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Abstract 

 
Background: Molecular epidemiology is a subject that integrates molecular biology and 

basic epidemiology. It introduces biomarkers that are involved in the molecular 

pathway and specific genes related to disease risk into epidemiology to recognize 

disease causation, risk factors, prevention, and even treatment. It emphasizes the 

interactions between genetic, environmental and other factors that result in diseases. 

Cancer is a group of diseases caused by abnormal cells creating rapidly and 

uncontrollably and spreading to other organs. It is the world's second leading cause of 

death. Cancer is caused by a combination of genetic and environmental factors. 

 

Molecular epidemiology provides tools for understanding the interaction between these 

factors. Different from the "traditional epidemiology" that revolves around time, place, 

and person, molecular epidemiology pays attention to looking for biomarkers related to 

diseases, such as DNA, transcription factors, RNA, cell surface receptors, enzymes, and 

even metabolites, and then uses them to explain the diseases' mechanisms in 

populations. According to the stages from exposure to cancer development, biomarkers 

used in cancer molecular epidemiology research can be categorized into markers of 

exposure, internal does markers, biologically effective does markers, early biological 

effect markers, altered structure/function markers, biomarkers of prognosis, and 

markers of disease. Those markers play an important and essential role in the diseases' 

early detection, diagnosis, staging, treatment, and prognosis. 

However, as a novel field, how molecular epidemiology is used in specific practical 

studies, and how it helps to discover causes, explore risk factors, and ultimately protect, 

still remains an unclear explanation. Hence, the aim of this study is to display how 

molecular epidemiological runs in cancer research through two practical studies: ‘The 

relationship between single nucleotide polymorphisms and skin cancer susceptibility’ 

and ‘The treatment effect of hydrogen gas on lung cancer’. 

Lung cancer (LC), as one of the most common cancers, causes increased numbers of 
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morbidity and mortality all over the world. The long intergenic non-protein coding 

RNA TP53-induced transcript (LINC-PINT) and lincRNA-P21 are TP53-induced 

transcripts. It was investigated that the expression of LINC-PINT and lincRNA-P21 

decreased in the malignant cancer. Molecular hydrogen (H2) is a new medical gas that 

is used as a selective antioxidant in the anti-inflammation and anti-apoptosis functions 

modulating. H2 also plays a role in the LC treatment. Therefore, the first example aims 

to explore the effect of H2 in lung cancer cells by identifying the expression of LINC- 

PINT and lincRNA-P21. 

 

Risk assessment is the earliest evidence of impending cancer in persons who don't have 

cancer. Single nucleotide polymorphisms (SNPs) interfere with the function of certain 

genes and thus may influence the probability of skin cancer (SC). The correlation 

between SNPs and skin cancer lacks statistical power, however. Therefore, the purpose 

of the second example is to identify the gene polymorphisms involved in skin cancer 

susceptibility using network meta-analysis, and to determine the relationship between 

SNPs and SC risk. 

Method: In the treatment biomarkers example, we employed qRT-PCR to assess the 

expression of LINC-PINT and lincRNA-P21 in lung cancer cells after 0%, 5% and 10% 

hydrogen gas treatment in the three time-groups. 

 

In the early detection biomarkers example, we selected 59 studies investigating 275 

SNPs associated with skin cancer using the following genotype and phenotype models: 

the alleles model (A vs. B), the dominant model (AA+AB vs. BB), and the recessive 

model (AA vs. AB+BB). We constructed further networks for selected SNPs by 

analyzing the results of the direct and indirect associations for each comparison of SNPs. 

In addition, p scores obtained from the network were utilized to select the SNPs with 

the highest chances of association with skin cancer. 

Results: In the treatment biomarkers example, the main results we investigated are: 1) 

The expression of LINC-PINT and lincRNA-P21 upregulation with the treatment 
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concentration of H2 gas; 2) LINC-PINT expression decreased in a relatively long H2 

treatment time; 3) The expression of lincRNA-P21 declined with the H2 treatment. 

 

In the early detection biomarkers example, the main results we certified are: 1)The 

minor alleles of rs2228570 (FokI) and rs13181(ERCC2) were associated with skin 

cancer and 2) Wildtype and heterozygous genotypes of rs475007 (MMP1) and the 

mutated homozygous genotype of rs238406 (ERCC2) were most likely to be associated 

with skin cancer. 

Conclusions: These two real research examples explained how molecular epidemiology 

works. Hence, we can conclude that the SNP rs2228570 (FokI), rs13181(ERCC2), 

rs475007 (MMP1) and rs238406 (ERCC2) can be employed as the early biomarkers 

for skin cancer. And LINC-PINT and lincRNA-P21 have a possibility that being used 

as potential treatment biomarkers for lung cancer. 
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1 Introduction 

 

 
1.1 What is molecular epidemiology 

 

"Epidemiology" was first defined to describe the study of epidemics by a Spanish 

physician in 1802 (1). However, the history of epidemiology can be traced back to the 

16th century and was famous for John Snow's investigations into the causes of cholera 

epidemics in the 19th century (2). Early epidemiology was mainly applied to infectious 

diseases, but modern epidemiology includes not only diseases but also all health-related 

states. Epidemiology is therefore defined as: “The study of the distribution and 

determinants of health-related states or events in specified populations, and the 

application of this study to control of health problems” (John M Last. A dictionary of 

Epidemiology (4th Ed) Oxford University Press (New York) 2001, p62) (3). 

Although epidemiology has been known, molecular epidemiology, one of its 

subdivision, was not introduced until 1973 by Kilbeurne (4). And then molecular 

epidemiology was introduced in more detail in biomarkers, measurement and 

mechanisms until 1993 by Schulte and Perera (5). With the advancement of molecular 

biology techniques, such as the enzyme-linked immunosorbent assay (ELISA), 

electrochemistry, microfluidics and surface plasmon resonance sensors, protein, 

colourimetric, electrochemical assay, and microarray and so on (6), molecular 

epidemiology has gradually noted and applied. 

"Molecular epidemiology" hasn't a uniform definition. However, it has a consensus 

understanding, that: Molecular epidemiology is a subject that integrates molecular 

biology and basic epidemiology. It introduces biomarkers that are involved in the 

molecular pathway and specific genes related to disease risk into epidemiology to 

recognize disease causation, risk factors, prevention, and even treatment. It emphasizes 

the interactions between genetic, environmental and other factors that result in disease 

(5,7,8). 
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1.2 What is cancer 

 

Cancer is a group of diseases caused by abnormal cells proliferating expression rapidly 

and uncontrollably and spreading to other organs (9). Cancer is induced by a 

combination of genetic and environmental factors. It is the world's second most 

important cause of death. Nearly one in six deaths result from cancer, approximately 

ten million deaths and of these, around 4,000 were children (accounted by WHO in 

2020) (10). According to 'Cancer Statistics, 2023' reported by the American Cancer 

Society (ACS), there will be more than 1.9 million new cancer cases and 0.6 million 

cancer deaths in the US. Besides, there will be about 89 thousand melanoma new cases 

(11). 

In addition, lung cancer (LC) is the leading cause of cancer death worldwide in both 

genders (13). Approximately 2.2 million new cases were diagnosed worldwide with 

nearly 1.8 million deaths from LC in 2020 (13). ACS also estimated that Nearly 90% 

of American lung cancer cases occur in aged over 55 people (14). Lung cancer usually 

is divided into two main types: non-small-cell lung carcinoma (NSCLC) and small- 

cell lung carcinoma (SCLC) (15). And 80%-85% of LC are NSCLC. Smoking is a well- 

known risk factor for lung cancer. In addition, occupational exposure, air pollution, 

poor dietary habits, and genetic susceptibility also increase the incidence of lung cancer 

(16). Although the incidence of LC in some developed countries has been reduced 

because of the promotion of quitting smoking. However, developing countries, such as 

China, with high tobacco consumption still have an increasing trend in LC 

incidence(17). Therefore, finding a way to decrease the number of LC patients number 

is a necessity. 

Although skin cancer accounts for only around 1% of all cancer deaths, its incidence 

has increased significantly since the 1970s, mainly due to lifestyle changes, including 

sun-seeking behavior, and the thinning of the ozone layer (18,19). Similarly, skin cancer 

also includes two types: cutaneous melanoma (CM) and nonmelanoma skin cancer 

(NMSC) (20). In addition, due to the less concentrated melanin and more exposure 
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behaviour, compared with other darker skin tones, white skin tone people are more 

likely to develop skin cancer (21). Despite Melanoma is less common, it has higher 

mortality rates because of its poorer prognosis - nearly 30 thousand new CM cases were 

diagnosed with 5.7 thousand deaths worldwide in 2020 (22). However, timely diagnosis 

and early treatment can significantly are closely associated with reducing mortality, 

which also avoids additional health problems and economic benefits (23). While the 

indistinguishability of early skin cancer from moles limits the early detection of skin 

cancer. Hence, it is crucial to find suitable markers for the detection of SC (24). 

 

The types of cancer treatment depend on the type of and advance of cancer. Surgery is 

still the main therapy for solid tumours. However, surgery may not get rid of all cancers, 

such as those near very delicate tissues, those metastases to multiple other organs, or 

cancers of the blood system and lymphatic systems (25). Radiation therapy is a 

treatment that kills cancer cells with high doses of radiation, which still is a critical 

cancer treatment (26). When the tumour spreads, chemotherapy is recommended to 

relieve cancer-related symptoms (27). Besides, hormone therapy, biotherapy, 

immunotherapy, and targeted therapy are also useful cancer treatments. However, two 

or more combined treatment models are more often. 

Due to the side effects of cancer treatment, precision medicine in oncology, a specific 

kind of treatment and care based on particular genes, proteins, immune environment 

and other substances, is emerging (28). And biomarker testing provides that information 

(29). Take the TP53 gene as an example, it is one of the most frequently mutated genes 

in cancers (30), which involves DNA repair, metabolism, and cell senescence and 

apoptosis (31). Hence, the TP53 gene has been certified as a tumour suppressor gene, 

including lung cancer and skin cancer (32). The long intergenic non-protein coding 

RNA TP53-induced transcript (LINC-PINT) is one of the TP53-induced transcripts and 

also a tumour suppressor, which is found in osteosarcoma (33), gastric cancer (34), 

renal cell carcinoma (35), glioblastoma (36), melanoma (37), and lung cancer(38) 

(including NSCLC (39). LincRNA-P21 is also a direct transcriptional target of TP53 

(40), which directly or indirectly regulates cancer cell proliferation, migration and 
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apoptosis (41). Thus, LINC-PINT and lincRNA-P21 as new biomarkers in cancer are 

interesting. 

