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1. List of abbreviations 
 

ACR – American College of Radiology 

AI – Artificial Intelligence 

BET – Brain Extraction Tool 

CNN – Convolutional Neural Network 

CSS – Cascading Style Sheets 

CT – Computed Tomography 

DICOM – Digital Imaging and Communications in Medicine 

DOM – Document Object Model 

DSL – Domain Specific Language 

DTI – Diffusion Tensor Imaging 

FAST – FMRIB’s Automated Segmentation Tool 

FDT – FMRIB’s Diffusion Toolbox 

FLIRT – FMRIB's Linear Image Registration Tool 

fMRI – functional Magnetic Resonance Imaging 

FEAT – FMRIB's Expert Analysis Tool 
 
FIRST – FMRIB's Integrated Registration and Segmentation Tool 

FNIRT – FMRIB’s Non-Linear Image Registration Tool 

FSL – FMRIB Software Library 

GPU – Graphical Processing Unit 

HIS – Hospital Information System 

HL7 – Health Level 7 

HTML – HyperText Markup Language 

HTML5 – HyperText Markup Language 5 

ITK – Insight Segmentation and Registration Toolkit 

JSON – JavaScript Object Notation 

LLM – Large Language Model 

LLVM – Low Level Virtual Machine 

MINC – Medical Imaging NetCDF 

MRI – Magnetic Resonance Imaging 

NEMA – National Electrical Manufacturers Association 

NIfTI – Neuroimaging Informatics Technology Initiative 
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PACS – Picture Archiving and Communication System 

PET – Positron Emission Tomography 

RIS – Radiology Information System 

SDK – Software Development Kit 

SPA – Single Page Application 

SPM – Statistical Parametric Mapping 

SWI – Susceptibility Weighted Imaging 

TNM – Tumor, Node, Metastasis 

TPU – Tensor Processing Unit 

URL – Uniform Resource Locator 

VBM – Voxel Based Morphometry 

WebGL – Web Graphics Library 
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2. Introduction 
 

The modern era of digital medicine has witnessed incredible pace in technological 

development, enhancing the ability of healthcare professionals to provide better patient care 

[1]. One critical area where these advancements have been most apparent is medical imaging 

and radiological reporting, which plays a vital role in diagnosing, treating, and managing 

numerous health conditions [2]. The development of browser-based software systems for 

these fields is, therefore, not only significant but also transformative in its implications for 

global health [3]. 

It is increasingly clear that medical image processing and radiological reporting is moving 

from being predominantly hospital-based to more decentralized, user-friendly, and accessible 

systems [4]. In the past, the use of these systems was often restricted by the need for high 

computational power, proprietary software, and complex user interfaces. However, 

advancements in computing technology [5] and the growth of cloud-based services have 

provided an opportunity to revolutionize these systems' delivery and access. 

Browser-based software systems are at the forefront of this evolution [6] [7]. They provide 

the advantage of platform-independence, enabling healthcare professionals to access medical 

images and reports from virtually any device with an internet connection. This flexibility 

promotes better patient care by enabling faster, more efficient diagnoses and more effective 

communication among healthcare professionals. 

Moreover, the complexity and steep learning curve associated with traditional medical 

software systems often pose a challenge for medical professionals. Ease-of-use is a key 

attribute of any software system, and this holds especially true for those used in healthcare. 

These professionals must navigate complex data quickly, and their tools should be intuitive 

and straightforward, reducing time spent on technicalities and freeing up more time for 

patient care. 

The browser-based software systems designed for medical image processing and radiological 

reporting will streamline the way healthcare providers access, interpret, and share medical 

images and reports. By simplifying the user interface and improving accessibility, these 

systems can minimize technical barriers, enhance efficiency, and ultimately contribute to 

improved patient outcomes. 
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2.1. An overview of radiological information systems 
 

Radiological Information Systems (RISs) have emerged as indispensable components in 

managing healthcare imaging departments, as they streamline administrative and operational 

tasks, enhance workflow efficiency, and facilitate communication among healthcare 

professionals. RISs are specialized software systems designed to address the multifaceted 

needs of radiology departments, incorporating various functions, such as patient scheduling, 

examination tracking, reporting, and billing. By integrating RISs with other information 

systems like Picture Archiving and Communication Systems (PACSs) [8] and Hospital 

Information Systems (HISs) [9], seamless information exchange is enabled, thereby 

improving the overall quality of patient care. 

 

A RIS generally consits of several core components that work together to manage the 

different aspects of radiology department operations: 

 

1. Patient Registration and Scheduling: 

 

This module manages patient demographic information, examination appointments, 

and referral details. It enables efficient scheduling of radiological examinations, 

taking into account resource availability and patient preferences. 

 

2. Examination Tracking and Workflow Management: 

 

This component monitors the progress of radiological examinations throughout their 

lifecycle, from the initial request to the final report delivery. It also facilitates the 

optimization of workflows by identifying bottlenecks, managing resources, and 

ensuring seamless coordination among healthcare professionals. 

 

3. Radiological Reporting: 

 

A crucial element of RIS, the reporting module enables radiologists to generate, store, 

and distribute diagnostic reports. This module often includes tools for dictation, 
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transcription, report editing, and electronic signature, as well as access to standardized 

templates and terminology resources. 

 

4. Image and Data Management: 

RIS often interface with PACS to handle the storage, retrieval, and distribution of 

medical images and associated data. This integration ensures that radiologists can 

easily access relevant images and clinical information while creating diagnostic 

reports. 

 

5. Quality Assurance and Performance Monitoring: 

This component of RIS allows radiology departments to monitor and evaluate the 

quality of their services by tracking key performance indicators, such as report 

turnaround time, examination accuracy, and patient satisfaction. 

 

6. Billing and Financial Management: 

RIS include functionality for managing the financial aspects of radiology services, 

such as generating invoices, processing insurance claims, and tracking accounts 

receivable. 

 

Modern RISs are designed to be highly functional, user-friendly, and interoperable, ensuring 

seamless integration with other healthcare information systems. Interoperability is achieved 

through the use of standardized data exchange protocols, such as Digital Imaging and 

Communications in Medicine (DICOM) [10] for image data and Health Level 7 (HL7) [11] 

for clinical and administrative information. 

 

 

2.2. Basics of medical image processing 

 

Medical image processing encompasses a wide array of techniques and algorithms aimed at 

enhancing, analyzing, and interpreting medical images to assist healthcare professionals in 

diagnosing and treating diseases. These techniques can involve various operations, such as 

image filtering, segmentation, registration, and reconstruction, which may be applied to 
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different types of medical images, including computed tomography (CT), magnetic resonance 

imaging (MRI), and ultrasound. 

 

 

2.2.1. The DICOM format 

 

The DICOM format is a widely adopted standard for the storage, exchange, and management 

of medical images and associated metadata. Developed by the American College of 

Radiology (ACR) and the National Electrical Manufacturers Association (NEMA), DICOM 

ensures interoperability among various medical imaging devices, software applications, and 

information systems, facilitating seamless integration within healthcare environments. 

DICOM images comprise two main components: the image data, which typically represents a 

two-dimensional array of pixel values, and the header, which contains essential metadata 

about the image, such as patient demographics, acquisition parameters, and modality-specific 

information. The DICOM format supports various image compression schemes, enabling 

efficient storage and transmission of medical images without significant loss of quality. 

