Pécsi Tudományegyetem Műszaki és Informatikai Kar Breuer Marcell Doktori Iskola

Történeti épületek falazatainak állapotértékelése

Szilárdság értékelés roncsolásmentes diagnosztikai módszerek felhasználásával

PhD disszertáció

Szerző: Dormány András tanársegéd

Témavezető: Dr. Orbán Zoltán egyetemi tanár

Pécs, 2023

Tartalomjegyzék

Ábrajegyzék4
Táblázatjegyzék
1. Bevezetés
1.1 Személyes ambíciók7
1.2 Történeti falazatokról általában7
Lyukkamera / endoszkópos vizsgálat
2. Irodalomkutatás
2.1 Falazatok anyagi jellemzőinek meghatározása fúrt magminták segítségével 20
2.2 Falazatok jellemzőinek meghatározása roncsolásmentes diagnosztikai módszerekkel
2.2.1 Hanghullámokon alapuló vizsgálati módszerek 22
2.2.2 Elektromágneses hullámokon alapuló vizsgálati módszer
2.2.3 Visszapattanásos elven működő szilárdságvizsgálat
2.2.4 Penetrációs elven működő habarcs szilárdságvizsgálat
2.2.5 Nedvességtartalom vizsgálat
Irodalomkutatás összegzése
3. Kísérleti program bemutatása és eredményeinek értékelése
3.1 Kísérleti program célja és módszertana
3.2 Kísérleti próbatestek kialakítása
3.3 Próbatestek méretei és nedvességtartalma
3.4 Falazott próbatesteken elvégzett kísérletek leírása
3.4.1 A falazóelemek nyomószilárdságának meghatározására szolgáló kísérletek 40
3.4.2 A falazóhabarcs nyomószilárdságának meghatározására szolgáló kísérletek 41
3.4.3 Alacsony magasságú falazott próbatestek nyomószilárdságának meghatározására szolgáló kísérletek
3.4.4 Próbafalon elvégzett kísérletek 43
3.5 Elvégzett kísérletek eredményei
3.5.1 Falazóelemeken elvégzett kísérletek eredményei
3.5.2 Falazóhabarcs próbatesteken elvégzett kísérletek eredményei
3.5.3 Alacsony magasságú próbatesteken elvégzett kísérletek eredményei
3.5.4 Próbafalon elvégzett kísérletek eredményei55
3.6 A mért eredmények közti összefüggések vizsgálata
3.6.1 Falazóelemeken elvégzett vizsgálatok 59
3.6.2 Falazóhabarcsokon elvégzett vizsgálatok60
3.6.3 Alacsony magasságú falazott próbatesteken elvégzett vizsgálatok
3.6.4 Próbafalon elvégzett vizsgálatok67

4. Tézisek	70
5. Összefoglalás	73
Summary	75
6. Alkalmazási lehetőségek	77
7. Kitekintés és jövőbeli kutatási feladatok	78
8. Köszönetnyilvánítás	79
9. Publikációs lista	80
10. Irodalomjegyzék	82
11. Mellékletek	91

