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Abstract
Background: Hybrid PET/MRI is an emerging imaging technology proved to be useful for better
understanding of the tumor metabolism and cellularity, it also plays a very important in staging,
assessment and post-therapy follow up. PET/MRI can be used to better understand how tumors act,
especially prior to therapy. Our aim in this study is to assess the association of 18F-Fluorodeoxyglucose
positron-emission-tomography (18F-FDG/PET) and DWI imaging parameters and multi-clinical factors
correlations and comparing their diagnostical performance to predict tumor aggressiveness in HNSCC.

Results: No signi�cant correlations were found between DWI and any of 18F-FDG parameters SUVmax,
TLG and MTV, (r = -0.184, P=0.125, r = -0.182, P=0.248, and r = -0.037, P=0.756), respectively. As SUVmax
and TLG of the primary tumor increase, the tumor aggressiveness to involve more lymph nodes increase,
(r = 0.321, P=0.006 and r = 0.332, P=0.005), respectively. Comparison between patients with positive (N+)
and negative (N-) lymph node groups show that SUVmax and ADC can predict lymph nodes metastasis,
(P=0.004 and P=0.012), respectively. SUVmax best cut-off value of (6.8±0.8), had higher accuracy than
ADC, best cut-off value of (0.981±0.97*10-3mm2/s), (sensitivity: 83.6%, 70.0% and speci�city: 80.0%,
78.7%), respectively. Additionally, TLG and MTV were positively correlated with T-stages (P=0.024 and
P=0.001), respectively. ADC was inversely correlated with tumor grades (P=0.030).

Conclusions: Our results revealed a non-signi�cant correlation between the FDG-PET and DWI-MR
parameters. The FDG-PET-based glucose metabolic and DWI-MR derived cellularity data may represent
different biological aspects of HNSCC. SUVmax was superior to DWI in predicting lymph nodes
metastasis.

Background:
Worldwide; Head and neck cancer is the sixth most common malignancy; approximately 6% of all cancer
cases, accountable for an estimated 1–2% of all cancer deaths.[1] H&N cancers are a heterogeneous
group of cancers that existed anatomically close to each other, but different in terms of etiology,
histology, diagnostic and treatment approaches.[2] About 91% of all H&N cancer are squamous cell
carcinomas, 2% are sarcomas and the other 7% are adenocarcinomas, melanomas and not well-speci�ed
tumors.[3]

Recently, 18F-�uorodeoxyglucose (FDG) positron emission tomography (PET)/magnetic resonance
imaging (MRI) has emerged as an effective and accurate imaging modality in oncology.[4] The PET/MRI
is expected to be more valuable than PET or CT alone or combined because the PET/MRI involves better
contrast in soft tissues and a lower radiation dose from the MRI system.[4] The superior role of the
PET/MRI over other imaging modalities is the ability to perform many functional imaging techniques.[5]
This includes DWI which is a widely used technology to assess the motion of water molecules (Brownian
motion) as a noninvasive diagnosis technology of tissue biology, [6] by taking apart the texture of a
biologic tissue based on the water molecules motion at a microscopic level.[7] ADC represents DWI in
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determining the tumor’s cellularity.[8], [9] The higher cellular tumor resulted in more restriction to water
molecule motion which, as a result, gives lower ADC values and vice versa.[10] This means that the water
molecule’s motion is re�ecting the signal loss on DWI due to different water permeability through the
structures.[11] Previous studies have proved the inversely proportional correlation between ADC and
tumor cellularity.[12], [13] ADC also was found to be effective in primary tumor assessment,
differentiating between benign and malignant neoplasms, staging and monitoring post-treatment follow-
up.[14], [15] Moreover, ADC was found to be useful for predicting treatment response in HNSCC.[16]

The FDG uptake values measured from PET imaging has an important role in head and neck imaging due
to its ability to measure the glucose metabolism in the tumors,[17]–[19] which may also re�ect the
tumor’s aggressiveness and the risk of the metastasis to spread to the adjacent structures.[20], [21] SUV
is the most common parameter used to estimate glucose metabolism, and it has shown promising
results in predicting the presence of lymph nodes metastatic during the primary assessment as well as a
predictor of survival and recurrence.[22] Recently; new metabolic parameters, TLG and MTV have
emerged as new parameters that can measure the glucose metabolism activity of tumors and have been
founded to be more effective than SUV because tumor contour is considered when using MTV and TLG.
[23] Since SUVmax doesn’t re�ect the metabolic activity of the entire lesion but it measures the highest
glucose metabolism in the target ROI.[24] While MTV represents the volume of the 18F-FDG activity in the
lesion and TLG represents the sum of the SUV within the lesion. Furthermore, the glucose metabolic
activity is positively correlated to the tumor cellularity.[25], [26]

