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Introduction

Since the 19th century, advanced nations have mandated that the occurrence of death
be determined by a physician. During the autopsy, it is the doctor's responsibility
to establish the fact, manner, and time of death based on a detailed examination of
cadaveric phenomena and circumstances. Determining the time interval of death is one
of the oldest investigated areas in forensic medicine, posing challenges to professionals
from the beginning and remaining a subject of signi�cant research to this day.

Estimating the postmortem interval

Following death, various postmortem processes are initiated and take place in the
body, leading to the cooling and subsequent decomposition of the body: cessation of
metabolism, livor mortis (postmortem lividity), rigor mortis (sti�ening of the muscles),
algor mortis (cooling), and decomposition. The cooling process continues until the
body temperature reaches the ambient temperature. Over the centuries, numerous
methods have been developed to determine postmortem body temperature, relying on
the measurement of temperatures in various body parts, such as the external auditory
canal, under the armpit, in the brain, eyes, liver, or rectum.

Measuring and observing the speed of algor mortis can play a crucial role in esti-
mating the postmortem interval (PMI)1. However, this process provides only estimated
time intervals, so in certain cases, a more accurate result for the time of death can be
obtained by combining it with other methods such as rigor mortis and decomposition.

Newtonian cooling law

The �rst written results date back to the 1830s. The majority of measurements con-
ducted in the 19th century focused on cloak temperature, using thermometers with
di�erent scales. The problem was �rst addressed by Rainy [1] using mathematical
tools, describing it with the help of Newton's cooling law, and formulating the exis-
tence of a temperature plateau, which had been observed by several others before.

1The time elapsed since an individual's death.
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The basic equation of heat conduction, the Newtonian cooling law: A body with
heat capacity C1 and temperature T1, with surface area A, releases heat dQ = C1dT
during the time interval dt to its surroundings at a practically constant temperature
T2, with heat capacity C2, where C2 ≫ C1. Consequently, the body can be considered
in a constant temperature environment (T2).

The Newtonian cooling law is not suitable for providing a complete mathematical
description of the cooling process of a cadaver, as it does not account for the plateau
phase.

Marshall-Hoare formula

From a mathematical perspective, a new result is attributed to Marshall and Hoare,
who in 1962 developed an empirical formula. This formula consists of a linear combi-
nation of two exponential functions, making it suitable for the mathematical charac-
terization of the expected sigmoid cooling curve. The Marshall-Hoare formula [2]�[4]
is as follows:

Tr − Ta

T0 − Ta

= A · exp (Bt) + (1− A) · exp
(

AB

A− 1
t

)
(1)

where Tr and Ta represent the rectal and ambient temperatures measured at time t, and
T0 = 37.2◦C is a constant, representing the would be rectal temperature measured at
the time of death. In the formula, A and B are empirical parameters obtained through
experimentation. The values depend on whether the formula is applied to measure
temperature in brain and rectum. Technically, the formula is suitable for both cases,
with di�erent values for A and B (see Table 1).

(a)

Ta ≤ 23.2◦C ≥ 23.3◦C
A 1.25 1.11
B depends on body weight

(b)

Ta 10�20.5◦C
A 1.135
B -0.127

Table 1: A and B parameters for rectal and brain temperature measurements

In the case of rectal temperature measurements, B includes the body mass (m), i.e.:

B = −1.2815 ·m−0.625 + 0.0284 (2)

The Marshall-Hoare formula for rectal temperature measurements in the two tem-
perature ranges is as follows:

Ta ≤ 23.2◦C :

Tr − Ta

37.2− Ta

= 1.25 · exp (Bt)− 0.25 · exp (5Bt) (3)

Ta ≥ 23.3◦C :

Tr − Ta

37.2− Ta

= 1.11 · exp (Bt)− 0.11 · exp (10Bt) (4)
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Determining the time of death, exploring its in�uencing factors, has prompted further
investigations, methods, and the need for the continued development of the Marshall-
Hoare formula.