Ábrajegyzék

1. ábra Az optimális biztonság értelmezése [1]	8
2. ábra Kockázat értelemzése [1]	9
3. ábra Új és meglévő épület optimális biztonsági indexének értelmezése [05]	. 10
4. ábra Blokk-kötés és keresztkötés egy tégla vastagságú falazat esetén [7]	. 12
5. ábra Másfél és kéttégla vastagságú falazat téglakötése [8]	. 12
6. ábra Ureges kialakítású téglakötési módok [9]	. 12
7. ábra Terméskő falazat szabálytalan (bal oldali) és szabályos (jobb oldali) kőel	lem
elrendezésben [8]	. 13
8. ábra Szabályosan váltakozó kő és téglasorból épített pincefal [10]	.13
9. ábra Falazatalkotókban ébredő feszültségek [12]	.14
10. ábra Ajánlott roncsolásmentes, kis roncsolással járó és monitoring módszere	k a
vizsgálati szempont függvényében [20]	. 18
11. ábra Magminta kinézete és nyomószilárdság vizsgálatának módja [20]	. 20
12. ábra Magminta fajták [21] kísérleteiben, 2 fekvősoros (a), szabványos (b) és 90 n	nm-
es minta 1 fugával (c)	.21
13. ábra Különböző fugakialakítások [26] kísérleteiben	.21
14. ábra Hanghullám mérési módok transzmisszió szerint [29]	. 23
15. ábra Példa a tomográf elrendezési módra [30]	. 24
16. ábra Szenzor elrendezés és képalkotás a vizsgált szerkezetről [41]	. 25
17. ábra Hanghullám terjedési sebességének változása fugák darabszámá	nak
függvényében [48]	.26
18. ábra Visszaverődő és tovább terjedő hullámok sík felület esetén [53]	. 27
19. ábra Mért és tényleges tégla méretek GPR rekonstrukció alapján [64]	. 29
20. ábra Mállási index alakulás az ütésszám függvényében [81]	. 31
21. ábra Windsor féle penetrációs készülék használat közben [85]	. 32
22. ábra Penetro Malta RSM 15 vizsgáló készülék [87]	. 33
23. ábra A Felicetti és Gettesco féle fogadószerkezet a Schmidt kalapácson alap	uló
behatolás vizsgálathoz [88]	. 33
24. ábra Zalsky féle penetrációs eszköz vízsgálat közben [89]	. 34
25. ábra Az elkészült próbatestek vizsgálatra kész állapotban [saját felvétel]	. 38
26. ábra Rejtett anomáliák az épített falban (üreg, téglatörmelék és habarcs kitöl	tés)
[saját felvétel]	. 38
27. ábra Illusztráció a próbafalról és a lokális anomáliák helyeiről (elölnézet	és
vízszintes metszet) [saját illusztráció]	. 39
28. ábra Nedvességi fokozatok a telítettség függvényében falazatok esetén [101]	.40
29. ábra Tégla vízsgálata ArborSonic készülékkel [saját felvétel]	.41
30. ábra Habarcs próbakocka mérése ArborSonic készülékkel [saját felvétel]	.42
31. ábra Alacsony magasságú falazott próbatesteken elvégzett vizsgálatok ArborSc	onic
készülékkel terheletlen és előterhelt állapotban [saját felvételek]	.43
32. ábra Téglákon mért sugárutak sematikus elrendezése szónikus vizsgálat so	rán
(balról jobbra: szenzorok elrendezése, összes lehetséges sugárút, egymással szemközt l	évő
szenzorok sugárútjai, szemközti és átlós sugárutak) [saját illusztráció]	.44
33. abra Habarcs kockákon mért sugárutak sematikus elrendezése szónikus vizsg	alat
soran [sajat illusztracio]	.46
34. abra Falazott probatesteken mert sugarutak sematikus elrendezése szóni	kus
vizsgalat soran 3 tegla magassagu probatesten [sajat illusztráció]	.48
35. abra Terjedesi sebesseg valtozás FH habarccal készült falazott próbatestek ese	etén
nedvesítes hatasára különböző sugárút szürések alapján	. 48