Previous studies suggest that tumor cellularity and metabolism might be correlated. However, previous
results were discordant; Varoquax et al. found, in their study of SCC, that there was no signi�cant
correlation between the tumor cellularity represented by ADC and the tumor metabolic activity represented
by SUV.[27] Fruehwald et al. reported that there was no correlation between SUV and ADC either in the
DWIBS or EPI.[28] Similar �ndings have been reported by other authors.[29]–[31] In contrast, Nunez et al.
reported in their study of HNSCC that the metabolic activity was strongly correlated to the tumor
cellularity; there was an inverse signi�cant correlation between the ADC and SUV.[32] Nakajo et al. found
that the tumor metabolic activity (SUV) was correlated inversely with the tumor cellularity represented by
ADC.[21] It’s not clear yet why some authors have found strong correlations while others have not, and
whether there is a correlation between tumor cellularity and metabolic activity.

18F-FDG imaging parameters and DWI’ADC are a commonly used parameter in PET/MRI. These imaging
parameters show a promising results to measure activity level of tissue metabolism, cellularity and
proliferation. [9], [33] The use of these imaging parameters were also expanded to study the differences
between benign and malignant in the microstructure level, prediction of treatment response, survival
analysis and their correlation with the clinical and pathological information of the tumors.[14], [22], [34]

Therefore, our study was aimed to investigate the correlation between FDG parameters and ADC values,
which has focused, in-depth, on �nding out if there is a correlation between tumor metabolic activity and
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cellularity represented by ADC and SUVmax, TLG and MTV, as well as assessing the ability of these
imaging parameters to determine tumor aggressiveness by predicting lymph nodes involvement.

Materials And Methods:

Patients and demographics:
A retrospective study was approved by the Clinical Center, Regional and Local Research Ethics Committee
(CCRLREC), Doctoral School of Health Sciences, University of Pecs, and Somogy Megyei Kaposi Mor
Educational Hospital, Pecs, Hungary. Approval number (IG/00686-000/2020). Requirement of the
informed consent was waived and con�rmed by the (CCRLREC) due to the retrospective nature, and all
methods were carried out in accordance with the relevant guidelines and regulations (Declaration of
Helsinki). From May 2016 to June 2019, 109 patients with proven HNC underwent 18F-FDG PET/MRI for
staging and restaging, assessment of the disease and post-therapy follow up. The inclusion and
exclusion criteria were (1) proved non-treated primary HNC, (2) patients underwent PET/CT and PET/MRI
including DWI sequence (3) single tracer injection session. Exclusion criteria (1) patients who had non-
measurable ADC, or FDG parameters (2) patients with motion artifact or bad image quality. Finally, a total
of 71 patients were included in our study. Table (1). Final con�rmation of malignancy was done after
PET/MRI examination the primary tumor and metastatic lymph nodes combined with biopsy.
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Table 1
patients demographics

Number of patients 71

Mean Age (y) (61.6 ± 0.8)

Men 49 (69.0%)

Women 22 (31.0%)

Histologic Grade  

Grade 1 12 (16.9%)

Grade 2 41 (57.7%)

Grade 3 18 (20.4%)

Localization  

Pharyngeal 32 (45.1%)

Laryngeal 15 (21.1%)

Oral 22 (33.8%)

T category  

T1 4 (5.6%)

T2 19 (26.8%)

T3 26 (36.6%)

T4 22 (31.0%)

N category  

N0 10 (14.1%)

N1 9 (12.7%)

N2 45(63.4%)

N3 7 (9.9%)

M Category  

M0 63 (88.7%)

M1 8 (11.3%)

N groups  

N+ 61(85.9%)