 

Single nucleotide polymorphisms (SNPs), as a well-known biomarker, are also being 

investigated. for example, FokI, as a single-nucleotide polymorphism coded rs2228570 

in the vitamin D receptor (VDR) gene, is related to many cancers prognosis, breast 

cancer (42), ovarian cancer (43), gastric cancer (44), hepatocellular carcinoma (45), 

papillary thyroid cancer (46), pancreatic cancer (47) and melanoma. Or, SNPs rs13181 

and rs238406 locate in the ERCC2 gene, which involves in DNA repair functions. They 

are also identified in lung cancer (48), cervical cancer (49), breast cancer, squamous 

cell carcinomas of the head and neck (50), and bladder cancer (51). 

 

However, many cancers can be prevented if controlled the risk factors, such as smoking, 

abusing alcohol, and being overweight. It even can be cured if detected, diagnosed and 

screened early and treated effectively (52). 

 
1.3 How molecular epidemiology works in cancer research 

 

1.3.1 Stages from exposure to diseases development 

 

To explore the correlation between the cause (exposure) and the outcome (cancer), 

“traditional” epidemiology employs a series of studies from observation to experiment. 

However, no matter whether the descriptive, analytic, or experimental studies, 

“traditional” epidemiology revolves around time, place and person (53). Besides, 

“traditional” epidemiologic is more common to collect personal information, social 

information, environmental information, and disease-related information. Even when 

epidemiologists collect biometric information, it is mostly biological macromolecules 

(54). However, as shown in Figure 1 and mentioned before, molecular epidemiology 

pays attention to looking for biomarkers related to diseases, such as DNA, transcription 

factors, RNA, cell surface receptors, enzymes, and even metabolites, and then uses 

them to explain the diseases' mechanisms in populations (55). Among them, “biomarker” 

is a broad term, defined by WHO that “almost any measurement reflecting an 
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Molecular Epidemiology 

early 

biological 

effect 

altered 

structure/ 

function biologically 

effective 

dose 
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individual susceptibility 
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person place time 
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special intervention? 
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causal inference 

Traditional Epidemiology 

interaction between a biological system and a potential hazard, which may be chemical, 

physical, or biological. The measured response may be functional and physiological, 

biochemical at the cellular level, or a molecular interaction.” (56). 

 
 

 
Figure 1 The difference between epidemiology and molecular epidemiology 

 

 
1.3.2 Biomarkers of exposure 

 

As shown in Figure 1, according to the stages from exposure to cancer development, 

biomarkers used in cancer molecular epidemiology research can be categorized into 

different classes. First of all, is biomarkers of exposure. Biomarkers of exposure are 

chemicals, their metabolites, or even the interactive products between the xenobiotic 

and organism, that can be measured in the body or biological sample, which reflects the 

levels and characteristics of exposure in the organism. In simple words, it is the 

substance directly or indirectly found in the body after people are directly or indirectly 

exposed to the chemicals. Usually, biomarkers of exposure are measured in the blood, 
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urine, saliva, and even hair. Many chemicals have the potential to be biomarkers of 

exposure, but an ideal exposure biomarker is considered to include the following 

criteria: corresponding to a special chemical, remaining long enough for measurement, 

and simply measuring. 

 

Bisphenol A is a classic example of this. Bisphenol A, broadly used in plastics, is a 

xenoestrogen, which has hormone-like characteristics (57). Its metabolite, d16- 

Bisphenol A glucuronide, as a biomarker, can be detected in blood and urine samples, 

which reflects the exposure to bisphenol A (58). Biomarkers of exposure to cancer 

disease are also common. For example, inorganic arsenic exiting in food, water, and 

even air. It has been certified as associated with various internal cancers and skin cancer. 

However, arsenic exposure is easily ignored because it lacks colour, odour, and flavour. 

Hence, arsenic, as a biomarker for directly evaluating body arsenic exposure, is 

measured by blood, hair, and urine samples (59). Exposure biomarkers have been 

widely used in epidemiology. 

 
1.3.3 Internal dose biomarkers 

 

Then, internal dose biomarkers were produced from exogenous exposure markers. Due 

to their electrophile, certain externally acquired carcinogens or their metabolites can 

covalently bind with DNA or proteins in the nucleophilic sites to form DNA adducts 

(60). Carcinogen–DNA adducts may upregulate or silence gene expression patterns, or 

even cease the expression of some genes, and then bring about protein abnormality or 

absence that results in the uncontrolled growth of cells (cancer). For instance, 

environmental carcinogen dimethylbenz(a)anthracene (DMBA), as a tumour initiator 

widely used in cancer research, its DNA adducts specifically mutate Ha-ras, a proto- 

oncogene, into a carcinogen mutant form (61,62). 

However, carcinogen-DNA adducts are instability and unnormal DNA also will be 

repaired. Hence, they are only internal dose biomarkers, otherwise, they will be called 

biologically effective dose markers (63). Take bladder cancer for example, smoking is 
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an independent risk factor for bladder cancer (64,65). Polycyclic aromatic 

hydrocarbons (PAHs), especially B[a]P, from the cigarette can form stable adducts with 

the exocyclic amino groups of purines of DNA or can form unstable adducts with the 

N7 or C8 of purines, after a series of metabolic transformations (65). Mutations may be 

caused by PAH–DNA adducts, which further inactivate tumour suppressor genes or 

activate proto-oncogenes (66). Adducts are not limited to DNA, and carcinogen–protein 

adducts also can be considered as a biomarker of the biologically effective dose. But 

only the DNA adduct leads to critical mutagenic changes (67). 

 
1.3.4 Biomarkers of biological effect 

 

Carcinogen-DNA adducts or their protein adducts also be recognized as biomarkers of 

early biological effect if they can cause mutations inducing cancer (68). Therefore, 

identifying and developing the biomarkers of early biological effects are the focus of 

research. A very famous example is the TP53 gene pathway. It is a complex network of 

genes, which involved in DNA repair, metabolism, cell cycle arrest, and cell senescence 

and apoptosis(69). Following the integrity of the single-stranded or double-stranded 

DNA is damaged by intrinsic or extrinsic stresses, a rangE of enzyme-relavant TP53 

geneS are activated, such as kinases ataxia–telangiectasia mutated kinase (ATM) and 

ataxia-telangiectasia (ATR) (69). TP53 phosphorylated by enzymes is released from 

mouse double minute 2 homolog (MDM2) and in turn, acts as a transcription factor to 

induce the expression of various tumor suppressor genes (70,71). 

Therefore, a variety of anticancer treatments targeting the mutant TP53 gene were 

developed including in breast cancer, lung cancer, ovarian cancer, and hematopoietic 

cancer (72). Among them, the treatment of lung cancer will be explained in detail in the 

later article. Biomarkers of early biological effects improve the accuracy of exposure 

assessment, such as the most widely used chromosomal aberration (CA) which is also 

the marker of altered structure /function (73). The ability to evaluate and prediction in 

cancer of CA has been confirmed in several malignancies, such as respiratory cancer, 

gastrointestinal cancer and genitourinary cancers (74). 
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1.3.5 Markers in cancer staging, treatment, and prognosis 

 

Apart from early detection of the asymptomatic patients just mentioned before, 

biomarkers play important roles in cancer diagnosis, staging, treatment, and prognosis. 

A particular example in the diagnosis and staging area is to determine the origin of 

cancer: primary or metastatic. For example, the level of prostate-specific antigen (PSA) 

has been used as an indicator (over 100 ng/mL) for metastatic prostate cancer (75). Or 

mammaglobin and gross cystic disease fluid protein-15 (GCDFP-15) have been used 

as a marker in identifying breast cancer subtypes and metastatic. 

Biomarkers are critical in the treatment of tumours(76–78). Restoring the wild-type 

activity of mutp53 is a novel therapeutic strategy. That is because the spatial 

conformation and folding pattern of mutp5 can be changed by small molecule 

compounds and peptide drugs, such as APR-246, SAHA, COTI-2, and PEITC (79). 

APR-246 is a pro-drug, which, after activating methylene quinuclidinone (MQ), can 

bind the TP53's critical cysteines, change the TP53's conformation, and then activate 

TP53 (80). Hence, APR-246 has been combined used with multiple drugs in the anti- 

cancer treatment of acute myeloid leukaemia, oesophagal cancer, and breast cancer (81). 

Similarly, the prognosis of tumours is also inseparable from biomarkers that are 

detected from the organ, blood, saliva, or urine. Circulating tumour DNA (ctDNA) is a 

kind of single-stranded or double-stranded DNA in the plasma or serum that is released 

by the tumour cells (82). Apart from using it as an early bio-effective, diagnostic, 

staging and metastatic biomarker, it also involves in the tumour prognosis (83). It is 

well known that malignant tumour progression or recurrence is the hard point in 

treatment. However, it has been investigated that the concentration of DNA in the blood 

changes in accordance with the stage of tumour development (84). It increases with 

cancer progression or decreases after cancer surgery (85). Hence, blood ctDNA can be 

employed as a quick detection for clinicians in predicting therapy outcomes. Especially, 

for patients who need long-term follow-up (86). 
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1.4 How molecular epidemiology is employed in specific practical studies 

 

However, as a novel field, how molecular epidemiology is used in specific practical 

studies, and how it helps to discover causes, explore risk factors, and ultimately protect, 

still remains an unclear explanation. Hence, the aim of this study is to display how 

molecular epidemiological runs in cancer research through two practical studies: ‘The 

relationship between single nucleotide polymorphisms and skin cancer susceptibility’ 

and ‘The treatment effect of hydrogen gas on lung cancer’. 

 
1.4.1 The example of protecting against cancer - Hydrogen gas affects the 

expression of LINC-PINT and Lin-cRNA-P21 

 

Background: Lung cancer (LC), as one of the most common cancer, causes increased 

numbers of morbidity and mortality all over the world. The long intergenic non-protein 

coding RNA p53-induced transcript (LINC-PINT) and LincRNA-p21 are TP53- 

induced transcripts. It was investigated that the expression of LINC-PINT and 

lincRNA-P21 decreased in the malignant cancer. Molecular hydrogen (H2) is a new 

medical gas that is used as a selective antioxidant in the anti-inflammation and anti- 

apoptosis functions modulating. H2 also plays a role in the LC treatment. Therefore, the 

aim of this study is to explore the treatment effect of H2 in lung cancer cells by 

identifying the expression of LINC-PINT and lincRNA-P21. 

 

Method: Electrochemical water device was utilizted to produce hydrogen gas. qRT- 

PCR was employed to assess the expression of LINC-PINT and lincRNA-P21 in lung 

cancer cells, respectively. One-way analysis of variance (ANOVA) and linear 

regression were carried out for analysing multiple groups’ differences and associations. 