36. ábra Terjedési sebesség változás AH habarccal készült falazott próbatestek esetén
nedvesítés hatására különböző sugárút szűrések alapján
37. ábra Terjedési sebesség változás BH habarccal készült falazott próbatestek esetén
nedvesítés hatására különböző sugárút szűrések alapján
38. ábra Terjedési sebesség változása 1 és 2 db fuga esetén FH habarcsból készült
falazott próbatesten
39. ábra Terjedési sebesség változása 1 és 2 db fuga esetén AH habarcsból készült
falazott próbatesten
40 ábra Terjedési sebesség változása 1 és 2 db fuga esetén BH habarcsból készült
falazott próbatesten
Al ábra Várbató és tényleges falazott próbatest nyomószilárdságok száraz és nedves
41. abra Varnato es tenyreges ratazott probatest nyomosznarusagok szaraz es neuves
42 ábra A prábafalan kászült Gaaradar falvátalak a ábra tömör szakasz 2000 MHz
42. abra A probatation keszült Georadar Tervetelek, a abra tomor szakasz 2000 MHz
irrekvencia, b abra ureges szakasz 2000 MHz, c abra tomor szakasz 600 MHz es d abra ureges
SZAKASZ 2000 MHZ
43. abra Teljesen tömör részről készült vizszintes metszet (felső abra) és űreget
tartalmazó részről készült vízszintes metszet (alsó ábra) száraz állapotban
44. ábra Teljesen tömör szakaszról készült függőleges metszet (bal oldali ábra), üreges
részeket tartalmazó függőleges metszet (középső ábra) és kiragadott ábra az üreges
tartományról (jobb oldali ábra)
45. ábra A fugák okozta sebességcsökkenés miatti anomália a középen lévő tégla
közepén
46. ábra Teljesen tömör részről készült vízszintes metszet (felső ábra) és üreget
tartalmazó részről készült vízszintes metszet (alsó ábra) nedves állapotban
47. ábra Tégla nyomószilárdság és hanghullám terjedési sebesség kapcsolat
48. ábra Habarcs nyomószilárdság és hanghullám terjedési sebesség kapcsolata 150-es
próbakockákon 61
49 ábra AH habarcsból készült falazatok nyomószilárdság és Schmidt kalanácsos
vizsgálat visszanattanási érték közti kancsolat
50 ábra FH habarcshól készült falazatok nyomószilárdság és Schmidt kalanácsos
vizsgálat visszanattanási árták közti kancsolat
Vizsgalat visszapatiallasi citek közti kapcsolat
51. abra DH habarcsbor keszült falazatok hyöntöszítáruság és Schiniut karapacsos
vizsgalat visszapattahasi ertek közti kapcsolat
52. abra Az osszes fugan mert sebesseg ertek es habarcs nyomoszilardsag kapcsolata
53. ábra Az I cm vastag fugákon mért sebesség érték és habarcs nyomószílárdság
kapcsolata
54. ábra Habarcs nyomószilárdság és hanghullám sebesség terheletlen állapot 65
55. ábra Habarcs nyomószilárdság és hanghullám sebesség előterhelt állapot
56. ábra AH habarcs próbatesteken végzett penetrációs mérés korrelációs vizsgálata 66
57. ábra Jelleggörbe a habarcs nyomószilárdság meghatározására Penetrációs
vizsgálattal [109]
58. ábra 5. téglasoron mért hanghullám sebesség értékek az elmetszett fugák
darabszámának függvényében
50 the 2 the lease whit here have $1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + $
19 apra i legiasoron meri nangniniam senesseg eriekek av eimeisven moak
darahszámának függyényében
39. abra 5. teglasoron mert nanghullam sebesség értékek az elmétszett lugak darabszámának függvényében
 darabszámának függvényében
 39. abra 5. teglasoron mert hanghullam sebesség ertekek az elmetszett lugak darabszámának függvényében
 39. abra 5. teglasoron mert hanghullam sebesség ertekek az elmetszett lugak darabszámának függvényében

Táblázatjegyzék

1. táblázat Ajánlott minimum megbízhatósági index különböző referenciaidő és
megbizhatosagi osztaly szerint [2]
2. táblázat A megbízhatósági index és kockázat kapcsolata [2]9
3. táblázat Elektromágneses anyagjellemzők néhány gyakori anyag esetén [54] 27
4. táblázat Tipikus GPR alkalmazási lehetőségek a frekvencia függvényében [55] 28
5. táblázat Példák épületeken végrehajtott GPR vizsgálatokról [56]
6. táblázat A kísérletsorozatban alkalmazott falazóhabarcsok összetétele
7. táblázat A vizsgált próbatestek vízfelvételi vizsgálatát bemutató táblázat
8. táblázat Téglákon mért sebesség átlagértékek terheletlen és előterhelt, valamint száraz
és nedves állapotban (zárójelben relatív szórás)
9. táblázat Tégla minták nyomószilárdsággal kapcsolatos jellemzőj száraz és nedves
állapotban
10. táblázat Habarcs kockákon mért sebesség értékek száraz és nedves állapotban
(zárójelben relatív szórás)
11. táblázat Habarcs próbakockák nyomószilárdsági vizsgálat eredményei (zárójelben
relatív szórás) 47
12 táblázat A falazott próbatest fugáiban elvégzett szónikus vizsgálat eredményei
száraz és nedves állapotokban terhelés nélkül (zárójelben a relatív szórás) 51
13. táblázat A falazott próbatest fugáiban elvégzett szónikus vizsgálat eredményei
száraz és nedves állapotokban előterhelve (zárójelben relatív szórás) 52
14 táblázat A falazott próbatesteken elvégzett Schmidt kalanácsos vizsgálatok
visszanattanási értékei
15. táblázat Penetrációs vizsgálat eredményei a falazott próbatestek fugáiban 52
16. táblázat AH habarcsból készült alacsony magasságú próbatestek nyomószilárdsági
aradmányai
17. táblázat EU habarasbál kászült alassony magasságú prábatastak nyomászilárdsági
17. taolazat FII habarcsool keszült alacsony magassagu probatestek nyomoszilatusagi
10 + (11) + 0 + (11)
18. tablazat BH nabarcsbol keszült alacsony magassagu probatestek nyomoszilardsagi
eredmenyei
19. tablazat Hanghullamok terjedesi sebesseg csökkenese a fugak darabszamanak
függvenyeben szaraz allapot
20. táblázat Hanghullámok terjedési sebesség csökkenése a fugák darabszámának
függvényében nedves állapot