Henssge formula

Figure 1: Henssge formula[5]

The practical introduction of the Marshall-
Hoare formula is credited to Henssge [6], who
presented a simpli�ed method for determining
the cooling constant and introduced empirical
correction factors based on body mass [7]�[10].
Henssge determined correction factors for di�er-
ent numbers and thicknesses of clothing layers
and environmental conditions, allowing these
in�uencing parameters to be considered in the
estimation of PMI since they can modify the
resulting value. It's important to note that the
correction factors range from 0.75 and can go
up to 10.9. Additional correction is needed for
body mass beyond a value of 1.4 [10].

In the case of the Marshall-Hoare formula
extended with correction factors, the correction
applies to the estimated body mass. Thus, the
B parameter described in equation (2) is mod-
i�ed as follows:

B = −1.2815 · (k ·m)−0.625 + 0.0284, (5)

where k is the correction factor introduced by Henssge. The relationships described
in formulas (3) and (4) remain unchanged with Henssge's modi�cation, with the only
di�erence being the calculation of the B parameter value.

Since the Henssge formula is solved for t to estimate the time interval since death,
it becomes a transcendental equation, meaning it cannot be solved in closed form. To
�nd a solution, either a numerical method or a graphical solution method, known as a
nomogram or calculation chart, is required.

Henssge nomogram

Henssge [6] developed the graphical solution method for the Marshall-Hoare/Henssge
formula. He created various nomograms (see Figure 2) for rectal temperature mea-
surements in cases where the environmental temperature is below/above 23◦C, and a
separate nomogram was also designed for calculations involving the measurement of
brain temperature [11]. For both nomograms, we need to account for a certain degree
of uncertainty in the estimated time interval. In the case of Ta > 23◦C, the correction
factor can introduce uncertainties of up to ±2.8,±4.5,±7 hours. For a naked body, it
can exceed ±2.8,±3.2,±4.5 hours, with a con�dence interval of 95.45%.
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Figure 2: Henssge nomogram above 23 ◦C 2

2Image source: Pekka Saukko, Bernard Knight: "Knight's Forensic Pathology" (2015, 4th edition),
page 88.



Goals

The purpose of the study is to explore the in�uencing factors in estimating the PMI
and consider the possibilities of taking them into account.

The goal was to create a �exible mathematical model that can be easily adapted
to di�erent ethnic groups with varying anthropometric characteristics. It should be
suitable for application in various geographical regions and can be speci�cally retrained
with a small number of training data.

During the research, I also examined the margin of error in estimating the post-
mortem interval using the previously applied mathematical methods�the Henssge
method and its numerical solutions. The aim was to compare the results of my own
synthetic model with the results of other approaches.

During the research, the questions aimed to be addressed include:

1. Which regression method provides the best estimation?

2. What is the minimum amount of training data required for the synthetic model
to be applicable for PMI estimation?

3. What is the expected error of the estimation?

4. In which cases is the model not applicable?

5. How can the synthetic model be further improved?

5



Experiments and results with

synthetic model

A parameter estimation can be mathematically treated as solving a linear regression
problem, where we obtain a model suitable for estimating the postmortem interval.
There are various mathematical tools to choose from for this purpose, including di�er-
ent regression methods, decision trees, or solving it with neural networks. The goal is
to �nd a real function that best �ts a given training set. An example of a speci�c neural
network is the Support Vector Machine (SVM), which belongs to the set of supervised
learning methods. SVMs can be fundamentally used for linear classi�cation, regres-
sion, and outlier detection. Di�erent kernel functions can be applied to the decision
functions. The purpose of kernel methods is to transform a linearly solvable problem,
meaning that during their use, the data describing the task to be solved is transformed
into a transformed space using nonlinear transformations. An example of such a kernel
is the radial basis function (RBF).

