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1. Introduction 

1.1 Physical activity and exercise adaptation 

 

Nowadays, the benefits of exercise are widely discussed, and it is common to talk about the healthy 

benefits of exercise when, in fact, the biologically normal condition would be the exercise-trained 

state, and physical inactivity should be discussed as abnormal.1 Physical inactivity is responsible 

for many disease conditions and chronic diseases.2 

Physical inactivity shortens lifespan by 5 years.3 Additionally, a „healthy” lifespan, that is, without 

long-term disease, is also shorter by 8 years in physically inactive compared to physically active 

people.4 Physical exercise is a non-invasive therapeutic solution for improving body weight, 

metabolic health, and quality of life.5 

„Exercise is the voluntary activation of skeletal muscle for recreational, sporting, or occupational 

activities”.1 There are differences in exercise modality, intensity, duration, and many other factors, 

but the role of the skeletal muscle is unquestionable in all of them. 

Muscle contraction requires ATP to support different cellular processes, including Na+/K+ ATPase 

(to maintain sarcolemmal excitability), Ca2+ ATPase (to reuptake Ca2+ into SR), and myosin 

ATPase (to generate force with the actin-myosin cross-bridge cycling).1 Because the stored ATP is 

relatively low in muscles, different ATP-producing pathways need to be activated depending on 

the exercise. For short duration, maximum exercise (less than a minute), the muscle-derived 

creatine phosphate and glycogen is broken down to glucose and used to create ATP.1 During longer 

exercise, the ATP is created through other pathways, mainly the hepatic glycogenolysis and 

gluconeogenesis, and the triglyceride breakdown to FFAs and subsequent release into the 

circulation.1 Whether carbohydrates or lipids are used as primary fuels for exercising skeletal 

muscle depends on the exercise intensity: higher intensity has a preference for carbohydrates, 

while prolonged exercise with moderate intensity has a preference for fat oxidation.1  

Several factors have to work in synergy to maximize exercise performance, namely genetic 

background, mental preparation and toughness, training level, and cardiorespiratory fitness, among 

others.6-10 The major hemodynamic challenge of reaching maximum exercise capacity can only be 

achieved by a highly coordinated effort of the O2 delivery and O2 extraction systems to provide 

sufficient blood supply to meet the increased demand of skeletal muscles.11,12 The engine of 
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cardiorespiratory fitness is the cardiovascular system, which has been the focus of research in 

exercise physiology for decades.13 

Oxygen consumption at rest in healthy young individuals is around 3.5 mL/kg/min. The resting O2 

consumption for a 70 kg person is ~250 mL/min. In untrained but otherwise healthy individuals, 

VO2max can increase to 10-15 times the resting value, while in elite endurance athletes, VO2max 

can exceed 85 mL/kg/min.14 To reach the highest exercise capacity, many bodily systems need to 

work in tandem, including the CNS to recruit motor units, the cardiovascular and pulmonary 

systems to deliver O2 to working skeletal muscles, and the oxidative pathways to support O2 

consumption by the skeletal muscles.1 During maximum exercise, the cardiac output can increase 

8-fold, and the peak ventilation can increase 40-fold compared to resting values. Furthermore, the 

blood flow to skeletal muscles can increase 100 times above resting level and account for 80-90% 

of the cardiac output.1 

During exercise, the working skeletal muscle undergoes active hyperemia, primarily in small 

arterioles. Mechanical, neural, and humoral factors are crucial in the vasodilatation leading to 

hyperemia. These factors include inward rectifying K+ channels, adenosine, ATP, and ROS.1 One 

of the early adaptations of muscle to exercise is the rapid increase in GLUT-4.15 Redistribution of 

blood flow also aids increased blood flow to skeletal muscles, and additionally, the increased 

sympathetic activity helps to offset the fall in systemic vascular resistance caused by the skeletal 

muscle vasodilatation.1 

Blood flow to the skin increases first during exercise, as sweating is the main mechanism for heat 

dissipation. As exercise continues or intensifies, the skin also undergoes vasoconstriction when the 

redistribution of blood from the splanchnic area or non-working tissues can not meet the increased 

demand of the skeletal muscles.1 

The pulmonary system also plays a key role in exercise adaptation. The maintenance of sufficient 

O2 levels in the arteries and the removal of CO2 produced during physical exercise are crucial 

functions and are achieved by increased ventilation.1 

The liver also adapts to exercise by lowering its lipid content, reducing VLDL and glucose 

production, and increasing lipoprotein clearance.16 

The adaptation of the heart depends on the type of exercise. Dynamic exercises (e.g. running, 

cycling, swimming) directly affect the autonomic nervous system,17-20 while isometric exercises 
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(e.g. strength training) strengthen the heart and skeletal muscles and reduce the overall demand on 

the circulatory system.21 

Another adaptation to exercise is the development of physiologic cardiac hypertrophy. The 

increase in heart mass, left ventricular diameter, end-systolic pressure, and heart rate are all signs 

of pathologic cardiac hypertrophy, but there is no pathologic evidence, and in professional athletes, 

physiologic cardiac hypertrophy can be protective.16 A large single echocardiographic study found 

that professional athletes have better cardiorespiratory fitness accompanied by increased left 

ventricular mass that regresses when athletes decondition.22-24 Additionally, longer follow-up 

studies of elite athletes show that their life expectancy is longer than the population mean.25 

Mitochondria are the powerhouses of the cells and play a key role in modulating athletic 

performance. PGC-1α is a crucial modulator of skeletal muscle mitochondrial biogenesis: a single 

bout of endurance exercise elevates skeletal muscle PGC-1α levels, resulting in improvements in 

whole-body VO2max and better endurance performance.26,27 Another key player in exercise 

adaptation is AMPK. Many types of exercise increase AMPK activity, which leads to the 

phosphorylation of target proteins, including PGC1α and rate-limiting enzymes in energy 

metabolisms, including acetyl-CoA carboxylase.28 

The importance of physical exercise in muscle plasticity and renewal has been previously 

described, too. Muscle cell progenitors (i.e. satellite cells) are stimulated by physical exercise, 

although the renewal rate is limited in older people.29,30 

Exercise also facilitates the lipolysis of white adipose tissue (WAT) to provide free fatty acids 

(FFAs) as fuel.31 
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1.2 Exercise-induced factors – the exerkine concept 

 

An „exercise factor” that is produced during muscle contraction and is able to mediate humoral 

changes induced by exercise has been searched for many decades.3 During those decades, several 

names were used for this factor: „work stimulus,” „work factor,” or „exercise factor”.32 

Different processes clearly indicated the presence of this „exercise factor”; for example, the 

increased glucose production by the liver upon physical exercise–induced glucose uptake by 

muscles, while the body’s glucose homeostasis was unaffected.33 Another clue was the increased 

release of FFAs by the adipose tissue as a response to exercise. Another example is the „feeling 

good” feeling after exercise that BDNF, endorphins, serotonin, and dopamine cause.34 For a long 

time, however, it wasn’t clear how muscle contraction influences these effects. It also took many 

years to demonstrate that some of the previously thought functions of adipose or muscle tissues 

are not comprehensive. Besides the storage function for adipose tissue or the contraction function 

of muscle tissue, these tissues are able to produce and release specific proteins into the bloodstream 

upon physical exercise.35 

The idea that contracting skeletal muscles release humoral factors into the bloodstream that act in 

an endocrine-like way was first proposed by Pedersen et al.36,37 These factors were termed 

myokines, and the first myokine identified was IL-6.38 The fact that IL-6 plasma levels are elevated 

after physical exercise has been known before the identification of IL-6 as a myokine. Initially, the 

increase was thought to be an immune-related reaction upon exercise.39 In 2000, a study reported 

differential IL-6 responses in working and non-working limb muscles and showed that the working 

muscle produced significantly higher levels of IL-6 than the non-contracting muscle.38 When IL-

