg

n∏
j=1

3j
3j−2

)−1/4

(5.76b)

Figure 5.18 shows the validity of the solution tested by comparing them to the

exact Gillespie simulation results.

In the case of the selection of the values of α, two main factors must be taken

into consideration: �rst, as mentioned earlier, more than 100 nanoparticles need

to be formed in each run. Second, the Gillespie simulations are excessively time-

consuming here probably because the 2/3th powers of many numbers are calculated

during the process. This decelerates the computations very signi�cantly and only

makes it possible to calculate fewer full simulations.

Here, computing the further approximation, the µ2/3, can be used to demonstrate
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Figure 5.18: Average �nal particle size as a function of the ratio of the nucleation and
growth rate constants for the surface kernel, n = 1, 2, 3, 4, 5. Markers represent the
stochastic simulation results, whereas the lines show the deterministic approximation
formula.

the validity of the deterministic results compared to the stochastic ones. The full

form of the 2/3th moment is given as:

µ2/3 = α1/4

(
n−1∑
i=0

(
4

3n

n∏
j=i+1

3j

3j − 2

)
mi

)1/4

(1−m)3/4 (5.77)

Similarly to the zeroth moment, giving the �nal value (i.e. the one when time tends

to in�nity) of this 2/3th moment is possible with a less complicated formula:

lim
m→0

µ2/3 = α1/4

(
4

3n

n∏
j=1

3j

3j − 2

)1/4

(5.78)

Using these formulas, Figure 5.19 presents the agreement between the approxima-

tion-dependent deterministic and the exact stochastic simulation approaches with

two di�erent α values for the case n = 1 (a viable seed consisting of a single monomer

unit). The general agreement is acceptable. What is emphasized by the �gure is

the agreement is better when a lower value of α is used (i.e. the average size of the

nanoparticles in the �nal state is larger). Also, it is revealed that with the higher

value of α shown in the �gure, the agreement gets slightly worse when m approaches

0, which means the end of the process.
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Figure 5.19: The 2/3th moment as a function of the scaled concentrations of the
monomer units with two di�erent α values for the surface kernel n = 1. Markers
represent the stochastic simulation results, whereas the lines show the deterministic
approximation formula.

Similarly to the di�usion kernel, the 1/3th moment is also of interest here as it

gives a way to calculate one of the possible average sizes (rA) that characterize the

population of nanoparticles. Similarly to the di�usion kernel, the approximation

introduced in Equation 4.17 is used. The 1/3th moment is given as the function of

m as follows:

µ1/3 = µ
2/3
0 µ

1/3
1 = (1−m)1/2

(
n−1∑
i=0

(
4α

3n

n∏
j=i+1

3j

3j − 2

)
mi

)1/2

(5.79)

The �nal value is again obtained by setting m = 0 in the above equation:

lim
m→0

µ1/3 =

(
4α

3n

n∏
j=1

3j

3j − 2

)1/2

(5.80)

The average size rA after the end of the synthesis process can be calculated using

the following formula:

rA = r0

(
4α

3n

n∏
j=1

3j

3j − 2

)−1/4

(5.81)
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5.2.3 Brownian kernel

Applying the Brownian kernel also necessitates the use of a further approximation

for calculating the 1/3th moment (introduced in Section 4.3 as Equation 4.17). The

ordinary di�erential equation giving m as the function of the zeroth moment has

the following form in this case:

dm

dµ0

= −µ
2/3
0 (1−m)1/3

αmn−1
(5.82)

This is a separable ordinary di�erential equation that can be re-arranged into the

following form:
αmn−1dm

(1−m)1/3
= −µ

2/3
0 dµ0 (5.83)

The right-hand side can be integrated readily:∫
αmn−1

(1−m)1/3
dm = −3

5
µ
5/3
0 (5.84)

To �nd the general solution for this, the same technique needs to be employed here

as for the surface kernel (solving for small individual values of n, conjecturing the

general formula, and then proving it by substituting into the original di�erential

equation). The general solution is the following:

µ0 = α3/5(1−m)2/5

(
n−1∑
i=0

(
5

3n

n∏
j=i+1

3j

3j − 1

)
mi

)3/5

(5.85)

The �nal value of the zeroth moment (µ0 as time tends to in�nity) can be given in

this way:

lim
m→0

µ0 = α3/5

(
5

3n

n∏
j=1

3j

3j − 1

)3/5

(5.86)

With this approximation, a formula giving the value of the 1/3th moment (µ1/3)

as a function of m can be provided as follows:

µ1/3 = α2/5

(
n−1∑
i=0

(
5

3n

n∏
j=i+1

3j

3j − 1

)
mi

)2/5

(1−m)3/5 (5.87)

The �nal value of this 1/3th moment at time in�nity is again deduced by setting
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m = 0 in the previous equation:

lim
m→0

µ1/3 = α2/5

(
5

3n

n∏
j=1

3j

3j − 1

)2/5

(5.88)

Since the solution of the µ1/3 is also known, in this speci�c case, the number-

average size of the population of nanoparticles (rA) can also be determined. The

non-scaled equation of the two average sizes of the nanoparticles and the cube-root

number-average size for this scheme are rewritten to these forms:

M̄∞ =
(
3
5

)3/5( [M]n−2
0 kM
nkg

n∏
j=1

3j
3j−1

)−3/5

(5.89a)

rC = r0
(
3
5

)1/5( [M]n−2
0 kM
nkg

n∏
j=1

3j
3j−1

)−1/5

(5.89b)

rA = r0
(
3
5

)1/5 (α
n

)2/5 ( [M]n−2
0 kM
nkg

)−3/5
(

n∏
j=1

3j
3j−1

)−1/5

(5.89c)

The practical validity of these deterministic results is demonstrated in the same

way as it was done for the surface kernel. Figure 5.20 shows the comparison between

deterministic formulas and stochastic simulations for the �nal value of the average

number of monomer units as a function of the α. The same conditions are used for

the selection of the α values, as in the previous two cases.

For this speci�c kernel, comparing the values of the 1/3th moment calculated

from the deterministic form with the stochastic can also be used to test the agree-

ment between the two methods. The result of this comparison is displayed in Figure

5.21.

Similarly to the previous two cases, the 2/3th moment can also given using the

results obtained thus far. The m-dependence of µ2/3 takes the following form:

µ2/3 = µ
1/3
0 µ

2/3
1 = (1−m)4/5

(
n−1∑
i=0

(
5α

3n

n∏
j=i+1

3j

3j − 1

)
mi

)1/5

(5.90)

The value in the �nal state is:

lim
m→0

µ2/3 =

(
5α

3n

n∏
j=1

3j

3j − 1

)1/5

(5.91)
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Figure 5.20: Average �nal particle size as a function of the ratio of the nucleation
and growth rate constants for the Brownian kernel, n = 1, 2, 3, 4, 5. Markers rep-
resent the stochastic simulation results, whereas the lines show the deterministic
approximation formula.

Figure 5.21: The 1/3th moment as a function of the scaled concentration of the
monomer unit with two di�erent α values for the Brownian kernel with n = 2.
Markers represent the stochastic simulation results, whereas the lines show the de-
terministic approximation formula.

5.2.4 Mass kernel

The mass kernel shows some di�erences from the previous kernels. The in�nite sum

in Equation 5.60 is exactly equal to the result of the �rst moment (µ1 = 1−m) in this
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case, which seems a simpler case than the previous kernel dealt with. Even though

this would seem contradictory at �rst sight, employing fewer approximations than

for the previous cases proved to be a better strategy for the mass kernel. Instead

of neglecting the entire term of nucleation in Equation 5.58, it is only the exponent

in the �rst terms that changed from n to 1. The logic behind this change is that

nucleation is only important at the beginning of the process, wherem hardly changes

from its initial value of 1, so it only causes a minor error if the exponent is changed.

In this way, the following approximation di�erential equation yields instead of the

one analogous to Equation 5.59:

dm

dµ0

∼= −αn+ 1−m

αmn−1
(5.92)

The analytical solution is quite simple when the nucleation is �rst-order (n = 1):

µ0 = α ln

(
α + 1−m

α

)
for n = 1 (5.93)

The cases when n > 1 are considerably more di�cult. Using the same strategy as

for the surface and Brownian kernels (i.e. solving for small individual values of n

at �rst, conjecturing the general formula and then proving it by substituting into

Equation 5.92), the full form of the solution can be determined as follows:

µ0 = α(1 + αn)n−1 ln

(
αn+ 1−m

αn

)
+ α

n−1∑
i=1

1

i
(1 + αn)n−1−i

(
mi − 1

)
(5.94)

The �nal value of the zeroth moment µ0 can once again be obtained by substituting

m = 0 into the above equation. The results are as follows:

lim
m→0

µ0 = α ln

(
α + 1

α

)
for n = 1

lim
m→0

µ0 = α(1 + αn)n−1 ln

(
αn+ 1

αn

)
− α

n−1∑
i=1

1

i
(1 + αn)n−1−i for n > 1

(5.95)

At last, the average number of monomer units in the particles needs to be obtained.

This gives the same formula as the exact solution for n = 1 (Equation 5.38), which

is understandable as no approximation is actually used in Equation 5.92. For larger
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values of n, the following equation can be given:

M̄∞ =
[M]−n

0 ([M]20 + [M]n0nkM)
(
1 +

[M]n−2
0 nkM
kg

)−n

ln
(
1 +

[M]2−n
0 kg
nkM

)
kM

n−1∑
i=1

1

i

[M]2−n
0 kg

(
1 +

[M]n−2
0 kM
kg

)1+i−n

kM
if n > 1

(5.96)

The cube-root number-average size can be directly given from the above equation

and takes the following form:

rC = r0
3

√√√√√√ [M]−n
0 ([M]20 + [M]n0nkM)

(
1 +

[M]n−2
0 nkM
kg

)−n

ln
(
1 +

[M]2−n
0 kg
nkM

)
kM

×
n−1∑
i=1

1

i

[M]2−n
0 kg

(
1 +

[M]n−2
0 kM
kg

)1+i−n

kM
if n > 1

(5.97)

The validity of these deterministic formulas is proved again by the comparison of

the average nanoparticle size as a function of the dimensionless rate constant ratio

calculated by the result with the corresponding Gillespie simulation results.

Figure 5.22: Average �nal particle size as a function of the ratio of the nucleation
and growth rate constants for the mass kernel, n = 1, 2, 3, 4, 5. Markers represent the
stochastic simulation results, whereas the lines show the deterministic approximation
formula.
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For the mass kernel, the 1/3th and 2/3th moment can also be given as a function

of m using sequences of thought very similar to the previous kernels. The 2/3th

moment is approximated as follows:

µ2/3 = µ
1/3
0 µ

2/3
1 = (1−m)2/3

(
α (1 + αn)n−1 ln

(
1 + (α− 1)n

αn

))1/3

+

(1−m)2/3

(
α

n−1∑
i=1

1

i
(1 + αn)n−1−i (mi − 1

))1/3 (5.98)

The 2/3th moment in the �nal state is given by the usual method of substituting

m = 0 into the above formula:

lim
m→0

µ2/3 =
3

√√√√α(1 + αn)n−1 ln

(
1 + (α− 1)n

αn

)
+ α

n−1∑
i=1

1

i
(1 + αn)n−1−i (5.99)

Along very similar lines, the m-dependence of the 1/3th moment (µ1/3) can be given

as follows:

µ1/3 = µ
2/3
0 µ

1/3
1 = (1−m)1/3

(
α (1 + αn)n−1 ln

(
1 + (α− 1)n

αn

))2/3

+

(1−m)1/3

(
α

n−1∑
i=1

1

i
(1 + αn)n−1−i (mi − 1

))2/3 (5.100)

The �nal value of the 1/3th moment is again obtainable by substituting m = 0 in

the previous equation:

lim
m→0

µ1/3 =

(
α(1 + αn)n−1 ln

(
1 + (α− 1)n

αn

)
+ α

n−1∑
i=1

1

i
(1 + αn)n−1−i

)2/3

(5.101)

Using the 1/3th moment, the �nal value of the average size rA can be given similarly

to the previous kernels:

rA = r0

(
α(1 + αn)n−1 ln

(
1 + (α− 1)n

αn

)
+ α

n−1∑
i=1

1

i
(1 + αn)n−1−i

)−1/3

(5.102)

5.2.5 Time dependence and numerical calculation of the con-

centration

In most measurements of nanoparticle synthesis, the �nal size distribution is mea-

sured, although the time dependence of the average size is occasionally monitored
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as well. The availability of this kind of measurement data provides a further oppor-

tunity to demonstrate the usefulness of the previously presented theoretical results.