 

Result: The expression of LINC-PINT was significantly correlated with the increasing 

(from 0% to 5% to 10%) H2 concentrations, after both 2-hour-30-minute(2H30) and 3- 

hour(3H) hydro-gen treatment (R22H30=0.52, R23H=0.57, both P<0.05). This positive 

relationship -between expression and H2 concentrations- was also observed for 

lincRNA-P21 expression in the 2H30 group (R2=0.88, P<0.01). In contrast, the 
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expression of LINC-PINT showed a significant negative correlation with H2 after 3- 

hour-30-minute (3H30, R2=0.81, P<0.01). Besides, the expression of lincRNA-P21 

decreased with time (F5%H2=13.54 and R25%H2=0.66, F10%H2=28.94 and 

R210%H2=0.81, all P<0.01) in both 5% and 10% H2 concentrations groups. 

 

Conclusion: Our study indicated the expressions of LINC-PINT and lincRNA-P21 were 

upregulated after H2 gas treatment. 

 

1.4.2 The example of cancer risk assessment - The relationship between single 

nucleotide polymorphisms and skin cancer susceptibility 

 

Background: Risk assessment is the earliest evidence of impending cancer in persons 

who don't have cancer. Single nucleotide polymorphisms (SNPs) interfere with the 

function of certain genes and thus may influence the probability of skin cancer (SC). 

The correlation between SNPs and skin cancer lacks statistical power, however. 

Therefore, the purpose of this study was to identify the gene polymorphisms involved 

in skin cancer susceptibility using network meta-analysis, and to determine the 

relationship between SNPs and SC risk. 

Methods: PubMed, Embase and Web of Science were searched for articles including 

‘SNP’ and different types of SC as keywords, between January 2005 and May 2022. 

The Newcastle-Ottawa Scale was used to assess bias judgment. Odds ratio (ORs) and 

their 95% confidence intervals (CI) were determined to estimate heterogeneity within 

and between studies. Meta-analysis and network meta-analysis were carried out to 

identify the SNPs associated with SC. The P-score of each SNP was compared to obtain 

the rank of probability. Subgroup analyses were performed by cancer type. 

 

Results: 275 SNPs from 59 studies were included in the study. Two subgroup SNP 

networks using the alleles and dominant models were analyzed. The minor alleles of 

rs2228570 (FokI) and rs13181(ERCC2) were the first-ranking SNPs in both subgroups 

one two in the alleles model, respectively. Wildtype, and heterozygous genotypes of 

rs475007 in subgroup one and the mutated homozygous genotype of rs238406 in 
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subgroup two were most likely to be associated with skin cancer based on the dominant 

model. 

 

Conclusions: According to the alleles model, SNPs FokI rs2228570 and ERCC2 

rs13181 and according to the dominant model, SNPs MMP1 rs475007 and ERCC2 

rs238406 are closely linked to SC risk. 

 

2 The therapeutic effect of hydrogen gas on lung cancer -- Linc-PINT and 

 

LincRNA-p21 as biomarkers 

 

 
2.1 Introduction 

 

Lung cancer (LC) is the second most common cancer in both genders, and it is the 

leading cause of cancer mortality globally (12). Approximately 2.2 million new LC 

cases were diagnosed worldwide with nearly 1.8 million deaths in 2020 (13). Lung 

cancer is caused by the uncontrolled cell growth in the tissues of the lung and is 

classified into two major histological types: small-cell lung carcinoma (SCLC) and 

non-small-cell lung carcinoma (NSCLC) (15). NSCLC accounts for 80%-85% of lung 

cancers. Although the main etiologic factor is tobacco use, other risk factors such as 

occupational exposures to hazardous chemicals, air pollution, poor diet and genetic 

susceptibility may also increase the risk of LC (16). Since smoking cessation policies 

were implemented, a downward trend has been reported in the incidence of LC in the 

developed countries. However, developing nations, such as China -where tobacco 

consumption has remined high- have not experienced a decline in LC incidence (17). 

With the introduction of low-dose CT screening, important developments in the timely 

diagnosis of LC have been made in recent years (87). However, to date, most lung 

cancers are diagnosed at an advanced stage, at stages 3 or 4, when the efficacy of 

treatment is more limited (88,89). LC continues to constitute a major health burden 

throughout the world, particularly in developing countries, therefore identifying new, 

effective options for the treatment of LC is crucial. 
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The TP53 gene is a widely researched tumor suppressor gene, located on chromosome 

17. As one of the most frequently mutated genes in human cancers (30), coding the 

tumor protein p53, it regulates the expression of a range of genes from DNA repair, 

metabolism, cell cycle arrest to cell senescence and apoptosis (31). TP53 has been 

found to be associated with the development of various cancers, including lung cancer 

(32). 

 

Long non-coding RNAs (lncRNA) are a kind of RNA with more than 200 nucleotides 

which are not translated into protein (90). With the development of genome-wide 

sequencing and high-resolution microarray technologies (91,92), lncRNAs have been 

shown to be linked to gene transcription, post-transcriptional regulation, epigenetic 

regulation, and DNA regulation (93). 

The long intergenic non-protein coding RNA TP53-induced transcript (LINC-PINT) is 

a TP53-induced transcript, located on chromosome 7, spanning 232,616 bases (94). 

LINC-PINT is considered to be a promising lncRNA tumor suppressor gene. Decreased 

expression levels of LINC-PINT have been found in various cancers such as 

osteosarcoma (33), gastric cancer (34), renal cell carcinoma (35), glioblastoma (36), 

melanoma (37), and lung cancer (38), including NSCLC (39). Hence, LINC-PINT has 

been investigated as a possible marker for promoting tumor progression (95) and 

predicting prognosis (40). 

LincRNA-P21 is also a direct transcriptional target of TP53 (40) and has been reported 

to play a part downstream of TP53-mediated transcriptional repression. By interacting 

with heterogeneous nuclear ribonucleoprotein K (hnRNP K), and TP53 upregulated 

modulator of apoptosis (PUMA), lincRNA-P21 regulates growth arrest and apoptosis 

(96,97). In addition, lincRNA-P21 also interacts with MDM2 to regulate TP53 levels 

(96). LincRNA-P21 has been found to directly or indirectly influence the proliferation, 

migration, apoptosis and the Warburg effect of cancer cells, by binding to different 

miRNAs and proteins (41). Thus, the possible role of lincRNA-P21 as a new biomarker 

in cancer has been suggested. 
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Molecular hydrogen (H2) is a colorless, odorless, and flammable gas. It has been 

utilized as a novel medical gas since its possible therapeutic effects were first 

investigated in vivo, in mouse skin squamous carcinoma (98). H2 has been reported to 

be a selective antioxidant, by decreasing the free radicals, ·OH and ONOO- in living 

cells (99). H2 has also been found to interact with superoxide dismutase (SOD), 

adenosine triphosphate (ATP), nuclear factor erythroid 2-related factor 2 (Nrf2) and 

cytoplasmic heme oxygenase-1(HO-1) (100–102). Hence, the anti-inflammation and 

anti-apoptotic properties of H2 have led to its increased investigation in anticancer 

research (103,104). 

 

The aim of the present study was to explore the effect of H2 in lung cancer cells by 

determining the expression levels of LINC-PINT and lincRNA-P21. 

 
2.2 Materials and methods 

 

2.2.1 Cell culture 

 

A549 cell lines were kindly gifted by Professor Kata Juhász at the Medical School, 

Univesity of Pécs. The A549 NSCLC cells were cultured in Dulbecco’s MEM (DMEM) 

media containing 10% fetal bovine serum (FBS) and 100 IU/ml penicillin-streptomycin. 

Cells were then maintained in the incubator at 37 ℃ temperature and 5% CO2. 

 

2.2.2 Treatment with H2 gas 

 

Cells were treated in 3 wells of 6-well culture dishes in closed plastic boxes with a 

volume of 1950-ml3 (15cm*10cm*13cm). As shown in Figure 2(a), the sides and tops 

of the boxes were covered with aluminium to reduce the possibility of the escape of 

hydrogen gas (105). Water was added to the bottom of the boxes for maintaining 

humidity (106). Hydrogen gas was delivered into the box via a top afferent tube and out 

of the box via a bottom efferent tube. From the three layers of the 6-well culture dish, 

the top one was used for the PCR test, the middle one for the H2 concentration test and 

the bottom one was left empty. H2 concentration was tested by the H2 meter (YIERYI, 
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4-in-1 water quality test meter, from 0 to 2.400ppm, with a 2ppm resolution, and 

±10ppm accuracy). An electrolyzed water device was employed to produce H2 gas 

(Figure 2(b)). 

 

 

 

 

 

 
a b 

 
Figure 2 The schematic diagram of cell culture with H2 gas (a) and electrolyzed 

water device (b). 

 

2.2.3 RNA isolution and quantitative Real-Time PCR 

 

Total RNAs were isolated from lung cancer cells using the TRIzol method (Invitrogen, 

USA), and then air-dried and stored at -70°C. DNA oligos from Integrated DNA 

Technologies (IDT) (Coralville, IA, USA) were used as a template for quantitative real- 

time (RT)-PCR. The primers were the following: 

 

forward: 5ʹAGGAGGGAACGAGGCAGGGA3ʹ 

 
and reverse: 5ʹAGCTCAGATCAGCAAGGCAG3ʹ for lincRNA-PINT 

and forward: 5ʹGGGGATAAGCACCACTAATG3ʹ 

and reverse: 5ʹTGTAGGCAATCACAGAGCAC3ʹ for lincRNA-P21 (107). 

 
The expression of RNAs was tested with the LightCycler- 480 Instrument II RT-PCR 
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System (Roche, Swiss). Melting temperatures (Tm) of the forward and reverse primers 

of lincRNA-PINT were 62.8 °C and 57.4 °C and those of lincRNA-p21 were 52.9 °C 

and 55.0 °C. The 2–𝗈𝗈Ct method was employed for the assessment of the expression 

levels of lincRNA. 

 

2.2.4 Statistical analysis 

 

One-way analysis of variance (ANOVA) and linear regression were used to clarify 

multiple groups’ differences and associations. We respectively delivered 0% (control 

group), 5% H2 gas (5%H2 group) and 10% H2 gas (10%H2 group) into the lung cancer 

cells for two hours and thirty minutes (2H30 group), three hours group (3H group), and 

three hours and forty minutes group (3H40 group). P<0.05 was defined as the statistical 

significance and P<0.01 was described as a significant statistical difference. Analyses 

were carried out by IBM SPSS version 26.0. 