N - 10 (14.1%)
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PET/MRI imaging:
Examinations were performed in a dedicated PET/MRI (3T) unit (Biograph mMR, Siemens AG, Erlangen,
Germany) after PET/CT examinations (single tracer injection). Patients were requested to fast for at least
6 hours before 18F-FDG injection and their Blood glucose levels were checked before they received the
tracer injection to ensure euglycemia. Intravenous 18F-FDG with a bodyweight adapted dose (4 MBq/kg,
range 163–403 MBq) was intravenously injected; after the FDG tracer injection, the acquisition was
started within 142 minutes (average 225 minutes). Images were obtained in the supine position using
Head and Neck coils. MRI sequences were T2-weighted TSE turbo inversion recovery magnitude (TIRM)
(TR/TE/TI 3300/37/220 ms, FOV: 240 mm, slice thickness: 3 mm, 224 × 320) coronal plan, T1-weighted
turbo spin-echo (TSE) (TR/TE 800/12 ms, FOV: 200 mm, slice thickness: 4 mm, 224 × 320) and T1-
weighted TSE Dixon fat suppression (FS) (TR/TE 6500/85 ms, FOV: 200 mm, slice thickness: 4 mm, 256 
× 320) transversal and were acquired without an intravenous contrast agent. For the PET data collection,
a magnetic resonance-based attenuation correction (MRAC) sequence was used for PET attenuation
correction, and the wide range bed position PET Emission scan was acquired for 900 seconds with a
�xed FOV range (20 cm) and matrix (172 × 172) without bed movement as well. An iterative ordered
subset expectation maximization (3D OP-OSEM) PET image reconstruction algorithm was used with 3
iterations and 8 subsets, and 4 mm Gaussian �ltering settings. The PET data were corrected for
scattering, random coincidences and attenuation using the MR data. The DWI was obtained by using an
axial echo-planar imaging (EPI) sequence with b-values of 0 and 800 s/mm2 (FoV 315 mm, repetition
time TR/TE: 9900/75 ms, 5 mm slice thickness and voxel size 2.3 × 2.3 × 5 mm and slice gap 10 mm).
Furthermore, an axial Dixon FS T1-weighted TSE sequence and a coronal TSE Dixon FS sequence were
conducted after injection of contrast material (Gadovist© Bayer Healthcare, Leverkusen, Germany) at
0.1 mmol per kg of bodyweight.

Image analysis:
In each patient, the SUVmax, TLG, MTV were measured from the PET imaging; Siemens (Syngo Via 10VB)
was used, which provided an automatized delineated SUV-based volumetric analysis. The metabolic
volumetric contours were segmented by using the Syngo Via (VOI) Sphere tool. The single voxel activity
concentration of a particular tumor with the highest SUV was represented by SUVmax while SULpeak
represented the hottest point in the tumor foci, where the lean body mass normalized as the average SUV
was measured at 1 cm3 in a spherical ROI. A �xed 2.5 threshold of SUV was used for tumor SUVmax for
both MTV and TLG proposed by Pak et al.[35] The volume above the given VOI was represented the MTV
while the TLG represented the VOI of the average SUVmean or SULmean multiplied by the MTV. The ADC
map was automatically generated and analyzed on the implemented eRAD software. DWI images were
analyzed by drawing round or oval region of interest (ROI) manually on the ADC map covering the largest
tumor diameter, [18] on single DWI slice [28] within the center of the lesion in the most homogenous part
which were the lowest ADC or the highest SUV reported after excluding or/and avoiding the necrotic and
cystic areas. We did not use whole tumor volumes ADC measurements approach although it has been
found to be more reproducible than those obtained from single slice or small ROI’s measurements.
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However, there was no signi�cant difference between the tumor ADCs obtained using whole-volume
measurements and the single-slice approach.[36] Thus, we have chosen the single-slice method because
it’s easier, faster and as a result more preferred in clinical practice than the whole volume ROIs protocol
which is time consuming and more complicated. Average ADC values calculated by the software
automatically was referred to as ADCmean by summing all voxels ADC values on the drawn ROI for the
chosen slice. We assessed only ADCmean values, which as previously proposed as a more reliable
indicator of tumor cellularity since the entire lesion is taken into account.[37] ADCmin, on the other hand,
was suggested to re�ect the most proliferative portion of a tumor or highest tumor cell density, due to the
effects of lesion heterogeneity or artifacts the use of ADCmin is likely to result in more errors.[38] In
addition, ADCmean minimizes the effect of tumor heterogeneity and its higher reliability to distinguish
different entities in the same image. [39] We used the average ADC of the overall area included in the ROI
which is calculated automatically by the software, where “Avg” represents the average ADC values for all
voxels within the ROI and “Dev” Represents the standard deviation. Figures (1).