To achieve this, it is crucial to express the time dependence of the variables. This

can be managed through the di�erential equation governing the time evolution of

the concentration of monomer units. This equation has the following general form,

which is now stated using the moments de�ned earlier:

dm

dτ
= −nαmn −mµq (5.103)

In the above equation, q has the same role as the di�erent kernel functions such

as the di�usion kernel (q = 0), the surface kernel (q = 2/3), the Brownian kernel

(q = 1/3), and the mass kernel (q = 1). The following integration enables the

calculation of the time required to reach a speci�c value of m, which is denoted

mtarget here to distinguish it from the general notation of the variable m:

τ = −
∫ mtarget

1

1

nαmn +mµq(m)
dm (5.104)

The concept of calculating the time it takes to reach a set of concentrations is not

a very common one in chemical kinetics, one of the rare previous examples was

published by Du and Espenson in their experimental description of some classical

redox processes[146]. The functional form of µq(m) does not permit the analytical

evaluation of the integral for the cases handled here. However, numerical integration

can be easily performed to compute the necessary time values. For the di�usion

kernel, Equation 5.104 is converted into the following form:

τ = −
∫ mtarget

1

1

nαmn +m
√

2α
n
(1−mn)

dm (5.105)

The speci�c form of Equation 5.104 for the surface kernel can stated using the results

in earlier subsections as follows:

τ = −
∫ mtarget

1

1

nαmn +m

(
n−1∑
i=0

(
4α
3n

n∏
j=i+1

3j
3j−2

)
mi

)1/4

(1−m)3/4

dm (5.106)
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A similar process for the Brownian kernel yields an analogous integral expression

for τ :

τ = −
∫ mtarget

1

1

nαmn +mα2/5

(
n−1∑
i=0

(
5
3n

n∏
j=i+1

3j
3j−1

)
mi

)2/5

(1−m)3/5

dm (5.107)

Finally, a less demanding formula results from the use of the mass kernel, which is

given as:

τ = −
∫ mtarget

1

1

nαmn +m(1−m)
dm (5.108)

The calculations with the method were employed to make a comparison with

some measured data published in the literature. In the �rst example (displayed in

Figure 5.23), the average sizes of individual nanoparticles in the population were cal-

culated as a function of time assuming the Brownian kernel. It is worth mentioning

that the solid lines in Figure 5.23 denote the model predictions based on intuitive

parameter sets that could be obtained through trial and error. These parameter

sets are found to represent reasonable agreement with the experimental data[84, 86]

and demonstrate the usefulness of the model in interpreting various other observed

results. Most unfortunately, proper non-linear least square �tting with the standard

algorithm is not possible due to the reversal of the role of dependent and independent

variables stated in Equation 5.104. In Figure 5.23, the experimental results from

the formation of amino-PEG-covered gold nanoparticles can be seen. The model

calculations are made for the Brownian kernel with �ve various values of n (1, 2, 3,

4, and 5). It is interesting to see that a di�erence in the size of the viable seed (n)

does not cause any crucial distinction in the comparison of measured and predicted

data, perhaps the measured data would be needed on a longer time scale for the clear

distinction between n values. Figure 5.24 shows experimental data from the process

of titania nanoparticle formation observed during basic hydrolysis of titanium(IV)-

bis(ammonium-lactato)-dihydroxide [86] compared with model predictions for the

mass kernel with n = 4. It should kept in mind that calculating the theoretical

prediction in this graph needed the value of µ1/3, which was obtained from Equation

5.100. The results in the graph show that the simple nucleation-growth model can

be successfully used to explain even the time dependence observed in experimental

procedures.

At this stage, it seems to be noteworthy that the introduced approximations

(Equations 5.63, 5.74, 5.85, 5.94) also o�er a numerical approach for computing

the time-dependent ci variables, which method is analogous to the one employed to
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Figure 5.23: Number-average particle size as a function of time: a comparison
of model calculations with experimental data. Data from reference[84]. Model
predictions: Brownian kernel with di�erent n values displayed in the graph itself,
α = 1× 10−19, kg[M]0 = 0.002 s−1, r0 = 0.1 nm.

Figure 5.24: Number-average particle size as a function of time: a comparison
of model calculations with experimental data. Data from reference[86]. Model
predictions: Mass kernel with with n = 4, α = 6 × 10−5, kg[M]0 = 0.0012 s−1, r0 =
33 nm.

calculate the time necessary for a given m value. The mentioned equations provide

the zeroth moment as a function ofm, and by using the Equations 4.17 and 4.18, the

variable µq, which is essential for the chosen kernel, can be expressed as a function

of the monomer unit concentration. This allows the formulation of a di�erential

78



Rebeka Szabó: Modeling the kinetics of nanoparticle formation

equation for cn and the computation of its dependence on m:

dcn
dm

= cn
K(n)

nαmn−1 + µq(m)
− αmn−1

nαmn−1 + µq(m)
(5.109)

It should be noticed in the equation that all the variables but cn(m) are known.

Thus, a standard numerical integration technique, such as the Runge-Kutta or the

Gear algorithm, is able to provide a solution for cn(m). After getting this one

ascertained, the other nanoparticle concentrations (ci(m) for i > n) can be calculated

iteratively in a recursive manner by numerically solving the di�erential equation

given below:

dci
dm

= ci
K(i)

nαmn−1 + µq(m)
− ci−1

K(i− 1)

nαmn−1 + µq(m)
i > n (5.110)

The use of this method is illustrated for the Brownian kernel (n = 5 and α = 10−3)

in two di�erent graphs. Figure 5.25 illustrates some arbitrarily chosen ci values as

a function of dimensionless time. Figure 5.26 displays the ci values as a function of

Figure 5.25: Kinetic traces (�xed ci concentrations as a function τ) for the Brownian
kernel, n = 5, α = 10−3.

i at chosen �xed values of m (and therefore τ , which can also be computed). This

representation actually displays the �nal size distribution (wherem = 0 and τ = ∞),

so it proves that prediction of the full �nal distribution is possible. However, this

can only be done in viable computation time only if the chosen values of α are

relatively high, which corresponds to small average particle sizes. In the case of

the graphs shown in this section (α = 10−3), calculating up to i=150 is su�cient

79



Rebeka Szabó: Modeling the kinetics of nanoparticle formation

to de�ne the full distribution. Earlier examples in the chapter showed that for the

most useful predictions (e.g. Figures 5.23 and 5.24) calculating up to i = 107 would

be necessary.

Figure 5.26: Selected ci values as a function i at some �xed values of m for the
Brownian kernel, n = 5, α = 10−3.

5.3 Some results on induced nucleation

For several experimental studies, a reagent, a so-called external inductor, is employed

to help the formation of the �rst kinetically e�ective nuclei [1, 12, 84, 86] and using

such a reagent is a prevalent practice in polymerization processes[147], as well. The

nucleation-growth model studied in this dissertation can accommodate the presence

of such an inductor. One possibility is to include a new reagent, P, in the nucleation

step. The overall kinetic model can be given in the following form then:

P + nM
kp−→ Cn n, i ∈ Z+ υp = kp[P]

Ci +M
K(i)kg−−−−→ Ci+1 i ≥ n υg,i = K(i)kg[M][Ci]

(5.111)
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The system of di�erential equations describing the time dependence of the particles

can be obtained:

d[M]

dt
= −nυp −

∞∑
j=n

υg,j = −nkp[P]−
∞∑
j=n

K(j)kg[M][Ci]

d[Cn]

dt
= υp − υg,n = kp[P]−K(n)kg[M][Cn]

d[Ci]

dt
= υg,i−1 − υg,i = K(i− 1)kg[M][Ci−1]−K(i)kg[M][Ci] i > n

d[P]

dt
= −υp = −kp[P] [P]0 << [M]0

(5.112)

The condition given in the last line is not mathematically necessary but is a very

natural one chemically: too much inductor would result in the formation of tiny

particles only. In order to obtain the dimensionless version of the model (similarly

to the spontaneous nucleation model), the already stated quantities (Equation 4.4)

are needed and besides those, two new variables have to be introduced:

p =
[P]

[M]0
, β =

kp
[M]0kg

(5.113)

Variable p is the dimensionless concentration of the external inductor (P), whereas

β represents the dimensionless rate constant of induced nucleation. With the di-

mensionless variables introduced, the system of ordinary di�erential equations can

be rewritten into the following form:

dm

dτ
= −nβp−

∞∑
j=n

K(j)mcj

dcn
dτ

= βp−K(n)mcn

dci
dτ

= K(i− 1)mci−1 −K(i)mci

dp

dτ
= −βp

(5.114)

First of all, some considerations can be utilized regardless of the details of the model.

The initial value of p is denoted p0:

p0 = [P]0/[M]0 << 1 (5.115)

Then it can be noticed that the last line in Equation 5.114 is a �rst-order di�erential

equation for p without the in�uence of any other variables. So the solution is the
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usual exponential function for the time dependence of p.

p = p0e
−βτ (5.116)

As a next step, the di�erential equation for the zeroth moment as a function of τ is

written, which takes a simple form:

dµ0

dτ
= βp (5.117)

Once more, it is crucial to emphasize that the zeroth moment is a monotonically

increasing function, and it can be noticed that µ0 is not dependent on the choice of

the kernel function, either. Consequently, the time dependence of the total concen-

tration of the nanoparticles can be found as given below:

µ0 = p0
(
1− e−βτ

)
(5.118)

The �nal value of the zeroth moment (i.e. at τ = ∞) is useful to state at this point:

lim
τ→∞

µ0 = p0 (5.119)

The model featuring induced nucleation can be investigated for each of the inves-

tigated kernel functions. Considering the di�usion kernel, the di�erential equation

describing m as a function of the dimensionless time assumes the following form

under the given conditions:

dm

dτ
= −nβp0e

−βτ −mp0
(
1− e−βτ

)
(5.120)

Some progress toward the analytical solution is possible in this case, but an integra-

tion without a closed-form result remains in the formula:

m = ep0/β−p0e−βτ/β−p0τ

− nβp0e
−p0e−βτ/β−p0τ

∫ τ

0

ep0e
−βξ/β+p0ξ−βξdξ

(5.121)

Moving on to the mass kernel, the di�erential equation describing the time de-

pendence of the monomer units is represented as follows:

dm

dτ
= −nβp0e

−βτ −m(1−m) (5.122)

The software Mathematica ascertained the existence of a closed-form analytical so-
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lution for this di�erential equation involving gamma and con�uent hypergeometric

functions (see Proofs and derivations), but, most unfortunately, this solution is ex-

ceedingly complex and its use would be impractical for in a real application. Other

than the mentioned two cases, no plausible hints at obtaining an analytical solution

have been uncovered for induced nucleation. If necessary, suitable approximations

could be developed for these cases, but meeting that challenge awaits future attempts

in chemical kinetics.
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6
Conclusion

In summary, this dissertation presents a comprehensive nucleation-growth model

that elucidates nanoparticle formation processes through two key reactions: seed

formation from n monomers and subsequent growth via monomer addition. The

kernel functions determine the dependence of the growth step on the particle size,

and for practical reasons, four distinct kernels are considered here: the mass kernel

(direct relationship with the number of monomers), the Brownian kernel (directly

related to the radius of the particle), the surface kernel (directly proportional to

the surface area of the particle), and �nally the di�usion kernel (independent of the

nanoparticle size). To simplify the set of ordinary di�erential equations describing

this kinetic model, dimensionless quantities were introduced. The mathematical

framework for this population necessitates the application of moments, where the

�rst moment characterizes the overall count of monomer units within the particles,

while the zeroth moment represents the sum of the concentration of the nanoparti-

cles. Exploring additional types of moments could be bene�cial in deriving general

solutions for the average sizes.

Furthermore, the research goes beyond deterministic computations by incorpo-

rating stochastic kinetics via Gillespie simulations. Utilizing a Monte Carlo simu-

lation method, the Stochastic Simulation Algorithm o�ers a robust framework for

exploring molecular-level dynamics.

Exact analytical solutions could only be found for the di�usion kernel with �rst-

order nucleation, and the mass kernel with �rst- and second-order nucleation. The

results of the latter were validated by stochastic simulations. These can also give

the time dependence of the concentration of the nanoparticles.

In all other scenarios (all four kernel functions and regardless of n), approxi-

mation methods were necessary, leading us to focus on solving the zeroth moment.

Once more, this approach was validated against Gillespie simulation outcomes.

84



7
Összefoglalás

Összefoglalva, ez a disszertáció egy általános gócképz®dési-növekedési modellt tár-

gyal, amely bemutatja a nanorészecskék képz®dési folyamatait két kulcsfontosságú

reakción keresztül: gócképz®dés n monomeregységb®l és a kés®bbi növekedés mono-

meregységek hozzáadásával. A kernel függvények meghatározzák a növekedési lépés-

nek a részecske méretét®l való függését, és gyakorlati okokból itt négy különböz® ker-

nelt veszünk �gyelembe: a tömegkernel (közvetlen kapcsolat a monomerek számá-

val), a Brown-kernel (közvetlenül összefügg a részecske sugarával), a felületkernel

(közvetlen arányosság a részecske felületével), és végül a di�úziós kernel (független

a nanorészecske méretét®l). A kinetikai modellt leíró közönséges di�erenciálegyen-

letek egyszer¶sítése érdekében dimenziómentes mennyiségek kerültek bevezetésre.