1. Bevezetés

1.1 Személyes ambíciók

Már szakközépiskolás koromban éreztem magamban a szándékot, hogy történeti épületekkel foglalkozzak. A magasépítő technikusi tanulmányom során nyertem el azt az alap tudást, mely az építészethez és annak történelméhez köthető. Az BSc-s egyetemi éveim alatt jutottam arra az elhatározásra, hogy a történeti épületekkel kapcsolatos ismereteimet elmélyítsem. Ennek eredményeként TDK dolgozatot készítettem, mely boltozott szerkezetek tartószerkezeti jellemzőinek megállapítását taglalta Georadar felhasználásával. Idővel a Szerkezetek Diagnosztikája és Analízise kutatócsoport ifjúsági tagozatának tagjaként több projektben vettem részt és ez által szereztem tapasztalatot az épületdiagnosztika területén.

Történeti épületek fontos részét képezik az emberiség, egy nemzet vagy épp egy adott közösség kulturális örökségének, melyek megőrzésre érdemesek. Ez a küldetés komplex feladat, mely sok különböző szakág összefogása mellett valósítható meg. Ezek közül az épületdiagnosztika és tartószerkezet statikai vizsgálata igen fontos részt képez. Szerencsésnek mondhatom magam, mivel már eddig is több jelentősebb épület rehabilitációjában vettem részt a tartószerkezetük diagnosztikai vizsgálata által, a PhD disszertációm elkészítésével szeretnék ennek a tudományterületnek az ismereteihez hozzájárulni.

1.2 Történeti falazatokról általában

A falazatok az emberiség által alkotott egyik legősibb szerkezetek. Egészen a vasbeton és a szerkezeti acél megjelenéséig a falazott szerkezetek domináltak az építészetben (legyen az kő, tégla vagy vegyes falazat). A történeti falazatok és az azokból készült épületek szerves részét képezik az emberiség kulturális örökségének regionális, nemzeti vagy épp közösségi szinten egyaránt. A kulturális örökségvédelem alapvető célja a védelem alá került épületek és építmények fenntartása a jövő generációi számára megőrizve annak kulturális/építészeti értékét. Meglévő történeti épületek megőrzése a stilisztikai elemeken és díszítéseken túl az épület teherhordó szerkezetének fenntartását is jelenti. A meglévő épületek tartószerkezeti ellenőrzése és megfeleltetése építőmérnöki feladat, mely alapelve, hogy az épület az őt érő hatásokkal szemben kellő megbízhatósággal ellenálljon. Az épület tartószerkezeti megbízhatóságának megítélése erőtani számítások szerint történik, melyek elvégzéséhez olyan információ szükséges mint:

- geometriai jellemzők
- anyaghasználat és az alkalmazott anyagok mechanikai jellemzői
- szerkezeti kialakítás jellemzői beleértve a statikai vázat, a teherhordó elemek egymásra egymáshoz viszonyuló kapcsolatát, keresztmetszeti jellemzőket
- szerkezet állapotát leíró károsodások mértéke és kiterjedése

A tartószerkezeti méretezéshez szükséges paraméterek száma és bizonytalansága történeti épületek esetén igen magas lehet az alábbi indokok miatt:

- meglévő tervek hiányosak vagy egyáltalán nem léteztek
- teherhordó elemek pontos geometriája ismeretlen
- felhasznált építőanyag ismeretlen és/vagy mechanikai jellemzői nem ismertek
- tartószerkezeti kialakítás igen változó lehetett az építés idején, a szerkezeti kialakítást akkor sem lehet teljes bizonyossággal megállapítani, ha ismert is az építési korszak

 épület élettartama során többször is változhatott a funkciója, emiatt végrehajtott átépítések és/vagy bővítéseket hajtottak végre. Jellemző, hogy az aktuális kornak megfelelő építőanyagot használtak, így az átépítés/bővítés idején használatos építőanyag felhasználása miatt nehezebb az épület teherbírásának numerikus modellezése.