 

 

2.2.2. Medical image processing applications 

 

Several software applications and libraries have been developed for processing and analyzing 

medical images, in both clinical and research settings. Some popular software tools include 

the FMRIB Software Library (FSL) [12], an open-source software suite for the analysis of 

functional, structural, and diffusion MRI data, which includes tools for image preprocessing, 

statistical analysis, and visualization. Another widely used application is 3D Slicer [13], an 

open-source, extensible platform for medical image processing and visualization that 

supports a wide range of image formats, including DICOM. It offers various features, such as 

image segmentation, registration, and three-dimensional visualization, and can be customized 

through plugins. 

In addition to FSL and 3D Slicer, the ITK (Insight Segmentation and Registration Toolkit) 

[14] is an open-source, cross-platform C++ library for image processing, segmentation, and 

registration. It provides a comprehensive collection of algorithms for medical image analysis 

and is widely used in both academia and industry. For radiology workflows specifically, 
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OsiriX [15] is a DICOM viewer and image processing software for macOS that supports 

various image manipulation and analysis features, such as multiplanar reconstruction, volume 

rendering, and image fusion. 

 

 

2.3. Neuroimaging 

 

2.3.1. Description 

 

Neuroimaging is a subset of medical image processing that focuses on the visualization and 

analysis of the structure and function of the brain and central nervous system. It encompasses 

a wide range of imaging modalities, such as magnetic resonance imaging (MRI), functional 

magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), positron emission 

tomography (PET), and computed tomography (CT), among others. Neuroimaging plays a 

crucial role in clinical diagnosis, treatment planning, and research related to various 

neurological and psychiatric disorders, as well as the understanding of normal brain function. 

MRI is a particularly important modality in neuroimaging, as it is noninvasive and provides 

high-resolution images of the brain's anatomy without exposing patients to ionizing radiation. 

MRI relies on the principles of nuclear magnetic resonance to generate images based on the 

relaxation properties of hydrogen nuclei within tissue. By applying different sequences of 

radiofrequency pulses and magnetic field gradients, MRI can produce images with varying 

contrast and sensitivity to specific tissue characteristics, such as T1 and T2 relaxation times, 

proton density, and diffusion properties. 

 

 

2.3.2. File formats 

 

In neuroimaging, data is often stored in file formats specifically designed for this purpose. 

The Neuroimaging Informatics Technology Initiative (NIfTI) [16] format is one such widely 

adopted standard for storing and analyzing MRI, fMRI, CT, and any other neuroimaging 

data. The NIfTI format extends the widely used Analyze [17] format by incorporating 

additional header information, such as image orientation, spatial and temporal units, and data 

scaling, which is essential for proper interpretation and analysis of neuroimaging data. 
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Another commonly used format is the Medical Imaging NetCDF (MINC) format, developed 

by the Montreal Neurological Institute, which supports multidimensional, multi-variate, and 

multi-resolution data, along with extensive metadata. 

 

 

2.3.3. Common processing algorithms 

 

MR image processing involves several challenges related to the complexity and variability of 

brain anatomy, as well as the presence of noise, artifacts, and distortions in the acquired 

images. Common preprocessing steps include image registration (Fig. 1.), which involves 

aligning images from different time points or modalities; image segmentation, which involves 

partitioning the image into distinct regions corresponding to different tissue types or 

anatomical structures; and image denoising, which aims to reduce noise and enhance image 

quality. A subset of image segmentation is brain extraction (Fig. 2.), where the non-brain 

tissue is separated from the brain tissue, and is removed from the image. In addition to these 

techniques, MRI data can be analyzed using various quantitative methods, such as voxel-

based morphometry (VBM) for studying structural differences between groups or individuals, 

and functional connectivity analysis for exploring functional interactions between brain 

regions. 

 

 
 

Figure 1 – Linear registration – In this figure three axial slices of three different MRI volumes are shown. The left image is a 

slice of an SWI MRI volume, the middle image is a slice of a T1-weighted MRI volume, and the right image shows a slice of 

a volume that is the combination of the first two. The FMRIB's Linear Image Registration Tool (FLIRT) was used to register 

the SWI volume to the reference T1 volume, which were then blended together to produce the combined volume shown on the 

right image. The red cross is used to navigate the slices of the volume, and to select voxels. The images are screenshots from 

our WebMRI application. (To better illustrate the correction the linear registration performs, the first image was rotated 

clockwise, thus the red cross is also rotated.) 
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Figure 2 – Brain extraction - The left image shows an axial slice of an SWI MRI volume, and the right 

image shows the same slice after the FSL Brain Extraction Tool (BET) has been applied to the 

volume. The red cross is used to navigate the slices of the volume, and to select voxels. The images 

are screenshots from our WebMRI application. 

 

 

Several software tools have been developed specifically for neuroimaging data processing 

and analysis. One of the most widely used tools is the aformentioned FSL. It includes tools 

for image registration (FLIRT, FNIRT) [18] [19], segmentation (FAST, FIRST), statistical 

analysis (FEAT, RANDOMISE), brain extraction (BET) [20], and diffusion modeling (FDT), 

among others. 

Another popular software package is the Statistical Parametric Mapping (SPM) software, 

developed by the Wellcome Trust Centre for Neuroimaging. SPM is an open-source 

MATLAB-based toolbox for the analysis of functional and structural neuroimaging data, 

offering a wide range of preprocessing, statistical modeling, and visualization tools. 
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2.4. Radiological reporting 
 

As shown earlier in the Introduction, radiological reporting is an important component of the 

RIS, and in the diagnostic process of medical imaging, as it communicates the interpretation 

of the radiologist of the imaging findings to the referring physicians and other healthcare 

providers. Accurate, clear, and concise reporting is essential for effective patient care and 

treatment planning. Two main approaches to radiological reporting currently dominate the 

field: dictation-based reporting and template-based structured reporting. 

Dictation-based reporting is the most commonly used method for generating radiology 

reports. In this approach, the radiologist verbally describes the imaging findings and their 

clinical implications using a microphone, and the recorded speech is either transcribed by a 

medical transcriptionist or converted to text using speech recognition software [21]. 

Dictation-based reporting allows for free-form, natural language expression, which can be 

efficient and flexible, enabling radiologists to tailor their descriptions to the specific case at 

hand. However, this method can also result in significant variability in report structure, 

terminology, and content, as different radiologists may use different styles, abbreviations, and 

levels of detail, even when describing the same findings. This variability can lead to 

challenges in interpreting and comparing reports across different readers, institutions, or time 

points, potentially affecting the quality and consistency of patient care. 

 

 
Figure 3 – A list of structured reporting templates as seen on the RadReport Template Library 

website of the Radiological Society of North America (RSNA). The templates can be searched and 

filtered based on specialty (CT, MR, etc.), date of creation and language, among other parameters. 

Selecting a template from the list navigates to a page that renders it. Source: https://radreport.org 

https://radreport.org/
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Template-based structured reporting [22] aims to address these limitations by providing a 

standardized framework for organizing and presenting radiological findings. Structured 

reporting templates consist of predefined sections, headings, and data elements that guide the 

radiologist in systematically describing the relevant imaging findings, using consistent 

terminology and layout. The use of structured reporting templates can help improve the 

clarity, completeness, and consistency of radiology reports [23], making it easier for referring 

physicians to extract the pertinent information and reducing the risk of miscommunication or 

misinterpretation. 