Ennek a populációnak a matematikai kerete a momentumok alkalmazását igényli,

ahol az els® momentum jellemzi a részecskékben található monomeregységek számát,

míg a nulladik momentum a részecskék összkoncentrációját reprezentálja. További

momentumok bevezetése hasznos lehet az átlagos méretek általános megoldásainak

meghatározásához.

Továbbá, a kutatás meghaladja a determinisztikus számításokat a Gillespie-

szimulációk révén beépített sztochasztikus kinetika integrálásával. A Monte Carlo-

szimulációs módszer felhasználása, különösen a Sztochasztikus Szimulációs Algorit-

mus, er®s keretet biztosít a molekuláris szint¶ dinamika vizsgálatához.

Pontos analitikai megoldások csak az els®rend¶ gócképz®déssel járó di�úziós ker-

nelre és az els®- és másodrend¶ gócképz®déssel rendelkez® tömegkernel eseteiben

található. Az utóbbi eredményeit sztochasztikus szimulációkkal is validáltuk. Ezek

szintén adhatnak információt a nanorészecskék koncentrációjának id®függésér®l.

Minden más esetben (az összes kernel függvényre és n értékét®l függetlenül)

közelít® módszerek bevezetése szükséges volt, amelyek a nulladik momentum megol-

dására koncentráltak. Ezeket az eredményeket megint csak igazoltuk pontos Gillespie-
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szimulációkkal szemben.
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Proofs and derivations

Derivation of Equation 4.5

First, the dimensionless time has to be di�erentiated in the following way:

dτ

dt
= kg[M]0 (1)

Then, the di�erential equations of Equation 4.2 are divided by (kg[M]20):

d[M]

kg[M]20dt
=

nkM[M]n

kg[M]20
−

∞∑
j=n

K(j)
kg[M][Ci]

kg[M]20

d[Cn]

kg[M]20dt
=

kM[M]n

kg[M]20
−K(n)

kg[M][Cn]

kg[M]20
d[Ci]

kg[M]20dt
= K(i− 1)

kg[M][Ci−1]

kg[M]20
−K(i)

kg[M][Ci]

kg[M]20
i > n

(2)

With some simpli�cation:

d
(

[M]
[M]0

)
kg[M]0dt

= −n
kM[M]n−2

0

kg

(
[M]

[M]0

)n

−
∞∑
j=n

K(j)
[M]

[M]

[Ci]

[M]

d
(

[Cn]

[C0]

)
kg[M]0dt

=
kM[M]n−2

0

kg

(
[M]

[M]0

)n

−K(n)
[M]

[M]

[Cn]

[M]

d
(

[Ci]

[M0]

)
kg[M]0dt

= K(i− 1)
[M]

[M]

[Ci−1]

[M]
−K(i)

[M]

[M]

[Ci]

[M]
i > n

(3)

From these equations, the dimensionless quantities can be recognized.
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Derivation of Equation 4.16

The time derivative can be obtained from the de�nition:

dµ0

dτ
=

∞∑
i=n+1

dci
dτ

(4)

All parts describing the time dependence of the nanoparticle concentration (ci) in

Equation 4.5 need to be summed:

dcn
dτ

+
∞∑

i=n+1

dci
dτ

= αmn −K(n)mcn +
∞∑

i=n+1

K(i− 1)mci−1 −
∞∑

i=n+1

K(i)mci (5)

After rearranging the indexes, the following form can be given:

∞∑
i=n

dci
dτ

= αmn +
∞∑
i=n

K(i)mci −
∞∑
i=n

K(i)mci (6)

Dropping the last two parts of the right-hand side, the �nal form remains:

∞∑
i=n

dci
dτ

= αmn (7)

101



Rebeka Szabó: Modeling the kinetics of nanoparticle formation

Derivation of Equation 5.4

For n = 1, the di�erential equation changes:

dm

dµ0

= −1− µ0

α
(8)

Since the m does not appear on the right-hand side, applying a simple integration

leads to the solution:

m = −1

2
αµ0

2 − µ0 + C (9)

The C represents the integration constant of which value can found by the initial

conditons.
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Derivation of Equation 5.5

The limiting value of the zeroth moment can be determined when all the monomer

units are consumed (m = 0):

0 = − 1

2α
µ0,∞

2 − µ0,∞ + 1 (10)

The solution of this simple equation can be found easily by the well-known quadratic

equation:

µ0,∞ =
1±

√
1 + 4 1

2α

− 2
2α

(11)

Algebraic transformations and choosing the positive root gives the solution of Equa-

tion 5.5.
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Proof of Equation 5.7

The equation is proved here by substituting the solution into the Equation5.6.

As a start, it is shown that the initial condition (µ0 = 0 when τ = 0) is satis�ed:

µ0 (τ = 0) = −α +
√

α (2 + α)th

(
arth

(√
α

2 + α

))
= α +

√
α (2 + α)

√
α

2 + α
= −α +

√
α2 = 0

(12)

It is proven that it is satis�ed.

The derivative of the tangent hyperbolic function is exactly the square of the se-

cant hyperbolic secant function, which can be also interpreted as the square of the

reciprocal of the hyperbolic cosine function:

dthz

dz
= sech2z =

1

cosh2z
=

4

(ez+e−z)2
(13)

The derivative of the zeroth moment with respect to the dimensionless time can be

given as:

dµ0

dτ
=

α (2 + α)

2
sech2

(
τ
√
α (2 + α)

2
+ arth

(√
α

2 + α

))
(14)

Moreover, the hyperbolic secant function and the hyperbolic tangent function are

connected by the given way:

sech2z + th2z− 1 = 0 (15)

This can be tested by substituting the de�nitions:

4

(ez+e−z)2
+

(ez−e−z)
2

(ez+e−z)2
− 1 =

4 + e2z−2 + e−2z

(ez+e−z)2
− 1

=
e2z+2 + e−2z

(ez+e−z)2
− 1 =

(ez+e−z)
2

(ez+e−z)2
− 1 = 0

(16)
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Then the right-hand side of Equation 5.6 turns out to be:

− µ0
2

2
− αµ0 + α

= −1

2

(
−α +

√
α (2 + α)th

(
τ
√
α (2 + α)

2
+ arth

(√
α

2 + α

)))2

− α

(
−α +

√
α (2 + α)th

(
τ
√

α (2 + α)

2
+ arth

(√
α

2 + α

)))
+ α

= −1

2
α2 + α

√
α (2 + α)th

(
τ
√
α (2 + α)

2
+ arth

(√
α

2 + α

))

− α (2 + α)

2
th2

(
τ
√

α (2 + α)

2
+ arth

(√
α

2 + α

))

+ α2 − α
√

α (2 + α)th

(
τ
√
α (2 + α)

2
+ arth

(√
α

2 + α

))
+ α

=
1

2
α2 + α− α (2 + α)

2
th2

(
τ
√
α (2 + α)

2
+ arth

(√
α

2 + α

))

(17)

Consequently, this given formula holds:

th2

(
τ
√

α (2 + α)

2
+ arth

(√
α

2 + α

))
= 1− sech2

(
τ
√
α (2 + α)

2
+ arth

(√
α

2 + α

))
(18)

The substitution of the previous equation into the Equation 17 leads to this:

− µ0
2

2

α (2 + α)

2
− αµ0 + α

=
1

2
α2 + α− α (2 + α)

2
+

α (2 + α)

2
sech2

(
τ
√

α (2 + α)

2
+ arth

(√
α

2 + α

))

=
α (2 + α)

2
sech2

(
τ
√
α (2 + α)

2
+ arth

(√
α

2 + α

)) (19)

The last line of the equation is identical to the �nal part of Equation 14. So Equation

5.7 gives a unique solution of the ordinary di�erential equation seen in Equation 5.6.

Therefore, it is de�nitely the only solution.
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Proof of Equation 5.9

Applying the well-known procedure for the linear, �rst-order ordinary di�erential

equations can give the solution. Again, it is also less time-consuming to prove that

the equation really determines the soluton. For the case i = 1:

c1 = α− α e−µ0/α (20)

The initial condition can be tested by substituting µ0 = 0 (which gives ci = 0), and

it is satis�ed. Moreover:
dc1
dµ0

= e−µ0/α (21)

1− c1
α

= 1−
(
1− e−µ0/α

)
= e−µ0/α (22)

The last part of the previous two equations seem to be identical, so this function

can be the actual solution of the ordinary di�erential equation. For the case i > 1:

ci (0) = α− α e−0/α

i−1∑
j=0

1

j!

(
0

α

)j

= α− α e0
1

0!

(
0

α

)0

= 0 (23)

In this case, the initial condition is satis�ed, as well. Furthermore:

dci
dµ0

= e−µ0/α

i−1∑
j=0

1

j!

(µ0

α

)j
− α e−µ0/α

i−1∑
j=1

1

α (j − 1)!

(µ0

α

)j−1

= e−µ0/α

i−1∑
j=0

1

j!

(µ0

α

)j
− e−µ0/α

i−2∑
j=0

1

(j − 1)!

(µ0

α

)j
=

e−µ0/α

(i− 1)!

(µ0

α

)i−1

(24)

ci−1

α
− ci

α
= 1− e−µ0/α

i−2∑
j=0

1

j!

(µ0

α

)j
− 1 + e−µ0/α

i−1∑
j=0

1

j!

(µ0

α

)j
=

e−µ0/α

(i− 1)!

(µ0

α

)i−1

(25)

Aagin, the last parts of the previous two equations are identical, so Equation 5.9 is

indeed the solution.
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Proof of Equation 5.14

First, the initial conditions are substituted into the Equation 5.14 directly:

2

√
α

4− α
arctan(∞) = π

√
α

4− α
+ ln (1) (26)

As the value of the tangent function approaches in�nity at π/2, the equation holds,

and so the arctan(∞) can be π/2, while ln(1) = 0. This derivation also proves that

Equation5.14 cannot be applied at m = 0 directly.

Both side of Equation 5.14 are di�erentiated with respect to µ0:

2

√
α

4− α

1

1 +
(√

α
4−α

µ0+2m
µ0

)2√ α

4− α

(
−2m

µ0
2
+

2

µ0

dm

dµ0

)

=
1

µ2
0

α
+mµ0 +m2

(
2µ0

α
+m+ µ0

dm

dµ0

+ 2m
dm

dµ0

) (27)

The transformation of this equation is taken step by step:

2α

4− α

1

1 + α
4−α

(µ0+2m)2

µ0
2

(
2

µ0

dm

dµ0

− 2m

µ0
2

)
=

1
µ2
0

α
+mµ0 +m2

(
2µ0

α
+m+ µ0

dm

dµ0

+ 2m
dm

dµ0

) (28)

4
4
α
µ0

2 − µ0
2 + (µ0 + 2m)2

(
µ0

dm

dµ0

−m

)
=

1
µ2
0

α
+mµ0 +m2

(
2µ0

α
+m+ µ0

dm

dµ0

+ 2m
dm

dµ0

) (29)

1
µ0

2

α
+mµ0 +m2

(
µ0

dm

dµ0

−m

)
=

1
µ2
0

α
+mµ0 +m2

(
2µ0

α
+m+ µ0

dm

dµ0

+ 2m
dm

dµ0

) (30)

µ0
dm

dµ0

−m =
2µ0

α
+m+ µ0

dm

dµ0

+ 2m
dm

dµ0

(31)

dm

dµ0

= − µ0

αm
− 1 (32)
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Since the last equation is the same as Equation 5.13, the Equation 5.14 gives the

solution of Equation 5.13 indeed.
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Proof of Equation 5.15

The substitution of the �nal value of m(= 0) into the Equation 5.14 gives:

2

√
α

4− α
arctan

(√
α

4− α

)
= π

√
α

4− α
+ ln

(
µ2
0,∞

α

)
(33)

The equation can be transformed in two steps:

µ2
0,∞

α
= e2

√
α

4−α
arctan(

√
α

4−α)−π
√

α
4−α (34)

µ0,∞ =
√
αe

√
α

4−α
arctan(

√
α

4−α)−
π
2

√
α

4−α (35)

It is evident that the last equation is indeed equivalent to Equation 5.15.
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Proof of Equation 5.24

The following equation for the mass kernel, n = 1, is a separable ordinary di�erential

equation.
dm

dτ
= −αm−m(1−m) = m2 − (α + 1)m (36)

