# PÉCSI TUDOMÁNYEGYETEM

Fizika Doktori Iskola

Lézerfizika, nemlineáris optika és spektroszkópia program

### Lítium niobát és Lítium tantalát többfotonos abszorpciós együtthatóinak meghatározása z-scan módszerrel

Ph.D. Értekezés tézisei

Imene Benabdelghani

Témavezető:

Dr. Polónyi Gyula

## PTE TTK Fizikai Intézet



PÉCS, 2024

# PÉCSI TUDOMÁNYEGYETEM

Fizika Doktori Iskola

Lézerfizika, nemlineáris optika és spektroszkópia program

### Lítium niobát és Lítium tantalát többfotonos abszorpciós együtthatóinak meghatározása z-scan módszerrel

Ph.D. Értekezés tézise

Imene Benabdelghani

Témavezető:

Dr. Polónyi Gyula

## PTE TTK Fizikai Intézet



PÉCS, 2024

#### 1. Bevezetés

Az elmúlt két évtizedben a femtoszekundumos, közeli infravörös impulzusok optikai egyenirányítása (OR) lítiumniobátban (LN vagy LiNbO3) vált a legelterjedtebb módszerévé a nagyenergiájú terahertzes (THz) impulzusok előállításának alacsony frekvenciákon (0,1 - 2 THz) lehetővé téve mind a nagyenergiájú széles sávú- [1-3] mind a keskeny sávú THz-es sugárzást. [4-6] Az OR sikerét számos kritikus tényezőnek tulajdoníthatjuk. Egy kulcsfontosságú elem az eltérő törésmutatók jelentős különbségének áthidalása a pumpáláshoz használt közeli infravörös lézersugárzás és a THz-es hullámok között. Ez teszi lehetővé a pumpáló energia hatékony átalakítását THz-es sugárzássá. Az egyik módszer a kvázi fázisillesztés, amelyet a kristályos anyag periodikus pólozásával érnek el [7], a másik a döntött impulzusfrontú pumpálási technika (TPFP) [8] amelyekkel hatékonyan növelték a konverziós hatásfokot. Azonban lényeges kihívás ezekben az esetekben a nemlineáris abszorpció hatása. Ezt sokféle anyagban vizsgálták [9], különös tekintettel a többfotonos abszorpcióra (MPA) [10,11] és a szabad töltéshordozók abszorpciójára (FCA) [11]. Ezek а tulajdonságok lényegesek LN nemlineáris optikai alkalmazása szempontjából. LN nemlineáris optikai tulajdonságai:

viszonylag nagy tiltott sávszélességgel rendelkezik (körülbelül nagy 3.8 eV) [12,13], а roncsolási küszöbe: 204 GW/cm<sup>2</sup> 1 ps-os impulzushosszak esetén, 10 kHz-es ismétlési frekvencián [14]. Lítium tantalát (LT or LiTaO<sub>3</sub>), LN-hez hasonlóan egy szervetlen kristály, LN izomorfja, ahol Ta<sup>5+</sup> ion van Nb<sup>5+</sup> ion helyett [15]. LN-hez képest még szélesebb tiltott sávszélességgel rendelkezik (4.9 eV) [16]. THz-keltés szempontjából szintén érdekes anyag köszönhetően a kiváló optikai és elektronikus tulajdonságainak [17], a nagy nemlineáris koefficiensének és roncsolási küszöbének. Több tanulmány is foglalkozik LN és LT MPA koefficienseinek meghatározásával különböző technikákkal, azonban az egyik legmegbízhatóbb és legpontosabb technika a Sheik-Bahae et al. [18] által bevezetett Z-scan módszer ezeknél az anyagoknál. Ez a technika az anyagok transzmissziójának mérésén alapul az optikai tengelyen való pozíciójuk függvényében. Egy egyszerű transzmissziós mérés segítségével határozták meg LN kétfotonos abszorpcióját (2PA) [19]. LT esetén 2PA és harmadrendű nemlineáris törésmutató lett meghatározva adalékolatlan és kongruens kristályokban [20-22]. Ugyancsak Z-scan módszerrel határozták meg LN háromfotonos abszorpcióját (3PA) [23], illetve a szkennelt nemlineáris együtthatóját a kis polaron formálódás időtartományában [24]. Azonban LT 3PA értéke még soha nem lett kimérve. Egy korábbi tanulmányban LN négyfotonos abszorpcióját (4PA) megbecsülték a THz-keltési hatásfokának telítődéséből [25]. Illetve nemrég egy egyszerű transzmissziós mérésből határozták meg 4PA együtthatóját sztoichiometrikus LN kristálynak [26]. Megjegyzendő, hogy a legjobb tudomásunk szerint még nem volt példa Z-scan módszeren alapuló 4PA meghatározására LN-ban. Emiatt e tanulmány lényeges fontossággal bír LN és LT nemlineáris optikai paramétereinek meghatározásában, hogy segítség ezen anyagok optimális körülmények között való felhasználását.