Structured reporting also has several additional advantages over dictation-based reporting. It 

facilitates the extraction of structured data from reports, which can be used for quality 

assurance, research, and decision support purposes, as well as the development of radiology 

informatics tools, such as natural language processing and machine learning algorithms. 

Furthermore, structured reporting can improve report turnaround time and reduce 

transcription errors, by directly entering the relevant information into the electronic medical 

record. 

However, the adoption of structured reporting also faces certain challenges and drawbacks. 

Some radiologists may find the use of templates restrictive or time-consuming, especially if 

the templates are not well-designed or tailored to their specific workflow and clinical context. 

Moreover, the implementation of structured reporting may require significant resources for 

template development [24] [25], customization, and integration with existing radiology 

information systems, as well as training and support for radiologists in using the new 

reporting tools. 

In conclusion, both dictation-based and template-based structured reporting have their 

respective benefits and drawbacks in the context of radiological reporting. The choice 

between these approaches depends on various factors, including the specific needs and 

priorities of the radiology department, the available resources and infrastructure, and the 

preferences of the radiologists themselves. Ultimately, the goal should be to adopt reporting 

practices that optimize the quality, efficiency, and consistency of radiological 

communication, in order to support the best possible patient care and outcomes. 
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2.5. Web-based software systems in radiology 
 

The advent of web-based technologies and the increasing capabilities of modern web 

browsers have had a significant impact on various aspects of radiology, including image 

viewing, processing, and reporting. Web-based software systems offer a number of 

advantages over traditional desktop applications, such as platform independence, ease of 

deployment and maintenance, and the ability to access data and services from any device 

with an internet connection. 

One of the main applications of web-based software systems in radiology is the development 

of web-based PACSs. PACSs are essential components of modern radiology departments, as 

they provide the means to store, retrieve, and distribute medical images across different 

modalities, workstations, and facilities. Web-based PACSs allow radiologists and other 

healthcare professionals to access and view medical images through a standard web browser, 

without the need for specialized software or hardware. This can improve the efficiency and 

flexibility of image interpretation, as well as facilitate collaboration and consultation among 

clinicians and radiologists, regardless of their physical location. 

Several web-based PACS solutions have been developed and commercially available, such as 

Ambra Health, and Sectra PACS, among others. These systems typically leverage web 

technologies, such as HTML5, JavaScript, and WebGL, to provide advanced image viewing 

and manipulation capabilities within the browser, including multi-planar reconstruction, 

window leveling, and 3D visualization. Some web-based PACS also incorporate additional 

features, such as image annotation, reporting, and integration with electronic medical records, 

to support the end-to-end radiology workflow. 

Another area where web-based software systems are making an impact is in the field of 

medical image processing. Traditionally, medical image processing tools have been 

developed as standalone desktop applications or libraries, often requiring significant 

computational resources and specific software dependencies. However, recent advances in 

web technologies, such as WebAssembly and Web Workers, have enabled the development 

of browser-based image processing applications that can perform complex operations, such as 

segmentation, registration, and feature extraction, directly within the browser, without the 

need for server-side processing or software installation. 

A notable example of a web-based medical image processing platform is BrainBrowser, an 

open-source JavaScript library that provides 2D and 3D visualization of neuroimaging data, 
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including MRI, fMRI, and DTI, in the browser. BrainBrowser leverages WebGL for 

hardware-accelerated rendering and supports various neuroimaging file formats, such as 

NIfTI and MINC. Thanks to its modular nature, it’s easily extensible. 

Another extensible web-based solution is cornerstone.js, which is a set of well-defined 

DICOM and image processing libraries. Using these components one can develop a full-

fledged DICOM image viewer. From annotations to windowing, the feature set is rich enough 

to cover most use-cases. 

 

 

2.6. Artificial neural networks in radiology 

 

The growing capabilities of Graphical Processing Units (GPUs) and Tensor Processing Units 

(TPUs) accelerated the field of Artificial Intelligence (AI). With the increasing processing 

power of these devices more sophisticated and larger neural networks could be developed, 

and they could be trained on bigger datasets in shorter amount of time. Since radiological 

devices, such as a CT scanner or an MRI machine, produce large amounts of data even for a 

single patient, GPU/TPU innovations benefited the field of medical AI greatly. From 

segmenting organs on a whole-body CT scan [26], to detecting pneumonia on an X-Ray 

image [27], the applications of neural networks in radiology are highly diverse. For image 

processing use cases, Convolutional Neural Networks (CNN) are widely used (Fig. 4.). The 

inspiration to CNNs came from the neural network architecture of the animal visual cortex. In 

the visual cortext a single neuron responds to stimuli coming from a restricted region of the 

visual field. These regions are called receptive fields. These fields partially overlap to cover 

the whole visual field. 
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Figure 4 –This figure shows the different layer types of a Convolutional Neural Network (CNN). The 

input is image is fed through a series of convolutional and max pooling layers. After these, the model 

contains several fully connected layers, which are then connected to the output layer. In this image 

classification example, the neurons in the output layer give a probability for each class (pbird, psunset, 

etc.), and the class with the highest probability is selected as the final output. Source: 

https://towardsdatascience.com/covolutional-neural-network-cb0883dd6529 

 

 
 
Figure 5 – This figure shows the architecture of the transformer block which is the core and most 

important part of any Large Language Model (LLM). Source: https://arxiv.org/pdf/1706.03762.pdf 

 

Large Language Models (LLMs) (Fig. 5.) use a neural network architecture called a 

transformer. Transformers introduce self-attention mechanism, which allows the inputs to 

interact with each other and learn which other inputs they should pay attention to. This 

https://towardsdatascience.com/covolutional-neural-network-cb0883dd6529
https://arxiv.org/pdf/1706.03762.pdf
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mechanism is the key to the success of LLMs in natural language processing tasks, such as 

text generation, translation, content summary or sentiment analysis, where the meaning of a 

word can change based on its context within a sentence or document. 

With the recent advancements in LLMs such as GPT4 or ChatGPT, there have been a 

growing interest in using these models in radiological reporting [28] [29]. 

LLMs provide a way to combine traditional free text reporting and structured reporting, by 

extracting the relevant information from a free text report based on a template. The template 

can serve as a prompt, which instructs the model to gather information from the text based on 

the template format. This allows radiologists to use the widespread way of dictation for 

reporting, but at the same time generate unified structured reports thus reducing problems 

arising from different styles of reporting. LLMs can also be used to propose different 

templates for a given disease or modality. 
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3. Aim and hypothesis 
 

The primary aim of this thesis is to investigate the feasibility of web-based medical software 

solutions in general. More specifically, to build and test a fully-browser based neuroimaging 

software: we aim to develop WebMRI [30], an open source, cross-platform, web based 

neuroimaging platform that builds on top of the open source BrainBrowser. The goal is to 

combine the volumetric visualization capabilities of BrainBrowser with the image processing 

power of FSL, and create a web-based platform that can perform useful neuroimaging tasks, 

such as brain extraction and linear registration by running solely inside the browser, without 

using a web server or any browser plugins. Our goal is to port the FSL BET and FLIRT tools 

to WebAssembly, so that they can run in a browser environment, and be a part of WebMRI.  