By setting τ = 0, the initial conditions can be tested:

m =
α + 1

αe0 + 1
=

α + 1

α + 1
= 1 (37)

So these are all satis�ed. Then, the Equation 5.27 needs to be di�erentiated:

dm

dτ
= −(α + 1)2αe(α+1)τ

(αe(α+1)τ + 1)
2 (38)

After that, the right-hand side of the �rst equation can be calculated:

m2 − (α + 1)m =
(α + 1)2

(αe(α+1)τ + 1)
2 − (α + 1)

α + 1

αe(α+1)τ + 1

=
(α + 1)2

(αe(α+1)τ + 1)
2 −

(α + 1)2
(
αe(α+1)τ + 1

)
(αe(α+1)τ + 1)

2

= −(α + 1)2αe(α+1)τ

(αe(α+1)τ + 1)
2

(39)

As the last two equations are identical, Equation 5.27 is the solution indeed.
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Proof of Equation 5.27

First, the initial conditions (m = 1 and ci = 0) are checked:

c1 =
α− α

1 + α− 1
= 0 (40)

Then, the Equation 5.27 can be di�erentiated:

dc1
dτ

=
−α

1 + α−m
+

α− αm

(1 + α−m)2

=
α− αm− α− α2 + αm

(1 + α−m)2
=

−α2

(1 + α−m)2

(41)

The right-hand side of the equation is given:

c1 − α

α + (1−m)
=

α−αm
1+α−m

α + 1−m
=

α−αm−α−α2+αm
1+α−m

α + 1−m
= − α2

(α + 1−m)2
(42)

The last two equations are considered to be identical, so the solution of Equation

5.27 is indeed the solution of Equation 5.25 for the mass kernel (n = 1).
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Proof of Equation 5.30

The initial condition (m = 1) simpli�es the enumerator of the original di�erential

equation, so its di�erentiation gives the following solution:

dci
dm

=
α

i
i

(
1−m

α + 1−m

)i−1(
− 1

α + 1−m
+

1−m

(α + 1−m)2

)
= −α

(
1−m

α + 1−m

)i−1
1

α + 1−m
+ α

(
1−m

α + 1−m

)i
1

α + 1−m

= −(i− 1)ci−1

α + 1−m
+

ici
α + 1−m

(43)

The last line is in agreement with Equation 5.30, so the solution of Equation 5.28.
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Proof of Equation 5.34

First, the initial conditions (µ0 = 0 when τ = 0) are substituted:

µ0 = α(α + 1)0 + α ln

(
1 + α

1 + αe0

)
= α ln(1) = 0 (44)

The di�erentiation of Equation 5.32 leads to this form:

dµ0

dτ
= α(α + 1) + α

1 + αe(α+1)τ

1 + α

−(1 + α)

(1 + αe(α+1)τ )
2α(α + 1)e(α+1)τ

= α(α + 1)

[
1− αe(α+1)τ

1 + αe(α+1)τ

]
= α

(α + 1)

1 + αe(α+1)τ

. (45)

If the solution form is taken, it can be obvious that the previous equation is identical

to Equation 4.16.

For the second part, the initial condition can be tested more easily (µ0 = 0 when

m = 1):

µ0 = α ln

(
1 +

1

α
− 1

α

)
= α ln(1) = 0 (46)

The rest of the proof is given by di�erentiation respect to m:

dµ0

dm
= α

1

1 + 1
α
− m

α

−1

α
= − α

1 + α−m
(47)

The equation is identical to Equation 5.32 when n = 1.

Another possibility is a cross-check by using Equation 5.24:

µ0 = α ln

(
1 +

1

α
− m

α

)
= α ln

(
1 +

1

α
−

α+1
αe(α+1)τ+1

α

)

= α ln

(
(1 + α)(αe(α+1)τ + 1)

α(αe(α+1)τ + 1)
− α + 1

α(αe(α+1)τ + 1)

)
= α ln

(
e(α+1)τ 1 + α

αe(α+1)τ + 1

)
= α ln

(
e(α+1)τ

)
+ α ln

(
1 + α

αe(α+1)τ + 1

)
α(α + 1)τ + α ln

(
1 + α

1 + αe(α+1)τ

)
(48)
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Proof of Equation 5.40

First, it is proved that the inital condition is satisifed indeed:

m(τ = 0) =
1

2αe0 + 1− 2α
=

1

2α + 1− 2α
= 1 (49)

Then the derivative of m is determined and transformed step by step until the

right-hand side of Equation 5.40 is reached:

dm

dτ
=

d

dτ

(
1

2αeτ + 1− 2α

)
=

2αeτ

(2αeτ + 1− 2α)2

=
1− 2α− 2αeτ − 1 + 2α

(2αeτ + 1− 2α)2
= (1− 2α)

(
1

2αeτ + 1− 2α

)2

− 1

2αeτ + 1− 2α

= (1− 2α)m2 −m

(50)
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Derivation of Equation 5.42

The thought is that the following nonhomogeneous linear di�erential equation can

be solved when ci−1 is known:

dci
dm

=
i− 1

(1− 2α)m− 1
ci−1 −

i

(1− 2α)m− 1
ci (51)

First, the nonhomogeneous term is cancelled to solve the di�erential equation (and

γi denotes this function):

dγi
dm

= − i

(1− 2α)m− 2
γi (52)

The variables are separated as follows:

1

γi

dγi
dm

=
i

1− (1− 2α)m
(53)

Then integrating both sides gives:

ln γi =
i

α− 1
ln [1− (1− 2α)m] (54)

After a rearrangement, an explicit formula for γi can be found:

γi = [1− (1− 2α)m]i/(2α−1) (55)

Then, the solution of Equation 51 is to look for in the following way:

ci = f(m)γi (56)

Substituting this into Equation 51:

df(m)

dm
γi + f(m)

dfγi
dm

=
i− 1

(1− 2α)m− 1
ci−1 −

i

(1− 2α)m− 1
f(m)γi (57)

The next step is to di�erentiate the γi function:

df(m)

dm
[1− (1− 2α)m]i/(2α−1) − i

(1− 2α)m− 1
γif(m)

i− 1

(1− 2α)m− 1
ci−1 −

i

(1− 2α)m− 1
f(m)γi

(58)
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Leavig the common terms on both sides determines the following formula:

df(m)

dm
[1− (1− 2α)m]i/(2α−1) =

i− 1

(1− 2α)m− 1
f(m)γi (59)

This can be rearranged to get the derivative function (f(m)) explicitly:

df(m)

dm
= −(i− 1) [1− (1− 2α)m]−i/(2α−1)−1 ci−1 (60)

So, simple integration gives f(m), from which m can be calculated by substituing

back to Equation 56:

ci = C [1− (1− 2α)m]i/(2α−1) − [1− (1− 2α)m]i/(2α−1) (i− 1)∫
[1− (1− 2α)m]−i/(2α−1)−1 ci−1dm

(61)
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Proof of Equation 5.43

First, it is tested that the initial condition is satisifed:

c2(m = 1) = −α(1 + 2)

4α− 6

3α

4α− 6

(
1− 1

2α
+ 1

)2/(2α−1)

= − 3α

4α− 6
+

3α

4α− 6
= 0

(62)

Then the derivative of the function is determined and rearranged step by step until

the right-hand side of Equation 5.43 is obtained:

c2
dm

= − 2α

4α− 6
+

3α

4α− 6

(
1−m

2α
+m

)(2/2α−1)−1(
1− 1

2α

)
2

2α− 1

= − 2α

4α− 6
+

3

4α− 6

(
1−m

2α
+m

)(2/2α−1)−1

=
(1− 2α)m− 1

(1− 2α)m− 1

[
− 2α

4α− 6
+

3

4α− 6

(
1−m

2α
+m

)(2/2α−1)−1
]

−1

(1− 2α)m− 1
2α

(
1−m

2α
+m

)[
− 2α

4α− 6
+

3

4α− 6

(
1−m

2α
+m

)(2/2α−1)−1
]

=
1

(1− 2α)m− 1

[
−2α(1− 2α)m− 2α

4α− 6α
− 6α

4α− 6

(
1−m

2α
+m

)2/(2α−1)
]

=
1

(1− 2α)m− 1

[
4α2m+ 2α− 2αm

4α− 6
− 6α

4α− 6

(
1−m

2α
+m

)2/(2α−1)
]

=
1

(1− 2α)m− 1

[
4α4m− 6αm

4α− 6
+

2α+ 4αm

4α− 6
− 6α

4α− 6

(
1−m

2α
+m

)2/(2α−1)
]

=
1

(1− 2α)m− 1
[αm− 2c2] =

αm− 2c2
(1− 2α)m− 1

(63)
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Proof of Equation 5.44

First, it is tested that the initial condition is satis�ed:

c3 = − α(−3 + α− 3)

3(α− 2)(2α− 3)
+

3α

(2α− 3)

(
1− 1

2α
+ 1

)2/(2α−1)

− 4α

3(α− 2)

(
1− 1

2α
+ 1

)3/(2α−1)
(64)

Then the derivative of the function is determined and rearranged step by step until

the right-hand side of Equation 5.44 is obtained:

dc3

dm
=

α

(α− 2)(2α− 3)
+

3α

2α− 3

(
1−m

2α
+m

)2/(2α−1)−1 2

2α− 1

2

2α− 1

(
1−

1

2α

)
−

4α

3(α− 2)

(
1−m

2α
+m

)3/(2α−1)−1 3

2α− 1

(
1−

1

2α

)
=

α

(α− 2)(2α− 3)
+

3

2α− 3

(
1−m

2α
+m

)2/(2α−1)−1

−
2α

α− 2

(
1−m

2α
+m

)3/(2α−1)−1

=
(1− 2α)m− 1

(1− 2α)m− 1[
α

(α− 2)(2α− 3)
+

3

2α− 3

(
1−m

2α
+m

)2/(2α−1)−1

−
2α

α− 2

(
1−m

2α
+m

)3/(2α−1)−1
]

=
1

(1− 2α)m− 1[
αm− 2α2m− α

(α− 2)(2α− 3)
−

6α

2α− 3

(
1−m

2α
+m

)2/(2α−1)

+
4α

α− 2

(
1−m

2α
+m

)3/(2α−1)
]

=
1

(1− 2α)m− 1

[
4αm− 2α2m+ 2α− α2

(α− 2)(2α− 3)
+

3α

2α− 3

(
1−m

2α
+m

)2/(2α−1)
]

+
1

(1− 2α)m− 1[
3
α(−3 + α− 3m)

3(α− 2)(2α− 3)
− 3

3α

2α− 3

(
1−m

2α
+m

)2/(2α−1)

+ 3
4α

3(α− 2)

(
1−m

2α
+m

)3/(2α−1)
]

=
1

(1− 2α)m− 1

[
−2α

2m(α− 2) + α− 2

(α− 2)(4α− 6)
+ 2

3α

4α− 6

(
1−m

2α
+m

)2/(2α−1)

− 3c3

]

=
2c2 − 3c3

(1− 2α)m− 1

(65)
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Proof of Equation 5.45

First, it is tested that the initial condition is satis�ed:

c4 (m = 1) =
α
(
−30 + 11α− 2α2

)
4 (2α− 5) (2α− 3) (α− 2)

+
9α

2 (2α− 3)
−

4α

(α− 2)
+

15α

4 (2α− 5)

= α

(
−30 + 11α− 2α2

)
+ 18 (2α− 5) (α− 2)− 16 (2α− 5) (2α− 3) + 15 (2α− 3) (α− 2)

4 (2α− 5) (2α− 3) (α− 2)

= α

(
−30 + 11α− 2α2

)
+

(
180− 162α+ 36α2

)
+

(
−240 + 256α− 64α2

)
+

(
90− 105α+ 30α2

)
4 (2α− 5) (2α− 3) (α− 2)

= α
(−2 + 36− 64 + 30)α2 + (11− 162 + 256− 105)α+ (−30 + 180− 240 + 90)

4 (2α− 5) (2α− 3) (α− 2)
= 0

(66)

Then the derivative of the function is determined and rearranged step by step until

the right-hand side of Equation 5.45 is obtained:

dc4

dm
=

−12α

4 (2α− 5) (2α− 3) (α− 2)
+

9α

2 (2α− 3)

(
1−m

2α
+m

)2/(2α−1)−1 2

2α− 1

(
−

1

2α
+ 1

)
−

4α

(α− 2)(
1−m

2α
+m

)3/(2α−1)−1 3

2α− 1

(
−

1

2α
+ 1

)
+

15α

4 (2α− 5)

(
1−m

2α
+m

)4/(2α−1)−1 4

2α− 1

(
−

1

2α
+ 1

)
−12α

4 (2α− 5) (2α− 3) (α− 2)
+

9

2 (2α− 3)

(
1−m

2α
+m

)2/(2α−1)−1

−
6

(α− 2)