 
2.3 Results 

 

2.3.1 Investigation of possible influencing factors 

 

To ensure that flow of H2 gas was stable, we investigated the relationship between H2 

and time. The volume of the produced hydrogen had a linear relationship with time 

(Y=32.78+1.55X, R2=97.60%, P<0.05). Besides, ANOVA result showed that there was 

no statistical difference between the H2 concentration of the three layers of the box 

(F=0.589, P>0.05). Thus, we confirmed, that the middle and the top layers of the culture 

dish were exposed to equal concentrations of hydrogen gas. 

 

2.3.2 Effect of H2 concentration on lincRNAs expression 

 

Lung cancer cells were treated with 3 different concentrations (0%,5%,and 10%) of H2 

gasfor three different time periods (2H, 3H, and 3H30). As shown in Figures 2(a1) and 

(a2), the expression levels of LINC-PINT were significantly correlated with the 

increasing H2 concentrations, from 0% (control group) to the 5% and 10%- 



- 29 -  

0% 5% 
H2 concentration 

10% 0% 5% 
H2 concentration 

10% 0% 5% 
H2 concentration 

10% 

concentrations in the 2H30 and 3H time groups (R2
2H30=0.52, R2

3H=0.57, both P<0.05). 

The positive relationship between expression levels and H2 concentrations was also 

observed for lincRNA-P21 expression in the 2H30 time group (R2=0.88, P<0.01). In 

contrast, the expression of LINC-PINT showed a significant negative correlation with 

H2 concentration in the 3H40 time group (R2=0.81, P<0.01). 

 

 

 

 

 

 

 

 
 

0% 5% 10% 
H2 concentration 

0% 5% 10% 
H2 concentration 

(a1) 2 hours and 30 minus for LINC-PINT (a2) 3 hours for LINC-PINT (a3) 3 hours and 30 minus for LINC-PINT 
 

(b1) 2 hours and 30 minus for lincRNA-P21 (b2) 3 hours for lincRNA-P21 (b3) 3 hours and 30 minus for lincRNA-P21 

 

Figure 3 The relationship between the expression of LINC-PINT (a) and lincRNA- 

P21 (b) and H2 concentration evaluated after differenttime periods. (a1) 2 hours and 

30 minus for LINC-PINT, R2 linear = 0.52; (a2) 3 hours for LINC-PINT, R2 linear = 

0.57; (a3) 3 hours and 30 minus for LINC-PINT, R2 linear = 0.81; (b1) 2 hours and 

30 minus for lincRNA-P21, R2 linear = 0.88; (b2) 3 hours for lincRNA-P21, R2 linear 

= 0.03; (b3) 3 hours and 30 minus for lincRNA-P21, R2 linear = 0.03; For the x-axis: 

1=0% H2 (control group), 2=5% H2, and 3=10% H2; Y represents the relative 

concentration levels (subtract the concentration of the reference gene-GAPDH) of 

LINC-PINT (a) and lincRNA-P21 (b); “*” indicates statistical difference (P<0.05) 

and “**” indicates significantly statistical difference (P<0.01). 

 

2.3.3 Effect of treatment time on linc-RNA expression 

0% 5% 
H2 concentration 

10% 
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The expression levels of LINC-PINT in the 5% H2 and the 10% H2 group followed 

opposite trends after different lengths of treatment, however neither trend was 

statistically significant (F5%H2=1.60 and R2
5%H2=0.78, F10%H2=3.64 and R2

10%H2=0.34, 

all P>0.05) (Figure 3(a1) and (a2) of Supplement). The expression of lincRNA-P21 

decreased with time (F5%H2=13.54 and R2
5%H2=0.66, F10%H2=28.94 and R2

10%H2=0.81, 

all P<0.01) in both 5% and 10% H2 concentrations groups (Figure 3(b1) and (b2) of 

Supplement). 
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(a1) 5% H2 treatment for LINC-PINT (a2) 10% H2 treatment for LINC-PINT 

(b1) 5% H2 treatment for lincRNA-P21 (b2) 10% H2 treatment for lincRNA-P21 

 

Figure 4 Expression of LINC-PINT (a) and lincRNA-P21 (b) in lung cancer cells 

after treatment with two H2 concentrations for different time periods. (a1) 5% H2 

treatment for LINC-PINT; (a2) 10% H2 treatment for LINC-PINT; (b1) 5% H2 

treatment for lincRNA-P21; (b2) 10% H2 treatment for lincRNA-P21; Y-axis 

represents the mean of relative concentration levels (subtract the concentration of the 

reference gene-GAPDH) of LINC-PINT (a) and lincRNA-P21 (b); “*” indicates 

statistical difference (P<0.05) and “**” indicates significantly statistical difference 

(P<0.01). 
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2.4 Discussion 

 

To our knowledge, this is the first study to identify the possible role of lncRNAs as 

biomarkers in lung cancer cells after hydrogen gas useage. Our results indicated that 

hydrogen not only influenced the cells’ functions at the DNA and protein levels, but 

also affected their lncRNA expression. Furthermore, we found that LINC-PINT 

expression increased with increasing concentrations of H2 gas, after 2 hours thirty 

minutes and three hours. Furthermore, similar to LINC-PINT, lincRNA-P21 expression 

was found to be lowest after using 5% H2 gas, followed by the 10% , then 0% H2, with 

period of 2 hours and 30 minutes. 

 

The TP53-induced transcript, LINC-PINT has been detected in multiple types of human 

tissue (108). LINC-PINT negatively modulates TP53 in an autoregulative manner by 

acting as a regulator of cell cycle arrest and a pro-survival molecule when DNA damage 

occurs. LincRNA-P21 is also a tumor suppressor (109), which has been shown to 

competitively bind to Mouse double minute 2 (MDM2), to increase the transcriptional 

activity of TP53 (110). Thus, LINC-PINT and lincRNA-P21 directly and indirectly, 

regulate cell proliferation, migration, apoptosis, and the Warburg effect (41) and they 

are also essential for cell growth and proliferation (111). 

 

Hence, our findings indicate that H2 gas upregulated the expression of LINC-PINT and 

lincRNA-P21 in lung cancer cells, which was also reported previously (112). For 

example, a patient-based study involving LC patients indicated that, compared to 

normal tissue, the expression of lincRNA-P21 was decreased in tumor tissue (113). This 

downregulation of lincRNA-P21 in NSCL as also be described in Samaneh Talebi's 

study (114). Dongchang Wang et al reported that treatment with H2 gas inhibited the 

growth, migration, invasion, and apoptosis of A549 and H1975 cells by down- 

regulating a regulator for chromosome condensation (115). 

 

Interestingly, however, we found that in the cells treated with H2 gas for the longest 

period of time (3 hours and 40 minutes), the expression levels of LINC-PINT decreased. 
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Our investigation also demonstrated that the expression of lincRNA-P21 decreased 

with time in the 5% and 10% H2 treatment groups. Our findings are supported by 

Castellano et al. Their sutdy reported that lung cancer patients with a worse prognosis 

had higher lincRNA-P21 levels than those with a better prognosis (113). 

 

LincRNA-p21 has been shown to be a hypoxia-responsive lncRNA that plays an 

important role in glycolysis by binding to HIF-1α and VHL under hypoxic 

circumstances (116). The Warburg effect can be defined as a form of disrupted glucose 

metabolism, with an increased rate of glucose consumption and production of lactate 

despite the presence of oxygen, which is typical for tumors and malignant evolution 

(117). This metabolic characteristic the Warburg effect has also been shown to 

contribute to the invasion and metastasis of lung cancer malignancies (118,119). In 

previous studies, LINC-PINT has been found to be negatively correlated to HIF‑1α, an 

oxygen-sensing transcription factor, in gastric cancer cells (120). Thus, it is highly 

probable that LINC-PINT and lincRNA-P21 are also involved in the disruption of 

glucose metabolism in lung cancer cells (121). Based on these data, therefore, we 

hypothesize that treatment with hydrogen may have induced the Warburg effect in lung 

cancer cells, which in turn resulted in the decreased expression of LINC-PINT and 

lincRNA-P21. Further research is warranted, however, to verify our hypothesis. 

 

2.5 Conclusions 

 

In summary -although LINC-PINT and lincRNA-P21 levels decreased in the relatively 

long H2 groups- our study indicated that the expressions of LINC-PINT and lincRNA- 

P21 were upregulated with increasing concentrations of H2 gas after both two hours and 

thirty minutes and three hours of treatment. 

 

Thus, it can be concluded that hydrogen gas upregulated the expression of LINC-PINT 

and lincRNA-P21 in non-small cell lung cancer cells after a comparatively short usage 

period. 
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2.6 Limitation 

 

Although each experiment was repeated three times, the number of repetitions may still 

constitute a main limitation of this study. Secondly, the H2 treatment time ranged 

between 2 hours 30 minutes and 3 hours 40 minutes, which cannot be considered long 

time intervals. Thus, our results may have differed if longer treatment times had been 

applied. 

 

3 The relationship between single nucleotide polymorphisms and skin cancer 

susceptibility: A Systematic Review and Network Meta-Analysis 

3.1 Introduction 

 

The incidence of skin cancers has increased significantly since the 1970s, mainly due 

to lifestyle changes, including sun-seeking behavior, and the thinning of the ozone layer 

(18). Skin cancers include cutaneous melanoma (CM) and nonmelanoma skin cancer 

(NMSC), with growing incidence rates of both cancer types (20). They are all caused 

by the abnormal growth of skin cells, especially of those exposed to the sun. Non- 

melanoma skin cancer is the most common cancer among white-skinned people, thus 

it is a significant cause of morbidity (21). Melanoma is less common, however its 

prognosis is poorer resulting in higher mortality rates (22). Approximately 1.2 million 

new NMSC (22) and, nearly 300 000 new CM cases were diagnosed worldwide with 

57 043 deaths from CM in 2020 (22). Timely diagnosis is crucial for reducing mortality 

from skin cancer and also has additional health and economic benefits (23). Since early 

detection of skin cancer is often limited, identifying suitable markers for its detection 

is of the utmost importance. Therefore, certain, new genetic loci were investigated as 

possible markers for identifying SC risk (24). 

Single nucleotide polymorphisms (SNPs) are genetic variations caused by point 

mutations. The allelic distribution of SNPs may interfere with the function of genes and 
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then influence the probability of certain diseases (122,123), which has led to SNPs 

being investigated as possible biological markers. Various SNPs have been shown to be 

associated with pigmentation, nevi, hair, and skin color, melanin, and SC. The SNPs of 

the BRAF and NARS genes for example have been found to be commonly mutated 

oncogenes in CM (124). Furthermore, -similarly to the interactions between genetics 

and the environment- the number and frequency of SNPs also affect the characteristics 

of its related gene as well as the development of its related certain diseases phenotypes 

(125,126). 