We propose another web based medical software, XReport [31]. With XReport our goal is 

not to push the performance boundaries of browsers, unlike with WebMRI, but to ship an 

easy-to-use, free and open source structured reporting platform for radiologist, with both 

template creation and reporting capabilities. We plan to compare it to other currently 

available template creation platforms. 

With our web-based software systems we wish to advance browser based neuroimaging and 

structured reporting, and also promote open source medical software. We will to release our 

solutions on Github. 
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4. Materials and methods 
 

4.1. Development of XReport, a web-based radiological structured 

reporting system 
 

XReport software was written as a web application to support all operating systems and 

devices. Two programming languages were used throughout the development process, 

namely JavaScript and TypeScript. The project can be divided into two main parts: the library 

and the application. The library is a standalone module that implements the core features of 

the software: template building and reporting. The application can be any host that integrates 

the library, in our case it is a Single Page Application (SPA). Our workflow of creating 

reporting templates resembles intentional programming [32]. The programmer builds the 

foundation (template builder) of the software on top of which the domain expert (radiologist) 

can build the actual application (template). The programmer can later add custom dynamic 

logic to the template. 

 

 

4.1.1. The library 

 

The library exposes four public methods to interact with: makeWidget, togglePreviewMode, 

getReportAsText and getTemplateForUpload. The entry point is makeWidget. It can 

instantiate a new empty template builder or load a template from a Uniform Resource Locator 

(URL). Internally it creates an instance of each of the following classes: XReportDOM, 

XReportRender, Evaluator. The XReportDOM implements a custom subset of the Document 

Object Model (DOM) which allows only specific elements of the DOM or compositions of 

DOM elements to be used. The XReportRender calls the render methods of the 

XReportDOM entities and uses them to assemble either a builder or a viewer component, 

depending on whether the library is in editor or viewer mode. In editor mode the templates 

can be modified, whereas in viewer mode they are read-only, and are ready to generate 

reports. The Evaluator is an interpreter for our Domain Specific Language (DSL) called 

FormScript. It adds dynamic behavior to the templates through simple if-else logics and 

calculations. An example of a typical use case for FormScript is to show or hide a specific 

field if certain conditions are met, or to calculate a score for a scoring system. To view the 
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generated report the library exposes the togglePreviewMode method. Calling this method will 

transfer the viewer from reporting state to output state or vice versa. In output state the 

reporter can see the textual output of the form. The generated text can be accessed by the 

getReportAsText function. When the library is in editor mode a template can be saved by first 

getting it in JavaScript Object Notation (JSON) format with getTemplateForUpload and then 

sending it to a web service or storing it locally. 

 

 

4.1.2. Template structure 

 

The templates are composed of rows, which may have one or more groups in it. Groups are 

label-entity pairs, and entities are the form’s input elements. 

 

The JSON structure of a template is as following: 

 

{ “formScript”: “Form script source code is here”, report: [{ XFormElem #1 }, { 

XFormElem #2 }…]} 

 

General fields in XFormElem: 

 

• type: defines what element to render, e.g. row, group, sel (select), mulsel (multiple select) 

• id: a random generated unique identifier 

• scriptAlias: an identifier/variable name by which FormScript can reference the field; auto-

generated, but can be changed by user 

• hideFromOutput: determines whether the value of the field should be visible in the 

generated text output 

• hidden: determines whether the field should be rendered 

• children: a list of groups in a row 

• child: the entity of a group 

 

There are fields specific to each entity but they are not listed here. 
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4.1.3. FormScript 

 

FormScript is a DSL that is specifically designed to run inside XReport templates. It allows 

custom logic to be executed safely in forms, thus adding dynamic behavior to them. The 

script can be edited when the library is in editor mode and is accessible through the getScript 

library call. Once saved, it is stored in the same JSON file as the template itself. 

 

The FormScript syntax is similar to that of JavaScript with some subtle syntactical 

differences. 

 

Supported binary operations:  

- addition (+) 

- subtraction (-) 

- division (/) 

- multiplication (*) 

- modulo (%) 

- less than (<) 

- greater than (>) 

- less than or equal to (<=) 

- greater than or equal to (>=) 

- equal to (=) 

- logical and (and) 

- logical or (or) 

- to the power of (^)  

 

 

Unary operations:  

- unary not (!) 

- unary minus (-) 

- unary plus (+)  

 

Statements:  

- expression 

- assignment 
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- if 

- function call  

 

Types:  

- string 

- boolean 

- number 

Numerical and string literals are supported. The only variables that are allowed in FormScript 

are references to form elements. As mentioned earlier, variables are defined in the editor 

through the scriptAlias property. Function calls are defined only on variables. It is not 

allowed to declare functions neither are there predefined library functions without an element 

context. Calling a function has the following form: variable.function(…parameters). 

Functions should be defined for XFormElem classes. When XReport loads a report, it checks 

for an attached script. If there is a script attachment, it will start running it in an Evaluator 

instance. 

 

 

4.1.4. Backend 

 

Our SPA has a backend powered by Google Firebase to store the template resources. We 

store the template files in storage buckets. The metadata for each template, such as date of 

creation, creator’s username, template name, template category is saved to Cloud Firestore 

documents. 

 

The process of uploading a template to our backend includes the following steps: 

 

• query template JSON from the library through getTemplateForUpload 

• assemble upload metadata: date of creation, category, username, template name, template 

URL 

• save the metadata to a Cloud Firestore document 

• upload the template JSON file to the storage 
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4.1.5. Frontend 

 

The frontend is built as a SPA using the Angular [33] and the Bootstrap Cascading Style 

Sheets (CSS) frameworks. Every icon used in the app are taken from the Font Awesome icon 

library. Angular supports client-side navigation, asynchronous data binding among others, 

which enables us to easily fetch and render views. To retrieve templates from Cloud Firestore 

we use the official Firebase JavaScript Software Development Kit (SDK) and the RxJS 

reactive programming library. In Firebase terms the templates form a collection, and 

individual entries in this collection are documents. To show these documents on the screen 

we followed the Model-View-ViewModel pattern with data binding. 

 

 

4.1.6. Converting free text to structured report using LLMs 

 

We experimented with automatic filling of our templates. We used GPT4 of OpenAI to 

generate structured reports from free text reports. The free text reports were test reports made 

up by us and did not contain real patient data in any form. We prompted the model with free 

text, and the template into which we want to convert the free text. 

Here is an example prompt snippet to instruct the model to convert a rectum primer tumor 

staging report into the corresponding template format available on the XReport demo 

website: 

 

We will provide a free text radiological report, and a structured radiological report template. 

Convert the free text format to the template format. 