(
1−m

2α
+m

)3/(2α−1)−1

+
15

2 (2α− 5)

(
1−m

2α
+m

)4/(2α−1)−1

(1− 2α)m− 1

(1− 2α)m− 1

[
−12α

4 (2α− 5) (2α− 3) (α− 2)
+

9

2 (2α− 3)

(
1−m

2α
+m

)2/(2α−1)−1
]

+
(1− 2α)m− 1

(1− 2α)m− 1

[
−

6

(α− 2)

(
1−m

2α
+m

)3/(2α−1)−1

+
15

2 (2α− 5)

(
1−m

2α
+m

)4/(2α−1)−1
]

=
1

(1− 2α)m− 1

[
α

−12m+ 24αm+ 12

4 (2α− 5) (2α− 3) (α− 2)
−

9α

(2α− 3)

(
1−m

2α
+m

)2/(2α−1)
]

+
1

(1− 2α)m− 1

[
12α

(α− 2)

(
1−m

2α
+m

)3/(2α−1)

−
15α

(2α− 5)

(
1−m

2α
+m

)4/(2α−1)
]

=
1

(1− 2α)m− 1

[
α

72− 44α+ 8α2 + 48m

4 (2α− 5) (2α− 3) (α− 2)
− α

60− 44α+ 8α2 + 60m− 24αm

4 (2α− 5) (2α− 3) (α− 2)

]
+

1

(1− 2α)m− 1

[(
3

3α

(2α− 3)
− 4

9α

2 (2α− 3)

)(
1−m

2α
+m

)2/(2α−1)
]

1

(1− 2α)m− 1[(
−3

4α

3 (α− 2)
+ 4

4α

(α− 2)

)(
1−m

2α
+m

)3/(2α−1)

− 4
15α

4 (2α− 5)

(
1−m

2α
+m

)4/(2α−1)
]

1

(1− 2α)m− 1

[
4α

18− 11α+ 2α2 + 12m

4 (2α− 5) (2α− 3) (α− 2)
− α

2α2 − 5α− 6α+ 15− 6αm+ 15m

(2α− 5) (2α− 3) (α− 2)

]
+

1

(1− 2α)m− 1

[(
3

3α

(2α− 3)
− 4

9α

2 (2α− 3)

)(
1−m

2α
+m

)2/(2α−1)
]

+
1

(1− 2α)m− 1

[(
−3

4α

3 (α− 2)
+ 4

4α

(α− 2)

)(
1−m

2α
+m

)3/(2α−1)
]

+
1

(1− 2α)m− 1

[
−4

15α

4 (2α− 5)

(
1−m

2α
+m

)4/(2α−1)
]
=

3c3 − 4c4

(1− 2α)m− 1

(67)
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Proof of Equation 5.46

First, it is tested that the initial condition is satis�ed:

ci (m = 1) =
α (i− 1)! (−1)i−1 (1− 1)

i∏
j=2

(2α− j − 1)

+
i∑

j=2

α (j2 − 1)

j (2α− j − 1)

((
i− 1

j − 1

))
(−1)j

[(
1− 1

2α
+ 1

)j/(2α−1)

− 1

]

= 0 +
i∑

j=2

α (j2 − 1)

j (2α− j − 1)

((
i− 1

j − 1

))
(−1)j

[
1j/(2α−1) − 1

]
= 0

(68)

Before going on, a few identities of the binomial coe�cients must be proved:

Lemma:

i∑
j=0

(
i

j

)
(−1)j = 0 (69)

i∑
j=0

j

(
i

j

)
(−1)j = 0 (70)

i∑
j=2

(j − 1)

j

(
i− 1

j − 1

)
(−1)j =

1

i
(71)

i−1∑
j=0

(−1)j(j + 2)j

(2α− j − 2)

(
i− 1

j

)
= 2α

(i− 1)!(−1)i−1

i−1∏
j=1

(2α− j − 2)

(72)

The proof of the �rst one can be obtained easily by the binomial theorem directly:

i∑
j=0

(
i

j

)
(−1)j = (1− 1)i = 0 (73)

For the second one, the function (1− x)i must be di�erentiated:

d

dxi

(1− x)i =
d

dxi

i∑
j=0

xj

(
i

j

)
(−1)j =

i∑
j=0

(
i

j

)
(−1)j (74)

The di�erentiation can also be done without the binomial theorem:

d

dx
(1− x)i = −i(1− x)i−1 (75)
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Comparing the right-hand side of the last two equations at x = 1 determines the

Equation 70 considering i ≥ 1:

i∑
j=0

j

(
i

j

)
(−1)j = −i(1− 1)i−1 = 0 (76)

The proof of Equation 71 relies on the formulas of the Equation 70 and 69:

i∑
j=2

j − 1

j

(
i− 1

j − 1

)
(−1)j =

i∑
j=1

j − 1

j

(
i− 1

j − 1

)
(−1)j =

i∑
j=1

(j − 1) i

ji

(
i− 1

j − 1

)
(−1)j =

1

i

i∑
j=1

(j − 1)

(
i

j

)
(−1)j

=
1

i

[
i∑

j=1

j

(
i

j

)
(−1)j −

i∑
j=1

(
i

j

)
(−1)j

]

=
1

i

[
i∑

j=0

j

(
i

j

)
(−1)j −

{
i∑

j=0

(
i

j

)
(−1)j −

(
i

0

)}]

=
1

i
[0−−1] =

1

i

(77)

For proving Equation 72, mathematical induction is applied:

i∑
j=0

(−1)j (j + 2) j

(2α− j − 2)

(i
j

)
=

i∑
j=1

(−1)j (j + 2) j

(2α− j − 2)

(i
j

)
= i

i∑
j=1

(−1)j (j + 2)

(2α− j − 2)

(i− 1

j − 1

)

=
i

2α− i− 2

i∑
j=1

(−1)j (j + 2) (2α− i− 2)

(2α− j − 2)

(i− 1

j − 1

)
=

i

2α− i− 2

i∑
j=1

(−1)j
2αj − ij − 2j + 4α− 2i− 4

(2α− j − 2)

(i− 1

j − 1

)

=
i

2α− i− 2

i∑
j=1

(−1)j
4α− 2j − 4 + 2αj − j2 − 2j + j2 + 2j − ji− 2i

(2α− j − 2)

(i− 1

j − 1

)

=
i

2α− i− 2

2 i∑
j=1

(−1)j
( i

j − 1

)
+

i−1∑
j=1

(−1)j j
(i− 1

j − 1

)
−

i∑
j=1

(−1)j
(j + 2) (i− j)

(2α− j − 2)

(i− 1

j − 1

)
=

i

2α− i− 2

2 i∑
j=1

(−1)j
(i− 1

j − 1

)
+

i∑
j=1

(−1)j [(j − 1) + 1]
(i− 1

j − 1

)
−

i−1∑
j=1

(−1)j
(j + 2) (i− j)

(2α− j − 2)

(i− 1

j − 1

)
=

i

2α− i− 2

3 i∑
j=1

(−1)j
(i− 1

j − 1

)
+

i∑
j=1

(−1)j (j − 1)
(i− 1

j − 1

)
−

i−1∑
j=1

(−1)j
(j + 2) j

(2α− j − 2)

(i− 1

j

)
=

−i

2α− i− 2

i−1∑
j=0

(−1)j
(j + 2) j

(2α− j − 2)

(i− 1

j

)
(78)

From the last line, it can be obvious that if the formula is true for a positive integer

of i, then it must be true for i + 1, as well. For i = 3 the formula is tested to be
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true because:
3−1∑
j=0

(−1)
j
(j + 2) j

(2α− j − 2)

(
3− 1

j

)
=

2∑
j=0

(−1)
j
(j + 2) j

(2α− j − 2)

(
2

j

)
=

−3

(2α− 3)

(
2

1

)
+

8

(2α− 4)

(
2

2

)

=
−6 (2α− 4) + 8 (2α− 3)

(2α− 3) (2α− 4)
=

4α

(2α− 3) (2α− 4)
= 2α

(3− 1)! (−1)
3−1

3−1∏
j=1

(2α− j − 2)

(79)

Now returning to the proof of Equation 5.46, the derivative of ci is determined and

rearranged step by step until the right-hand side of Equation 5.46 is reached:

dci

dm
=

α (i− 1)! (−1)i−1

i∏
j=2

(2α− j − 1)

+

i∑
j=2

(
j2 − 1

)
2 (2α− j − 1)

(i− 1

j − 1

)
(−1)j

(
1−m

2α
+m

)j/(2α−1)−1

=
(1− 2α)m− 1

(1− 2α)m− 1

α (i− 1)! (−1)i−1

i∏
j=2

(2α− j − 1)

+

i∑
j=2

(
j2 − 1

)
2 (2α− j − 1)

(i− 1

j − 1

)
(−1)j

(
1−m

2α
+m

)j/(2α−1)−1


=

1

(1− 2α)m− 1 (1− 2α)mα (i− 1)! (−1)i−1 − α (i− 1)! (−1)i−1

i∏
j=2

(2α− j − 1)

−
i∑

j=2

α
(
j2 − 1

)
(2α− j − 1)

(i− 1

j − 1

)
(−1)j

(
1−m

2α
+m

)j/(2α−1)



=
1

(1− 2α)m− 1

 (1− 2α)mα (i− 1)! (−1)i−1 − α (i− 1)! (−1)i−1

i∏
j=2

(2α− j − 1)


+

1

(1− 2α)m− 1

i−1∑
j=2

α
(
j2 − 1

)
(2α− j − 1)

{
i− 1

j

(i− 1

j − 1

)
−

i

j

(i− 1

j − 1

)}
(−1)j

(
1−m

2α
+m

)j/(2α−1)


+
1

(1− 2α)m− 1

[
−

iα
(
i2 − 1

)
i (2α− i− 1)

(−1)i
(
1−m

2α
+m

)i/(2α−1)
]

=
1

(1− 2α)m− 1

 (1− 2α)mα (i− 1)! (−1)i−1 − α (i− 1)! (−1)i−1

i∏
j=2

(2α− j − 1)


+

1

(1− 2α)m− 1

(i− 1)

i−1∑
j=2

α
(
j2 − 1

)
j (2α− j − 1)

(i− 2

j − 1

)
(−1)j

(
1−m

2α
+m

)j/(2α−1)


+
1

(1− 2α)m− 1

−i
i∑

j=2

α
(
j2 − 1

)
j (2α− j − 1)

(i− 1

j − 1

)
(−1)j

(
1−m

2α
+m

)j/(2α−1)


(80)

122



Rebeka Szabó: Modeling the kinetics of nanoparticle formation

At this point, the last two lines are dealt separately:

(i− 1)

i−1∑
j=2

α
(
j2 − 1

)
j (2α− j − 1)

(
i− 2

j − 1

)
(−1)

j − i

i∑
j=2

α
(
j2 − 1

)
j (2α− j − 1)

(
i− 1

j − 1

)
(−1)

j

=

i−1∑
j=2

(i− 1)α
(
j2 − 1

)
j (2α− j − 1)

(
i− 1

j − 1

)
(−1)

j −
i∑

j=2

iα
(
j2 − 1

)
j (2α− j − 1)

(
i− 1

j − 1

)
(−1)

j

=

i−1∑
j=2

α
(
j2 − 1

)
j (2α− j − 1)

[
(i− 1)

(
i− 2

j − 1

)
− i

(
i− 1

j − 1

)]
(−1)

j −
α
(
i2 − 1

)
(2α− i− 1)

(−1)
i

= −α

i∑
j=2

(
j2 − 1

)
(2α− j − 1)

(
i− 1

j − 1

)
(−1)

j
= α

i−1∑
j=0

(−1)
j
(j + 2) j

(2α− j − 2)

(
i− 1

j

)

= α2 2 (i− 1)! (−1)
i−1

i−1∏
j=1

(2α− j − 2)

(81)

The identity given in Equation 72 is used in the last line.