 

The network meta-analysis (NMA), and in particular, the Bayesian network meta- 

analysis, analyzes the direct and indirect evidence from multiple comparisons of tests 

within and between studies (127), making it possible to investigate the interactions 

between multiple comparisons of SNP tests. 

 

Therefore, the aim of our study was to identify and compare the single nucleotide 

polymorphisms predominantly involved in skin cancer susceptibility by conducting a 

network meta-analysis. 

 
3.2 Method 

 

3.2.1 Search strategy 

 

We searched the PubMed, Embase and Web of Science electronic databases from their 

starting date to May 2022, to identify relevant studies. The search strategy was shown 

in Presentation 1 of online supplementary file from website 

(https://www.frontiersin.org/articles/10.3389/fonc.2023.1094309/full#supplementary- 

material). We required the articles to include the following keywords: case-control, 

single nucleotide polymorphism (SNP), and study skin cancer (SC), cutaneous 

melanoma (CM), non-melanoma (NM), squamous cell carcinoma (SCC), or basal cell 

carcinoma (BCC). Inclusion and exclusion criteria are presented in Presentation 2 of 

online supplementary file. The study was designed and performed in accordance with 

the PRISMA guidelines (Figure 2). 

http://www.frontiersin.org/articles/10.3389/fonc.2023.1094309/full#supplementary-
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3.2.2 Inclusion and exclusion criteria 

 

Inclusion criteria were as follows: (1) study type is case-control trial (including Nested 

case-control study); (2) case group is the patients diagnosed with SC, CM, NM, SCC, 

and/or BCC; (3) control group is the non-such cancer healthy population; (4) genotypic 

detection method is PCR or DNA sequencing, such as PCR-based restriction fragment 

length polymorphism (PCR-RFLP), TaqMan PCR, Real-Time PCR (RT-PCR), 

Kompetitive allele specific PCR (KASP PCR), PCR with sequence-specific primers 

(SSP-PCR), Taqman, Cycle Sequencing Kit, and SNaPshot Sequencing Kit. 

Articles were excluded based on the criteria: (1) cohort study, case reports, reviews, 

meeting abstracts, or comments; (2) uveal melanomas, non-skin squamous cell 

carcinoma (such as esophageal, neck, oral squamous cell carcinoma); (3) irrelevant or 

family cancer case group or unhealthy population control group; (4) genotypic detection 

method is not PCR or DNA sequencing (in particular, using microarray detection 

Genome-Wide Association Studies (GWAS); (5) lack of available genotype frequency; 

(6) duplicated articles or data. 

 
It is important to point out that, for the fifth exclusion criterion, due to the same 

population (cases were melanoma patients at the Melanoma and Sarcoma Surgery Unit 

of the Istituto Nazionale Tumori, Milan, from May 2006 to June 2007. And controls 

were healthy donors from the Immunohematology and Transfusion Medicine 

Department, Fondazione IRCCS Istituto Nazionale Tumori), the same SNP (rs2910164), 

and the same conclusion (rs2910164 is a risk factor for melanoma), but the case/control 

number of study of Sangalli A(128) (304/314) is larger than that of Gomez-Lira M(129) 

(224/264). So we excluded Gomez-Lira M 's study, named ‘Association of microRNA 

146a polymorphism rs2910164 and the risk of melanoma in an Italian population’. In 

the same manner, we excluded the 'Genetic Variants of the Vitamin D Receptor Gene 

Alter Risk of Cutaneous Melanoma' article(130) and only kept 'Haplotype and 

genotypes of the VDR gene and cutaneous melanoma risk in non-Hispanic whites in 

Texas: A case-control study' article(131). 
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3.2.3 Data abstraction and bias assessment 

 

Two researchers (LZ and YS) – independently - screened the titles and abstracts of the 

search results and extracted the following information from the included articles: 

authors’ name, year of publication, population of country and ethnicity, genotyping 

method, case and control numbers, control's source, case-control match, cancer type, 

gene, SNP, and allele frequency. 

Subsequently we applied the Newcastle-Ottawa Scale (NOS) score for case-control 

studies to evaluate the quality and risk of bias of the included studies (Figure 3) (132). 

According to the NOS, article quality is assessed through eight questions from the 

Selection dimension (Cases definition, Cases selection, Controls definition, and 

Controls selection), the Comparability dimension (Comparability of cases and controls), 

and the Exposure dimension (Exposure ascertainment, Cases and controls 

ascertainment, and Non-response rate). Excepting 'Comparability' with two stars, other 

items can each be given one star. Hence, a study can be awarded a maximum of nine 

stars and will be excluded if lower than five stars. Discrepancies were resolved by 

consensus between the reviewing authors. 

 

3.2.4 Data synthesis and statistical analysis 

 

Alleles are represented differently in different genomes. Therefore, for clarity, all major 

alleles were represented by 'A' in this study, and the corresponding minor alleles were 

represented by 'B'. The allele model (A vs. B) was employed for exploring dominance. 

Furthermore, the dominant model (AA+AB vs. BB) and the recessive model (AA vs. 

AB+BB) were used for investigating the association between different genotypes and 

phenotypes (133). 

A bivariate random effect model was performed for the meta-analysis of the 

comparative studies. Odds ratios (ORs) and their 95% confidence intervals (CI) were 

used for estimating heterogeneity within and between studies. Then, pooled sensitivity 

(Se), specificity (Sp), positive likelihood ratio (LR), negative likelihood ratio (LR), 
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diagnostic OR (DOR) and area under the summary receiver operating characteristic 

curve (AUROC) were calculated for each genotyping. The pooled AUROC was used 

as an indicator testing to examine the diagnostic accuracy of each genotyping. 

Statistical heterogeneity between each study was assessed using the inconsistency index 

I-square. Additionally, meta-regression analysis was performed based on cancer type to 

assess the heterogeneity. Cancer types included: CM, NMSC, and SC (including both 

CM and NMSC). 

Next, the Bayesian network meta-analysis (NMA) was used to clarify the relationships 

between the SNPs and skin cancer according to the allele model (A vs. B) and the 

dominant model (AA+AB vs. BB). The Fixed-effects model that had four chains, 1000 

burn-ins, 200 000 iterations, and a thinning interval of 10 was selected for the MCMC 

simulation (134). The Gelman-Rubin plot and Potential Scale Reduction Factor (PSRF) 

were used for assessing convergence. Net splitting was carried out for checking the 

consistency of the networks and the effect estimate table was employed for estimating 

all SNP comparisons. Then, the overall ranks of SNPs were estimated by P-scores that 

were equivalent to the surface under the cumulative ranking curve (SUCRA) (135). 

SNPs with the highest P-scores was considered to be the most related to skin cancer. 

P<0.05 was considered to be statistically significant. RStudio software and StataSE 

16.0 software were used for calculations and plotting. The software packages used in 

the study are are listed in Presentation 2 of online supplementary file. 

 
3.3 Results 

 

3.3.1 Literature search results 

 

The literature search initially identified 3,575 studies from PubMed, Embase, and Web 

of Science. The search was ended on 2nd May, 2022. As Figure 7 shows, we screened 

368 studies based on titles and abstracts and 232 full-text manuscripts. 59 studies met 

the inclusion criteria and were included in our network meta-analysis. One article was 

excluded due to bias, as explained below. 
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Figure 5 The literature search process and the screening flow chart for network meta- 

analysis. 

 

3.3.2 Characteristics and Bias of Enrolled Studies 

 

Table 1 summarizes the main characteristics of 60 studies, which were published 

between 2005 and 2022. Studies investigating Caucasian or Mongoloid ethnicities were 

included. Figure 8 shows the quality assessment of enrolled studies using the NOS risk 

bias tool. Any studies with NOS scores lower than five stars were excluded. Finally, 

there were 59 articles included in the systematic review and meta-analysis. 

 

Table 1 Main characteristics of the eligible studies 

 
Author Year Country Ethnicity 

Genotyping
 Case/ Control’s 

Match
 

    method Control Source  

Jannot A-S(136) 2005 French Caucasians SNaPshot 120/125 HB N 

Vogel U(137) 2005 Denmark Caucasian RT-PCR 322/322 PB Y 

Li C (1)(138) 2006 USA Caucasian PCR 602/603 HB Y 

Li C (2)(139) 2006 USA Caucasian PCR 602/603 HB Y 

Wilkening S(140) 2007 Hungary, Caucasian TaqMan 517/523 HB Y 
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Romania 

and 

Slovakia 

Meyer P(141) 2007 Germany Caucasian 
Sequencing

 
Kit 

 

 

 

 
 

632/615 HB N 

Applebaum KM(142) 2007 USA Caucasian Taqman 1540/780 PB Y 

Povey JE(143) 2007 UK Caucasian PCR-RFLP 596/441 PB Y 

Pjanova D(144) 2007 Latvia Caucasian 
Sequencing

 
Kit 

203/125 HB N 

Li C(145) 2007    USA Caucasian        PCR 602/603 HB Y 

Li C(131) 2008    USA Caucasian        PCR 805/841 HB Y 

Fernandez LP(146)      2008    Spain Caucasian        PCR 131/245 HB Y 

Guedj M(147) 2008    France Caucasian        PCR 1019/1466      HB N 

Nan H(148) 2009    USA Caucasian        PCR-RFLP      805/873 HB Y 

Schoof N(149) 2009    Germany       Caucasian        TaqMan PCR   165/162 HB Y 

 

Figl A(150) 2010 
Germany 

and Spain 

 
Caucasian TaqMan 1186/1280 HB Y 

 

Capasso M(151) 2010 Italy Caucasian PCR 249/291 HB N 

Debniak T(152) 2011 Poland Caucasian Taqman 300/300 PB N 

Hungary, 
 

Rizzato C (1)(153) 2011 
Romania 

and 

Slovakia 

Hungary, 

 

Caucasian RT-PCR 507/515 HB N 

 

Rizzato C (2)(154) 2011 
Romania 

and 

Slovakia 

Caucasian Taqman 529/532 HB Y 

Lesiak A(155) 2011 Poland Caucasian PCR-RFLP 142/142 HB Y 

Wang L-E(156) 2011 USA Caucasian TaqMan 872/873 HB Y 

Almquist LM(157) 2011 USA Caucasian PCR-RFLP 1578/812 HB Y 

Ibarrola-Villava 
2012

 
Spain Caucasian TaqMan PCR 562/338 HB N 

M(158) 

Helsing P(159) 2012 

 
 

Norway 

 
 

Caucasian 

 
Sequencing 

 
 