6 has been identified as the first myokine that is produced in the working skeletal muscle and 

released into the circulation upon physical exercise, the additional finding was that skeletal muscle 

can produce and release factors capable of influencing metabolic processes.39 

Since then, hundreds of myokines have been identified, and the concept of contracting skeletal 

muscles communicating in an endocrine-like manner with other tissues to promote the systemic 

benefits of exercise has evolved.40  

Myokines are released from the skeletal muscle in response to physical activity; however, muscle 

isn’t the only tissue releasing peptides, metabolites, DNA, mRNA, miRNA, and other RNA species 

into the bloodstream upon physical exertion.40 Due to the skeletal muscle providing almost one-
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third of the body mass, the beneficial effects of physical exercise were first attributed to 

myokines.41  

As the field of exercise factors expanded and more non-muscle exercise factors were discovered, 

the term „exerkines” was born. Exerkines are the combination of all humoral factors expressed, 

produced, and secreted by all exercised or non-exercised tissues to mediate crosstalk between 

different organs.40 Another definition describes exerkines as signaling moieties released upon acute 

exercise and exerting their effects in an autocrine, paracrine, or endocrine manner.41 

Since then, several peptides have been identified as being secreted by different tissues upon 

physical exercise (exerkines).3,36,42-45 Thinking about the thousands of humoral factors released 

into the circulation by muscle or fat tissues (adipokines), the liver (hepatokines), the brain 

(neurokines), or the heart (cardiokines), dozens of additional factors will potentially be identified 

as exerkines.36 In fact, exerkines can also be neurotransmitters or metabolites, such as 

catecholamines46 or lactate.47 

It became evident that exerkines have emerged as important regulators of exercise adaptation with 

their local and systemic effects.3,41,48 Exerkines can act locally, in a paracrine manner. A well-

known exercise adaptation using a paracrine factor is the muscle-derived VEGF that helps regulate 

tissue angiogenesis.49,50 Additionally, exercise might also improve endothelial function, as the 

vascular endothelium can act as the recipient of many exerkine-related effects, such as NO-

dependent vasodilatation of apelin51-55 or ET-1-mediated vasoconstriction,56 all contributing to the 

overall cardiovascular fitness.  

Some exerkines exert their effects on the skeletal muscles themselves (e.g. myostatin) while others 

(e.g. irisin) have more systemic effects in modulating metabolism or the immune system.57 Yet 

others have an important role in improving the endothelial function of the vascular system (e.g. 

IGF-1, FGF-2). 

There are notable differences between acute and chronic exerkine responses. While acute exercise 

triggers more of a stress-like response,58 chronic exercise triggers an adaptive response with 

repeated bouts of exercise.16 Acute exercise might be initially proinflammatory in nature, but this 

effect is offset by an anti-inflammatory response.59,60 

The responses upon acute exercise mediate the maintenance of metabolic homeostasis, assist in 

shifts in fuel utilization, and balance acute inflammation by anti-inflammatory mediators.59 
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Conversely, chronic exercise responses are associated with long-term metabolic adaptations and 

anti-inflammatory mechanisms.61 

Both acute and chronic exercise can alter the profile of exerkines. Exercise-induced adaptations in 

myokine and adipokine profiles suggest that these secreted proteins may facilitate tissue cross-

talk, i.e. tissue-to-tissue communication, to enhance overall metabolic health. The adaptations of 

skeletal muscle include improved glucose uptake,62 increased GLUT-4 expression and 

translocation to the membrane,63,64 augmented mitochondrial activity,65 increased fat oxidation,66 

and increased myokine production.67-69 The adaptations of adipose tissue include increased 

metabolic activity, improved mitochondrial function, altered adipokine tissue expression, and 

circulating adipokine levels.70 

A single bout of acute exercise changed the expression of almost 10 000 analytes in a study, 

including proteins, lipids, and transcripts.71  Many factors influence the exerkine response to acute 

exercise: type and duration of the exercise, fitness and fed-fasting status of the individual, length 

of the follow-ups, and the timing of sampling.5,41 The conflicting results about circulating peptide 

levels after a single bout of exercise might be, in part, due to  differences in the type, intensity, and 

duration of the acute exercise.72 

Acute high-intensity exercise is associated with higher plasma levels of exerkines, including 

lactate,73 irisin,74 or adiponectin,75 but for some exerkines, higher intensity results in lower 

circulating levels.76 A similar effect can be seen in terms of exercise duration: longer acute exercise 

led to higher BDNF levels.77 Regarding irisin, there seems to be a cutoff at 12-16 weeks of chronic 

exercise duration. When chronic exercise training lasted for less than 12 weeks, irisin levels 

significantly increased; when the training program was longer than 16 weeks, irisin levels 

significantly decreased.78 

Taking high-intensity interval training (HIIT) as an example of how type and intensity of the 

exercise matter, higher intensity corresponds with higher plasma levels of IL-6, while IL-10 

remained unchanged.79 

There are still unanswered questions about exerkines. One interesting question remaining is how 

these exerkines are released into the circulation. One hypothesis gaining ground is that the 

exerkines are contained in extracellular vesicles (EVs).57 During physical exercise, the action 

potential through the neuromuscular junction leads to a massive Ca2+ efflux from the sarcoplasmic 



12 
 

reticula, which triggers the release of the EVs.80 The amount and type of exerkines in those vesicles 

depend on the type of exercise, among other factors (i.e. aerobic vs anaerobic).45 

Studies in exercise physiology use different methods to search for additional myokines or 

exerkines. The field of exercise physiology has expanded in recent decades with the introduction 

of different exercise models.81-85 For example, apelin86 and irisin69 were identified with chronic 

exercise models, while ANGPTL487 was identified with an acute exercise model. Fractalkine also 

increases upon acute exercise.88,89 Additionally, IL-6,38 IL-8,90 IL-15,91 BDNF92 were also 

identified with an acute exercise model.16 Another exerkine, fibroblast growth factor 21 (FGF-21), 

was initially connected to fasting.93 

The field of exercise-derived factors has been evolving rapidly over the last decade. The number 

of muscle-derived exerkines exceeded 600 in 2015.45 The number was over 3000 in 2016.94 
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1.3 Apelin 

 

Apelin was originally isolated from bovine stomach extracts in 1998 and identified as the 

endogenous ligand of the G-protein–coupled apelin receptor (APJ).51 The 77 amino acid long 

preproapelin is cleaved into shorter but functional fragments, including apelin-36 and apelin-13.95 

The shorter fragments show higher affinity for the apelin receptor and higher biological activity.95  

Since its discovery, apelin has been described as a myokine,86 a cardiokine,96 and an adipokine,97 

but due to its abundance in the human body, apelin has been proposed as a player in the cross-talk 

between skeletal muscle and brown-beige adipocytes,98 regulator of water and food intake, 

adipocyte differentiation, bone formation,57 its role has been described in metabolic diseases,99 and 

it has been shown to be expressed in cancer tissue,100 and cardiovascular pathologies.101  

The apelinergic system plays a crucial regulatory role in the cardiovascular system.95,102,103 The 

effects of the peptide are manyfold: apelin stimulates cardiac contractility,96,104 elicits a blood-

pressure-lowering effect in vivo,51,55 and induces vasodilatation in various vascular beds in vitro.52-

54 The hypotensive and vasorelaxant effects of apelin are NO-dependent51-54; however, the positive 

inotropy is not blunted by L-NAME, a nitric oxide synthase inhibitor,96 suggesting additional 

mechanisms of action. In humans, acute apelin administration causes peripheral and coronary 

vasodilatation and increases cardiac output.105 Apelin is actively synthesized, among others, in 

heart muscle cells, endothelial cells, and smooth muscle cells,106 while APJ is widely expressed in 

skeletal muscles, the heart, lungs, kidneys, the liver, the adipose tissue, and the brain.57 

In skeletal muscles, apelin plays a role in muscle regeneration. The apelin receptor is present on 

muscle stem cells and promotes in vivo proliferation and differentiation of muscle cells.57 