The proof is continued by substituting the last line of Equation 81 back into
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Equation 80:

dci

dm
=

1

(1− 2α)m− 1

 (1− 2α)mα (i− 1)! (−1)i−1 − α (i− 1)! (−1)i−1

i∏
j=2

(2α− j − 1)


+

1

(1− 2α)m− 1

(i− 1)

i−1∑
j=2

α
(
j2 − 1

)
j (2α− j − 1)

(i− 2

j − 1

)
(−1)j

(
1−m

2α
+m

)j/(2α−1)


+
1

(1− 2α)m− 1

−i

i∑
j=2

α
(
j2 − 1

)
j (2α− j − 1)

(i− 1

j − 1

)
(−1)j

(
1−m

2α
+m

)j/(2α−1)


=
1

(1− 2α)m− 1

 (1− 2α)mα (i− 1)! (−1)i−1 − α (i− 1)! (−1)i−1

i∏
j=2

(2α− j − 1)


+

1

(1− 2α)m− 1

(i− 1)

i−1∑
j=2

α
(
j2 − 1

)
j (2α− j − 1)

(i− 2

j − 1

)
(−1)j

(
1−m

2α
+m

)j/(2α−1)


+
1

(1− 2α)m− 1

−i

i∑
j=2

α
(
j2 − 1

)
j (2α− j − 1)

(i− 1

j − 1

)
(−1)j

(
1−m

2α
+m

)j/(2α−1)


+
1

(1− 2α)m− 1− (i− 1)

i−1∑
j=2

α
(
j2 − 1

)
j (2α− j − 1)

(i− 2

j − 1

)
(−1)j + i

i∑
j=2

α
(
j2 − 1

)
j (2α− j − 1)

(i− 1

j − 1

)
(−1)j


+

1

(1− 2α)m− 1
α2 2 (i− 1)! (−1)i−1

i−1∏
j=1

(2α− j − 2)

=
1

(1− 2α)m− 1 (1− 2α)αm (i− 1)! (−1)i−1 − α (i− 1)! (−1)i−1

i∏
j=2

(2α− j − 1)

+ α2 2 (i− 1)! (−1)i−1

i∏
j=2

(2α− j − 1)


+

(i− 1)

(1− 2α)m− 1i−1∑
j=2

α
(
j2 − 1

)
j (2α− j − 1)

(i− 2

j − 1

)
(−1)j

(
1−m

2α
+m

)j/(2α−1)

−
i−1∑
j=2

α
(
j2 − 1

)
j (2α− j − 1)

(i− 2

j − 1

)
(−1)j


+

−i

(1− 2α)m− 1 i∑
j=2

α
(
j2 − 1

)
j (2α− j − 1)

(i− 1

j − 1

)
(−1)j

(
1−m

2α
+m

)j/(2α−1)

−
i∑

j=2

α
(
j2 − 1

)
j (2α− j − 1)

(i− 1

j − 1

)
(−1)j



(82)

124



Rebeka Szabó: Modeling the kinetics of nanoparticle formation

For the �nal transformations:

dci
dm

=
(i− 1)! (−1)

i−1

(1− 2α)m− 1

mα− 2α2m− α+ 2α2

i∏
j=2

(2α− j − 1)


+

(i− 1)

(1− 2α)m− 1

i−1∑
j=2

α
(
j2 − 1

)
j (2α− j − 1)

(
i− 2

j − 1

)
(−1)

j

[(
1−m

2α
+m

)j/(2α−1)

− 1

]
−i

(1− 2α)m− 1

 i∑
j=2

α
(
j2 − 1

)
j (2α− j − 1)

(
i− 1

j − 1

)
(−1)

j

[(
1−m

2α
+m

)j/(2α−1)

− 1

]

=
α (i− 1)! (−1)

i−1

(1− 2α)m− 1

−im+ i+m− 1 + im− i− 2αm+ 2α
i∏

j=2

(2α− j − 1)


+

(i− 1)

(1− 2α)m− 1

i−1∑
j=2

α
(
j2 − 1

)
j (2α− j − 1)

(
i− 2

j − 1

)
(−1)

j

[(
1−m

2α
+m

)j/(2α−1)

− 1

]
−i

(1− 2α)m− 1

 i∑
j=2

α
(
j2 − 1

)
j (2α− j − 1)

(
i− 1

j − 1

)
(−1)

j

[(
1−m

2α
+m

)j/(2α−1)

− 1

]

=
α (i− 1)! (−1)

i−1

(1− 2α)m− 1

−i (m− 1) + (m− 1) (1 + i− 2α)
i∏

j=2

(2α− j − 1)


+

(i− 1)

(1− 2α)m− 1

i−1∑
j=2

α
(
j2 − 1

)
j (2α− j − 1)

(
i− 2

j − 1

)
(−1)

j

[(
1−m

2α
+m

)j/(2α−1)

− 1

]
−i

(1− 2α)m− 1

 i∑
j=2

α
(
j2 − 1

)
j (2α− j − 1)

(
i− 1

j − 1

)
(−1)

j

[(
1−m

2α
+m

)j/(2α−1)

− 1

]

=
1

(1− 2α)m− 1

−iα (i− 1)! (−1)
i−1

(m− 1)
i∏

j=2

(2α− j − 1)

+
(i− 1)α (i− 2)! (−1)

i−2
(m− 1)

i−1∏
j=2

(2α− j − 1)


+

(i− 1)

(1− 2α)m− 1

i−1∑
j=2

α
(
j2 − 1

)
j (2α− j − 1)

(
i− 2

j − 1

)
(−1)

j

[(
1−m

2α
+m

)j/(2α−1)

− 1

]
−i

(1− 2α)m− 1

 i∑
j=2

α
(
j2 − 1

)
j (2α− j − 1)

(
i− 1

j − 1

)
(−1)

j

[(
1−m

2α
+m

)j/(2α−1)

− 1

]
=

(i− 1) ci−1 − ici
(1− 2α)m− 1

(83)

Quod erat demonstrandum.
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Derivation of Equation 5.48

If α << 1 is assumed, the approximation 1 ± α = 1 ± 2α = 1 can be applied, and

gives the following:

lim
τ→∞

ci ∼=
−α (i− 1)! (−1)i−1

i∏
j=2

− (j + 1)

+
i∑

j=2

α (j + 1) (j − 1)

j (j + 1)

(
i− 1

j − 1

)
(−1)j

=
−α (i− 1)!2 (−1)i−1

(i+ 1)!
+

i∑
j=2

α (j + 1) (j − 1)

j (j + 1)

(
i− 1

j − 1

)
(−1)j

= α
−2

i (i+ 1)
+ α

i∑
j=2

(j − 1)

j

(
i− 1

j − 1

)
(−1)j

= α
−2

i (i+ 1)
+ α

1

i
= α

i− 1

i(i+ 1)

(84)

The identity given in Equation 71 is used in the last line.
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Proof of Equation 5.50

First, it is tested that the initial condition (µ0 = 0 when τ = 0) is satis�ed:

µ0 =
α

(1− 2α) (1− 2α+ 2α)
+

−α+ 2α2

(1− 2α)
2 − α ln (1− 2α+ 2α)

(1− 2α)
2 =

α

1− 2α
− α

1− 2α
= 0 (85)

Di�erentiation of the �rst part of Equation 5.50 gives:

dµ0

dτ
=

−2α2eτ

(1− 2α) (1− 2α + 2αeτ )2
+

α

(1− 2α)2
− 2α2eτ

(1− 2α)2 (1− 2α + 2αeτ )

=
−2α2eτ

(1− 2α) (1− 2α + 2αeτ )2
+

α

(1− 2α) (1− 2α + 2αeτ )

=
α− 2α2

(1− 2α) (1− 2α + 2αeτ )2
=

α

(1− 2α) (1− 2α + 2αeτ )2

(86)

The last part is in agreement with Equation 5.32.

The initial condition is tested for the second part, as well:

µ0 =
α− α

1− 2α
+

α ln
(

1
2α

− 1
2α

+ 1
)

(1− 2α)2
= 0 (87)

Then the di�erentiation of the second part gives:

dµ0

dm
=

α

1− 2α
+

α
− 1

2α
+1

1
2α

− m
2α

+m

(1− 2α)2
=

α

1− 2α
− α

(1− 2α) (1−m+ 2αm)

=
α

1− 2α

(
−m+ 2αm

1−m+ 2αm

)
= − −α

2α + (1−m)m−1

(88)

The last part is in agreement with Equation 5.49 at n = 2. The cross-check can be

obtained by the following:

µ0 =
α

1−2α+2αeτ − α

1− 2α
+

α ln
(

1
2α −

1
1−2α+2αeτ

2α + 1
1−2α+2αeτ

)
(1− 2α)

2

=
α

(1− 2α) (1− 2α+ 2αeτ )
− α

(1− 2α)
+

α ln
(

2αeτ

2α(1−2α+2αeτ )

)
(1− 2α)

2

=
α

(1− 2α) (1− 2α+ 2αeτ )
− α

(1− 2α)
+

ατ

(1− 2α)
2 − α ln (1− 2α+ 2αeτ )

(1− 2α)
2

(89)

The �nal part is indeed the same as the �rst part of Equation 5.50.
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Proof of Equation 5.52

First, it is tested that the initial condition is satis�ed:

0 =
1√

1− 12α

[
arth

(
6α− 1√
1− 12α

)
− arth

(
6α− 1√
1− 12α

)]
+

1

2
ln

(
1− 1

3α
+

1

3α2

)
(90)

The term in the parantheses after the logarithm sign is 1, so the equation is satis�ed.

In order to test the validity of the di�erential equation, the derivative of the inverse

hyperbolic function must be recalled as follows:

darthz

dz
=

1

1− z2
(91)

The di�erentiation of Equation 5.52 with respect to τ :

1 =
1√

1− 12α

1

1−
(

6αm−1√
1−12α

)2 6α√
1− 12α

dm

dτ
+

1

2

1

1− 1
3αm + 1

3αm2

(
1

3αm2
− 2

3αm3

)
dm

dτ
(92)

Then, it is transformed gradually:

1 =
6α

1− 12α

1

1− (6αm−1)
1−12α

dm

dτ
+

1

2

3αm2

3αm2 −m+ 1

m− 2

3αm3

dm

dτ
(93)

1 =
6α

1− 12α− (6αm− 1)2
dm

dτ
+

m− 2

6αm3 − 2m3 + 2m

dm

dτ
(94)

1 =
−m

6αm3 − 2m2 + 2m

dm

dτ
+

m− 2

6αm3 − 2m2 + 2m

dm

dτ
(95)

1 =
−1

3αm3 −m2 +m

dm

dτ
(96)

It can be seen that the last equation is equivalent to Equation 5.51. So Equation

5.52 is indeed the solution.
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Proof of Equation 5.54

First, it is tested that the initial condition is satis�ed (µ0 = 0 when m = 1):

µ0 =
1− 1

3
+

(1− 6α)

9α
√
1− 12α

arth

(
(1− 1)

√
1− 12α

1 + 6α− 1

)
− 1

18α
ln

(
1

3α
− 1

3α
+ 1

)
= 0 + 0− 0 = 0

(97)

Then, the di�erentiation leads to:

dµ0

dm
= −

1

3
+

(1− 6α)

9α
√
1− 12α

1

1−
(

(1−m)
√
1−12α

1+6αm−m

)2

(
−
√
1− 12α

1 + 6αm−m
+

(1− 6α) (1−m)
√
1− 12α

(1 + 6αm−m)2

)

−
1

18α

1
1
3α

− m
3α

+m2

(
−

1

3α
+ 2m

)
= −

1

3
−

1

18α

6αm− 1

1−m+ 3αm2

+
(1− 6α)

9α
√
1− 12α

√
1− 12α

(1 + 6αm−m)2 − (1−m)2 (1− 12α)
(−1− 6αm+m+ (1− 6α) (1−m))

= −
1

3
−

1

18α

6αm− 1

1−m+ 3αm2
+

(1− 6α)

9α

(−6α)

36α2m2 − 12αm+ 12α

= −
1

3
−

1

18α

6αm− 1

1−m+ 3αm2
−

1− 6α

18α

1

3αm2 −m+ α

=
1−m− 1 +m− 9αm2

3− 3m+ 9αm2
=

−3αm2

1−m+ 3αm2

(98)

The last part is in agreement with Equation 5.53.
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Proof of Equation 5.62

First, the di�erential equation is rearranged:

dµ0

dm
= −αmn−1

µ0

(99)

Then, it is di�erentiated step by step:

d

dm

(√
2α

n
(1−mn)

)
= − αmn−1√

2α
n
(1−mn)

(100)

1

2
√

2α
n
(1−mn)

(
−2αmn−1

)
= − αmn−1√

2α
n
(1−mn)

(101)

−αmn−1√
2α
n
(1−mn)

=
−αmn−1√
2α
n
(1−mn)

(102)
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Proof of Equation 5.74

First, Equation 5.71 is rearranged:

dµ0

dm
= −α mn−1µ

− 1
3

0 (1−m)−
2
3 (103)

Then, it is di�erentiated step by step:

d

dm

α
3
4 (1−m)

1
4

(
n−1∑
i=0

(
4

3n

n∏
j=i+1

3j

3j − 2

)
mi

) 3
4

 = α
3
4 (1−m)

1
4 (104)

− α
3
4
1

4
(1−m)−

3
4

n−1∑
i=0

 4

3n

n∏
j=i+1

3j

3j − 2

mi

 3
4

+
3

4
α

3
4 (1−m)