 

Free text: 

A polypoid, mucinous mass is visible 3mm from the mesorectal fascia. The mass infiltrates 

the external sphincter. The length of the mass is 50mm. There are 5 enlarged lymph nodes, 2 

of them less then 5 mm in size, and 3 of them larger than 9mm. There are 2 tumor deposits 

inside the mesorectal fascia. 
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Template: 

{ 

„morphology”: [„polypoid”, „ulcerating”, „circumferential”, „semicircumferential”], 

„selectedMorphology”: „”, 

„appearance”: [„mucinous”, „non-mucinous”], „selectedAppearance”: „”, 

„lengthOfTumor”: { „value”: „”, „unit”: „mm” }, 

„sphincterInvolvement”: [„none”, „internal sphincter is involced”, „intersphincteric space 

is involved”, „external sphincter is involved”], „selectedSphincterInvolvement”: „”, 

„distanceTumorMesorectalFascia”: { „value”: „”, „unit”: „mm” } 

„lymphNodeInvolvemnet”: False, 

„numEnlargedLymphNodes”: 0, 

„numLymphNodesLessThan5mm”: 0, 

„numLymphNodesGreaterThan9mm”: 0, 

„tumorDepositInsideMesorectalFascia”: False, 

„numTumorDeposites: 0 

} 

 

The structure of the prompt gives hint to the model to what the task is. We guide the 

information gathering with a template, so we call this method template-guided LLM-based 

structured reporting. The guiding is both explicit and implicit: in some cases the property 

naming is explicit about what kind of information should be extracted there, such as 

„numLymphNodesLessThan5mm”. However, in other cases, such as „selectedMorphology”, 

the naming implicitly contains the information that whatever description the model finds 

about tumor morphology, it should chose from the „morphology” list. The template can be in 

any textual format, we chose JSON because the XReport templates are JSON files. The 

model output and the interpretation of the output will be discussed in the results section. 
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4.2. Development of WebMRI, a web-based modular neuroimaging 

platform 

 

The development of WebMRI consists of three main parts: 

- the porting of the brain extraction (BET) and linear registration (FLIRT) FSL tools to 

WebAssembly 

- extending BrainBrowser with a plugin system, and integrating the ported tools into 

BrainBrowser using this system 

- creating a demo application to showcase multiple neuroimaging workflows using the ported 

tools 

 

 

4.2.1. Porting FSL BET and FLIRT to WebAssembly 

 

For the porting we had to study the source code of FSL. It is essentially a modularly built 

software system, where each component can be separately compiled and run as a command-

line application. BET and FLIRT are such components of the FSL. 

 

The Emscripten porting (transferring from C++ to WebAssembly) consisted of the following 

sub-processes: 

 

1. Replacing the default compiler (gcc on Linux) with the Emscripten Compiler 

Frontend (emcc). 

2. Compiling all libraries required for the translation of BET and FLIRT (meshclass, 

newimage, prob, miscmaths, fslio, niftiio, znz, newmat, utils, zlib). 

3. Correcting errors that occurred during compilation, then recompiling. 

4. Compiling BET and FLIRT to Low Level Virtual Machine (LLVM) bitcode. 

5. Compiling the LLVM bitcode to WebAssembly. 

6. Writing a web worker that runs the program separate from the user thread, so that 

the user interface is responding while the operation is still ongoing. 

7. Creating a user interface through which you can communicate with the web 

worker. 
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The porting is based on the versions FSL 3.3.11, BET 2.1, FLIRT 5.4.2. We named the 

ported FSL modules bet2.js and flirt.js. 

 

 

 
Figure 6 – The modified architecture of BrainBrowser: we extended BrainBrowser with a plugin 

system, a dicom and a blend volume loader. 

 

4.2.2. The DICOM volume loader 

 

By default, BrainBrowser supports loading files in NIfTI, Medical Imaging NetCDF (MINC), 

and Massachusetts General Hospital (MGH) formats, but we extended it with two additional 

volume types: "dicom" and "blend".  

In the field of neurological image processing, the gold standard format is NIfTI. However, to 

make our software potentially usable in a clinical environment in the future, it was necessary 
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to support the raw DICOM format as well, as the recordings are directly accessible from the 

MR scanners in this format without extra conversion. 

 

In our software, loading DICOM volumes involves an implicit conversion step. If dicom is 

present as the volume type in the input parameter of the viewer.loadVolume call, then the 

selected files are first converted to NIfTI by the dicom volume loader, and then the resulting 

volume is loaded through the nifti1 loader. Conversion is necessary because all post-

processing and other algorithms in the software already work on the NIfTI format. This 

volume loader is the first component of our software system to be successfully converted 

from C++ to WebAssembly using Emscripten and integrated into our architecture. The core 

of its operation can be summarized in the following code snippet: 

 

var worker = new Worker("dicom2nifti-worker.js"); 

worker.addEventListener("message", function(e) { 

var niiFromDicom = e.data; 

VolumeViewer.volume_loaders["nifti1"]({ type: "nifti1", 

nii_raw: niiFromDicom 

}, callback); 

}); 

worker.postMessage(result_files); 

 

The first line creates a web worker for the conversion algorithm, which allows it to run 

separately from the user thread, so the program responds to user interactions throughout the 

conversion. We pass the files to be converted to the worker through the postMessage 

function. The second line creates an event listener on the worker, which listens for the 

"message" event. When the conversion is finished, the worker passes the completed NIfTI 

volume to the event listener, which is then loaded (last line of code). The program performing 

the conversion is originally a command-line C++ program. The advantage of Emscripten 

porting is that the WebAssembly version of the program also accepts all command line 

parameters: 

 

var Dicom2NiftiModule = { 

... 

arguments: ["-z", "n", "-f", "%p_%t_%s", "-o", "/niiOut", "/dicomIn"], 
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... 

}; 

 

4.2.3. Plugin system 

 

To allow running our ported tools in BrainBrowser, we extended it with a plugin system (Fig. 

6.). The plugin system is defined as a VolumeViewer module. It is responsible for initializing 

and running the plugins registered in the program. 

We register the available plugins through the config module of BrainBrowser. 

 

 

BrainBrowser.config.set("plugins", [{ 

      name: "Brain extraction", 

      title: "Brain extraction", 

      author: "https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL", 

      id: "bet", 

      worker: "src/brainbrowser/volume-viewer/workers/bet-worker.js", 

      gui: "plugin-GUIs/bet-menu.json" 

    } 

  ]); 

 

Plugins are defined as an array of plugin objects. Each object describes a specific plugin with 

"name", "title", "author", "id", "worker," and "gui" attributes. The "author" property stores a 

link to the website of the author of the plugin, in our case, FSL. The "id" is a unique identifier 

for the plugin. The "worker" is a link to the web worker that invokes the WebAssembly 

module, and the "gui" is a link to the JSON file that describes the user interface of the plugin, 

which shows tweakable parameters and a button to run the tool.  

What to render on the Graphical User Interface (GUI) and what action to perform when the 

plugin is executed is defined by a JSON, as shown below. 

 

[{"type": "file", "text": "Input volume"}, {"name":"-f", "type": "number", "min": 0, "def": 0.5, 

"max": 1, "text": "Fractional intensity threshold"}, {"name": "-o", "type": "bool", "text": 

"Brain outline mask"}…] 
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When the user clicks on the "Run" button on the plugin dialog, the UI handler loops through 

the input fields and creates name-value pairs, which in turn are passed to the web worker. The 

web worker will then run the WebAssembly program with the received command-line 

arguments. 
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5. Results 

5.1. XReport 

5.1.1. Template viewing and building 

 

The viewer/builder page is where we load our templates and render them with our library as 

show in Fig. 7. The form is centered horizontally and have a slight drop shadow around it. 