#### 2. Célok és Módszerek

kristály nagy effektív nemlineáris együtthatóval LN rendelkezik, ami előnyös optikai egyenirányításon alapuló THz-keltés számára. A hasonló szimmetriaosztályba tartozó LT ferroelektromos kristály szintén érdekes lehet THz-keltés szempontjából. Azonban számos kihívás nehezíti a THz-es energia és térerősség további növelését, többek között az MPA és a belőle származó szabad töltéshordozók abszorpciója a THz-es tartományban. A disszertációban taglalt kísérleti munkák Szentágothai János Kutatóközpontban lévő, a Fizikai Intézethez tartozó Nagyintenzitású Terahertzes Laboratóriumban. valamint а budapesti Wigner Kutatóközpontban lévő. Szilárdtestfizikai és Optikai Kutatóintézethez Nagyintenzitású tartozó Ultragyors Fényanyag-kölcsönhatások Laboratóriumban kerültek elvégzésre. Ezeknek megfelelően a megfogalmazott általános célkitűzés az volt, hogy megvalósítható megoldásokat javasoljon és hajtson végre két különböző lézerforrás segítségével a vizsgált anyagok pontos tanulmányozásával a THz-keltéssel kapcsolatos kihívásokra.

Konkrétabban az alábbi célok kerültek kitűzésre: A fő cél lítium niobát és lítium tantalát kristályok többfotonos abszorpciós együtthatóinak meghatározása Z-scan módszerrel

két különböző lézerforrást felhasználva. Az első célom nyitott apertúrás Z-scan mérések elvégzése volt különböző magnézium adalékolású kongruens (cLN) és sztoichiometrikus (sLN) LN kristályokban extraordinárius polarizációval egy (Newport-Spectra Titán-zafír lézerrendszer Physics) segítségével, amely 40 fs-os impulzushosszú 800 nm-es hullámhosszú impulzusokat bocsát ki 1 kHz-es ismétlési frekvencián. A csúcs intenzitás a kristályokban 110 és 550 GW/cm<sup>2</sup> között volt változtatva. A második cél LT 3PA-jának meghatározása volt ugyanezzel a lézerforrással, különböző magnézium adalékolású kongruens (cLT) és sztoichiometrikus (sLT) kristályokban ordinárius és extraordinárius polarizáció esetén. A pumpáló intenzitás 120 és 480 GW/cm<sup>2</sup> között volt változtatva. A harmadik cél ugyanezen LN kristályok 4PAjának meghatározása egy Yb lézerforrással (Pharos, Light Conversion), amely 190 fs-os impulzushosszú 1030 nm-es hullámhosszú impulzusokat bocsát ki 1 kHz-es ismétlési frekvencián. A csúcs intenzitás a kristályokban 180 GW/cm<sup>2</sup> volt. A negyedik cél a THz-keltéshez és más nemlineáris optimális optikai felhasználáshoz kristályparaméterek meghatározása volt nagy intenzitású tartományon. Összehasonlítottam LN és LT kristályok 3PA-it hasonló pumpálási körülmények között (800 nm, 40 fs, extraordinárius polarizáció, ~250 GW/cm<sup>2</sup> pumpáló intenzitás).

#### 3. Tézispontok

- Nyitott-apertúrás Z-scan méréseket végeztem annak I. megvizsgáljam érdekében, hogy lehetséges а 800 fotonabszorpciós egvütthatókat nm hullámhosszon, 40 fs-os impulzushosszon és 1 kHz ismétlési frekvenciával kongruens (cLN, cLT) és a sztoichiometrikus (sLN, sLT) lítium niobátban és lítium tantalátban különböző Mg-adalékolással. A méréseket kifejezetten az extraordinárius polarizációra vonatkozóan végeztem el a lítium niobát kristályok esetében, miközben mind az ordinárius, mind az extraordinárius polarizációkat figyelembe vettem a lítium tantalát kristályok esetében. A kristályokon belüli csúcsintenzitás körülbelül 110 és 550 GW/cm<sup>2</sup> között változott. Az eredmények azt mutatják, hogy a domináns többfotonos abszorpció ezen a pumpálási hullámhosszon a háromfotonos abszorpció (3PA) [S1, S2].
- II. Meghatároztam LN és LT háromfotonos abszorpciós együtthatóit (3PA). Az értékelés egy elméleti görbe illesztésével történt a mért pontokhoz. A 3PA együtthatók jellegzetes változásokat mutattak különböző Mg-adalékolásnál és különböző