1
4

n−1∑
i=0

 4

3n

n∏
j=i+1

3j

3j − 2

mi

− 1
4
n−1∑

i=1

 4i

3n

n∏
j=i+1

3j

3j − 2

mi−1

 =

− α mn−1α− 1
4 (1−m)−

1
12

n−1∑
i=0

 4

3n

n∏
j=i+1

3j

3j − 2

mi

− 1
4

(1−m)−
2
3

−
1

3n

n−1∑
i=0

 n∏
j=i+1

3j

3j − 2

mi

+
1

n
(1−m)

n−1∑
i=1

i

n∏
j=i+1

3j

3j − 2

mi−1

 = −mn−1

(105)
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Speci�c function form Equation 5.74 for small values of n:

n = 1:

µ0 = 4
3
4α

3
4 (1−m)

1
4 (106)

µ 2
3
= 4

1
4α

1
4 (1−m)

3
4 (107)

lim
m→0

µ0 = 4
3
4α

3
4 (108)

n = 2:

µ0 = α
3
4 (3 +m)

3
4 (1−m)

1
4 (109)

µ 2
3
= α

1
4 (3 +m)

1
4 (1−m)

3
4 (110)

lim
m→0

µ0 = 3
3
4α

3
4 (111)

n = 3:

µ0 =

(
2

7

) 3
4

α
3
4

(
9 + 3m+ 2m2

) 3
4 (1−m)

1
4 (112)

µ 2
3
=

(
2

7

) 1
4

α
1
4

(
9 + 3m+ 2m2

) 1
4 (1−m)

3
4 (113)

lim
m→0

µ0 =

(
18

7

) 3
4

α
3
4 (114)

n = 4:

µ0 =

(
1

35

) 3
4

α
3
4

(
81 + 27m+ 18m2 + 14m3

) 3
4 (1−m)

1
4 (115)

µ 2
3
=

(
1

35

) 1
4

α
1
4

(
81 + 27m+ 18m2 + 14m3

) 1
4 (1−m)

3
4 (116)

lim
m→0

µ0 =

(
81

35

) 3
4

α
3
4 (117)

n = 5:

µ0 =

(
4

455

) 3
4

α
3
4

(
243 + 81m+ 54m2 + 42m3 + 35m4

) 3
4 (1−m)

1
4 (118)

µ 2
3
=

(
4

455

) 1
4

α
1
4

(
243 + 81m+ 54m2 + 42m3 + 35m4

) 1
4 (1−m)

3
4 (119)

lim
m→0

µ0 =

(
972

455

) 3
4

α
3
4 (120)
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Proof of Equation 5.85

First, Equation 5.82 is rearranged:

dµ0

dm
= −α mn−1µ

− 2
3

0 (1−m)−
1
3 (121)

Then, it is di�erentiated step by step:

− 2

5
α

3
5 (1−m)

− 3
5

n−1∑
i=0

 5

3n

n∏
j=i+1

3j

3j − 1

mi

 3
5

+
3

5
α

3
5 (1−m)

2
5

n−1∑
i=0

 5

3n

n∏
j=i+1

3j

3j − 1

mi

− 2
5
n−1∑

i=1

5i

3n

 n∏
j=i+1

3j

3j − 1

mi−1


= −α mn−1α− 2

5 (1−m)
− 4

15

n−1∑
i=0

 5

3n

n∏
j=i+1

3j

3j − 1

mi

− 2
5

(1−m)
− 1

3

(122)

− 2

5
α

3
5

(
n−1∑
i=0

(
5

3n

n∏
j=i+1

3j

3j − 1

)
mi

)

+
3

5
α

3
5 (1−m)

(
n−1∑
i=1

5i

3n

(
n∏

j=i+1

3j

3j − 1

)
mi−1

)
= −mn−1α

3
5

(123)

−
1

3n
α

3
5

n−1∑
i=0

2

n∏
j=i+1

3j

3j − 1

mi

+
1

3n
α

3
5 (1−m)

n−1∑
i=1

3i

 n∏
j=i+1

3j

3j − 1

mi−1

 = −mn−1α
3
5 (124)

−
n−1∑
i=0

2mi
n∏

j=i+1

3j

3j − 1

+

n−1∑
i=1

3imi−1
n∏

j=i+1

3j

3j − 1

−
n−1∑
i=1

3imi
n∏

j=i+1

3j

3j − 1

 = −3nmn−1 (125)

− 2mn−1 3n

3n− 1
−

n−2∑
i=0

(
mi6i+ 6

3i+ 2

n∏
j=i+2

3j

3j − 1

)

+
n−2∑
i=0

(
3 (i+ 1)mi

n∏
j=i+2

3j

3j − 1

)
−

n−1∑
i=1

(
3imi

n∏
j=i+1

3j

3j − 1

)
= −3nmn−1

(126)

− 2mn−1 3n

3n− 1
−

n−2∑
i=0

mi 6i+ 6

3i+ 2

n∏
j=i+2

3j

3j − 1

+

n−2∑
i=0

3 (i+ 1)mi
n∏

j=i+2

3j

3j − 1


− 3 (n− 1)mn−1 3n

3n− 1
−

n−2∑
i=1

3imi 3 + 3

3i+ 2

n∏
j=i+2

3j

3j − 1

 = −3nmn−1

(127)

133



Rebeka Szabó: Modeling the kinetics of nanoparticle formation

− 3nmn−1 − 6

2

n∏
j=2

3j

3j − 1
+ 3

n∏
j=i+2

3j

3j − 1

+
n−2∑
i=1

(
mi

(
−6i+ 6

3i+ 2
+ 3 (i+ 1)− 3i

3i+ 3

3i+ 2

) n∏
j=i+2

3j

3j − 1

)
= −3nmn−1

(128)

− 3nmn−1 +

n−2∑
i=1

mi

(
−6i− 6− 9i2 − 9i+ 9i2 + 6i+ 9i+ 6

3i+ 2

) n∏
j=i+2

3j

3j − 1


= −3nmn−1

(129)
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Speci�c function form Equation 5.85 for small values of n:

n = 1:

µ0 =

(
5

2

) 3
5

α
3
5 (1−m)

2
5 (130)

µ 1
3
=

(
5

2

) 2
5

α
2
5 (1−m)

3
5 (131)

lim
m→0

µ0 =

(
5

2

) 3
5

α
3
5 (132)

n = 2:

µ0 = α
3
5

(
3

2
+m

) 3
5

(1−m)
2
5 (133)

µ 1
3
= α

2
5

(
3

2
+m

) 2
5

(1−m)
3
5 (134)

lim
m→0

= α
3
5

(
3

2

) 3
5

(135)

n = 3:

µ0 =

(
1

8

) 3
5

α
3
5

(
9 + 6m+ 5m2

) 3
5 (1−m)

2
5 (136)

µ 1
3
=

(
1

8

) 2
5

α
2
5

(
9 + 6m+ 5m2

) 2
5 (1−m)

3
5 (137)

lim
m→0

µ0 =

(
9

8

) 3
5

α
3
5 (138)

n = 4:

µ0 =

(
1

88

) 3
5

α
3
5

(
81 + 54m+ 45m2 + 40m3

) 3
5 (1−m)

2
5 (139)

µ 1
3
=

(
1

88

) 2
5

α
2
5

(
81 + 54m+ 45m2 + 40m3

) 2
5 (1−m)

3
5 (140)

lim
m→0

µ0 =

(
81

88

) 3
5

α
3
5 (141)

n = 5:

µ0 =

(
1

308

) 3
5

α
3
5

(
243 + 162m+ 135m2 + 120m3 + 110m4

) 3
5 (1−m)

2
5 (142)

135



Rebeka Szabó: Modeling the kinetics of nanoparticle formation

µ 1
3
=

(
1

308

) 2
5

α
2
5

(
243 + 162m+ 135m2 + 120m3 + 110m4

) 2
5 (1−m)

3
5 (143)

lim
m→0

µ0 =

(
243

308

) 3
5

α
3
5 (144)
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Proof of Equations 5.93 and 5.94

First, the di�erential equation is rearranged:

dµ0

dm
= − αmn−1

αn+ 1−m
(145)

Then, it is di�erentiated step by step:

d

dm

(
α (1 + αn)n−1 ln

(
αn+ 1−m

αn

)
+ α

n−1∑
i=1

1

i
(1 + αn)n−1−i (mi − 1

))

= − αmn−1

αn+ 1−m

(146)

−α (1 + αn)n−1

αn+ 1−m
+ α

n−1∑
i=1

(1 + αn)n−1−i mi−1 = − αmn−1

αn+ 1−m
(147)

−α (1 + αn)n−1

αn+ 1−m
+ α (1 + αn)n−2

n−2∑
i=0

(
m

1 + αn

)i

= − αmn−1

αn+ 1−m
(148)

−α (1 + αn)n−1

αn+ 1−m
+ α (1 + αn)n−2 1−

(
m

1+αn

)n−1

1− m
1+αn

= − αmn−1

αn+ 1−m
(149)

−α
(1 + αn)n−1

αn+ 1−m
+ α

(1 + αn)n−1 −mn−1

αn+ 1−m
= − αmn−1

αn+ 1−m
(150)

α
−mn−1

αn+ 1−m
= − αmn−1

αn+ 1−m
(151)
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Speci�c function form Equation 5.94

n = 2:

µ0 = α (m− 1) + α (1 + 2α) ln

(
2α + 1−m

2α

)
(152)

n = 3:

µ0 =
α

2

(
m2 − 1

)
+ α (1 + 3α) (m− 1) + α (1 + 3α)2 ln

(
3α + 1−m

3α

)
(153)

n = 4:

µ0 =
α

3

(
m3 − 1

)
+

α

2
(1 + 4α)

(
m2 − 1

)
+ α (1 + 4α)2 (m− 1) + α (1 + 4α)3 ln

(
4α + 1−m

4α

) (154)

n = 5:

µ0 =
α

4

(
m4 − 1

)
+

α

3
(1 + 5α)

(
m3 − 1

)
+

α

2
(1 + 5α)2

(
m2 − 1

)
+ α (1 + 5α)3 (m− 1) + (1 + 5α)4 ln

(
5α + 1−m

5α

) (155)
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Derivation of Equation 5.118

Equation 5.116 is substituted into Equation 5.117 and setting the initial condition

(µ0 = 0):
dµ0

dτ
= β p0e

−βτ (156)

The solution can be found by a simple integration, since µ0 does not appear on the

right hand side of the above equation:

µ0 = C − p0e
−βτ (157)

C denotes the integration constant which can be determined by the initial conditions

(ci(τ = 0) = 0, so µ0(τ = 0) = 0).
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Proof of Equation 5.121

First, it is tested that the initial conditon is satis�ed (m = 1 when τ = 0):

1 = ep0/β−p0/β−nβ p0e
−p0/β

∫ 0

0

ep0e
−βξ/β+p0ξ−βξdξ (158)

The equation holds indeed, since the value of the integration on the right-hand side

is zero.

Then, it is di�erntiated step by step:

dm

dτ
=
(
p0e

−βτ−p0
)
ep0/β−p0e

−βτ/β−p0τ−nβ p0
(
p0e

−βτ−p0
)
e−p0e

−βτ/β−p0τ∫ τ

0

ep0e
−βξ/β+p0ξ−βξdξ − nβ p0e

−p0e
−βτ/β−p0τep0e

−βτ/β+p0τ−βτ

= p0
(
e−βτ−1

)
ep0/β−p0e

−βτ/β−p0τ−nβ p0e
−βτ

−p0
(
e−βτ−1

)
nβ p0e

−p0e
−βτ/β−p0τ

∫ τ

0

ep0e
−βξ/β+p0ξ−βξdξ

(159)

The last integral in the above equation can be given from Equation 5.121:

nβ p0e
−p0e−βτ/β−p0τ

∫ τ

0

ep0e
−βξ/β+p0ξ−βξdξ = ep0/β−p0e−βτ/β−p0τ−m (160)

This formula is substituted back into Equation 159:

dm

dτ
= p0

(
e−βτ−1

)
ep0/β−p0e−βτ/β−p0τ−nβ p0e

−βτ−p0
(
e−βτ−1

)
(
ep0/β−p0e−βτ/β−p0τ−m

)
= −nβ p0e

−βτ−mp0
(
1− e−βτ−1

) (161)

Therefore, Equation 5.121 is indeed the solution of the ordinary di�erential equation

given as Equation 5.120.
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Remark on solving Equation 5.122

The more readable form of the solution is the following:

C nβp0
β−1 0

F1

(
; 2− 1

β
; np0

β
e−βτ

)
+

(
−np0

β
e−βτ

) 1
β
Γ
(

1
β

)(
βeβτ0 F̄1

(
; 1 + 1

β
; np0

β
e−βτ

)
+ np0

β 0
F̄1

(
; 2 + 1

β
; np0

β
e−βτ

))
eβτ

(
−np0

β
e−βτ

) 1
β

0
F1

(
; 1 + 1

β
; np0

β
e−βτ

)
+ Ceβτ0 F1

(
; 1− 1

β
; np0

β
e−βτ

)
(162)

where 0F1 refers to a con�uent hyperbolic function, 0F̄1 means the regularized con-