The accuracy of estimating the invented mathematical model depends on the cor-
rectness of the relatively numerous parameters that can be provided. Based on these
parameters, the system learns to �t a pattern to cases and subsequently makes deci-
sions or estimates the time of death in cases it has not encountered before or similar
scenarios.

I used several di�erent regression tools with various settings as the basis for the
synthetic model. I sought the best parameterization for each tool individually and then
further improved the results by combining these mathematical tools. The examined
methods included:

� Regression tree,

� Random forests,

� Extremely randomized trees,

� Bagging-modi�ed tree,

� SVR with RBF kernel,

� SVR improved with adaptive boosting.
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Results of training

Based on the results provided by the regression tools used with di�erent parameteri-
zations and tested with various settings, it can be observed for all methods that with
a larger amount of training data, they are increasingly capable of estimating the time
of death with smaller errors (3 �gure). Considering both MAE, MSE, and R2 values
(approaching 1), the combined application of SVR and adaptive regression tree proves
to be the most e�ective. This method further improves upon the results obtained by
SVR alone.

(a) SVR

MAE MSE R2

C=10 0.2578 0.2746 0.9886
C=20 0.2255 0.2252 0.9906
C=50 0.1979 0.1828 0.9924
C=100 0.1683 0.1290 0.9947

(b) AdaBoost + SVR

MAE MSE R2

C=10 0.2177 0.1340 0.9944
C=20 0.1875 0.0987 0.9959
C=50 0.1820 0.1109 0.9954
C=100 0.1606 0.0762 0.9969

Table 2: Results obtained with SVR and AdaBoost + SVR with C = 50 and C = 100
parameters, using approximately 11,000 cases.

Here, the C parameter represents the compromise between minimizing misclassi�ca-
tion errors and maximizing decision boundary. Based on Table 2, it can be concluded
that increasing the value of C can further improve the achieved results.

Comparing the results of various selected methods, it can be stated that the two
best results are provided by SVR and AdaBoost+SVR, as seen in Figure 4 and Table 3.
These two methods yield the most test results within 1σ.

Table 3: Results of various methods for 1σ and 2σ cases.

Name 1σ value 2σ value 1σ 2σ
Decision tree −1.1751�1.0571 −2.2912�2.1732 2161 (80.36%) 2546 (94.68%)
Bagging −0.64297�0.60864 −1.2688�1.2344 2004 (74.53%) 2506 (93.19%)
Random forests −0.64995�0.59144 −1.2706�1.2121 2034 (75.64%) 2504 (93.12%)
Extra trees −0.5316�0.51464 −1.0601�1.0395 2064 (76.76%) 2514 (93.49%)
SVR −0.60545�0.54442 −1.1804�1.1194 2292 (85.24%) 2569 (95.54%)
AdaBoost + SVR −0.3423�0.32924 −0.67807�0.66501 2076 (77.2%) 2552 (94.91%)

Comparing with the Henssge nomogram, where applying correction factors for both
temperature ranges results in an accuracy of ±2.8 hours, it can be stated that the
created model is capable of estimating the time of death with su�cient accuracy based
on the learned dataset, taking into account the limitations.

The current limitations of the synthetic model include the number of correction
factors, training data provided with half-hour accuracy, and the body weight ranging
from 50 to 100 kg.
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(a)

(b)

(c)

Figure 3: Errors of the Synthetic Model
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Figure 4: Results of various methods for 1σ and 2σ cases.

From Figure 3, it can be observed that most selected mathematical tools can esti-
mate the time of death with low errors even with a minimum of 3000 training cases
under the current settings. Since only a small amount of data is required for training,
the model can be applied in various geographical regions (considering smaller geograph-
ical units). It is easily adaptable to speci�c populations with di�erent anthropometric
characteristics or residing in di�erent climatic zones.