intenzitásoknál. Mind a cLN, mind az sLN kristályok olyan Mg-adalékolásnál mutattak minimumot az abszorpciós együtthatókban, ami megfelel а fotorefrakciós hatás kiküszöbölésének. Mindkét összetételű LN kristálynál 290 GW/cm<sup>2</sup> intenzitásnál mértem maximum abszorpciós együtthatót. Mind a cLT, mind az sLT kristályok esetében a transzmissziós görbék lényegesen mélyebb értékeket mutatnak az ordinárius polarizációhoz képest az extraordinárius polarizációhoz viszonyítva. Ennek megfelelően a számított 3PA együtthatók nagyobb nagyságrendeket mutatnak az ordinárius polarizáció alatt, mint az extraordinárius polarizáció alatt. Az LT kristályok abszorpciója csökken az intenzitás növekedésével 120 GW/cm2-től 480 GW/cm2-ig, és csak csekély különbség van az abszorpcióban a különböző módon adalékolt sztöchiometrikus minták között alacsony pumpálási intenzitásoknál, ami eltűnik 240 GW/cm<sup>2</sup> felett. A kongruens LT alacsonyabb többfotonos abszorpcióval rendelkezik. ezért vonzóbb а nemlineáris alkalmazások számára, például a THzkeltés szempontjából [S1, S2].

III. 1030 nm pumpáló hullámhosszon vizsgáltam különböző adalékolású és összetételű LN kristályok

többfotonos abszorpciós együtthatóit nyitott-apertúrás 190 Z-scan mérésekkel. fs-os impulzusok felhasználásával 1 kHz ismétlési frekvencián. A vizsgálatot kongruens és sztoichiometrikus (cLN, sLN) kristályokon végeztem, amelyek különböző Mgadalékolással rendelkeztek. Mind az ordinárius, mind az extraordinárius polarizációkat figyelembe vettem. A kristályokat 180 GW/cm2-es intenzitással pumpáltam (ami gyakorlatias intenzitási szintnek tekinthető), hogy polarizációkkal különböző elsődlegesen mérjek abszorpciós együtthatókat, ahelyett, hogy kizárólag a különböző intenzitási szintekben lévő együtthatók változására összpontosítanék. Az eredmények azt mutatják, hogy a fő többfotonos abszorpció ezen a pumpálási hullámhosszon nem tisztán négyfotonos természetű Mindazonáltal effektív négyfotonos abszorpciós értékeket határoztam meg illesztések révén, amelyek felhasználhatók nemlineáris optikai alkalmazások tervezésére a mérések során használt intenzitásoknál [S1].

IV. Megmutattam, hogy az effektív négyfotonos abszorpciós (4PA) együtthatóknak minimuma van azon Mg-adalékolásoknál (sLN: 0,67% Mg és cLN: 6,0% Mg), amelyeknél a legkisebb a fotorefrakció. Az

ordinárius polarizációnál mért Z-scan görbék lényegesen nagyobb abszorpciót mutattak, mint az extraordinárius polarizáción mért görbék, azonban a magnézium adalékolástól való függés sokkal erősebb volt, mint 800 nm-nél. A 4PA 1030 nm-en nagyobb nemlineáris abszorpciót mutatott, mint a 3PA 800 nmen ugyanazon intenzitási szinten. Ez az eredmény azt jelzi, hogy a másodharmonikus és a hibahelyekhez kapcsolódó polaronok közötti kölcsönhatásoknak szerepe van ezekben a folyamatokban [S1, S2].

V Összehasonlítottam két kristálvt а hasonló körülmények között. Meglepő módon a háromfotonos abszorpciós (3PA) együtthatók nagyobbak voltak LT esetében, mint LN esetében, annak ellenére, hogy LT nagyobb tiltott sávszélességgel rendelkezik, mint LN. Ez arra utal, hogy LT nem jobb LN-hoz képest nemlineáris optikai alkalmazásokat tekintve, ha 800 pumpáló impulzusokat használnak. nm-es Ez összhangban van azzal a megfigyeléssel, miszerint a többfotonos (külső) fotoemisszió esetén a kibocsátás jelentősen megnő, amikor a gerjesztési fotonenergia a többfotonos fotoemisszió két különböző rendjének határán van [S1, S2].