There is a button group on the right side of the form which contains different buttons based 

on which state the page is currently in (viewer or builder). 

 

 
 
Figure 7 – A rectum tumor primer staging template rendered in XReport. There are various elements 

to build the template from, such as single choice, numerical or multiple choice fields. More complex 

use-cases, such as scoring systems, can also be created leveraging advance components such as a 

rating table, in combination with dynamic behaviour added to the form using our own DSL 

FormScript. 
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Buttons in viewer state: 

 

- preview report: shows the textual output of the report in its current state 

- copy to clipboard: copies the textual output onto the clipboard so that the report can easily 

be copy-pasted into other systems without tight integration 

- new report: discards the current state of the form and opens it again 

- share: copy the template link to clipboard so that it can be shared with colleagues 

 

Buttons in builder state: 

 

- save template 

- discard template 

 

There are 13 components to choose from when building a template: 

 

- Text field: It is an input field which allows users to enter text. It is not resizable. 

- Plain text: It is a read-only user interface element that shows multiline text. 

- Number field: It is an input field which only allows numeric entries.  

- Calculated field: It is a read-only number field used to show computation results. 

- Boolean field: It is a checkbox that supports boolean entries: the state is either true 

(checked) or false (unchecked). 

- Single choice: It is a component that shows a list of possible choices, and allows only one to 

be selected. 

- Multiple choice: It is a component that shows a list of possible choices, and allows any 

combination of them to be selected. 

- Textarea: It is a resizable text field. 

- Date: It is a component that allows selecting a date from a calendar. 

- Header: It is a read-only textual component that can be used for section heading. 

- Information: It is a component similar to plain text, but it has a colored background to draw 

the attention of the user. It is used to give hints to a given field or a section of the template. It 

is hidden behind a question mark icon: if the text is not visible and the icon is clicked, the text 

will be visible or vice versa. 
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- Rating scale: It is a table which renders a checkbox in each of its cells. In every row there 

can only be one cell selected, so it can be thought of as a variation of the single choice 

component. 

- Image: It shows an image based on the URL that was given by the template creator. 

 

If we take an oncological example, a question regarding the size of the tumor would be a 

number field, a Tumor, Node, Metastasis (TNM) staging system could be created using single 

choice fields, or a rating scale, etc. Every component is added to the form with a label 

attached. A component-label combination is called a group. Groups are added to rows, and 

rows are added to sections. The sections make up the whole template. 

 

 

5.1.2. Component editors 

 

Every component has an editor view as shown in Fig. 8. Every component type has its own 

editable properties. For example, the input field has a unit property (mm, cm, etc.), a single 

choice field has an options property, an image has an URL property. The component editor is 

activated by hovering the mouse over the component, then clicking on the pencil icon. 

Components can be deleted by clicking on the minus sign. 

 

 
Figure 8 – Editor view: every component has a predefined editor view, which allows modifications of 

the given field. 
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5.1.3. Row editors 

 

Row operations can be performed by clicking on the three vertical dots at the end of each 

row. The click event will trigger a secondary menu to open with all the components, and two 

actions: delete and duplicate. 

 

 

5.1.4. FormScript editor 

 

On the main builder component there is a button with a branch icon which toggles the view 

between template editing and FormScript editing. The FormScript editor as shown in Fig. 9. 

is a simple resizable text area where the user can edit the dynamic logic that is attached to the 

template. When switching back from script editing, the script is automatically evaluated and 

the changes are visible. 

 

 
Figure 9 – FormScript: Code snippets can be attached to templates to give them dynamic behavior. It 

is a simple DSL similar to JavaScript, but very limited compared to it. The main reason it was 

developed is safety. 
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5.1.5. Converting free text to structured report using LLMs 

 

For the prompt presented in section 3.1.6, GPT4 generated the following output: 

 

{ 

"morphology": ["polypoid", "ulcerating", "circumferential", "semicircumferential"], 

"selectedMorphology": "polypoid", 

"appearance": ["mucinous", "non-mucinous"], "selectedAppearance": "mucinous", 

"lengthOfTumor": { "value": 50, "unit": "mm" }, 

"sphincterInvolvement": ["none", "internal sphincter is involced", "intersphincteric space is 

involved", "external sphincter is involved"], "selectedSphincterInvolvement": "external 

sphincter is involved", 

"distanceTumorMesorectalFascia": { "value": 3, "unit": "mm" }, 

"lymphNodeInvolvement": true, 

"numEnlargedLymphNodes": 5, 

"numLymphNodesLessThan5mm": 2, 

"numLymphNodesGreaterThan9mm": 3, 

"tumorDepositInsideMesorectalFascia": true, 

"numTumorDeposites": 2 

} 

 

Using only a single prompt, and without any fine-tuning of the model, it understands the 

JSON structure we would like to get as an output. It correctly maps the information available 

in the free text to the relevant property in the JSON, even if a given parameter has to mapped 

to a nested property, such as in the case of length values (lengthOfTumor), where there is a 

„value” and a „unit” nested property. 

We modified the original template to test if the model can gather information that was not 

explicitly mentioned in the free text report. After leaving out mentioning the total number of 

enlarged lymph nodes, the model generated the following answer: 

 

The total number of enlarged lymph nodes was not explicitly mentioned in this free 

text. Given that 2 of them are less than 5mm and 3 are greater than 9mm, we can 
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infer that there are at least 5 enlarged lymph nodes in total. Here's the converted 

template: 

  

Then it proceeds to present the same JSON as above. It correctly infered the total number of 

lymph nodes. 

Changing the units of the length measurements also work. By replacing the sentence „The 

length of the mass is 50mm” to „The length of the mass is 5cm”, GPT4 generates the 

following answer: 

 

The length of the tumor is given in centimeters in the free text report, so we'll need 

to convert this to millimeters to match the unit in the template. 

 

After that it generates the correct JSON. This shows how capable LLMs are in analyzing 

radiological reports. This LLM based approach has the potential to fill the gap between 

traditional dictation based and template based reporting: instead of thinking in templates, and 

manually filling out a form, the doctor can report the case as usual, and then copy-paste the 

report to an LLM based system where the free text and the selected template will be fed to the 

LLM as a prompt, and based on the generated structured format the form can be filled 

automatically, and the structured data can be saved to a database for further processing. This 

brings together the benefits of both worlds: the speed of dictation, and the quality of 

structuring. 

 

 

5.2. WebMRI 

 

The entry point of our demo application showcasing WebMRI is the dashboard (Fig. 10.). 

There is a navigation bar on the top with menu items "File", "Tools", and "About". The "File" 

menu hosts actions such as opening DICOM series, a NIfTI volume, or creating a blended 

volume ("Create overlay") out of two input volumes. The "Create overlay" functionality is an 

important last step in a linear registration workflow, as it simultaneously visualizes the two 

volumes registered to each other. The "Tools" menu shows the list of the plugins available in 

the application (BET and FLIRT), and through the "About" menu, users can access the 

developer documentation and user manual of WebMRI. 
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Figure 10 – The image displays the user interface of WebMRI. At the top, the menu bar is shown. 