Comparison with other results

Neural Network

Zerdazi and colleagues [12] developed a neural network-based method for estimating
PMI, using multi-layer feedforward networks and supervised learning. They used a
learning sample of 257 individuals collected by a forensic pathologist to demonstrate the
advantages of their new technique. They characterized the accuracy of their approach
using mean squared error and mean absolute error and compared it with the results
obtained by the Henssge formula. Measurements were consistently taken under the
same conditions: dry, motionless air, and a completely naked body.
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They compared the obtained results with the Henssge method and used mean
squared error to characterize it. Based on this, it can be concluded that the neu-
ral network provides much more accurate PMI estimates (4). I compared these results
with the ones obtained by the synthetic model.

Method Name MSE MAE
Henssge Formula 20.83 3.52
Zerdazi Neural Network 5.69 1.85
SVR 0.14 0.17
AdaBoost + SVR 0.12 0.17

Table 4: Comparison of MSE and MAE values for the Henssge formula, Zerdazi neural
network, and the synthetic model

The next version of the comparative study was limited to cases where the post-
mortem period did not exceed 7 hours. The results obtained in this way are summarized
in Table 5. For the purpose of comparing the results of the Zerdazi neural network
and the synthetic model, I retrained and tested the model with the parameters used
by Zerdazi and colleagues to obtain their results. The errors of the synthetic model's
SVR and AdaBoost + SVR estimated results are presented in Tables 4 and 5.

Method Name MSE MAE
Henssge Formula 21.14 3.51
Zerdazi Neural Network 1.21 0.86
SVR 0.08 0.18
AdaBoost + SVR 0.05 0.14

Table 5: Comparison of MSE and MAE values for the Henssge formula, Zerdazi neural
network, and the synthetic model for cases with a post-mortem period under 7 hours

Overall, based on the MAE and MSE values in Tables 4 and 5, it can be concluded
that the synthetic model estimated with an order of magnitude lower error compared
to the Zerdazi neural network.

Results based on real test data

I tested the synthetic model on real data as well. For the test data, I randomly selected
cases from the database published by Muggenthaler and colleagues, paying attention
to verifying the limitations of the currently trained model [13].

Based on the evaluation of the results, it can be concluded that in 5 out of the 20
selected cases, the deviation is greater than 150 minutes compared to the values read
from the graph. According to the published table, it can be determined that there
could be several reasons for the deviation:



11

� In each case, there was a delay between the onset of death and the start of
measurement (on average 130 minutes).

� The initial body temperatures also show deviations from the de�ned initial tem-
perature in the Henssge method, which is 37.2◦C,

� The synthetic model was trained on masses between 50 and 110 kg, and adjust-
ments may be needed for values below and above this range, especially in cases
involving multiple layers of clothing.

� Certain diseases, such as septic cases, can lead to body temperatures lower or
higher than normal.

� No correction factors were speci�ed in the published data, so I selected them
based on the clothing.

� The corpses were lying on a metal table in the refrigeration chamber.

� In the published cooling curves, the delayed start of measurements resulted in
the absence of the plateau phase in almost every case, and some do not exhibit
the expected sigmoid but rather a linear cooling process.

I veri�ed the real cases using the two methods that provided the smallest errors,
namely AdaBoost + SVR and SVR. I evaluated the results more thoroughly for these
methods, but it can be stated that the other regression methods did not yield signi�-
cantly worse results.

Based on the results obtained from real cases, it can be concluded that the model is
suitable for estimating PMI within the constraints of the training data. In non-standard
cases, however, the results should be treated with caution, and other postmortem
phenomena may need to be considered for a more accurate determination of PMI.
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Figure 5: Divergence from readings on the cooling curve for AdaBoost + SVR

No. |SM2925 − Tg|[min] |SM3909 − Tg|[min] |SM10755 − Tg|[min]
3 57 38 44

8 13 21 1

10 148 147 146

13 38 32 24

17 411 397 351

19 40 11 52

23 398 370 307

29 43 42 38

34 261 318 83

44 50 52 57

46 35 2 26

52 27 32 45

61 37 51 30

69 138 161 173

72 278 279 282

75 74 65 61

76 358 366 363

80 143 118 155

83 118 158 106

84 129 144 109

Table 6: Divergence from readings on the cooling curve for AdaBoost + SVR
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Figure 6: Divergence from readings on the cooling curve for SVR