Contracting skeletal muscles are able to synthesize apelin, and it has also been observed that 

endurance exercise training upregulates skeletal muscle apelin expression,86 and exercise-

associated skeletal muscle contraction stimulates apelin production by myofibers.98 The knockout 

of apelin in the skeletal muscles leads to muscle weakness, lower exercise capacity, and blunted 

plasma apelin increase in mice.107  

An additional benefit of apelin is related to its influence on metabolism. In WAT and skeletal 

muscles, apelin treatment enhances glucose utilization and promotes systemic glucose 

reduction.107 
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Moreover, apelin acts on muscle metabolism through AMPK-dependent mitochondria 

biogenesis,57 and chronic apelin administration increases skeletal muscle mitochondrial function 

and biogenesis98 that generally decreases with age.57  

Apelin has been described as a candidate for participating in cardiac and skeletal muscle adaptation 

to physical exercise and peak athletic performance.108 

In 2012, apelin was linked to self-reported physical activity in patients with diabetes.109 Six years 

later, the relationship between apelin and physical exercise and the fact that muscle contraction 

leads to apelin release into the bloodstream was identified.98 Based on these results, the 

measurement of apelin after a single bout of exercise has been proposed as an index of exercise 

achievement.98  

Several studies have reported the effect of physical exercise on apelin levels81,83109,110; however, 

studies reporting the effects of acute exercise on apelin levels are limited. Furthermore, the 

contribution of different apelin isoforms to peak athletic performance has not been characterized.  

Some studies reported decreased apelin levels,111-113 others reported increased86 or unchanged114 

apelin levels in obese individuals.5 The discrepancies are present in acute exercise, too. Although 

most acute exercise studies report an increase in myokine levels,115 data about apelin, especially 

apelin isoforms, and acute exercise response are missing. In fact, one study in rats showed a 

decrease in apelin-13 level after a treadmill exercise test.116 A possible reason for this could be 

delayed sampling. Since myokine release is a dynamic process, a slight delay in sampling might 

miss the actual peak of the secreted myokine in the circulation.115 

Acute endurance exercise increased apelin levels,81,82,117,118 and acute sprint interval exercise 

elicited the same effect.119 Interestingly, other studies found no change in plasma apelin levels after 

acute exercise.85 

A meta-analysis found that physical exercise training did not change apelin levels.120 

Another meta-analysis showed that apelin increased after chronic exercise.121 Additionally, 4 

studies in this meta-analysis reported the change in apelin levels in participants older than 50 and 

showed the same elevation in plasma apelin levels. Interestingly, the other studies analyzed 

younger individuals, and only one found increased circulating apelin concentrations. Additional 

studies in obese individuals reported lower apelin levels after chronic exercise, which could be a 

result of multiple mechanisms: exercise-induced weight loss,112,122 or exercise-induced 

improvements in insulin resistance.99,113,123 Furthermore, hyperinsulinemia upregulates adipocyte-
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derived apelin production, while physical exercise upregulated skeletal muscle-derived apelin 

production.116 
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1.4 Endothelin-1 

 

Endothelin-1 was first isolated from porcine aortic endothelial cells.56 The 203 amino acid long 

preproapelin is the translational product, which is cleaved to big endothelins that are 37-41 amino 

acids in length. These are biologically inactive and will be further cleaved to mature ET-1.124 

Endothelin-1 is a 21 amino acid peptide synthesized by the endothelial cells and acts locally on 

the vascular smooth muscle cells. Three isoforms are known: ET-1 and ET-2 (differs in 2 amino 

acids from ET-1) are strong vasoconstrictors, while ET-3 (differs in 6 amino acids from ET-1) has 

a potentially weaker effect on the vasculature.124,125 Interestingly, ET-1 is the only member released 

from the endothelium, basolaterally, to act on the smooth muscle layer.124 This also suggests that 

tissue levels of ET-1 are potentially higher than plasma levels, which might also be due to its short 

half-life in the blood.124,126,127 

Pericardial ET-1 levels were significantly higher than respective plasma levels in patients with 

heart disease, and it can increase up to 200-fold higher in the pericardial fluid than in the plasma 

of these patients.176 

Endothelin-1 has many effects on the cardiovascular system, namely coronary vasoconstriction 

and positive inotropic and chronotropic effect. Additionally, ET-1 has a direct arrhythmogenic 

effect due to the development of early afterpolarizations128,129 and might be involved in sudden 

cardiac death in athletes. Sudden cardiac death caused by ventricular fibrillation or other 

arrhythmia-related causes is more frequent in professional athletes than in the general 

population.130 There are several cases every year of athletes losing their lives unexpectedly, and a 

high number of these athletes are elite soccer players [https://sportsbrief.com/football/24785-

footballers-died-pitch-soccer-players-lost-lives-a-match/]. A wide variety of factors have been 

identified to play a role in sudden cardiac death (both congenital and acquired heart conditions), 

but in some cases, the heart has no structural abnormalities.131,132 Short-term variability in the QT 

interval was compared in professional soccer players and age-matched sedentary controls, and the 

study found a higher variability in the soccer players compared to controls.130 This might lead to 

repolarization instability, which increases the risk for cardiac arrhythmias, with no underlying 

heart condition.130  Interestingly, the fatal event usually does not happen at peak performance but 

instead in warmup or after training, in a relatively inactive period.130  
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ET-1 also has proliferative activity in vascular smooth muscle cells, thus, it has been implicated to 

play a role in atherosclerosis.133 Furthermore, an increased level of ET-1 plays a pathophysiological 

role in the development of heart failure.134 

ET-1 elicits its effects through 2 main receptors. The ETA and ETB receptors are both G-protein-

coupled receptors, and while ETA mediates vasoconstrictive responses to ET-1,135 ETB mediates 

ET-1 clearance, eNOS and NO production,136 suggesting that the effect of ET-1 is receptor-

dependent and a possible interaction between the vasoconstrictor effect of ETA and vasodilatator 

effect of ETB exists.137 Furthermore, NO appears to have an antagonistic effect on ET-1 

synthesis.124 

ETA receptor activation induces PLC activation, which leads to the formation of IP3 and DAG. IP3 

then binds to specific receptors on the sarcoplasmic reticulum and releases stored Ca2+ into the 

cytoplasm.124 The increased intracellular calcium level is a key participant in muscle contraction. 

Blood flow and shear stress appear to be the most important stimuli for ET-1 synthesis and release, 

as shear stress receptors on endothelial cells might become activated in response to vasodilatation 

as a result of increased blood flow. This leads to the release of NO and a reduced production and 

secretion of ET-1.138,139 In addition to nitric oxide, natriuretic peptides can also decrease the levels 

of ET-1 mRNA in endothelial cells.140-142 

Plasma ET-1 levels were significantly higher in young strength-trained athletes than in endurance-

trained athletes.143 ET-1 levels increase with age, but exercise training could reduce plasma ET-1 

levels in older individuals.133 In another study in healthy young participants, the plasma levels of 

NO increased, while the plasma levels of ET-1 decreased after an 8-week-long exercise training 

program. Additionally, there was a negative correlation between plasma NO concentration and ET-

1 concentration. The increase in NO and the decrease in ET-1 were maintained for an additional 4 

weeks after the cessation of the training program, and after 8 weeks after training cessation, both 

returned to the baseline measured before the exercise training.144 Young athletes responded with 

an increased ET-1 level after a single bout of intense cycle ergometer test. The increase was highest 

30 minutes after the exercise cessation, then returned to lower levels at the 60-minute mark.145 
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1.5 NT-proBNP 

 

In 1988, a peptide was isolated from pig brain that caused natriuresis and diuresis similar to ANP. 