### Publikációs Lista

### A disszertációhoz köthető publikációk

[S1] **I. Benabdelghani**, G.Tóth, G. Krizsán, G. Bazsó, Z. Szaller, N. Mbithi, P. Rácz, P. Dombi, G. Polónyi, and János Hebling, "Three-photon and four-photon absorption in lithium niobate measured by the Z-scan technique", Optics Express. 32(5), 7030-7043 (2024).

[S2] **I. Benabdelghani**, G. Bazsó, G.Tóth, P. Rácz, P. Dombi, János Hebling, and G. Polónyi, "Three-photon absorption in lithium tantalate measured by the Z-scan technique", Optical Materials. Submitted, (2024).

### Előadások

[E1] **I. Benabdelghani**, V. Gupta, A. Sharma, A. Gupta, G. Á. Polónyi, J. Hebling, J. A. Fülöp, "Terahertz pump transmission measurements in lithium niobate", 10th Jubilee Interdisciplinary Doctoral Conference, 347 297 (2021).

[E2] **I. Benabdelghani**, G. Krizsán, L. Nasi, N. M. Mbithi, J. A. Fülöp, "Measurements of four-photon absorption in lithium niobate", 1st International Conference on Sustainable Energy and Advanced Materials, (2021).

[E3] **I. Benabdelghani**, L. Nasi, G. Tóth, L. Pálfalvi, J. Hebling, G. Krizsán, "Measurement of Four Photon Absorption Coefficient in Lithium Niobate by Z-scan Technique", 9th International Conference on Applications of Femtosecond Lasers in Materials Science, (2022).

[E4] I. Benabdelghani, G.Tóth, G. Krizsán, N. Mbithi, G. Bazsó, P. Rácz, P. Dombi, J. Hebling, G. Polónyi, "Three-photon and Four-photon Absorption in Lithium Niobate and

Lithium Tantalate by Z-scan Technique", Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), (2023).

[E5] G. Polónyi, G. Tóth, N. Mbithi, Z. Tibai, I. Benabdelghani, L. Nasi, G. Krizsán, G. Illés, J. Hebling, "Investigation of Terahertz Pulse Generation in Semiconductors Pumped at Long Infrared Wavelengths", Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), (2023).

### Egyéb publikációk

[S3] N. M. Mbithi, G. Tóth, Z. Tibai, **I. Benabdelghani**, L. Nasi, G. Krizsán, J. Hebling, and G. Polonyi, "Investigation of terahertz pulse generation in semiconductors pumped at long infrared wavelengths," J. Opt. Soc. Am. B, 39(10), 2684-2691 (2022).

#### Irodalomjegyzék

- 1. M. Nagai, M. Jewariya, Y. Ichikawa, H. Ohtake, T. Sugiura, Y. Uehara, and K. Tanaka, "Broadband and high power terahertz pulse generation beyond excitation bandwidth limitation via  $\chi(2)$  cascaded processes in LiNbO3," Opt. Express. **17**(14), 11543–11549 (2009).
- B. Zhang, Z. Ma, J.-L. Ma, X.-J. Wu, C. Ouyang, D. Kong, T. Hong, X. Wang, P. Yang, L. Chen, Y. Li, J. Zhang, "1.4 mJ high energy terahertz radiation from lithium niobates," Las. & Phot. Rev. 15(3), 1–11 (2021).
- L. Carletti, C. McDonnell, U. A. Leon, D. Rocco, M. Finazzi, A. Toma, T. Ellenbogen, G. D. Valle, M. Celebrano, and C. D. Angelis, "Nonlinear THz Generation through Optical Rectification Enhanced by Phonon– Polaritons in Lithium Niobate Thin Films," ACS Photonics. 10(9), 3419–3425 (2023).
- 4. S. Carbajo, J. Schulte, X. Wu, K. Ravi, D. N. Schimpf, and F. X. Kärtner, "Efficient narrowband terahertz generation in cryogenically cooled periodically poled lithium niobate," Opt. Lett. **40**(24), 5762–5765 (2015).
- F. Ahr, S. W. Jolly, N. H. Matlis, S. Carbajo, T. Kroh, K. Ravi, D. N. Schimpf, J. Schulte, H. Ishizuki, T. Taira, A. R. Maier, and F. X. Kärtner, "Narrowband terahertz generation with chirped-and-delayed laser pulses in periodically poled lithium niobate," Opt. Lett. 42(11), 2118–2121 (2017).
- F. Lemery, T. Vinatier, F. Mayet, R. Assmann, E. Baynard, J. Demailly, U. Dorda, B. Lucas, A.-K. Pandey, M. Pittmann, "Highly scalable multicycle terahertz production with a homemade periodically poled macrocrystal," Commun. Phys. 3(1), 150 (2020).
- 7. Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, "Generation of narrow-band terahertz radiation via optical rectification of femtosecond

pulses in periodically poled lithium niobate," Appl. Phys. Lett **76**(18), 2505–2507 (2000).