No. |SM2925 − Tg|[min] |SM3909 − Tg|[min] |SM10755 − Tg|[min]
3 52 37 39

8 4 4 5

10 146 147 150

13 40 27 19

17 455 358 299

19 171 150 192

23 330 229 150

29 41 41 41

34 288 302 191

44 52 47 55

46 73 46 107

52 29 29 24

61 35 35 54

69 133 152 158

72 263 285 269

75 57 60 59

76 349 362 369

80 133 172 164

83 214 97 95

84 99 93 123

Table 7: Divergence from readings on the cooling curve for SVR



Conclusion

In the course of my PhD work, the aim was to explore the factors in�uencing PMI
estimation and to identify suitable tools for creating a �exible mathematical model
capable of estimating with smaller errors than the Henssge nomogram.

During my research, I used machine learning tools to create a synthetic model ca-
pable of incorporating factors in�uencing PMI with training data, meaning it does
not require knowledge and use of the Henssge formula with correction factors, and it
does not contain empirical variables. The model was based on generated data resem-
bling reality, and a more detailed discussion of this will follow later. The goal was to
create a �exible, easily adaptable mathematical method. Since the estimation of the
postmortem interval can be conceived mathematically as solving a linear regression
problem, I chose machine learning tools based on this. My choice fell on a supervised
learning method, Support Vector Machine (SVM), which can be considered as a spe-
cial type of neural network suitable for solving both linear and classi�cation problems.
Various kernel functions can be chosen for the decision function, and the synthetic
model uses the Radial Basis Function (RBF) to transform the data describing the task
into kernel space through nonlinear transformations.

Throughout my work, the goal was to demonstrate that there is a regression method
that provides better results than the Henssge formula. The examined tools include
SVR with RBF kernel, regression tree, random forests, extremely randomized trees,
bagging modi�ed tree, and adaptive boosting improved SVR. The question is which

method provides the best estimation, and what is the expected error of the estimation?
Based on the results of the study, it can be stated that machine learning tools, such
as decision trees or SVM, provided better results in estimating PMI than the Henssge
formula. The created synthetic model was trained with various numbers of training
data, ranging from 968 to 11708 cases, increasing by approximately a thousand in each
step. For each di�erent number of training cases, I estimated the PMI results with
every selected regression method using a consistent set of 500 test cases. The errors
(MAE, MSE, R2) and parameterization of the methods were recorded.

To compare the errors, I used the results of Zerdazi's neural network [12], evaluat-
ing the errors in two ways: MAE and MSE. The results of Zerdazi's neural network
were MSE = 5.69 and MAE = 1.85. Comparing these errors with the errors of
the synthetic model, it can be concluded that the synthetic model provides a more
accurate estimation of PMI. During the investigations, it was found that the best re-
sults for PMI estimation were achieved with the use of SVM with RBF kernel and

14
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AdaBoost together. The errors of the model for the SVM method were MSE = 0.14
and MAE = 1.17, while for the AdaBoost+SVR method, they were MSE = 0.12
and MAE = 1.17. The average error of the model within the con�dence interval is
0.17± 0.34 hours, considering the current limitations of the model.

An important question regarding the applicability of the synthetic model was how
much test data is needed for training the model to estimate PMI accurately. The
created synthetic model is easily adaptable to populations with di�erent characteristics
or living in di�erent climatic zones. This adaptability arises from the fact that the
model is not based on a �xed, empirical mathematical relationship but can estimate
based on learned data, taking into account speci�cities typical for the given area or
population, which are included in the training data. Another advantage of the synthetic
model is that it requires a small number of training data for PMI estimation. Currently,
the model can achieve low errors with as few as 3000 training data, considering the
current structure and the number of features.