Since it was isolated in brain tissue, the original name was brain natriuretic peptide, which later 

was changed to B-type natriuretic peptide to better reflect the primary site of BNP synthesis, which 

is not the brain but the ventricular myocardium.146 

The translational product of the BNP gene is a 134 amino acid long prepropeptide. After removing 

the signal peptide, a 108 amino acid long prohormone, proBNP, is produced. This prohormone will 

be cleaved into 2 fragments in equimolar quantities, NT-proBNP, which is biologically inactive, 

and BNP, which is biologically active.147 

N-terminal pro–B-type natriuretic peptide is a member of the natriuretic peptide family consisting 

of 6 cardiovascular peptides and 3 NP receptors.147 NT-proBNP may be found outside of the heart, 

but the main origin of the secreted peptide is the heart. The peptide is the amino terminal pro-

segment of BNP. In terms of cardiac expression, atrial NT-proBNP expression is more abundant 

than ventricular expression; however, due to the greater mass of the ventricles, most of the cardiac 

NT-proBNP still comes from the ventricles.147 

The main stimulus for NT-proBNP release from all compartments of the heart is wall stretch.148,149 

Binding of BNPs to their specific receptors leads to the activation of the guanylyl cyclase-cGMP 

second messenger system, which mediates most of the biological effects of BNPs.146 The 

physiological effects of BNP include vasodilatation, natriuresis, and diuresis. The peptide may also 

downregulate the RAAS and has pro-lusitropic features.150 Additionally, BNPs cause vascular 

smooth muscle relaxation leading to arterial and venous dilation.151,152 Furthermore, BNP has 

protective effects to prevent the development of heart failure, for instance, vasodilatation, 

natriuresis, inhibition of the sympathetic nervous system, and the RAAS.153-155 

Many factors influence the plasma level of NT-proBNP, for instance, age, sex, and body 

composition.156 NT-proBNP isn’t the sole contributor to circulating BNPs. In fact, several larger 

or smaller molecules are also circulating in the body; these different fragments are produced after 

proteolysis, differential cleavage, and other structural changes.147 

NT-proBNP, as well as other cardiac hormones, is a valuable marker to rule out an existing 

pathological condition, as its elevated plasma level has diagnostic importance.148 Automated blood 

tests to quantify NT-proBNP have been available for more than 20 years.148 
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NT-proBNP measurement is an inexpensive tool for screening for cardiovascular pathologies, 

including left ventricular hypertrophy, valvular heart disease, atrial fibrillation, or pulmonary 

hypertension. The measurement of NT-proBNP is at least as useful as the measurement of BNP 

and, in some comparative studies, even outperforms BNP for population screening.156 It can also 

be used as early detection for increased cardiovascular morbidity and mortality risk.157 The peptide 

is indirectly proportional to left ventricular ejection fraction and directly proportional to left 

ventricular mass.156  

Another reason NT-proBNP is used as a marker for cardiac health is that BNPs, compared to ANPs, 

show greater increases in disease states.158,159 While ANPs respond more acutely, BNPs show a 

better picture of the volume and pressure overload on the heart over a longer period, underlining 

the suitability of NT-proBNP as a marker of cardiac pathologies.148  

While one study reported that BNP increases during exercise,148 in a large systematic review of 

BNP and NT-proBNP, exercise was one of the factors that decreased NT-proBNP levels.160 
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2 Aims 

 

In the exerkine field, there are conflicting results in the literature about apelin response to exercise. 

Some studies reported decreased apelin levels, others reported increased levels, while some studies 

found no change at all. Additionally, most studies did not differentiate between apelin isoforms. 

The potential involvement of endothelin-1 in sudden cardiac death of young athletes, especially 

soccer players, renders more research focus on this peptide. Although NT-proBNP has been shown 

to increase and also to decrease after chronic exercise, it is a good measure of ventricular function 

since unchanged plasma levels exclude the possibility of cardiac dysfunction. Furthermore, 

professional athletes are affected by both physical and mental stress during competitive sports.  

For this reason, the aim of our research was to analyze the circulating concentration of 4 peptides, 

namely apelin-13, apelin-36, endothelin-1, and NT-proBNP, upon extreme physical and mental 

load, with the following aims: 

 

 Characterize plasma level changes upon extreme physical load 

 Characterize plasma level changes upon extreme mental load 

 Analyze the associations of the peptides with cardiopulmonary exercise parameters 

 Compare the peptide response between physical vs mental load 

 

We hypothesized that (1) all of our measured peptides would respond to the extreme physical load; 

(2) the extreme physical load would lead to a similar peptide response as the extreme mental load; 

and (3) endothelin-1 and apelins would have opposite responses to both loads. 
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3 Materials and Methods 

3.1 Participants 

 

A total of 58 healthy, normotensive, Hungarian male soccer players (age: 22.9 ± 4.7 years) were 

included in this study. All participants were of Caucasian origin, self-reported non-smokers, and 

had no known cardiovascular diseases. Participants, similarly to other competitive athletes, 

underwent regular medical check-ups, which included a resting blood pressure measurement and 

a 3-lead ECG. 

 

3.2 Study Protocol 

 

To determine the changes in peptide concentration upon physical load, participants underwent a 

physical stress test carried out in an exercise physiology laboratory (Department of Health 

Sciences and Sports Medicine, Hungarian Sports University, Budapest, Hungary). A maximum 

incremental treadmill running test was implemented (2 min warm-up at 8 km/h speed, which was 

increased to 10 km/h and then remained constant; elevation was 0% in the first 3 min, and then 

increased 1.5% after each minute). The treadmill test was performed under standard laboratory 

conditions. The median temperature was 24.7°C, and the relative humidity was 39.5%. The tests 

were terminated if a subject was unable to continue (volitional exhaustion). 

Participants underwent a mental load protocol at the International Training Centre (Budapest, 

Hungary) on a separate day to determine the changes in peptide concentration upon mental load. 

The original protocol was a highly realistic social conflict, which is used, among others, to train 

police officers who are prepared to work under extreme stress.161 This protocol was modified to a 

less complex version. Briefly: after a short briefing, the participants received special protective 

equipment (face mask, throat protector) and training handguns with ammo, which contained 

hollow plastic projectiles filled with dyed soap. They then stepped into a room set up as a regular 

living room of a flat. The room was open from above, and cameras were installed to monitor the 

actions of the participants. Additionally, heart recording devices were secured to their chests. As 

the participants were moving into the room, stress triggers, like a stranger appearing in the room, 

were introduced, and on the apex of the mental stress, a burglar attacked the participants and shot 
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towards them with the training handguns. The tests were carried out in the presence of a 

psychologist.  

 

3.3 Blood Sampling and Analysis 

 

Standard phlebotomy was performed by qualified personnel before the load (baseline), 

immediately after the load (peak), and 30 min into the restitution phase (recovery) in both 

protocols. The plasma samples were centrifuged (4 °C, 1600 g, 15 min), and the supernatant sera 

were collected, frozen in liquid nitrogen as soon as possible, and stored at −80 °C until the 

measurements were performed.  

A PowerCube gas analyzer unit supplied by Ganshorn (Niederlauer, Germany) was used to 

measure peak VO2 values; the gas analyzer was calibrated before each measurement. An Omron 

MX2, Cardiosys Human ECG (Experimetria Kft., Budapest, Hungary) was employed for 

monitoring blood pressure and heart rate. Heart rate and gas exchange parameters were registered 

continuously during physical stress. Systolic blood pressure (SBP) and diastolic blood pressure 

(DBP) were recorded at three time points during both tests (baseline, peak, and recovery). Lactate 

concentrations in the physical load were recorded at three time points (baseline, peak, and 

recovery), and measurements were performed on a Biosen C-line Glucose and Lactate Analyzer 

(Frank Diagnosztika Kft., Budapest, Hungary).  