Statistical analysis:
Statistical analysis was performed by using SPSS 25 (IBM SPSS Statistics, Armonk, New York, USA). The
data collected were evaluated using descriptive statistics (mean ± standard deviation), for variables with
normal distribution and median and interquartile range for variables with non-normal distribution. The
Spearman rank correlation (r) was used to estimate the association between 18F-FDG parameters and
DWI values as well as tumor size, T stages, N stages and tumor grades. ANOVA or Kruskal–Wallis test
were performed with primary tumor localization. Independent sample t or Mann-Whitney test were applied
to compare imaging parameetrs values with Sex, M stages. Variables for which P < 0.1 in univariate
analysis were subjected to multiple linear regression analysis to determine those that were independently
associated with the imaging parameters by integrating statistically differences in the univariate analysis
into the multivariate linear regression model, we used transforming function to convert variables with
non-normal distribution into normal distribution. Mann-Whitney test and independent sample T-test were
applied on the imaging parameters after the patients were grouped based on lymph nodes involvement
into positive (N+) and negative lymph nodes (N-). Receiver operating characteristics (ROC) was recruited
to identify sensitivity, speci�city and area under curve (AUC), The cutoff values was selected according to
the sensitivity and speci�city of each tangency point. A p-value < 0.05 was indicated as a statistically
signi�cant result.

Results:
Spearman’s correlation coe�cient was applied on 18F-FDG parameters and ADC values; the results show
that 18F-FDG parameters (SUVmax, TLG and, MTV) were not correlated with ADC values (r = -0.184, P = 
0.125, r = -0.182, P = 0.248, and r = -0.037, P = 0.756), respectively. A summary of correlations is shown in
Table (2). Figure 2 (A, B and C).
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Table 2
summary of correlations between FDG and DWI imaging parameters

Parameter ADCmean SUVmax TLG MTV

ADCmean Spearman (rho)   − .184 − .182 − .037

Sig. (2-tailed)   .125 .129 .756

SUVmax Spearman (rho)     .558** .261*

  Sig. (2-tailed)     .000 .028

TLG Spearman (rho)       .861**

Sig. (2-tailed)       .000

MTV Spearman (rho)        

Sig. (2-tailed)        

*signi�cant at level of 0.05

** signi�cant at level of 0.01

For clinipathological comparison, we compared primary tumor FDG parameters (SUVmax, MTV, and TLG)
and ADC with sex, tumor size (measured as the maximum diameter of the tumor in pathologic results,
mean size was 49.8 ± 2.5 mm), T stages, N stages, M stages (7th Edition American Joint Committee on
Cancer pathological staging criteria), [40] localization and the degree of differentiation (grades). The
results show that SUVmax was correlated positively with tumor size and N stages, (P = 0.001 and P = 
0.006), respectively. TLG was positively correlated with tumor size, T stages and N stages (P = 0.000, P = 
0.024 and P = 0.005), respectively. MTV was positively correlated with tumor size and T stages, (P = 0.000
and P = 0.001), respectively. ADC, in the other side, was found to be inversely correlated with the degree of
differentiation (P = 0.030) and a tendency to correlate with N stages, (P = 0.089). No other signi�cant
correlations observed, (P > 0.05) for all parameters. Table (3).



Page 9/22

Table 3
Clinicopathological correlations with FDG and DWI imaging parameters

Grouping SUVmax TLG MTV ADC

T stages r = 0.051

P = 0.671

r = 0.268

P = 0.024

r = 0.389

P = 0.001

r = 0.079

P = 0.510

N stages r = 0.321

P = 0.006

r = 0.332

P = 0.005

r = 0.145

P = 0.228

r = -0.204

P = 0.089

Grades r = 0.055

P = 0.648

r = -0.070

P = 0.563

r = -0.047

P = 0.699

r = -0.258

P = 0.030

Tumor size r = 0.374

P = 0.001

r = 0.679

P = 0.000

r = 0.635

P = 0.000

r = -0.139

P = 0.248

Localizations P = 0.389 P = 0.128 P = 0.367 P = 0.270

SEX P = 0.314 P = 0.522 P = 0.784 P = 0.897

M stages P = 0.283 P = 0.785 P = 0.913 P = 0.347

. Spearman correlation coe�cient was applied for (T stages, N stages, Grades and Tumor size)

Kruskal-Wallis was used to compare the FDG imaging parameters with primary tumor localization
and ANOVA with ADC values. Mann-Whitney test for two category variables (sex, M stages) with FDG
parameters, Independent sample t test with ADC values.