388/420 

 
 

HB 

 
 

N 

    Kit    

Santonocito C(160) 2012 Italy Caucasian RT-PCR 167/186 PB Y 

Cocos R(161) 2012 Romania Caucasian PCR-RFLP 174/80 HB N 

Gao R(162) 2013 USA Caucasian PCR 312/216 HB N 

Oliveira C(163) 2013 Brazil Caucasian PCR 146/146 HB Y 

Maccioni L (2)(164) 2013 Spain Caucasian PCR 837/1154 HB Y 
 

Pena-Chilet M 

(1)(165) 

 
2013 Spain Caucasian RT-PCR 538/345 HB N 
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MJ(174) 

 

 

 

 

 

 
 

GF(178) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
C(189) 

 

 

 

 

 
(192) 

 

 

 
PCR: polvmerase chain reaction; PCR-RFLP: restriction fragment length 

polymorphism assay PCR; RT-PCR: real time PCR; KASP PCR: Kompetitive allele 

Pena-Chilet 

(2)(166) 

M 
 
2013 

 
Spain 

 
Caucasian 

 
RT-PCR 

 
530/314 

 
HB 

 
Y 

Maccioni L (1)(167) 2013 Spain Caucasian PCR 837/1154 HB Y 

Francisco G(168) 2013 Brazil Caucasian PCR-RFLP 202/210 HB Y 

Yamashita J(169) 2013 Japan Mongoloid PCR 50/107 HB N 

Cordoba-Lanus 
  

2014 
 

Spain 
 

Caucasian Sequencing 
 
509/491 

 
PB 

 
Y 

E(170)   Kit    

Gomez-Lira M(171) 2014 Italy Caucasian PCR-RFLP 240/342 HB N 

Oliveira C(172) 2014 Brazil Caucasian PCR 100/108 HB Y 

Thunell LK(173) 2014 Sweden Caucasian PCR-RFLP 50/799 PB Y 

Llorca-Cardenosa 
2014

 
Spain Caucasian KASP PCR 648/381 HB N 

Hsu L-I(175) 2015 China Mongoloid PCR-RFLP 70/210 PB Y 

Russo I(176) 2016 Italy Caucasian RT-PCR 177/158 HB N 

Elefanti L(177) 2016 Italy Caucasian TaqMan 182/89 HB N 

Mukhammadiyeva 
2017

 
Russia Caucasian PCR-RFLP 25/100 PB Y 

Li Y-L(179) 2017 China Mongoloid TaqMan 660/662 HB Y 

Burns EM(180) 2017 USA Caucasian PCR 97/100 HB N 

Sangalli A(128) 2017 Italy Caucasian PCR 304/314 HB N 

Motorina AV(181) 2018 Russia Caucasian TaqMan PCR 95/334 PB N 

Gomez GVB(182) 2018 Brazil Caucasian RT-PCR 250/250 HB N 

Yuan T-A(183) 2018 USA Caucasian PCR 177/172 PB N 

Slawinska M(184) 2019 Poland Caucasian PCR 254/254 HB Y 

Orlandi E(185) 2019 Italy Caucasian PCR-RFLP 334/291 HB Y 

Ozola A(186) 2019 Latvia Caucasian RT-PCR 253/200 HB N 

Fathi F(187) 2019 Iranian Caucasian PCR-RFLP 210/320 PB Y 

Reis LB(188) 2020 Brazil Caucasian RT-PCR 120/135 HB Y 

Morgado-Aguila 
2020

 
Spain Caucasian Taqman 81/73 PB Y 

Tovar-Parra JD(190) 2020 Colombia Caucasian PCR 85/170 HB Y 

Fathi F(191) 2021 Iranian Caucasian PCR-RFLP 210/220 PB Y 

Aristizabal-Pachon A 
2022

 
Colombia Caucasians PCR-RFLP 120/120 HB Y 

Dunjic M(193)* 2022 Serbian Caucasians RT-PCR 93/95 UN Y 

 



- 41 -  

specific PCR; PB: population-based; HB: hospital-based; UN: unknown; Y: yes; N: no; 

* Due to the low quality caused by bias, Dunjic M’s article was excluded from the meta- 

analysis. 

 

 
Low Risk of Bias (with starts)  

High Risk of Bias (without starts)  
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Vogel U 2005 1 1 1 1 2 1 1 0 8 Maccioni L (2) 2013 1 1 0 1 2 1 1 0 7 

Jannot A-S 2005 1 1 0 1 0 1 1 0 5 Gao R 2013 1 1 0 1 0 1 1 0 5 

Li C (1) 2006 1 1 0 1 2 1 1 1 8 Oliveira C 2013 1 1 0 1 2 1 1 1 8 

Li C (2) 2006 1 1 0 1 2 1 1 1 8 Francisco G 2013 1 1 0 1 2 1 1 0 7 

Applebaum KM 2007 1 1 1 0 2 1 1 0 7 Yamashita J 2013 1 0 0 1 0 1 1 1 5 

Povey JE 2007 1 1 1 1 2 1 1 0 8 Cordoba-Lanus E 2014 1 1 1 1 2 1 1 1 9 

Wilkening S 2007 1 1 0 1 2 1 1 0 7 Thunell LK 2014 1 1 1 1 0 1 1 1 7 

Meyer P 2007 1 1 0 1 0 1 1 0 5 Llorca-Cardenosa MJ 2014 1 1 0 1 0 1 1 0 5 

Pjanova D 2007 1 1 0 0 0 1 1 1 5 Gomez-Lira M 2014 1 1 0 1 0 1 1 1 6 

Li C 2007 1 1 0 1 2 1 1 1 8 Oliveira C 2014 1 1 0 1 2 1 1 1 8 

Guedj M 2008 1 1 0 1 0 1 1 0 5 Hsu L-I 2015 1 1 1 1 2 1 1 0 8 

Fernandez LP 2008 1 1 0 1 2 1 1 1 8 Russo I 2016 1 1 0 1 0 1 1 1 6 

Li C 2008 1 1 0 1 2 1 1 1 8 Elefanti L 2016 1 1 0 1 0 1 1 0 5 

Nan H 2009 1 1 0 1 2 1 1 0 7 Mukhammadiyeva GF 2017 1 1 1 1 2 1 1 1 9 

Schoof N 2009 1 1 0 1 2 1 1 0 7 Li Y-L 2017 1 1 0 1 2 1 1 1 8 

Figl A 2010 1 1 0 1 0 1 1 0 5 Burns EM 2017 1 1 0 1 0 1 1 0 5 

Capasso M 2010 1 1 0 1 0 1 1 0 5 Sangalli A 2017 1 1 0 1 0 1 1 0 5 

Debniak T 2011 1 1 1 1 0 1 1 0 6 Motorina AV 2018 1 1 1 1 0 1 1 0 6 

Rizzato C (1) 2011 1 1 0 1 0 1 1 0 5 Gomez GVB 2018 1 1 0 0 0 1 1 1 5 

Rizzato C (2) 2011 1 1 0 1 2 1 1 0 7 Yuan T-A 2018 1 1 1 1 0 1 1 0 6 

Cocos R 2011 1 1 0 1 0 1 1 1 6 Fathi F 2019 1 1 1 1 2 1 1 1 9 

Lesiak A 2011 1 1 0 1 2 1 1 1 8 Ozola A 2019 1 1 0 1 0 1 1 0 5 

Wang L-E 2011 1 1 0 1 2 1 1 0 7 Slawinska M 2019 1 1 0 1 2 1 1 0 7 

Almquist LM 2011 1 1 0 1 2 1 1 0 7 Orlandi E 2019 1 1 0 1 2 1 1 1 8 

Ibarrola-Villava 
M 2012 1 1 0 1 0 1 1 0 5 Reis LB 2020 1 1 0 1 0 1 1 1 6 

Helsing P 2012 1 1 0 0 0 1 1 1 5 Morgado-Aguila C 2020 1 1 1 1 2 1 1 1 9 

Santonocito C 2012 1 1 1 1 2 1 1 1 9 Tovar-Parra JD 2020 1 1 0 1 2 1 1 1 8 

Maccioni L (1) 2013 1 1 0 1 2 1 1 0 7 Fathi F 2021 1 1 1 1 2 1 1 1 9 

Pena-Chilet M (1) 2013 1 1 0 1 0 1 1 0 5 Aristizabal-Pachon A 2022 1 1 0 1 2 1 1 1 8 

Pena-Chilet M (2) 2013 1 1 0 1 2 1 1 0 7 Dunjic M 2022 0 0 0 0 2 0 0 0 2 

 

Figure 6 Case-control risk of bias assessment graph. 

 

 
3.3.3 Pairwise meta-analysis 

 

A direct meta-analysis was performed to determine the correlation between 275 SNPs 

and SC risk (Table 1 of online supplementary file). 72 SNPs from 47 studies were 

closely associated with SC in the studies using the alleles model (A vs. B), while a 

significant association was found for 52 SNPs from 31 studies using the dominant 
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model (AA+AB vs. BB). Furthermore, based on the recessive model (AA vs. AB+BB), 

77 SNPs from 35 studies were related to SC. As depicted in Table 1 of online 

supplementary file, the detected SNPs were analyzed further for diagnostic accuracy. 

 

Table 2 shows the evaluation of the diagnostic performance of the pooled SNPs for SC. 

According to the SUCRA (Figure 9), the allele model can be employed for exploring 

dominance. Then, we chose the dominant model as the genotyping model for 

diagnosing SC. 

 

Table 2 SNPs’ diagnostic performance evaluation in the skin cancer 

 
 

Alleles model Dominant model Recessive model 

(A vs. B) (AA+AB vs. BB) (AA vs. AB+BB) 

Number of studies 47 31 35 

Number of SNPs 72 52 77 

Pretest Prob 0.48 0.46 0.48 

AUROC 0.50 [0.45, 0.54] 0.61 [0.57, 0.65] 0.53 [0.49, 0.57] 

Sensitivity 0.79 [0.75, 0.83] 0.93 [0.91, 0.95] 0.64 [0.58, 0.69] 

Specificity 0.22 [0.19, 0.26] 0.14 [0.11, 0.18] 0.42 [0.37, 0.47] 

Positive LR 1.0 [1.0, 1.0] 1.1 [1.0, 1.1] 1.1 [1.0, 1.2] 

Negative LR 0.94 [0.87, 1.02] 0.48 [0.33, 0.70] 0.85 [0.77,0.95] 

Diagnostic OR 1 [1, 1] 2 [2, 3] 1 [1, 2] 

 
'A' stands for the major alleles; 'B' stands the minor alleles; the numbers inside the ‘[ , ]’ 

mean the range of 95% CI. 
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a. ROC curve of the alleles model b. ROC curve of the dominant model c. ROC curve of the recessive model 

 

 

Figure 7 The ROC curve of three models. 