The peptide ELISA analysis was conducted at the Faculty of Health Sciences, University of Pécs, 

Pécs, Hungary. Circulating peptide (apelin-13, apelin-36, endothelin-1, and NT-proBNP) 

concentrations were measured using a Multiskan FC Microplate Photometer (Thermo Fisher 

Scientific; Waltham, MA, USA). Apelin-13 and apelin-36 (Cusabio; Houston, TX, USA) were 

measured by a quantitative sandwich assay technique in duplicate. Intra-assay precision was < 8% 

and < 15%, and inter-assay precision was < 10% and < 15%, respectively. No significant cross-

reactivity or interference between human AP-13/AP-36 and analogues was observed. Endothelin-

1 (Elabscience; Houston, Texas, USA) was measured by a quantitative sandwich assay in 

duplicate. The intra-assay precision was 33.60 ± 1.40 pg/mL, and the inter-assay precision was 

36.30 ± 1.40 pg/mL. NT-proBNP (Biomedica; Vienna, Austria) was measured by a sandwich 

immunoassay in duplicate. Intra-assay precision was ≤ 4%, and inter-assay precision was ≤ 7%.  
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3.4 Cardiopulmonary Exercise Parameters 

 

In addition to blood pressure, heart rate, and blood lactate, other parameters influenced by the 

exercise test were measured or calculated. The measured parameters included metabolic equivalent 

(MET; 1 MET = 3.5 mL O2/kg body weight/minute), peak power output, VO2max and relative 

VO2max (parameters of maximum O2 consumption), maximum CO2 production (VCO2), 

maximum ventilation (VE), and maximum rate of respiration (number of breath/minute). The 

calculated parameters included baseline rate pressure product (baseline RPP = baseline systolic BP 

x baseline HR), peak rate pressure product (peak RPP = peak systolic BP x peak HR), rate pressure 

product reserve (RPP reserve = peak RPP-baseline RPP), maximum respiratory quotient (RQ = 

maximum VCO2/VO2max), VE/VO2, VE/VCO2, circulatory power (VO2max x SBP), and 

circulatory stroke work (circulatory power/peak HR). 

The following criteria were used to confirm extreme physical load: (1) duration of the activity 

should be at least 8 min; (2) maximum HR ≥ 160-180 beats per minute, depending on the age of 

the participants; (3) RQ value ≥ 1.1 at the peak of the load; and (4) lactate concentration at 

maximum load should be 8 mmol/L or higher.162 

 

3.5 Ethics 

 

The study was approved by the National Public Health Center of Hungary (15117–9/2018/EÜIG, 

24 May 2018) (Appendix 1). All subjects provided written informed consent prior to participation 

in the physical and mental load (Appendix 2, 3, 4). The study was conducted in accordance with 

the World Medical Association Declaration of Helsinki. 

 

3.6 Statistical Analysis 

 

For the statistical analysis, GraphPad Prism (version 10.0.1, GraphPad Software, Boston, MA, 

USA) and Microsoft Excel 2016 (Microsoft Corporation, Redmond, WA, USA) were used. The 

Gaussian distribution was tested using the D'Agostino-Pearson omnibus normality test. The results 
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are presented as mean ± standard deviation (SD) for continuous normally distributed data and 

median and interquartile range (IQR) for continuous non-normally distributed data. Temporal 

changes in the normally distributed data due to acute exercise intervention were evaluated by a 

repeated measures one-way ANOVA test with time as a within-subject factor (baseline, peak, and 

recovery). To protect against the violation of the sphericity assumption, the Geisser-Greenhouse 

correction was used. When the main effect was statistically significant, a Tukey's multiple 

comparisons post hoc test was performed for pairwise comparisons. Temporal changes in non-

normally distributed data in response to acute exercise intervention at 3 different time points 

(baseline, peak, and recovery) were analyzed using a non-parametric Friedman test. Where 

appropriate, a Dunn’s multiple comparisons post hoc test was performed for pairwise comparisons. 

A paired Student’s t-test was used to compare the normally distributed values between the 2 loads, 

while a Wilcoxon test was used to compare the non-normally distributed values between the 2 

loads. Likewise, the correlation was analyzed using either a Pearson correlation for the normally 

distributed data or a Spearman correlation for the data that did not pass the normality test. The 

applied statistical tests are detailed in each figure legend. Differences were considered statistically 

significant at p < 0.05. 
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4 Results 

4.1 Peptide and cardiovascular response to physical and mental load 

 

A total of 58 athletes participated in the study. Four peptides (apelin-13, apelin-36, endothelin-1, 

NT-proBNP) and additionally, cardiovascular, cardiorespiratory, and metabolic parameters were 

recorded for all participants during the physical load. The same 4 peptides and cardiovascular 

parameters were recorded during the mental load. Peptide levels (physical and mental), blood 

pressure (physical and mental), heart rate (physical and mental), and lactate (only physical) 

concentration were recorded at rest (baseline), at maximum load (peak), and 30 minutes after the 

maximum load (recovery) (Table 1 and Table 2). 
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Table 1. Peptide concentration of the athletes at baseline, peak, and recovery time points in both 

loads. 

N=58 Peptide concentration  RM One-Way 

ANOVA/ 

Friedman test 

Physical load Baseline Peak Recovery  

Apelin-13 

(pg/mL) 

143 ± 71.5 164 ± 71.2 137 ± 63.3 p = 0.004 

Apelin-36 

(pg/mL) 

60.2 (49.6–79.5) 150 (91.6–203) 45.5 (36.1–66.6) p < 0.001 

Endothelin-1 

(pg/mL) 

4.38 (2.98-6.93) 5.86 (4.16-7.98) 4.32 (3.16-7.49) p < 0.001 

NT-proBNP 

(pmol/L) 

44.7 (20.6-81.3) 32.7 (21.4-72.5) 41.8 (30.9-71) p = 0.113 

Mental load Baseline Peak Recovery  

Apelin-13 

(pg/mL) 

116 (82-165) 114 (95-164) 111 (76-154) p = 0.030 

Apelin-36 

(pg/mL) 

62.4 (43.1–100) 47.6 (35.7-74) 69.5 (46.3–121) p = 0.147 

Endothelin-1 

(pg/mL) 

4.4 (2.7-7.08) 4.68 (2.92-7.52) 4.88 (3.4-7.57) p = 0.205 

NT-proBNP 

(pmol/L) 

37.5 (22.2-76.5) 38.2 (21.1-77.7) 38.5 (20.3-87.7) p = 0.966 

Variables are expressed as mean ± SD or median (interquartile range, IQR: 25th and 75th percentiles). Data were 

analyzed by repeated measures one-way ANOVA or Friedman test to compare the changes in peptide concentration 

across 3 time points.  

NT-proBNP, N-terminal pro–B-type natriuretic peptide; RM one-way ANOVA, repeated measures one-way 

ANOVA. 

 

Acute physical load had a significant effect on apelin-13 (ANOVA F (1.79, 102) = 6.12; p = 0.004), 

apelin-36 (Friedman statistic: 30.1; p < 0.001), and endothelin-1 (Friedman statistic: 35.5; p < 

0.001) level, while the mental load had a significant effect on apelin-13 (Friedman statistic: 7; p = 

0.030). NT-proBNP didn’t change in the physical (Friedman statistic: 4.36; p = 0.113) or the mental 

load (Friedman statistic: 0.069; p = 0.966). 
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Table 2. Cardiovascular and metabolic parameters of athletes at baseline, peak, and recovery 

time points in both loads. 

Variables are expressed as mean ± SD or median (interquartile range, IQR: 25th and 75th percentiles). Data were 

analyzed by repeated measures one-way ANOVA or Friedman test to compare the changes in blood pressure, heart 

rate, and blood lactate (in the physical load) concentration across 3 time points.  

RM one-way ANOVA, repeated measures one-way ANOVA. 

 

In the physical load, the Friedman test revealed a significant effect of exercise intervention on 

systolic blood pressure (Friedman statistic: 124, p < 0.001), heart rate (Friedman statistic: 122, p 

< 0.001), and blood lactate (Friedman statistic: 130, p < 0.001). Systolic blood pressure increased 

at peak load compared to baseline and decreased in recovery compared to peak and baseline 

(Dunn's multiple comparisons test, p < 0.001 for all three comparisons). Heart rate increased from 

baseline to peak load, and, in recovery, it decreased to a level lower than peak but higher than 

baseline (Dunn's multiple comparisons test, p < 0.001 for all three comparisons). Blood lactate 

concentration increased at peak load compared to baseline and decreased in recovery compared to 

peak (Dunn's multiple comparisons test, p < 0.001 for all three comparisons).  