. Signi�cant result was highlighted in Bold

 

Multiple regression analysis was recruited for factors that shown correlation (P < 0.1) in univariate
analysis to investigate the factors that in�uence the change in SUVmax, TLG, MTV and ADC. The results
show that tumor size and N stages were independent factors in�uencing SUVmax, (P = 0.020 and P = 
0.024), respectively. Tumor size and N stages were independent factors in�uencing TLG, (P = 0.000 and P 
= 0.044), respectively. T stages and tumor size were independent factors in�uencing MTV (P = 0.004 and
P = 0.000), respectively. Tumor grade was found to be independent factor in�uencing ADC (P = 
0.032). Table (4).
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Table 4
Multiple Regression Analysis Showing the Effects

of Prognostic Factors on 18f-FDG parameters
Prognostic factors B T P value

SUVmax  

Tumor size .409 3.333 .020*

T stages N/A N/A N/A

N stages .227 1.995 .024*

TLG  

Tumor size .767 8.988 .000*

T stages − .050 − .598 .552

N stages .115 2.050 .044*

MTV  

Tumor size .662 6.857 .000*

T stages .149 3.010 .004*

N stages N/A N/A N/A

ADC      

N stages − .012 1.299 .198

Tumor grades − .026 -2.188 .032*

*Signi�cant result

N/A: Not assessed

 

When excluding the effect of the tumor size from the regression model, we found that N stages were
independent factor in�uencing SUVmax (P = 0.011), but not T stages (P = 0.838). Both T stages and N
stages were independent factors in�uencing TLG, (P = 0.018 and P = 0.034), and T stages were found to
be independent factor in�uencing MTV, (P = 0.001).

To investigate the ability of FDG and ADC parameters to predict tumor aggressiveness, we classi�ed the
patients based on lymph nodes involvement into Negative and Positive groups (N- and N+) and
compared with these parameters. PET/MRI was the reference to de�ne the two groups. Our results show
that SUVmax, TLG and ADC revealed a statistically signi�cant differences (P = 0.004, P = 0.033 and P = 
0.012), respectively. MTV did not (P > 0.05). Figure 3 (A, B and C and D).
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The ROC curve was used to analyze the diagnostic e�cacy of ADC and SUVmax (due to widely use in
daily practice) in predicting lymph node metastasis in HNC. For ADC; AUC was 73.1%, 95% con�dence
interval was ranged between 0.550 and 0.912, best cut off value was (0.981 ± 0.97) to predict lymph node
metastasis with sensitivity of 70.0% and speci�city of 78.7%, Fig. 4 (A). SUVmax best cut off value to
predict lymph node metastasis was (6.8 ± 0.8), AUC was 80.8%, 95% con�dence interval was ranged
between 0.633 and 0.984. Sensitivity and speci�city were 83.6% and 80.0%, respectively. Figure 4 (B).

Discussion:
The present study demonstrated that PET/MR provides valuable imaging data for HNC patients. Various
pathological factors were associated with PET/MR results and may serve a role in the evaluation of the
prognosis of patients with HNC. As for emerging technology, PET/MRI offers different imaging data to
study tumor microstructure environment, we started our study by correlating these imaging to each other.
Previous data demonstrated an inverse correlation between ADC value, derived from DWI, with cellularity.
[8]–[10] FDG imaging parameters, on the other hand, were found to be positively correlated with
cellularity.[25], [26], [41] Although glucose metabolism and cellularity of tissue are two different biological
biomarkers of a tumor, an inverse correlation between 18F-FDG and DWI parameters has been suggested.
[42] this hypothesis was proposed because both 18F-FDG and ADC were correlated with tumor cellularity.
[37] Our results showed that FDG uptake parameters (SUVmax, TLG, and MTV) were not signi�cantly
correlated with the ADCmean value. Similar results were observed; Min et al., in their study of HNSCC,
reported that there was no signi�cant correlation between ADCmean with SUVmax and SUVmean, also no
signi�cant correlation was found between ADCmean and both MTV and TLG.[30] Surov et al., in a recent
study, reported no signi�cant correlation between ADCmean and SUVmax or SUVmean (r = -0.255, P = 
0.450 and r = -0.318, P = 0.340), respectively.[31]