�uent hyperbolic function, Γ denotes the gamma function.
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Appendices

Important Matlab codes

Listing 7.1: Matlab code for implementing the Gillespie algorithm for the di�usion

kernel and n = 1

c l e a r ;

n=10000000; %i n i t i a l number o f monomer un i t s

alpha=1e=6; %ra t i o o f nuc l ea t i on and growth ra t e cons tant

s=1; %the minimum number o f monomer un i t s in the sma l l e s t

v i ab l e seed

a=n ; %i n i t i a l number o f nanopa r t i c l e s

i =0; %i n i t i a l number o f s t e p s

while a > 100 , %loop u n t i l the number o f nanopa r t i c l e s

i s 100

a=0; %i n i t i a l number o f nanopa r t i c l e s

i=i +1; %increment number o f s t e p s

m=n ; %curren t number o f monomer un i t s

tau=0; %dimens ion l e s s time

np=0; %increment number o f nanopa r t i c l e s

prsum=alpha *n ; %i n i t i a l sum of p r o p en s i t i e s

tau=tau=l og ( rand )/prsum/m; %i n i t i a l t ime l eap

a=a+1; %increment number o f nanopa r t i c l e s

np( a)=s ;m=m=s ; %decrement number o f monomer un i t s

while m > 0 , %loop u n t i l the number o f monomer un i t s i s 0
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prsum=alpha *n+a ; %sum of p r o p en s i t i e s

tau=tau=l og ( rand )/prsum/m; %time l eap

prob=rand*prsum ; %random va r i a b l e f o r s t ep s e l e c t i o n

aux=alpha *n ; %au x i l i a r y v a r i a b l e

i f prob < aux , m=m=s ; a=a+1;np( a)=s ; %nuc l ea t i on s t ep

s e l e c t e d

else aux2=0; %second a u x i l i a r y v a r i a b l e f o r random

s e l e c t i o n

while prob > aux , aux2=aux2+1; aux=aux+1; end ;

np ( aux2)=np( aux2 )+1; m=m=1; %pa r t i c l e growth s t ep

s e l e c t e d

end ;

end ;

np=np ' ; %the number o f monomer un i t s in the increment

` a ` number o f NPs

s i z e=n/a ; %average number o f monomer un i t s

var=sq r t ( ones (1 , a )* ( np .* np)/a=s i z e * s i z e ) ; %var iance

nprad=np .^ ( 1 / 3 ) ; %s i z e o f the increment `a ` number o f NPs

r ad s i z e=sum( nprad )/ a ; %rad ius s i z e

radvar=sq r t ( ones (1 , a )* ( nprad .* nprad )/a=r ad s i z e * r ad s i z e ) ;

%var iance

Res ( a+5, i )=0;

Res (1 , i )=alpha ;

Res (2 , i )= s i z e ;

Res (3 , i )=var ;

Res (4 , i )= r ad s i z e ;

Res (5 , i )=radvar ;

Res ( 6 : ( a+5) , i )=np ;

c svwr i t e ( ' Res . txt ' , Res ) ;

alpha=alpha / 1 . 1 ;

end ;

143



Rebeka Szabó: Modeling the kinetics of nanoparticle formation

Listing 7.2: Matlab code for implementing the Gillespie algorithm for the mass

kernel and n = 5

c l e a r ;

n=10000000;%i n i t i a l number o f monomer un i t s

alpha=1e=3;%ra t i o o f nuc l ea t i on and growth ra t e cons tant

s=5; %the minimum number o f monomer un i t s in the sma l l e s t

v i ab l e seed

a=n ; %i n i t i a l number o f nanopa r t i c l e s

i =0;%i n i t i a l number o f s t e p s

while alpha > 1e=6, %loop u n t i l the a lpha

i s 1e=6

a=0;%i n i t i a l number o f nanopa r t i c l e s

i=i +1;%increment number o f s t e p s

m=n ;%curren t number o f monomer un i t s

tau=0;%dimens ion l e s s time

np=0;%increment number o f nanopa r t i c l e s

prsum=alpha *(m=1)*(m=2)*(m=3)*(m=4)/n/n/n ;%i n i t i a l sum of

p r op en s i t i e s

tau=tau=l og ( rand )/prsum/m;%i n i t i a l t ime l eap

a=a+1;%increment number o f nanopa r t i c l e s

np( a)=s ;m=m=s ;%decrement number o f monomer un i t s

while m > 0 , %loop u n t i l the number o f monomer un i t s i s 0

prsum=alpha *(m=1)*(m=2)*(m=3)*(m=4)/n/n/n+sum(np ) ;%sum of

p r op en s i t i e s

tau=tau=l og ( rand )/prsum/m; %time l eap

prob=rand*prsum ; %random va r i a b l e f o r s t ep s e l e c t i o n

aux=alpha *(m=1)*(m=2)*(m=3)*(m=4)/n/n/n ;%au x i l i a r y v a r i a b l e

i f prob < aux , m=m=s ; a=a+1;np( a)=s ;%nuc l ea t i on s t ep

s e l e c t e d

else aux2=0; %second a u x i l i a r y v a r i a b l e f o r random

s e l e c t i o n

while prob > aux , aux2=aux2+1; aux=aux+np( aux2 ) ; end ;

np ( aux2)=np( aux2 )+1; m=m=1;%pa r t i c l e growth s t ep

s e l e c t e d

144



Rebeka Szabó: Modeling the kinetics of nanoparticle formation

end ;

end ;

np=np ' ;%the number o f monomer un i t s in the increment

` a ` number o f NPs

s i z e=n/a ;%average number o f monomer un i t s

var=sq r t ( ones (1 , a )* ( np .* np)/a=s i z e * s i z e ) ;%var iance

nprad=np .^ ( 1 / 3 ) ; %s i z e o f the increment `a ` number o f NPs

r ad s i z e=sum( nprad )/ a ; %rad ius s i z e

radvar=sq r t ( ones (1 , a )* ( nprad .* nprad )/a=r ad s i z e * r ad s i z e ) ;

%var iance

Res ( a+5, i )=0;

Res (1 , i )=alpha ;

Res (2 , i )= s i z e ;

Res (3 , i )=var ;

Res (4 , i )= r ad s i z e ;

Res (5 , i )=radvar ;

Res ( 6 : ( a+5) , i )=np ;

c svwr i t e ( ' Res . txt ' , Res ) ;

alpha=alpha / 1 . 1 ;

end ;
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Listing 7.3: Matlab code for implementing the Gillespie algorithm for the surface

kernel and n = 3

c l e a r ;

n=10000000; %i n i t i a l number o f monomer un i t s

alpha=1e=6; %ra t i o o f nuc l ea t i on and growth ra t e cons tant

s=3; %the minimum number o f monomer un i t s in the sma l l e s t

v i ab l e seed

a=n ; %i n i t i a l number o f nanopa r t i c l e s

i =0; %i n i t i a l number o f s t e p s

while a > 100 , %loop u n t i l the number o f nanopa r t i c l e s i s 100

a=0; %i n i t i a l number o f nanopa r t i c l e s

i=i +1; %increment number o f s t e p s

m=n ; %current number o f monomer un i t s

tau=0; %dimens ion l e s s time

np=0; %increment number o f nanopa r t i c l e s

prsum=alpha *(m=1)*(m=2)/n ; %i n i t i a l sum of p r o p en s i t i e s

tau=tau=l og ( rand )/prsum/m; %i n i t i a l t ime l eap

a=a+1; %increment number o f nanopa r t i c l e s

np( a)=s ;m=m=s ; %decrement number o f monomer un i t s

while m > 0 , %loop u n t i l the number o f monomer un i t s i s 0

prsum=alpha *(m=1)*(m=2)/n+sum(np . ^ ( 2 / 3 ) ) ; %sum

o f p r o p e n s i t i e s

tau=tau=l og ( rand )/prsum/m; %time l eap

prob=rand*prsum ; %random va r i a b l e f o r s t ep s e l e c t i o n

aux=alpha *(m=1)*(m=2)/n ; %au x i l i a r y v a r i a b l e

i f prob < aux , m=m=s ; a=a+1;np( a)=s ; %nuc l ea t i on s t ep s e l e c t e d

else aux2=0; %second a u x i l i a r y v a r i a b l e f o r random s e l e c t i o n

while prob > aux , aux2=aux2+1; aux=aux+np( aux2 )^(2/3 ) ; end ;

np ( aux2)=np( aux2 )+1; m=m=1; %pa r t i c l e growth s t ep s e l e c t e d

end ;

end ;

np=np ' ;%the number o f monomer un i t s in the increment

` a ` number o f NPs

s i z e=n/a ;%average number o f monomer un i t s
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var=sq r t ( ones (1 , a )* ( np .* np)/a=s i z e * s i z e ) ;%var iance

nprad=np .^ ( 1 / 3 ) ; %s i z e o f the increment `a ` number o f NPs

r ad s i z e=sum( nprad )/ a ; %rad ius s i z e

radvar=sq r t ( ones (1 , a )* ( nprad .* nprad )/a=r ad s i z e * r ad s i z e ) ;

%var iance

Res ( a+5, i )=0;

Res (1 , i )=alpha ;

Res (2 , i )= s i z e ;

Res (3 , i )=var ;

Res (4 , i )= r ad s i z e ;

Res (5 , i )=radvar ;

Res ( 6 : ( a+5) , i )=np ;

c svwr i t e ( ' Res3 . txt ' , Res ) ;

alpha=alpha / 1 . 1 ;

end ;
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Listing 7.4: Matlab code for implementing the Gillespie algorithm for the Brownian

kernel and n = 2

c l e a r ;

n=10000000; %i n i t i a l number o f monomer un i t s

alpha=1e=6; %ra t i o o f nuc l ea t i on and growth ra t e cons tant

s=2; %the minimum number o f monomer un i t s in the

sma l l e s t v i ab l e seed

a=n ; %i n i t i a l number o f nanopa r t i c l e s

i =0; %i n i t i a l number o f s t e p s

while alpha > 1e=7, %loop u n t i l the a lpha i s 1e=7

a=0; %i n i t i a l number o f nanopa r t i c l e s

i=i +1; %increment number o f s t e p s

m=n ; %curren t number o f monomer un i t s

tau=0; %dimens ion l e s s time

np=0; %increment number o f nanopa r t i c l e s

prsum=alpha *(m=1); %i n i t i a l sum of p r o p en s i t i e s

tau=tau=l og ( rand )/prsum/m; %i n i t i a l t ime l eap

a=a+1; %increment number o f nanopa r t i c l e s

np( a)=s ;m=m=s ; %decrement number o f monomer un i t s

while m > 0 , %loop u n t i l the number o f monomer un i t s i s 0

prsum=alpha *(m=1)+sum(np . ^ ( 1 / 3 ) ) ; %sum of p r o p en s i t i e s

tau=tau=l og ( rand )/prsum/m; %time l eap

prob=rand*prsum ; %random va r i a b l e f o r s t ep s e l e c t i o n

aux=alpha *(m=1); %au x i l i a r y v a r i a b l e

i f prob < aux , m=m=s ; a=a+1;np( a)=s ; %nuc l ea t i on s t ep s e l e c t e d

else aux2=0; %second a u x i l i a r y v a r i a b l e f o r random s e l e c t i o n

while prob > aux , aux2=aux2+1; aux=aux+np( aux2 )^(1/3 ) ; end ;

np ( aux2)=np( aux2 )+1; m=m=1; %pa r t i c l e growth s t ep s e l e c t e d

end ;

end ;

np=np ' ;%the number o f monomer un i t s in the increment

` a ` number o f NPs

s i z e=n/a ;%average number o f monomer un i t s

var=sq r t ( ones (1 , a )* ( np .* np)/a=s i z e * s i z e ) ;%var iance
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nprad=np .^ ( 1 / 3 ) ; %s i z e o f the increment `a ` number o f NPs

r ad s i z e=sum( nprad )/ a ; %rad ius s i z e

radvar=sq r t ( ones (1 , a )* ( nprad .* nprad )/a=r ad s i z e * r ad s i z e ) ;

%var iance

Res ( a+5, i )=0;

Res (1 , i )=alpha ;

Res (2 , i )= s i z e ;

Res (3 , i )=var ;

Res (4 , i )= r ad s i z e ;

Res (5 , i )=radvar ;

Res ( 6 : ( a+5) , i )=np ;

c svwr i t e ( ' Res2 . txt ' , Res ) ;

alpha=alpha / 1 . 1 ;

end ;
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