Physical load Baseline Peak Recovery RM one-way 

ANOVA/ 

Friedman test 

Systolic blood 

pressure (mm Hg) 

143 (135-152) 179 (169-188) 127 (120-133) p < 0.001 

Diastolic blood 

pressure (mm Hg) 

81 ± 8 79 ± 9 72 ± 7 p < 0.001 

Heart rate (bpm) 70 (61-80) 187 (184-194) 87 (77-93) p < 0.001 

Blood lactate 

(mmol/L) 

0.92 (0.71-1.23) 10.9 (9.55-12.5) 4.35 (3.22-5.79) p < 0.001 

Mental load Baseline Peak Recovery  

Systolic blood 

pressure (mm Hg) 

133 ± 12 156 ± 13 130 ± 10 p < 0.001 

Diastolic blood 

pressure (mm Hg) 

75 ± 8 89 ± 10 74 ± 8 p < 0.001 

Heart rate (bpm) 71 (63-81) 68 (60-79) 62 (54-73) p < 0.001 
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ANOVA revealed a significant effect of exercise intervention on diastolic blood pressure (F (1.82, 

117) = 38.2; p < 0.001). Peak DBP decreased significantly in recovery (Tukey’s multiple 

comparisons test, p < 0.001), and recovery DBP was significantly lower than baseline DBP 

(Tukey’s multiple comparisons test, p < 0.001). 

In the mental load, ANOVA revealed a significant effect of simulation intervention on systolic 

blood pressure (F (1.57, 95.6) = 152; p < 0.001). SBP increased at peak load compared to baseline 

(Tukey’s multiple comparisons test, p < 0.001) and decreased in recovery compared to peak 

(Tukey’s multiple comparisons test, p < 0.001) and baseline (Tukey’s multiple comparisons test, 

p = 0.003).  

Additionally, ANOVA revealed a significant effect of simulation intervention on diastolic blood 

pressure (F (1.59, 96.8) = 160; p < 0.001). DBP increased at peak mental load compared to baseline 

(Tukey’s multiple comparisons test, p < 0.001) and decreased significantly in recovery (Tukey’s 

multiple comparisons test, p < 0.001). 

Regarding heart rate in the mental load, the Friedman test revealed a significant effect of simulation 

intervention on HR (Friedman statistic: 37.7; p < 0.001). Recovery HR was significantly lower 

than peak HR (Dunn's multiple comparisons test, p < 0.001) and baseline HR (Dunn's multiple 

comparisons test, p < 0.001).  
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4.2 Apelin-13 response to physical and mental load 
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Figure 1. (A) Violin plots comparing the plasma levels of apelin-13 before (baseline), immediately after (peak), and 

30 minutes after (recovery) the vita maxima treadmill test. Medians and the 75th and 25th percentiles are shown within 

the violin plots. Data were analyzed by repeated measures one-way ANOVA followed by Tukey’s multiple 

comparisons test. * p < 0.05. (B) Individual apelin-13 responses to the exercise test. Each point represents the change 

in a participant’s apelin-13 level from baseline to maximum load. Baseline values are subtracted from peak values and 
sorted in ascending order. (C) Violin plots comparing the plasma levels of apelin-13 before (baseline), immediately 

after (peak), and 30 minutes after (recovery) the extreme mental test. Medians and the 75th and 25th percentiles are 

shown within the violin plots. Data were analyzed by Friedman test followed by Dunn’s multiple comparisons test. * 

p < 0.05.  

 

Apelin-13 levels changed upon both physical and mental load (Table 1). In the physical load 

(Figure 1A), we found a significant increase at peak compared to baseline (p = 0.036) and a 

significant decrease at recovery compared to peak (p < 0.001). In the mental load (Figure 1C), the 

peak value didn’t change compared to baseline but decreased significantly in recovery (p = 0.042). 

Since apelin-13 changed significantly upon physical load, we analyzed the peptide response on an 

individual level. Figure 1B shows the individual apelin-13 responses. Each point represents the 

change in a subject’s apelin-13 level from baseline to maximum load. Baseline values are 

subtracted from peak values and sorted in ascending order. The response was heterogeneous, with 

a mean Δapelin-13 level of 21.9 ± 64.4 pg/mL. 
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Figure 2. Violin plots comparing the baseline (A), peak (B), recovery (C), and Δapelin-13 (D) levels between the 2 

loads. Medians and the 75th and 25th percentiles are shown within the violin plots. Data were analyzed by paired t 

test (A, C) or Wilcoxon test (B, D) depending on the distribution of data. * p < 0.05. 

 

Looking at the direct comparison of the 3 main time points in the physical and mental load (Figure 

2), the apelin-13 level at the peak of the physical load was significantly higher than the apelin-13 

level at the peak of the mental load. There was no difference at other time points. 

Regarding the association among apelin-13 and other peptides in the physical load, we found 

negative correlations between apelin-13 baseline levels and  Δapelin-13, and Δapelin-36 (Figure 

3A, B); apelin-13 peak levels and apelin-36 peak levels, and Δapelin-36 (Figure 3C, D); and 

apelin-13 recovery levels and Δapelin-36 (Figure 3E). 
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Figure 3. Correlation of apelin-13 baseline and Δapelin-13 (A) and Δapelin-36 (B); apelin-13 peak and apelin-36 peak 

(C) and Δapelin-36 (D); apelin-13 recovery and Δapelin-36 (E) in the physical load. Data were analyzed by Pearson 

correlation. 

 

In the physical load, we found a positive correlation between Δapelin-13 and baseline blood 

pressure, peak diastolic blood pressure, circulatory power, maximum MET, and relative VO2max 

(Figure 4). 
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Figure 4. Correlation of Δapelin-13 and baseline systolic BP (A), baseline diastolic BP (B), peak diastolic BP (C), 

maximum MET (D), relative VO2max (E), and circulatory power (F) in the physical load. Data were analyzed by 

Pearson correlation (A, B, C, D) or Spearman correlation (E, F) depending on the distribution of data. 
 

In the mental load, we found a positive correlation between apelin-13 baseline and apelin-36 

baseline and found a negative correlation between apelin-13 baseline and Δapelin-13; and Δapelin-

13 and baseline systolic blood pressure (Figure 5). 
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Figure 5. Correlation of apelin-13 baseline and Δapelin-13 (A) and apelin-36 baseline (B); and Δapelin-13 and baseline 

systolic BP (C) in the mental load. Data were analyzed by Spearman correlation. 
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4.3 Apelin-36 response to physical and mental load 
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Figure 6. (A) Violin plots comparing the plasma levels of apelin-36 before (baseline), immediately after (peak), and 

30 minutes after (recovery) the vita maxima treadmill test. Medians and the 75th and 25th percentiles are shown within 

the violin plots. Data were analyzed by Friedman test followed by Dunn’s multiple comparisons test. * p < 0.05. (B) 

Individual apelin-36 responses to the exercise test. Each point represents the change in a participant’s apelin-36 level 

from baseline to maximum load. Baseline values are subtracted from peak values and sorted in ascending order. (C) 

Violin plots comparing the plasma levels of apelin-36 before (baseline), immediately after (peak), and 30 minutes 

after (recovery) the extreme mental test. Medians and the 75th and 25th percentiles are shown within the violin plots. 

Data were analyzed by Friedman test followed by Dunn’s multiple comparisons test.  

 

At the peak of the physical load, apelin-36 levels were significantly higher compared to baseline 

(p = 0.001) and recovery (p < 0.001). Additionally, 30 minutes into the recovery phase, apelin-36 

level decreased to a significantly lower level than baseline (p = 0.033) (Figure 6A). The mental 

load did not change apelin-36 levels (Figure 6C). 

Since apelin-36 changed significantly upon physical load, we analyzed the peptide response on an 

individual level. Figure 6B shows the individual apelin-36 responses. The response was 

heterogeneous, with a median Δapelin-36 level of 63.5 pg/mL (IQR, 14.2-141).  
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Looking at the direct comparison of the 3 main time points in the physical and mental load (Figure 

7), the apelin-36 level at the peak of the physical load was significantly higher than the apelin-36 

level at the peak of the mental load. Furthermore, Δapelin-36 was also higher in the physical load 

than the mental load. There was no difference at other time points. 
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Figure 7. Violin plots comparing the baseline (A), peak (B), recovery (C), and Δapelin-36 (D) levels between the 2 

loads. Medians and the 75th and 25th percentiles are shown within the violin plots. Data were analyzed by Wilcoxon 

test. * p < 0.05. 