A fent említett szempontok komoly kihívás elé támasztják a jelenkori építőmérnököket történeti épületek tartószerkezeti megfeleltetése szempontjából. A következőkben ezen szempontok kifejtése történik.

Tartószerkezeti megbízhatóság értelemzése

A szerkezet biztonságán a nem kívánt állapotok elkerülésének megbízhatóságát, illetve a nem kívánt állapotok kialakulásának kockázatát értjük [1]. A méretezési feladat többek közt a szerkezet gazdaságos kialakításának tervezése, mely magában foglalja az épület élettartama során felmerülő összes költséget. Az optimális vagy vállalható kockázatot a következő költségek összegét alkotó függvény minimum értéke jelenti: tartószerkezet építési költsége (C₀), fenntartási költség (C₁) és megadott valószínűség mellett bekövetkező tönkremenetellel járó kárösszeg (D). Ezen költségek összegét szokás komplex költségként is nevezni (1. ábra). A komplex költség minimumához tartozó optimális vagy vállalható kockázat:

$$p_{opt} = \frac{1}{b*\delta} \tag{01}$$

ahol, b az építmény használati feltételeitől és anyagától, továbbá vizsgálati modelltől függő tényező, átlagos értéke 80, δ a kárösszeg és az építési költség hányadosából számított kárhányad, mely teherbírási szempontból 125 értékkel vehető fel. A p_{opt} értéke a fenti összefüggés alapján 10^{-4,} az ehhez tartozó megbízhatóság 0,9999, amelyhez 3,719 megbízhatósági index társítható. Az Eurocode 0 [2] 3 különböző megbízhatósági osztályt kategorizál a kárhányad alapján, mely felhasználásával a minimális megbízhatósági index érték (β) meghatározható, lásd 1. táblázat.

1. ábra Az optimális biztonság értelmezése [1]

A megbízhatósági index (β) és kockázat (p) közötti kapcsolat normális eloszlású eloszlásfüggvény^{*} segítségével felírható az alábbi szerint:

$$p = \Phi(-\beta)$$

(02)

p és β közöti összefüggést a 2. táblázat mutatja be

Megbízhatósági	Minimun	n β értékek
osztály	1 éves referencia idő	50 éves referencia idő
RC3	5,2	4,3
RC2	4,7	3,8
RC1	4,2	3,3

1. táblázat Ajánlott minimum megbízhatósági index különböző referenciaidő és megbízhatósági osztály szerint [2]

р	10-1	10-2	10-3	10-4	10-5	10-6	10-7
β	1,28	2,32	3,09	3,72	4,27	4,75	5,20
	2. tábláz	at A megb	ízhatósági	index és ko	ockázat kaj	ocsolata [2]

A kockázat értelmezésének szükséges valószínűségelméleti paraméterek (2. ábra):

- megbízhatósági index β
- érzékenységi tényezők hatás és ellenállás oldalon α_E és α_R
- szórások hatás és ellenállás oldalon s_E és s_R
- hatás időben változó függvénye E(t)
- ellenállás időben változó függvénye R(t)
- ellenállás és hatás függvény különbözete R(t)-E(t)
- eredő szórás s_{RE}
- tönkremenetelhez tartozó valószínűség pRE

2. ábra Kockázat értelemzése [1]

A tartószerkezetek jelenlegi méretezése a határállapot módszer szerint történik, ahol a határállapot a tartószerkezet egy előirányzott valószínűséggel bekövetkező nem kívánt állapotát jelenti [3]. A hatállapot vizsgálaton alapuló méretezés elve, hogy valószínűségelmélet

^{*} Más néven Gauss "harang" görbe, mely azt jelenti, hogy az X valószínűségi változó normális eloszlást követ, vagyis az eloszlás várható értéke 0 és a szórásnégyzete 1.