Controversially to our results, Nunez et al. observed, in their study of HNSCC, an inverse signi�cant
correlation between the mean SUV and the mean ADC (r = -0.67, P = 0.01).[32] Nakajo et al. also observed
that the SUVmax was correlated inversely with the ADCmean (r = -0.566, P = 0.005).[21] Nakamatsu et al.,
in their study of metastasis in lymph nodes from HNSCC, found strong negative correlations between
SUVmax and ADCmean values (P > 0.001), their results showed that the metabolic activity was in�uenced
strongly by the tumor cellularity.[43] Han et al. reported, in their study of HNSCC, that there was a slightly
signi�cant inverse correlation between SUV and ADC (r = -0.333, P = 0.054). They also found a negative
signi�cant correlation between ADC and TLG (r = -0.347, P = 0.044).[44]

Our explanation for the lack of correlation is the fact that both imaging parameters explain different
tissue microstructures characteristics, DWI assess the water molecule motion in the tissue and affected
by the cellularity, proliferation rate and cell counts which in clinical use affected by ROI size placement
and interobserver variability.[36] While metabolic activity was independent of tumor size and shape
because tumor is segmented by adaptive thresholding.[37]
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The present study correlated FDG and DWI imaging parameters with cliniopathological characteristics to
explore their effect on the imaging parameters values. Our results reveal that FDG metabolic parameters
have reported different correlations; it has shown that primary tumor SUVmax and TLG were signi�cantly
correlated with tumor size and N stages; the larger tumor size means more cancer cells, thus, more active
overall hyperplasia, in other words, greater glucose metabolic activity to tolerate the biological activity,
differentiation and proliferation of the cancer cell.[45] Metastatic lymph node, in the other hand, is one of
the most important in�uencing factors in the prediction of cancer surgery. [1] It’s well known that higher
degree of malignancy means more in�ltration and thus the possibility of lymph nodes metastasis is high.
[46] According to El-naaj et al. when there is no noticeable lymph node metastasis in the clinical and
imaging examinations, the incidence of occult metastasis was high (20–34)%. [47] Thus, it’s important to
predict the possibility of lymph node metastasis occurrence. This study was found that the AUC was
0.808, which means that SUVmax is useful to predict lymph node metastasis. According to Zheng et al.
there was a positive signi�cant correlation between lymph nodes status and SUVmax, higher SUVmax,
resulted in more lymph nodes metastasis, which means that SUVmax has a promising predictive role in
lymph node diagnosis.[45] Micco et al reported a signi�cant correlation between lymph node occurrence
with SUVmax and TLG.[18] Morand et al. have observed similar results, higher lymph nodes involvement
was found in patients with higher primary tumor SUVmax.[48] In the same study, the authors reported
that TLG did not correlate with lymph node status [48]. Furthermore, in our study, no signi�cant
correlation observed between MTV and the lymph node status. A similar result reported by Morand et al.
[48] and Chan et al. [49] In contrast to Micco et al. who reported a signi�cant association between MTV
and lymph nodes occurrence.[18] SUVmax might be promising imaging biomarker to predict tumor
aggressiveness.

ADC, on the other hand, show signi�cant correlation with tumor grades, which re�ect the degree of water
motion within the tumor cells, this is from the fact that higher grade tumors (G3) show more restriction to
water molecules motion (lower cellularity) which as result affect ADC. On the other side, ADC did not
show signi�cant correlations with T stages, N stages or Tumor size, although there was a slightly inverse
correlation with N stages (P = 0.089). In other words, as the ADC tend to be lower (poorly differentiated
tumors), the lymph nodes involvement increase, but this result was not statistically signi�cant. Although,
when dividing the patients to two groups (N + and N-) the ADC show signi�cant difference, which means
that ADC has the ability to predict lymph node metastasis. Abdel Razek et al. in their study of
Nasopharyngeal carcinoma have reported a statistically signi�cant difference between primary tumor
ADC and nodal involvement, (P = 0.003), [50] this mean that patients without lymph nodes involvement
showed higher ADC value than those patients who have con�rmed lymph nodes enlargement. In the other
hand, Nakajo et al. have reported in their study of primary HNSCC similar results, there was no signi�cant
difference in the ADC between N-positive and N-negative groups (p = 0.74), [21] similar results were also
reported by other authors.[51], [52] The explanation of their result was attributed that those patients with
poorly or undifferentiated malignancy are usually reporting metastatic lymph nodes.[50]