- 8. J. Hebling, G. Almási, I. Z. Kozma, and J. Kuhl, "Velocity matching by pulse front tilting for large area THz-pulse generation," Opt. Express. **10**(21), 1161–1166 (2002).
- E. W. Van Stryland, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and M. J. Soileau, "Characterization of nonlinear optical materials," Proc. SPIE. 2114, 444–468 (1994).
- V. Nathan, A. H. Guenther, and S. S. Mitra, "Review of multiphoton absorption in crystalline solids," JOSA B. 2(2), 294–316 (1985).
- 11. T. Kawamori, P. G. Schunemann, V. Gruzdev, and K. L. Vodopyanov, "High-order (N = 4 6) multiphoton absorption and mid-infrared Kerr nonlinearity in GaP, ZnSe, GaSe, and ZGP crystals," APL Photon 7(8), 086101 (2022).
- A. R. Zanatta, "The optical bandgap of lithium niobate (LiNbO3) and its dependence with temperature," Results. Phys. 39, 105736 (2022).
- K. Lengyel, Á Péter, L. Kovács, G. Corradi, L. Pálfalvi, J. Hebling, M. Unferdorben, G. Dravecz, I. Hajdara, Z. Szaller, and K. Polgár, "Growth, defect structure, and THz application of stoichiometric lithium niobate," Appl. Phys. Rev. 2(4), 040601 (2015).
- F. Bach, M. Mero, M.-H. Chou, and V. Petrov, "Laser induced damage studies of LiNbO3 using 1030-nm, ultrashort pulses at 10-1000 kHz," Opt. Mater. Express. 7(1), 240–252 (2017).
- L. Brehmer, Y. Kaminorz, R. Dietel, G. Grasnick and G. Herkner, "Frontiers in Biosensorics I: Fundamental Aspects," ed F. W. Scheller, F. Schubert and J. Fedrowitz (Basel: Birkhäuser Verlag) 155–166 (1997).
- S. Kase, K. Ohi, "Optical absorption and interband Faraday rotation in LiTaO<sub>3</sub> and LiNbO<sub>3</sub>," Ferroelectrics. 8(1), 419– 420 (1974).

- A. Buzády, M. Unferdorben, G. Tóth, J. Hebling, I. Hajdara, L. Kovács, L. Pálfalvi, "Refractive Index and Absorption Coefficient of Undoped and Mg-Doped Lithium Tantalate in the Terahertz Range," J. Infrared Millim. Terahertz Waves. 38, 963–971 (2017).
- M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26(4), 760–769 (1990).
- 19. O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, "Femtosecond time-resolved absorption processes in lithium niobate crystals," Optics Lett. **30**(11), 1366–1368 (2005).
- D. Guichaoua, I. Syvorotka, I. Solskii, N. Syvorotka, K. Waszkowska, A. Andrushchak, B. Sahraoui, "Specific complex-oxide crystals with strong nonlinear absorption and nonlinear refraction as promising optical materials," Opt. Materials. 121, 111493 (2021).
- I. S. Steinberg, A. V. Kirpichnikov, and V. V. Atuchin, "Two-photon absorption in undoped LiTaO<sub>3</sub> crystals," Opt. Mater. 78, 253–258 (2018).
- I.S. Steinberg, V.V. Atuchin, "Two-photon holographic recording in LiTaO<sub>3</sub>:Fe crystals with high-intensity nanosecond pulses at 532 nm," Materials. Chem. Phys. 253(23), 122956 (2020).
- 23. H. P. Li, J. K. Liao, X. G. Tang, W. Ji, "Three-photon absorption in MgO-doped LiNbO<sub>3</sub> crystal," in CLEO/QELS 2008 JWA35 (2008).
- 24. H. Badorreck, S. Nolte, F. Freytag, P. Bäune, V. Dieckmann, and M. Imlau, "Scanning nonlinear absorption in lithium niobate over the time regime of small polaron formation," Opt. Materials Express. 5(12) 2729–2741 (2015).
- 25. M. C. Hoffmann, K.-L. Yeh, J. Hebling, and K. A. Nelson, "Efficient terahertz generation by optical

rectification at 1035 nm," Opt. Express. **15**(18), 11706–11713 (2007).

26. M. V. Tsarev, D. Ehberger, and P. Baum, "High-average-power, intense THz pulses from a LiNbO3 slab with silicon output coupler," Appl. Phys. B. **122**(2), 30 (2016).