felhasználásával a szerkezeti paraméterek megbízhatóan írhatók fel. Az építőanyagok, szerkezeti viselkedés és hatások kedvezőtlen alakulásának kiküszöbölésére biztonsági tényezőket alkalmazását írja elő az Eurocode. Az építőanyagokhoz tartozó parciális biztonsági tényező meghatározható az adott anyagi jellemző karakterisztikus és tervezési értékének hányadosaként az alábbi összefüggés szerint (03):

$$\gamma_m = \frac{X_k}{X_d} = \frac{\mu_x + u_{0.05}\sigma_x}{\mu_x + u_p\sigma_x} = \frac{1 + u_{0.05}V_x}{1 + u_pV_x} \tag{03}$$

ahol V_x az x változóhoz tartozó relatív szórás^{*}, μ_x az x változó átlagértéke, $u_{0.05}$ és u_p az 5%-os és p valószínűséghez tartozó alulmaradási küszöb értéke normál eloszlású eloszlásfüggvény esetén. A parciális biztonsági tényező tehát egyértelműen meghatározható a megbízhatósági index és az anyagi jellemző relatív szórása alapján.

Eurocode szabványban β =3,8 megbízhatósági érték van előirányozva új építésű épületek esetén RC2-es megbízhatósági osztályt feltételezve. Meglévő épületeknél általános esetben ugyanez a β érték használható az erőtani ellenőrzés során, viszont az ISO 13822 [4] megengedi az új épülethez tartozó optimális megbízhatósági indextől eltérő érték használatát az alábbiakra hivatkozva (3. ábra):

- ugyanaz a biztonsági szint elérése magasabb költséggel jár meglévő épület esetén új épülettel összehasonlítva
- fennmaradó tervezési élettartam általában kisebb meglévő épületnél, mint az új épület tervezési éltettartama
- meglévő épület esetén a rá ható terhek és hatások ismertek.

3. ábra Új és meglévő épület optimális biztonsági indexének értelmezése [05]

Új épület méretezése során számos az épületre ható hatást figyelembe kell venni (pl. tervtől eltérő geometria okozhat többlet igénybevételt, meteorológiai hatások predikciója bizonytalan lehet), mely nehezen számszerűsíthető a tervezési fázisban. Ezért a tervezési paraméterek relatív szórását szabványban rögzített, feltételezett értékkel lehet figyelembe venni. Meglévő épület esetén azonban az erőtani vizsgálathoz szükséges paraméterek és relatív szórása mérésekkel igazolható. Egy meglévő épület esetén hatások és/vagy ellenállások meghatározására szolgáló paraméterek relatív szórása alacsonyabb lehet a szabványban előírt feltételezett értékhez képest. Amennyiben ez teljesül akkor a hatás és/vagy ellenállást leíró eloszlásfüggvény csúcsossága[†] nagyobb lesz, így csökken a függvények által elmetszet közös

^{*} Az átlagértékhez viszonyított szórás érték

[†] Azt mutatja meg, hogy mennyire húzódik szét az eloszlásfüggvény két széle

terület, tehát alacsonyabb lesz a kockázat. ISO 13822 alapján meglévő épületek erőtani ellenőrzése β =3,1 megbízhatósági index szerint történhet.

Bevett gyakorlatnak számít tervező mérnökök között, hogy a történeti falazott szerkezet esetén a nagy bizonytalanság miatt az anyagi parciális biztonsági tényezőt magas értékkel veszik figyelembe. ami miatt a falazott szerkezet erőtani megfeleltetése sokszor csak szerkezeti megerősítéssel biztosítható. Fib 80 [5] ajánlást ad a parciális biztonsági tényező módosítására vasbeton szerkezet esetén felhasználva az ISO13822 szabványt, azonban falazott szerkezetekhez még létezik ehhez hasonló eljárás. Sykora&Holicky [6] valószínűségelvet használva levezette, hogy a cseh nemzeti szabvány ajánlása szerinti falazathoz tartozó 2,5 parciális biztonsági tényező értékét a falazatalkotók nyomószilárdságának és relatív szórásának ismeretében az Eurocode szabványban előírt új építésű épület szerinti biztonsági szinten 1,6, míg ISO13822 szerinti biztonság szerint 1,3 értékre csökkenthető le. Sykora&Holicky levezetése igazolja, hogy a parciális biztonsági tényező akár felére is csökkenthető falazott szerkezetek esetén amennyiben megbízható adatok állnak rendelkezésre, ezzel lehetőséget biztosítva a történeti falazott szerkezetek erőtani megfeleltetésére szerkezeti megerősítés nélkül. Történeti falazatok erőtani ellenőrzéshez szükséges megbízható paraméterek nem biztosíthatók egyszerű vizsgálatok (pl. kopogtatás) elvégzésével. Speciálisan erre a célra kifejlesztett eljárások nyújthatnak megoldást, lásd 2. fejezet.