 

In the physical load, we found a negative correlation between apelin-36 peak and endothelin-1 

baseline; and Δapelin-36 and endothelin-1 peak (Figure 8). 
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Figure 8. Correlation of apelin-36 peak and ET-1 baseline (A); and Δapelin-36 and ET-1 peak (B) in the physical load. 

Data were analyzed by Spearman correlation. 
 

In the mental load, apelin-36 baseline negatively correlated with Δapelin-36 (Figure 9). 
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Figure 9. Correlation of apelin-36 baseline and Δapelin-36 in the mental load. Data were analyzed by Spearman 

correlation. 
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4.4 Endothelin-1 response to physical and mental load 
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Figure 10. (A) Violin plots comparing the plasma levels of endothelin-1 before (baseline), immediately after (peak), 

and 30 minutes after (recovery) the vita maxima treadmill test. Medians and the 75th and 25th percentiles are shown 

within the violin plots. Data were analyzed by Friedman test followed by Dunn’s multiple comparisons test. * p < 

0.05. (B) Individual endothelin-1 responses to the exercise test. Each point represents the change in a participant’s 

endothelin-1 level from baseline to maximum load. Baseline values are subtracted from peak values and sorted in 

ascending order. (C) Violin plots comparing the plasma levels of endothelin-1 before (baseline), immediately after 

(peak), and 30 minutes after (recovery) the extreme mental test. Medians and the 75th and 25th percentiles are shown 

within the violin plots. Data were analyzed by Friedman test followed by Dunn’s multiple comparisons test.  

 

In the physical load, we found a significant increase in endothelin-1 levels at peak compared to 

baseline (p < 0.001) and a significant decrease at recovery compared to peak (p < 0.001) (Figure 

10A). ET-1 did not change in the mental load (Figure 10C). 

Since ET-1 changed significantly upon physical load, we analyzed the peptide response on an 

individual level. Figure 10B shows the individual ET-1 responses. The response was 

heterogeneous, with a median Δendothelin-1 level of 1.13 pg/mL (IQR, 0.12-2.43).  
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Looking at the direct comparison of the 3 main time points in the physical and mental load (Figure 

11), the endothelin-1 level at the peak of the physical load was significantly higher than the 

endothelin-1 level at the peak of the mental load. Furthermore, Δendothelin-1 was also higher in 

the physical load than in the mental load. There was no difference at other time points. 
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Figure 11. Violin plots comparing the baseline (A), peak (B), recovery (C), and Δendothelin-1 (D) levels between the 

2 loads. Medians and the 75th and 25th percentiles are shown within the violin plots. Data were analyzed by Wilcoxon 

test. * p < 0.05. 

 

  



39 
 

4.5 NT-proBNP response to physical and mental load 
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Figure 12. (A) Violin plots comparing the plasma levels of NT-proBNP before (baseline), immediately after (peak), 

and 30 minutes after (recovery) the vita maxima treadmill test. Medians and the 75th and 25th percentiles are shown 

within the violin plots. Data were analyzed by Friedman test followed by Dunn’s multiple comparisons test. (B) Violin 

plots comparing the plasma levels of NT-proBNP before (baseline), immediately after (peak), and 30 minutes after 

(recovery) the extreme mental test. Medians and the 75th and 25th percentiles are shown within the violin plots. Data 

were analyzed by Friedman test followed by Dunn’s multiple comparisons test.  

 

The level of NT-proBNP did not change upon either load (Figure 12).   

Looking at the direct comparison of the 3 main time points in the physical and mental load (Figure 

13), there was no difference at any time point. 
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Figure 13. Violin plots comparing the baseline (A), peak (B), recovery (C), and ΔNT-proBNP (D) levels between the 

2 loads. Medians and the 75th and 25th percentiles are shown within the violin plots. Data were analyzed by Wilcoxon 

test. 

 

 

In the mental load, we found a positive correlation between baseline HR and NT-proBNP baseline, 

NT-proBNP peak, and NT-proBNP recovery (Figure 14).  
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Figure 14. Correlation of baseline HR and NT-proBPN baseline (A), peak (B), and recovery (C) in the mental load. 

Data were analyzed by Spearman correlation. 
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5 Discussion 

 

Professional athletes undergo intense physical and mental loads during regular training and in the 

actual games. Both parts are necessary to achieve the best individual performance, and their 

synergistic effects are crucial in reaching peak performance. For this reason, we analyzed a group 

of professional soccer players in an extreme physical and an extreme mental model and described 

changes in circulating apelin-13, apelin-36, endothelin-1, and NT-proBNP levels at different time 

points during both loads and their potential role as exerkines in Hungarian professional athletes. 

Physical exercise has a profound effect on many bodily tissues, and many of these tissues are able 

to secrete exercise-induced factors upon acute or chronic exercise.3,36,42-45 These factors are called 

exerkines, and their local and systemic roles in regulating exercise adaptation have become evident 

over the last decade.3,41,48  

Skeletal muscle appears to have the main role in exercise-induced apelin production, though 

several tissues might contribute to the overall change in plasma levels. We showed what we believe 

for the first time, that apelin-13 shows a transient and heterogenous increase in response to a single 

bout of maximum exercise test in professional soccer players. The majority of the participants 

responded with elevated plasma apelin-13 levels, while a smaller proportion responded with 

reduced plasma apelin-13 levels. This was only true for the physical load, plasma apelin-13 did 

not change significantly upon the mental load, which is also evident from the difference between 

physical peak and mental peak apelin-13 levels; however, 30 minutes after both loads, the level of 

apelin-13 decreased below the respective peak values. 

There are conflicting results in the literature about the apelin response to acute or chronic exercise. 

Some studies reported decreased apelin levels,111,112,113 others reported increased86 or unchanged114 

apelin levels upon physical exercise. These conflicting results are most likely due to the differences 

in the type, intensity, or duration of the acute exercise.72 For example, a single bout of cycling 

sprint exercise increased apelin levels,83 200 meters and 400 meters swimming also increased 

apelin levels,82 a marathon race reduced apelin levels,110 while a 50-meter swimming exercise or 

a treadmill running bout in healthy individuals did not influence apelin levels.82,85 The 

interindividual variability of apelin-13 responses to physical exercise might provide an explanation 

for these controversies about exercise-induced apelin release. 
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Interestingly, a higher systolic blood pressure before the physical load resulted in a more robust 

apelin-13 response, while the opposite was true in the mental load. In contrast, the baseline apelin-

13 level was a good estimate of how either load would affect apelin-13; in both the physical and 

mental load, a lower baseline level resulted in a more robust change in apelin-13. 

Our research provides valuable insights into the interplay between different apelin isoforms. 

Preproapelin is 77 amino acids long and is cleaved into shorter fragments, including both apelin-

36 and apelin-13. It is also clear from the literature that the shorter fragments have higher 

biological activity.95 In general, there was an inverse relationship between the 2 fragments. Thus, 

participants with lower baseline, peak, and recovery apelin-13 levels had higher apelin-36 

responses to physical exercise. We also showed the inverse relationship of the two fragments on 

the peak of the physical load, where a lower apelin-13 peak correlated with a higher apelin-36 

peak. In contrast, when we compared the baseline levels of the 2 peptides in the mental load, we 

found a direct relationship: higher apelin-13 baseline levels correlated with higher apelin-36 

baseline levels in the mental load. 

In some comparisons, apelin-13 and apelin-36 showed similar responses. For instance, the 

heterogeneity of the apelin response was observed for both peptides. Another similarity between 

the 2 isoforms is that both apelin-36 and apelin-13 were higher on the peak of the physical load 

than on the peak of the mental load. Interestingly, however, we found a connection between 

endothelin-1 and apelin-36 but not between endothelin-1 and apelin-13. 