Below the menu bar on the left is a window labeled "Workspace", which displays the files loaded and 

those generated by the plugins. Below that, under "Volume controls", elements that allow for 

manipulation and navigation of the loaded image are visible. On the right, the loaded volume is 

shown in sagittal, coronal, and axial sections. 

 

Under the navigation bar, we present the main screen, which is divided into the rendering 

section on the right, and the panel section on the left. The rendering section hosts the 

BrainBrowser VolumeViewer widget, which visualizes the loaded volume in sagittal, axial, 

and coronal planes. The panel section next to it hosts the "Workspace" and "Volume 

controls" widgets. 

 

The "Workspace" widget (Fig. 11.) shows the files currently opened in the application. These 

files can either be loaded by the user (input files) or generated by plugins (output files). The 

workspace has a root folder, which is a collection of files that are visible to plugins as input 

files and plugin-specific folders, into which plugins generate their output files. If the users 

want to further process output files, they first have to move the relevant files to the root folder 

by clicking on the blue up arrow next to the file names. This way, the selected files will be 

visible to the plugins. The "Volume controls" widget contains coordinate information, 

blending controls, and windowing sliders. 
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Figure 11 – Workspace widget: The workspace has a simple folder structure where the input files are 

listed under the „root” folder, and plugins generate their outputs into plugin specific folders, such as 

FSL FLIRT in this case. 

 

Our demo application showcases our two ported FSL tools. They can be accessed from the 

"Tools" menu. Fig. 12. shows the automatically generated user interface for BET, and figure 

13. illustrates the GUI for FLIRT. The input volumes can be selected from a drop-down 

menu. The user is presented with a list of modifiable parameters, which will translate to 

command-line arguments by the plugin system when the "Run" button is clicked, and the 

underlying tool is invoked. 

 

 
Figure 12 – Automatically generated user interface for the ported FSL BET tool. 
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Figure 13 – Automatically generated user interface for the ported FSL FLIRT tool. 

 

The most practical use case our system is capable of supporting in its current form is the 

multi-modal assessment of neuroimaging data. As an example, let us look at how cerebral 

microbleeds can be detected in an MRI volume. The most widespread way of analyzing 

microbleeds is to leverage susceptibility weighted imaging (SWI). Although SWI can help 

identify microbleeds with high sensitivity, their localization is challenging relying solely on 

this modality. T1-weighted MRI images preserve the anatomical features of the brain, so 

using the T1 modality in combination with SWI can help with localization. WebMRI can co-

register an SWI to a T1 MRI volume thus enabling precise microbleed detection. To enhance 

registration result brain extraction can also be performed. Since our system can handle 

DICOM to NIfTI conversion, the only step the user has to perform before loading data into 

our system is to export the DICOM series from the PACS. 

 

 

5.2.1. Performance evaluation of the ported FSL tools 

 

We compared bet2.js and flirt.js with the original C++ (native) versions in terms of 

performance. Both the native and asm.js versions were compiled at the -O3 (highest) 

optimization level. The native versions were run on the Windows 10 Linux subsystem, and 

the two WebAssembly versions were run in Google Chrome, then in Mozilla Firefox 

browsers. The configuration of the computer used for testing is as follows: 
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- CPU: Intel® Core™ i5-3230 @ 2.60Ghz 

- RAM: 6.00 GB 

- System type: 64-bit operating system, x64-based processor 

 

We ran bet2.js and the native BET on a total of six test volumes. The performance testing of 

the flirt.js and the FLIRT C++ version was carried out using ten test volumes, which formed 

five pairs. From each pair of volumes, one was the input volume and the other was the 

reference volume to which the former was registered. We chose SWI recordings for the input 

volumes and T1 recordings for the reference volumes.  In case of flirt.js, the SWI-T1 volume 

pairs come from the same subject, and the volumes were brain extracted as a preprocessing 

step. All volumes were in NIfTI format. The runtimes measured during the tests were finally 

depicted on bar charts (Fig. 14) (Fig. 15). 

 

 

5.2.1.1. Performance evaluation of bet2.js 

 

In the case of the native BET version, the average runtime was 2.96 seconds. For bet2.js, 

when using Google Chrome, the average runtime was 5.75 seconds, while on Mozilla 

Firefox, it was 4.62 seconds. Therefore, the WebAssembly program ran on average 1.94 

times slower than the native version with Chrome, and only 1.56 times slower with Firefox. 

During testing with Firefox, we achieved a 25% performance increase compared to Chrome 

(performance calculated from the reciprocal of the runtime) (Fig. 14). 
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Figure 14 – Comparison of the runtime of the native BET and the bet2.js programs. The vertical axis 

shows the runtime expressed in seconds. The 6 column groups represent the processing times for the 6 

test volumes: the blue column represents the native, the orange represents the time measured in 

Firefox, and the gray represents the runtime in Google Chrome. 

 

 

5.2.1.2. Performance evaluation of flirt.js 

 

The native FLIRT completed the tests in an average time of 22.12 seconds. The 

WebAssembly version, when run on Firefox, executed the tasks with an average runtime of 

40.79 seconds, and on Chrome, it took 47.64 seconds. Compared to the native version, the 

WebAssembly program ran on average 2.15 times slower on Chrome. On Firefox, the 

slowdown was 1.84 times. In this test too, Firefox outperformed Chrome, this time, however, 

by only 17%. The details of the comparison can be seen in the diagram below (Fig. 15). 

 

Regarding memory usage and stability we found that in highly memory constrained scenarios 

where there are a lot of browser processes running at the same time (a lot of tabs open at the 

same time), the ported tools may behave unpredictibly and can crash due to the tab in which 

the FSL programs are hosted run out of memory. Identifying these memory constrained 

scenarios is challenging, as they are dependent on many factors.                                                                                                                                                    
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Figure 15 – Comparison of the runtime of the native FLIRT and the flirt.js programs. The vertical 

axis displays the runtime expressed in seconds. The 5 column groups represent the processing times 

for the 5 volume pairs: the blue column represents the native, the orange represents the time 

measured in Firefox, and the gray represents the runtime in Google Chrome. 
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6. Discussion 
 

We developed browser-based medical software systems in two fields, namely radiological 

reporting and neurological image processing. Although XReport and WebMRI are two 

different systems with no direct interoperability, they have a lot in common. First and 

foremost both are open source systems which are released on Github for other developers to 

use and modify. Both of the proposed software features modular design: XReport can be 

integrated into other applications easily, and the supported template modules can be 

extended, and WebMRI allows third-party developers to write plugins to it. They both were 

developed to pave the way for free, open source, browser-based medical software systems. 

By running them client-side in a web browser, they are cross-platform and require no 

installation. This reduces setup and maintanance costs, and requires no special effort to keep 

them up-to-date, as new versions are immedietaly available. Besides promoting and 

advancing open source medical software, we had specific goals with the two systems. With 

XReport we aimed to build an easy-to-use structured reporting template creation and 

reporting platform to facilitate template creation, and advance templated radiology. With this 

software we did not aim to demonstrate high-tech browser capabilites, unlike with WebMRI. 

The main goal with WebMRI was to investigate the feasibility of fully browser-based 

neuroimaging by leveraging advanced web technologies such as WebAssembly or WebGL. 