 

 
3.3.4 The allele model (A vs. B) 

 

The associations between the 72 SNPs and SC susceptibility are shown in Table 2 of 

online supplementary file. In the allele model, the major alleles of rs16891982 (G vs. 

C, combined OR [cOR]=2.74, 95% CI [2.20, 3.40]), rs885479 (G vs. A, cOR=1.46, 95% 

CI [1.06, 2.01]), rs1544410 (G vs. A, cOR=1.19, 95% CI [1.06, 1.34]), rs731236 (T vs. 

C, cOR=1.11, 95% CI [1.00, 1.23]), and the minor alleles of rs25487 (G vs. A, 

cOR=0.92, 95% CI [0.85, 0.99]), rs4911414 (G vs. T, cOR=0.85, 95% CI [0.75, 0.96]), 

rs1695 (W vs. M, cOR=0.79, 95% CI [0.65, 0.95]), and rs2228570 (wild-type allele vs. 

mutant allele, cOR=0.79, 95% CI [0.71, 0.88]) were related significantly to SC in at 

least two of the studies. The pooled P value for all SNPs was less than 0.05. 

 

3.3.5 The dominant model (AA+AB vs. BB) 

 

Table 3 of online supplementary file summarized the 52 SNPs’ cOR for SC according 

to the dominant model. The results show that those who were homozygous and 

heterozygous for the major alleles: rs16891982 (GG+GC vs. CC, cOR=3.72, 95% CI 

[1.66, 8.35]), rs494379 (TT+TC vs. CC, cOR=2.62, 95% CI [1.96, 3.49]), rs514921 

(AA+AG vs. GG, cOR=2.14, 95% CI [1.67, 2.75]), rs1144393 (AA+AG vs. GG, 

cOR=1.48, 95% CI [1.19, 1.84]), rs11615 (AA+AG vs. GG, cOR=1.41, 95% CI [1.02, 
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1.95]), and rs498186 (TT+TG vs. GG, cOR=1.35, 95% CI [1.10, 1.65]) had a higher 

risk for developing SC, than those homozygous for the minor alleles. In contrast, 

individuals homozygous for the minor alleles rs25487 (GG+GA vs. AA, cOR=0.85, 95% 

CI [0.72, 1.00]) and rs1805007 (CC+CT vs. TT, cOR=0.42, 95% CI [0.19, 0.91]) were 

significantly associated with increased susceptibility to SC. 

 

3.3.6 Subgroup analysis 

 

Covariate regression analysis was performed for each of the three genotypes. The 

results showed that cancer type was not the source of heterogeneity in the studied 

models (Table 3). 

 

Table 3 Subgroup analyses according to the cancer type 

 
 

Study Sensitivity  
p 

Specificity  
p 

LRT  
p 

number [95%CI]  [95%CI]  Chi2  

 
Allele model 

 
121 

0.85  
0.15 

0.17  
0.28 

 
3.31 

 
0.19 

  [0.78, 0.91]  [0.11, 0.25]    

Dominant  
76 

0.95  
0.44 

0.19  
0.28 

 
3.16 

 
0.21 

model  [0.90, 0.97]  [0.11, 0.31]    

Recessive  
132 

0.77  
0.05 

0.35  
0.29 

 
5.88 

 
0.05 

model  [0.65, 0.86]  [0.25, 0.47]    

 
LRTChi2, Likelihood ratio test in joint model. 

 

3.3.7 2.3.7 Network evidence 

 

3.3.7.1 The allele model 

 

 

The network plot depicts the rough comparison of each pair of SNPs (Figure 10). A 

node indicates an SNP, and its size represents the number of studies. The connections 

between the nodes mean a pair of comparisons and their thickness represents the 

number of direct comparisons. As is evident from Figure 10a, there were three 
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subgroups without any connections. Also, to avoid redundancy, the network of SNPs 

from one study was deleted in our study. Thus, the NMA of the allele model was divided 

into two groups: subgroup one (including rs1544410, rs2228570, and rs731236) and 

subgroup two (including rs1042522, rs1136410, rs11615, rs13181, rs1695, rs1799793, 

rs1805006, rs1805007, rs1805008, rs25487, rs25489, rs4911414, and rs885479) 

(Figure 10b). 
 

 

 

 

a. Network plot of SNPs in all subgroup b. Network plot of SNPs in subgroup 2 

 
Figure 8 The network evidence plot of single nucleotide polymorphisms (SNPs) in 

the allele model (A vs. B). 

 

The SNPs rs731236 vs. rs2228570 had the strongest negative correlation with SC risk 

in subgroup one (standardized mean differences (SMD) of OR=-0.08, 95% CI [-0.18, 

0.02]) (Table 4). However, the P values of the correlations between the SNPs in 

subgroup one were above 0.05. 

 

Table 4 The direct and indirect evidence of each compairson in the subgroup one 

 

Comparison Direct Indirect Diff Z p-value 

rs1544410 vs rs2228570 0.05 0.00 0.05 0.26 0.79 

rs1544410 vs rs731236 -0.03 -0.04 0.01 0.04 0.97 
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rs2228570 vs rs731236 -0.08 -0.25 0.17 0.41 0.68 

 
Similarly, as shown in Figure 6, Table 4 of online supplementary file, the comparison 

with the highest direct pooled effect size in subgroup two was rs4911414 vs rs1805006 

(SMD of OR=-2.94, 95%CI [-2.48, -3.40]), followed by comparison rs13181 vs. 

rs25489 (SMD of OR=-2.35, 95% CI [-2.54, -2.16]). 

 

Additionally, in subgroup two, the direct and indirect evidence showed negative 

correlations in the comparisons of rs1042522 vs. rs25487, rs1136410 vs. rs25489, 

rs11615 vs. rs13181, rs11615 vs. rs25487, rs13181 vs. rs1799793, rs13181 vs. rs25487, 

rs1805007 vs. rs1805006, and rs1805007 vs. rs885479 (Table 4 of online 

supplementary file). However, since the indirect evidence proportion of each 

comparison (i.e., the mean path length of each estimated comparison) was less than 2 

(194) , each of the above mentioned comparisons followed the direction of direct 

evidence (Figure 11). 

 
 

 
Network Estimate 

rs1042522 vs rs11615 

rs1805006 vs rs885479 

rs1805007 vs rs1805008 

rs1805006 vs rs1805007 

rs13181 vs rs1799793 

rs1805007 vs rs885479 

rs1136410 vs rs25487 

rs1805006 vs rs1805008 

rs25487 vs rs25489 

rs1805008 vs rs885479 

rs4911414 vs rs885479 

rs1695 vs rs25487 

rs1805007 vs rs4911414 

rs1805008 vs rs4911414 

rs1805006 vs rs4911414 

rs13181 vs rs25487 

rs1042522 vs rs25487 

rs11615 vs rs25487 

rs1042522 vs rs1805008 

rs1042522 vs rs13181 

rs11615 vs rs13181 

rs1799793 vs rs25489 

rs13181 vs rs25489 

rs1799793 vs rs25487 

rs1042522 vs rs1805007 

rs1695 vs rs25489 

rs1136410 vs rs25489 

Evidence 

indirect direct 

 
Direct evidence proportion for each network estimate 

Minimal
 

 
 

Mean Path 

 

Figure 9 The percentage of direct and indirect evidence in the subgroup two of the 

allele model. The comparisons only with indirect evidence were hidden due to the 
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limited space. 

 
To select the SNPs with the highest chance of a significant association with skin cancer, 

the P scores were ranked, as shown in Table 5. The SNP rs2228570 (P-score=0.85) 

ranked first in subgroup one in the allele model and SNP rs13181 had the highest P- 

score in subgroup two (P-score=0.94). 

Table 5 The rank of P-score of the SNPs in each subgroup in the Allele model 
 

Rank Subgroup 1 P-score Subgroup 2 P-score 

1 rs2228570 0.85 rs13181 0.94 

2 rs1544410 0.47 rs1799793 0.90 

3 rs731236 0.18 rs25487 0.88 

4 
  

rs11615 0.77 

5 
  

rs1042522 0.64 

6 
  

rs1695 0.57 

7 
  

rs4911414 0.54 

8 
  

rs1136410 0.41 

9 
  

rs1805007 0.33 

10 
  

rs1805008 0.24 

11 
  

rs25489 0.19 

12 
  

rs885479 0.08 

13 
  

rs1805006 0.00 

 
3.3.7.2 The dominant model 

 

 

In Figure 12a, only two subgroups met the requirements for the NMA. Subgroup one 

included rs1051121, rs11225426, rs1144393, rs1729376, rs2071230, rs2071231, 

rs3213460, rs470215, rs470358, rs475007, rs491152, rs494379, rs498186, rs5031036, 

rs514921, rs71250626, rs7945189, and rs996999 (Figure 12b), while subgroup two 

included rs1051740, rs11615, rs2228001, rs238406, rs25487, rs25489, rs3212948, and 

rs3212950 (Figure 7c). 
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a. Network plot of SNPs in all subgroups 
 

 

 

b. Network plot of SNPs in subgroup 1 c. Network plot of SNPs in subgroup 2 

Figure 10 The network evidence plot of single nucleotide polymorphisms (SNPs) in the 

dominant model (AA+AB vs. BB). a. network map with 47 SNPs; b. Supgroup one 

network map with 18 SNPs; c. Supgroup two network map with 8 SNPs. 

 

There was no inconsistency between the direct and indirect evidence in group one. The 

strongest positive correlations in this subgroup, were the comparison of rs475007 vs. 

rs1729376 and the comparison of rs475007 vs. rs2071231 (both SMD of network 
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OR=4.23, 95% CI [ 2.19, 6.25]). These were followed by the rs475007 vs rs491152 

comparison, which SNPs were negatively correlated with SC risk (SMD of network 

OR=-4.21, 95% CI [−6.24, −2.18]). The comparison of rs494379 and rs514921 showed 

the strongest indirect correlation (SMD of indirect OR=11.52, 95% CI [-9.40, 32.44]) 

(Table 5 of online supplementary file). 