In the mental load, apelin-36 baseline level was a good estimate of the apelin-36 response: a lower 

baseline level resulted in a more robust change in apelin-36. This was observed for apelin-13 

baseline level in mental load, too. 

The metabolic equivalent (MET) can be used to represent the intensity of the exercise based on 

the basic metabolic rate.163 Another parameter to describe aerobic capacity and cardiorespiratory 

fitness is relative VO2max.164 Yet another parameter to assess the pumping capacity of the heart is 

circulatory power, which is the product of VO2max by peak systolic arterial pressure.165 In our 

sample population, all 3 of these cardiopulmonary exercise–related parameters showed a positive 

connection with apelin-13, but not with apelin-36. This might suggest the role of apelin-13 in peak 

performance.108 Additionally, the higher the apelin-13 response to physical exercise, the higher the 

diastolic pressure. Again, this was only true for apelin-13, not apelin-36. Apelin fragments were 

initially thought to be cleaved sequentially from proapelin, meaning that apelin-36 is the first 
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cleavage product, and then it is cut into smaller fragments. Later it was reported that the enzyme 

furin could directly cut apelin-13 from preapelin without producing longer fragments. These 

different isoforms show differential receptor affinity and biological activity,95 which was also 

shown in our research. Apelin-13 was closely connected to cardiopulmonary exercise test-related 

parameters, while apelin-36 was not. This suggests that the 2 isoforms might play different roles 

during acute exercise. 

Studies show that a 1 MET increase in exercise capacity means ~10-25% reduction in 

mortality.166,167 At the peak of the cardiopulmonary exercise test, the soccer players reached a 

maximum MET four times higher than the resting MET. The maximum circulatory power was 

higher in the soccer players than previously reported values in age-matched, healthy individuals.168 

In professional athletes, there is a close relationship between physical performance, whole-body 

O2 consumption, and the pumping capability of the heart during maximal cardiopulmonary 

exercise testing. This intimate connection was reinforced by the strong association of relative 

VO2max with max MET and circulatory power. Relative VO2max values for elite soccer players 

were reported between 59.2 and 66.6 mL/kg/min, which is comparable to the relative VO2max 

values in our participants.169 Soccer is a team sport where individual players need a combination 

of endurance, strength, sprinting, and jumping skills for shorter periods, meaning that aerobic and 

anaerobic demands are both present.84 However, information on plasma apelin levels in soccer 

players is scarce in the literature. In one study of a Serie A team, throughout a season, apelin 

showed fluctuations, but no association has been reported between the fluctuating apelin levels 

and performance.170  

Apelin has a potent vasodilator and positive inotropic effect, which is a rare combination among 

endogenous agents. The vasodilator effect is NO-dependent, while the inotropy is NO-

independent.96 Increased myofilament Ca2+ sensivitity104,106 and the activation of PKC, ERK1/2, 

and MLCK171  pathways might all be involved in the latter. The blood flow to the contracting 

skeletal muscles during intense dynamic exercise can increase up to 100-fold,11 which can only be 

accommodated by a significant increase in cardiac output. An increase in heart rate, ventricular 

work, and myocardial contractility, all determinants of the cardiac output, leads to an increased 

myocardial O2 demand, which can be matched by the elevated coronary blood flow,172 potentially 

mediated by apelin-dependent NO production in response to exercise.54,55 Furthermore, apelin may 
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balance oxygen demand and supply in the heart and regulate skeletal muscle performance via 

exercise-induced hyperemia.107  

We analyzed endothelin-1 response to physical and mental load. ET-1 is one of the most potent 

endogenous inotropic agents.56 Besides the positive inotropy, the peptide has many effects on the 

cardiovascular system, coronary vasoconstriction, and positive chronotropy, among others.124 It 

has been reported that the tissue levels of ET-1 are potentially higher than the circulating levels. 

For instance, the pericardial ET-1 levels can increase up to 200-fold higher than the plasma levels 

in certain pathologies.124,126,127,128 Similarly to apelin-36, ET-1 increased upon physical load but 

did not change upon mental load. Consequently, the peak ET-1 level in the physical load was 

significantly higher than the peak ET-1 level in the mental load. ET-1 and apelin have opposite 

effects on the vasculature, yet both are potent inotropic agents. ET-1 elicits its vasoconstrictor 

effect by binding to the ETA receptor; however, ET-1 binding to the ETB receptor mediates ET-1 

clearance, eNOS and NO production.137 Additionally, the vasorelaxant effects of apelin are also 

mediated by the eNOS-NO systems.51-55 Both peptides are sensitive to changes in shear stress, and 

the active hyperemia during exercise might influence their secretion.41,138,139 Altogether, these 

findings suggest a fine interplay between the vasoconstrictor and vasodilator effects of ET-1 and 

apelin and their close connection to the NO-dependent mechanisms mediating skeletal muscles. 

Furthermore, the production of these vasoactive peptides can be significantly and reciprocally 

promoted by acute exercise. Of note, the increased apelin or ET-1 plasma concentration might be 

merely a spillover of the locally produced amount.135 

Our results align with other studies in the literature stating that NT-proBNP levels did not change 

upon maximal exercise load.173 However, prolonged strenuous exercise (e.g. marathon running) 

increased NT-proBNP levels.174 Interestingly, in the mental load, the baseline heart rate positively 

correlated with all 3 NT-proBNP time points. While cardiac ANPs are stored in secretory granules, 

BNPs are not stored to the same extent, meaning that the increased secretion and, subsequently, 

the elevated plasma level may require more time than it would for ANP.148 NT-proBNP is a good 

measure of ventricular function since unchanged plasma levels exclude the possibility of cardiac 

dysfunction. 

Professional athletes are affected by both physical and mental stress during competitive sports.175 

Three of the analyzed 4 peptides increased, on average, upon extreme physical load, while only 

apelin-13 changed upon extreme mental load. Additionally, our research showed that apelin-13 is 
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an exerkine associated with cardiopulmonary exercise–derived parameters (max MET, relative 

VO2max, circulatory power), i.e. athletic performance.  
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6 Conclusion, summary of novel findings 

 

We measured circulating peptide responses upon an extreme physical and an extreme mental load 

in Hungarian professional soccer players. Apelin-13, apelin-36, and endothelin-1 all responded to 

the extreme physical, while only apelin-13 responded to the mental load. NT-proBNP did not 

change in either load indicating an intact left ventricular function in our sample population. 

Additionally, apelin-13 correlated with measures of physical performance, whole-body oxygen 

consumption, and the pumping capability of the heart. 

 

In conclusion, our research provided several novel findings to the exerkine field: 

 Apelin-13, apelin-36, and endothelin-1 all showed a transient and heterogenous increase in 

response to a single bout of maximum exercise test in professional soccer players 

 An inverse relationship exists between apelin-13 and apelin-36 response upon extreme 

physical load 

 Apelin-13, but not apelin-36, showed an intimate relationship with performance-related 

cardiopulmonary exercise parameters 

 An inverse relationship exists between endothelin-1 and apelin-36, but not apelin-13, upon 

extreme physical load 

 In the mental load, the baseline levels of apelin-13 and apelin-36 were good predictors of 

the response of the mental load 
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7 Limitations 

 

The interest in exerkines over the last two decades has grown rapidly, shifting from analyzing 

singular changes of one peptide to exerkine profiling. Our study focused on several exerkines, but 

the origin of these factors was not identified in our research. Indeed, analyzing several exerkines 

simultaneously with “omics” platforms and documenting the interaction among these factors is the 

next step in the exerkine evolution, which was beyond the scope of the current research.  

Additionally, many factors influence the exerkine response upon acute exercise: the type and 

duration of the exercise, fitness, or timing of sampling. We analyzed 4 peptides in professional 

soccer players after a vita maxima treadmill test. Additional research with a different type 

(anaerobic vs resistance) or duration (e.g. HIIT) of exercise, and in different sports disciplines, is 

necessary to clear the conflicting results in exerkine response.  
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