We managed to port parts of the most popular neuroimaging framework FSL to 

WebAssembly, and run it in a browser without special plugins. By porting BET and FLIRT 

to the web, ours is the first fully browser-based system that is capable of brain extraction and 

linear registration without using a web server. These features enable performing multimodal 

assessment of neuroradiological data inside a web browser. Although the native algorithms 

are faster, we found that in everyday use, our ported versions are not significantly than the 

native ones. 

In the following sections let us discuss our two open source software systems separately. 

 

 

 

 

 

 



 44 

6.1. XReport 
 

With XReport we built a free, cross-platform structured reporting platform for radiologists. It 

enables both creating and viewing reporting templates in an easy, user-friendly way. We built 

our software with modular design in mind and refactored the core features into a separate 

library to make embedding it into other products easy. We also built an application with the 

library embedded in it to demonstrate the easy integration. Furthermore, we designed a 

simple DSL called FormScript to add dynamic logic to our forms. The main feature of it, and 

the reason we created it in the first place, is security. It does not allow malicious code 

executions unlike the eval function of JavaScript. It is also very simple to use because of its 

limited feature set. Our templates are dynamic, responsive and have modern design. The 

templates generate easy to copy–paste structured textual output to be compatible with any 

HIS, and to integrate well into dictation-based workflows. Our templates help not only in 

precise reporting, but also serve as a guide for radiologists thanks to our custom form 

elements such as images and rating tables. 

We compared our solution to a similar free service developed by RSNA. From a 

technological point of view both programs are similar since they are built using web 

technologies but they have their differences when it comes to the ecosystem, editing process 

and user experience. The RSNA template library has a more mature ecosystem: there are a lot 

of contributors who build and upload templates, there are some nice to have features such as 

favouriting a template. But the template editing itself is less advanced than ours. In the RSNA 

editor the screen flow to get to the actual editing is as following: click on “Create and Upload 

a Template button”, click on “T-Rex Template Editor”, interact with a popup which asks how 

the user wants to start the editing, click on one of the options. In our program the screen flow 

is a lot simpler: click on “Add new template”, and you are in the editor. In the RSNA editor 

adding individual elements has some issues. The elements have to be drag and dropped from 

a side panel, which is problematic on mobile devices as there is not enough space. The 

element editor works as a pop-up which brings the user out of the editing context. In our app 

adding elements is responsive (works on mobile devices as well), and is inline, so the user 

remains in the editing context throughout the whole process. When it comes to how dynamic 

the templates are we found that RSNA templates do not allow dynamic behavior such as 

hiding/showing elements based on certain conditions. Through FormScript our system 

enables fully dynamic behavior. The RSNA editor lacks some important elements such as 
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images and rating tables which are essential in information sharing and oncological grading 

systems. 

 

We experimented with automatic free text to structured report conversion using the GPT4 

LLM. Our preliminary findings indicate that even without fine-tuning, GPT4 can deliver 

precise results when guided by a template. This promising observation paves the way for 

further enhancement of the system's accuracy by specifically fine-tuning an LLM on 

radiological reports. Given the large array of radiological pathologies and their textual 

representations, this specificity could lead to significant improvements in results. 

Beyond just template-guided information extraction, LLMs can be prompted to select the 

most appropriate reporting template for a given case. This additional feature offers more 

flexibility in the reporting process, as it eliminates the need for pre-loading a template. In 

other words, the LLM can take into account the context provided in the report to select and 

adhere to the best-suited template. 

Moreover, introducing small alterations to the prompts, such as designating a certain property 

as "required", can dramatically improve the functionality of the system. For instance, this 

modification can enable the LLM to flag missing key information in a report, thereby 

enhancing the safety features of the system. This approach effectively shifts the focus from a 

strictly structured template-based approach to a more adaptable, flexible, and safety-

conscious reporting model, which can have profound implications for the field of radiology. 

 

 

 

 

 

 

 

 

 

 

 



 46 

6.2. WebMRI 
 

With WebMRI, we built a cross-platform, extensible neuroimaging platform that supports 

brain extraction and linear registration and can be run in any modern web browser without 

using third-party browser plugins or a dedicated web server. For brain extraction, we used the 

BET, and for linear registration, the FLIRT tool of the popular neuroimaging library 

collection FSL. For the porting process, we used Emscripten to convert the native programs 

to WebAssembly binaries. We extended BrainBrowser with a plugin system to be able to 

load our ported tools into the system combining volumetric visualization with image 

processing. We built a demo application that incorporates the ported tools and demonstrates 

that a complete neuroimaging workflow from DICOM loading to linear registration can be 

performed inside a web browser. 

Building on the foundations of BrainBrowser, we increased the scope of browser-based 

neuroimaging and showed that not only neuroimaging data visualization but computationally 

intensive processing algorithms could also be performed inside modern web browsers. In 

contrast to Slicer 3D (to which our system is similar in terms of modularity) or other non-

browser-based programs, our solution does not require an installation. By removing the need 

for a web server, and complex setup processes, we reduced the cost and improved the ease of 

use of certain neuroimaging workflows. These factors can improve the clinical adoption of 

new image- processing tools. Although we demonstrated the porting of two popular 

neuroimaging tools, there is no limit to bringing other algorithms into the WebMRI plugin 

system as long as they are written in a programming language that can be compiled to 

WebAssembly. As more and more programming languages used in computationally intensive 

application development (such as Rust) support compilation to WebAssembly, the number of 

libraries that can be ported to WebMRI will increase. 

The limitation of our fully browser-based system is twofold. The memory usage of heavy 

workloads, such as processing large numbers of volumes in bulk, might exceed the resources 

available inside a browser tab. There is also a performance penalty for the porting due to the 

overhead of the WebAssembly runtime compared to fully native execution. The impact of 

these limitations varies between programs and browsers and can be mitigated using 

optimizations in the Emscripten toolchain or the original codebase. If these factors make it 

not possible to reliably run a given tool in the browser, it can still be run in a web server since 

Emscripten supports execution in a Node.js runtime. 
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In the future, we plan to increase our fleet of ported neuroimaging tools and make our plugin 

system more modular and extensible. We aim to make it easier to integrate our system into a 

clinical PACS environment, so there will be no need to export DICOM files. We also plan to 

support hybrid execution so that a given algorithm can be run on the client or server side, 

depending on the requirements of the given workload. We plan to improve the visualization 

capabilities of WebMRI by adding support for customizable volume viewer widgets and 

annotation of points of interest on the volumes. 
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7. Summary of the new scientific results 
 
 

1, We developed WebMRI, a web-based, modular neuroimaging platform. We ported the 

FSL BET and FLIRT (brain extraction and linear registration) image processing algorithms to 

WebAssembly so that they can be run in a browser environment. To the best of our 

knowledge, no other web port of these FSL tools exist. We compared the runtimes of the 

native and ported FSL tools, and found that in everyday use, our versions are not significantly 

slower than the native programs. We added support for DICOM loading in WebMRI, thus 

eliminating the need for an external DICOM to NIfTI conversion step. We developed a 

plugin system, which allows other developers to create new algorithms, or port existing ones, 

and bring them into the WebMRI platform. 

 

2, We developed XReport, a free and open-source, web-based structured reporting platform 

for radiologists, which supports both template creation and reporting in a user-friendly 

manner. We developed an LLM-based solution for automatic structured reporting template 

filling from free text report, using prompt-engineering techniques. 
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