As shown in Figure 13, the direction of direct evidence and indirect evidence were 
 

different in the comparisions of rs1144393 vs rs1051121, rs11225426 vs 

rs1144393, rs1144393 vs rs1729376, rs1144393 vs rs2071230, rs1144393 vs 

rs2071231,   rs1144393   vs   rs3213460,   rs1144393   vs   rs470215, rs1144393 vs 

rs470358, rs1144393 vs rs491152, rs1144393 vs rs5031036, rs1144393 vs 

rs71250626,   rs1144393   vs   rs7945189,   rs1144393   vs   rs996999,   rs470215   vs 

rs514921, rs470358 vs rs498186, rs475007   vs   rs514921,   rs498186   vs 

rs514921, rs514921 vs rs71250626. However, because their indirect evidence 

proportion of each comparison was less, followed the direction of direct evidence 

(Figure 14). 
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Parallelism 

Figure 11 The direct and indirect evidence forest plot of subgroup one in the dominant 

model with different direction. 
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Figure 12 The percentage of direct and indirect evidence in the subgroup one of the 

dominant model. The comparisions only with indirect evidence were hidden due to 

the limited space. 

 

In the subgroup two, direct and indirect evidence inconsistencies were found in the 
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(Table 5 of online supplementary file). While the percentage of direct evidence of both 

these two comparisons were large than the indirect evidence (Figure 15). Hence, as 

shown in Figure 11, both rs25487 and rs25489 negatively correlated with rs2228001 

after the network analysis. Figure 16 also showed the rs238406 vs. rs25489 comparison 

had the strongest relationship (SMD of network OR=-2.17, 95% CI [−2.72, −1.61]). 

 

 

 
 

 
Figure 13 The percentage of direct and indirect evidence in the subgroup two of the 

dominant model. 
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Figure 14 The direct and indirect evidence forest plot of subgroup two in the 

dominant model. 

 

As shown in Table 6, rs475007 has the highest P-score (0.97) in subgroup one and 

rs238406 has the highest P-score (0.97) in subgroup two. Therefore, the top five SNPs 

most likely associated with skin cancer in descending order, in subgroup one, are: 

rs475007, rs470358, rs498186, rs1144393, rs470215, and in subgroup twoare : 

rs238406, rs2228001, rs25487, rs11615, rs3212950. 

Table 6 The rank of P-score of the SNPs in each subgroup 
 

Rank Subgroup 1 P-score Subgroup 2 P-score 

1 rs475007 0.97 rs238406 0.97 

2 rs470358 0.92 rs2228001 0.87 

3 rs498186 0.89 rs25487 0.62 

4 rs1144393 0.84 rs11615 0.50 
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5 rs470215 0.79 rs3212950 0.41 

6 rs514921 0.68 rs3212948 0.41 

7 rs71250626 0.62 rs1051740 0.21 

8 rs494379 0.59 rs25489 0.02 

9 rs996999 0.58 
  

10 rs3213460 0.42 
  

11 rs2071230 0.27 
  

12 rs7945189 0.27 
  

13 rs11225426 0.26 
  

14 rs5031036 0.26 
  

15 rs1051121 0.17 
  

16 rs491152 0.16 
  

17 rs1729376 0.16 
  

18 rs2071231 0.16 
  

 

3.4 Discussion 

 

Based on direct comparisons of pairwise meta-analysis and added indirect comparisons, 

our study employed the network meta-analysis to compare the associations between 

single-nucleotide polymorphisms and skin cancer using the allele model and the 

dominant model. Our network meta-analysis identified two subgroups in each genetic 

model, respectively. We ranked SNPs based on their P-score to select the most 

appropriate SNPs. Our results showed, that the minor alleles (T) of rs2228570 (FokI) 

and (C) of rs13181(ERCC2) were the highest-ranking SNPs, in both subgroups one and 

two, in the allele model. On the other hand, using the dominant model, the wildtype and 

heterozygous alleles (AA+AT) of rs475007 in subgroup one and the mutated 

homozygous allele (AA) of rs238406 in subgroup two were most likely to be associated 

with skin cancer. 

The single-nucleotide polymorphism rs2228570 (FokI) is located in the vitamin D 

receptor (VDR) gene. It is one of the common human VDR SNPs along with 
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rs1544410(BsmI), rs7975232 (ApaI) and rs731236 (TaqI). Vitamin D is metabolized to 

vitamin D: 1,25(OH)2D3.1 in response to ultraviolet B (UVB) radiation. This 

metabolite is the ligand of the VDR, which in turn initiates a series of biological 

responses in bone metabolism, immunity, cell proliferation, and differentiation by 

binding to vitamin D response elements in the DNA (195). Hence, rs2228570 has not 

only been associated with various skin diseases, such as chronic spontaneous urticaria 

(CSU) (196), atopic dermatitis (AD) (197), and leprosy (198), but has also been linked 

to an increased incidence risk and worse prognosis of different cancers, such as breast 

cancer (42), ovarian cancer (43), gastric cancer (44), hepatocellular carcinoma (45), 

papillary thyroid cancer (46), pancreatic cancer (47) and melanoma. Our results are 

consistent with previous studies using assay methods (199). For instance, the study 

results of Zeljic et al, who used the assay method showed that the mutated genotype of 

rs2228570 was related to increased melanoma risk compared to the wildtype genotype 

in the Caucasian population (199). However, no association was observed between 

rs2228570 and melanoma in this investigation using the biosystem assay method (200). 

SNPs rs13181 and rs238406 ranked first and second in subgroups two in both the allele 

and the dominant models. Both SNP alleles are located in the ERCC2 (formerly called 

XPD) gene. The ERCC2 polymorphisms have an ATP-dependent DNA helicase activity, 

which may impact DNA repair functions. Deficiency of ERCC2 has been reported to 

lead to xeroderma pigmentosum (XP), trichothiodystrophy (TTD), and Cockayne’s 

syndrome (CS) (201). This observation may explain why rs13181 and rs238406 were 

found to be linked to cancers, such as lung cancer (48), cervical cancer (49), breast 

cancer, squamous cell carcinomas of the head and neck (50), and bladder cancer (51). 

In line with these findings, our results showed that the minor allele (C) of rs13181 and 

the mutated homozygous allele (AA) of rs238406 were significantly associated with 

SC risk. The study by Kertatbs et al. reported high frequency of the wild type allele of 

rs13181 in advanced melanoma (202). However, an investigation using the microarray 

chip method including 1,391 NMSC cases and 2,586 cancer-free controls did not find 

significantly increased risks of NMSC for wildtype rs13181 (203). Furthermore, a 
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meta-analysis found that the mutated homozygous allele (AA) of rs238406 was 

positively associated with the increased risk of cancer of the nervous system, the 

digestivetract , the genito-urinary system, and the respiratory system, but without basal 

cell cancer (204). 

 

The matrix metalloproteinases (MMPs) are a family of proteolytic enzymes that are 

involved in cell mobility, proliferation, differentiation, and apoptosis by degrading 

extracellular proteins (205). MMP1, a secreted enzyme that cleaves fibrillar collagen, 

has been linked to cancer, by promoting cancer cell proliferation, tumor angiogenesis 

and vasculogenesis (206). In the dominant model of our research, all the SNPs from 

subgroup one were located in the MMP1 gene, and the SNP most likely to be associated 

with SC was rs475007. Furthermore, homozygosity for the minor allele of rs475007 

was found to decrease the risk of skin cancer. Similar results were found in Hongliang 

Liu’s study, which reported that patients homozygous or heterozygous for the major 

allele of rs475007 were more likely to have larger skin tumors (207). 

 
3.5 Limitation 

 

Due to technical differences and differences in sensitivity, our analysis only included 

studies that used the PCR genotypic detection method and excluded the microarray 

detection or genome-wide association studies (GWAS). However, GWAS allow for 

much larger sample sizes than PCR studies. Additionally, due to the limitations of the 

RStudio and StataSE softwares and the complexity of multi-arm studies, SNPs only 

reported in one single article were not included in the final network meta-analysis. 

 
3.6 Future prospective 

 

Our article indicated that people with mutations in the genes FokI (rs2228570), ERCC2 

(rs13181), MMP1(rs475007) and ERCC2 (rs238406) were more likely to have skin 

cancer. Dysplastic nevi (also called atypical moles) are precursors and risk factors for 

malignant melanoma (208). However, it is difficult to distinguish them from 



- 56 -  

melanomas because of overlapping features and lack of predictive markers(209). Thus, 

our results may provide a possibility for the early detection of asymptomatic skin cancer 

if routine genetic screening is implemented in the general population in the future. 

Additionally, the results of our study may also provide valuable information for 

decision-making when determining the best mode of therapy of SC in a patient. For 

instance, since FokI is a vitamin D receptor gene and vitamin D is considered to be a 

protective factor in certain cancers, such as skin cancer (210,211), supplementation with 

Vitamin D may be used as adjuvant therapy in cancer patients. Therefore, identification 

of SC patients with FokI gene (rs2228570) mutations is important, since these patients 

would not benefit from adjuvant Vitamin D therapy. 

 

In addition, we obtained direct and indirect evidence between the SNP pairs through 

network analysis, which proposed the possibility of hitherto unexplored relationships 

between certain gene mutations. For example, ERCC2 gene mutations have been shown 

to indirectly increase the risk of SC (212,213), and the melanocortin receptor 1 (MC1R), 

which encodes melanocyte-stimulating hormone (MSH) receptors, has also been shown 

to be risk factor for skin cancer (214). However, surprisingly, the indirect evidence of 

our network meta-analysis showed that ERCC2 (rs13181) was negatively related to 

MC1R (1805006, 1805007, 1805008, and rs885479). Therefore, the relationship 

between ERCC2 and MC1R, necessitates further research to determine their role in SC 

development. 

 

Finally -as added scientific value - , we applied an innovative research design by 

performing a network analysis of case-control studies, thus providing a fresh 

perspective on the NMA method. Our analysis implies, that all studies involving 

genetically-related diseases, whether they are cohort or case-control studies, can be 

used to build a network in the meta-analysis, which may then provide as valuable 

information for the diseases’ early detection, diagnosis, staging, treatment and 

prognosis. 
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4 New results 

 

 
1) The expression of LINC-PINT and lincRNA-P21 upregulation with the 

concentration of H2 gas. 

 

2) LINC-PINT expression decreased in a relatively long H2 usage time 

 
3) The expression of lincRNA-P21 declined with the H2 concentration. 

 
4) The minor alleles of rs2228570 (FokI) and rs13181(ERCC2) were associated with 

skin cancer. 

 

5) Wildtype and heterozygous genotypes of rs475007 (MMP1) and the mutated 

homozygous genotype of rs238406 (ERCC2) were most likely to be associated with 

skin cancer. 

 

5 Conclusions 

 

 
The expressions of LINC-PINT and lincRNA-P21 were upregulated after H2 gas 

treatment. And the SNP rs2228570 (FokI), rs13181(ERCC2), rs475007 (MMP1) and 

rs238406 (ERCC2) can be employed as the early biomarkers for skin cancer. 
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