The question posed previously was: In which cases can the model not be applied?

The model learns from data generated using the Henssge formula, which imposes lim-
itations on its applicability. However, these limitations arise only due to the nature
of the data; the method itself is universal. The aim of the study was to demonstrate
the model's actual applicability under speci�c conditions. The nature of the method
is such that if trained on real data, it can be used in more general cases. I base this
claim on the fact that the current model, based on limited data, provided accurate es-
timates when compared with empirical data. In terms of environmental temperature,
the applicability ranges between -10°C and 35°C; it cannot provide results below or
above this range. Incorrect results may also be obtained if the rectal temperature is
lower than the environmental temperature. In practice, this situation may occur if the
body has been cooled and then moved to a warmer place or if the environmental tem-
perature has been consistently low and starts to rise, but the body has not yet reached
the ambient temperature. According to the Henssge nomograms, it can be observed
that there is a temporal limitation to applicability (currently 18 hours), depending on
the environmental temperature. Above 23◦C, it is a maximum of 30 hours, and below
23◦C, it can be up to 70 hours, but with a very high error. With the use of correction
factors, this uncertainty can be as much as ±7 hours, while for a naked body, it is ±4.5
hours.

During the testing of the synthetic model, I encountered cases that, while not
meeting the previously listed exceptions, still estimated with higher error both for the
synthetic model and the Henssge formula. One notable example is when the body has
a diaper, which leads to incorrect results for both the synthetic model and the Henssge
formula. Since rectal temperature is taken into account by both the Henssge formula
and the synthetic model, the correction factor for the entire body clothing is not suitable
to characterize the insulating e�ect of the diaper. Therefore, mathematical models will
provide much shorter times in such cases. These are typically situations that do not
conform to a template suitable for applying an empirical formula. Thus, even if the
mathematical model estimates with a small error, the obtained result must always be
treated with caution and, if necessary, reconsidered, or interpreted in conjunction with
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early postmortem phenomena.

Current limitations of the synthetic model

1. It does not handle modi�ed correction factors.

2. Since I used the Henssge formula to generate data, the model learned its possible
errors and limitations.

3. The intervals for time, environmental temperature, and body weight cannot be
changed without modifying the code:

(a) time: 1�18 hours, with a step size of 0.5 hours,

(b) environmental temperature: -10�35◦C, with a step size of 0.5◦C,

(c) body weight: 50�100kg, with a precision of 0.5kg.

4. Reading training and test data from a �le with a speci�c structure.

5. The code for training and estimation is usable from the command line with the
appropriate switches.

Possible enhancements for the synthetic model

1. Automatic handling of modi�ed correction factors.

2. Adapting the code to read training and test data from a �le with a speci�c
structure.

3. Allowing the generation of data for arbitrarily speci�ed time, environmental tem-
perature, and body weight intervals with arbitrary step sizes as an optional fea-
ture.

4. Creating a user-friendly graphical interface for training.

5. Developing a user-friendly graphical interface for entering data required for esti-
mation.

6. The long-term goal is to publish the model on a platform that allows testing in
everyday practice.



Summary of new scienti�c results

1. I created a machine learning-based model for PMI estimation using synthetic
data. The model is easily adaptable to populations with di�erent characteristics
or living in di�erent climatic zones.

2. I studied the e�ectiveness of various machine learning tools. The model using
decision trees and SVM produced more accurate estimates than methods based
on the Henssge formula or neural networks.

3. I developed a freely accessible Python script that implements the model and
is suitable for PMI estimation. The model is continuously improvable, giving
meaningfull results even when training with a low number of data, and provides
low error rates.

4. I compared the created model with other machine learning-based methods. The
model yielded more accurate results than the neural network-based method.

5. I compared the created model with empirical data. With the synthetic model, I
provided a more convenient, modern, and accurate solution for PMI estimation
than the Henssge nomogram.
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