None of the previous studies have compared the e�cacy of PET/MRI system different imaging
biomarkers in HNC tumor aggressiveness prediction. Thus, to our knowledge, this is the �rst study to
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compare PET/MRI system derived imaging parameters in lymph nodes involvement in HNSCC. Our
results show that SUVmax and ADC were found to have the ability to differentiate between the two lymph
nodes groups (N + and N-) based on the primary tumor measurements, which as a result might help to
predict tumor development and prognosis. Our study shows that SUVmax had higher diagnostic
performance, higher sensitivity and better speci�city than ADC, as well as the presence of signi�cant
correlation with N stages which has not been found in ADC. Nevertheless, ADC can predict tumor
aggressiveness and lymph nodes involvement prediction but with limited e�cacy. The importance of
successful prediction of tumor aggressiveness and lymph nodes involvement might help in practice to
increase the aggressiveness of the therapy.

Based on our study results and �ndings, there were several correlations between PET/MRI imaging
parameters and clinical tumor characteristics, we suggest that glucose metabolism assessed by 18F-FDG
and cellularity assessed by ADC have different roles in cancer evaluation, so we recommend PET/MRI as
a combined examination rather than PET or MRI alone.

As for this study’s limitations, First, the heterogeneity of the tumor localization. Second, our study focused
on the search of correlation between 18F-FDG, ADC and histopathological features only in HNSCC. Third,
associations with other functional tumor parameters, such as apoptosis factors and were not analyzed.
Fourth, design of the study was retrospective.

Conclusion:
Our results revealed no linear correlation between the FDG PET and DWI-MR parameters. The FDG PET-
based glucose metabolic and DWI MR derived cellularity data may represent different biological aspects
of HNSCC tumors and simultaneous PET/MR imaging could provide complementary diagnostic
information. SUVmax, have shown higher accuracy in predicting tumor aggressiveness than ADC.

Abbreviations
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Figure 1

ADC and 18F-FDG measurements of 67 male patient with Oropharyngeal carcinoma. (A) T2-PET_tirm
coronal MRI show the intensive FDG accumulation (arrow). (B) T1-tse-sagittal show the horizontal
spreading of the tumor (arrows). (C) T1-PET fused image show the ROI within the tumor (arrows), and (D)
DWI/ADC map showing the average and standard deviation of ADC value.
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Figure 2

Scatter diagram showing the correlation between the ADCmean and (A) SUVmax, (B) TLG and (C) MTV.
No signi�cant linear correlation observed between ADCmean and any of 18F-FDG parameters, P>0.05.
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Figure 3

Boxplots displaying the distribution of SUVmax, TLG, ADC and MTV (A, B, C and D) according to lymph
nodes status. (A) SUVmax values of positive lymph nodes tumors were signi�cantly higher than those
lymph nodes negative tumors (P=0.004). (B) TLG show no signi�cant difference between positive and
negative lymph node (P=0.134). (C) ADC values of positive lymph nodes tumors were signi�cantly lower
than those lymph nodes negative tumors (P=0.012) and �nally, (D) MTV positive lymph nodes tumors
and negative lymph nodes tumors were not statistically signi�cant difference (P=342).
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Figure 4

Receiver operating characteristic (ROC) curve analysis of lymph nodes prediction according to ADC and
SUVmax of primary tumor. (A) ADC (ROC) curve with AUC (73.1%), 95% con�dence interval was ranged
between 0.550 and 0.912, best cut off value was (0.981±0.97*10-3mm2/s) to diagnose lymph node
metastasis with sensitivity of 70.0% and speci�city of 78.7%. (B) SUVmax (ROC) curve with AUC was
80.8%, 95% con�dence interval was ranged between 0.633 and 0.984, best cut off value to diagnose
lymph node metastasis was (6.8±0.8) with sensitivity (83.6%) and speci�city 80.0%.