Történeti falazatok kialakítása

A falazott szerkezetek kialakítási módja rendkívül színes, hiszen a történelmi korok változásával a falazatok kialakítása az adott kor követelménye szerint formálódott. A falazott szerkezetek egyik legfontosabb sajátossága a heterogén anyagszerkezete, mivel a falazat fő teherhordó elemét képező falazóelem és azokat összekötő falazóhabarcs alkotja. A történeti falazatokat csoportosíthatjuk a falazóelemük szerint kő, tégla vagy vegyes falazatnak, míg a falazóhabarcs esetén mész kötőanyagú habarcsok különböző fajtáit láthatjuk. Tégla falazóelemeket már az ókor óta használ az emberiség, azonban még a késő középkorban is a kőből készült falazatok voltak a jellemzők, csak a kőben szegény területeken maradt népszerű építőanyag a tégla. Már az ókorban is felismerték, hogy a tégla terhelhetősége szempontjából az ideális alak egy alacsony magasságú téglatest, melyet lapjával kell fektetni, a téglákat mindig a fal irányával párhuzamosan vagy rá merőlegesen helyezték el. Ebből fakad, hogy téglafalak vastagsága a téglaelemek méretének többszörösére adódott. A téglákat kötésben helyezték el ezáltal javítva a falazat terhelhetőségét, a téglakötés alapvető szabályai már több száz éve ismert a kőműves szakmában, úgy mint:

- egymás felett lévő sorok állóhézagai nem eshetnek egymás fölé
- a falakba minél több egész tégla kerüljön
- a falak egymás feletti soraiban a futó- és kötőrétegei egymást váltsák
- állóhézagok a falban váltakozzanak

A téglakötési módok a téglagyártás fejlődésével egyidejűen alakultak és hazánkban jellemzően a német nyelvterületen elterjedt módok terjedtek el. Az egyik legelterjedtebb téglakötési mód a blokk-kötés, mely futó- és kötőrétegek egymást követő sorba rendezését jelentette (4. ábra) [7]. A blokk-kötés további jellemzője, hogy egyszerűen lehetett vele féltégla léptékben falvastagságot alakítani, úgy, hogy a kötőrétegbe egyik oldalon futó téglákat helyeztek (5. ábra) [8]. Másik elterjedt téglakötési megoldás a keresztkötés volt, melynek alapja, hogy minden második futósort féltéglával arrébb fektettek le. A keresztkötéssel egész tégla vastagságú falakat készítettek. A fent felsorolt téglakötéseken kívül ismertek voltak még

pl. bekötőkötés, háromnegyedes téglából készült kötés, lengyel kötés és flamand kötés, ezek ismertetésétől eltekintek a dolgozat terjedelmi korláta miatt.

Továbbá jellemző volt, hogy üregeket vagy hosszú ki nem töltött sávokat hagytak a falazat belsejében (6. ábra) anyagspórolás, vagy épp fal szellőztetése miatt [9].

4. ábra Blokk-kötés és keresztkötés egy tégla vastagságú falazat esetén [7]

5. ábra Másfél és kéttégla vastagságú falazat téglakötése [8]

6. ábra Üreges kialakítású téglakötési módok [9]

A követ már az őskortól kezdve használja az emberiség falazat készítésre. Először a természetben megtalálható görgeteg köveket használtak, melyeket gondosan kiválogatva szabálytalan alakban helyezték el. Jellemzően a falazat alsó és felső lapjuk volt csak sík, a közbenső tartományon a nagyobb kövek közé kisebbeket helyeztek. Idővel rájöttek, hogy

szabályos alakú kövek használata növeli a falak terhelhetőségét, így alakultak ki a faragott kőfalak (7. ábra). Az ókori Görögországban és Rómában alakult ki a faragott kövek alakja, mely 1:1:2 arányhoz közeli volt. A kőfalakat rendszerint mészhabarcsba rakták, ezzel biztosítva a síkon tartást. A kora középkortól kezdve járatos kialakítás volt a faragott kövekkel burkolt terméskő fal. A faragott kövek rögzítését kőeresztékbe illesztett vas vagy bronz kacsolóelemekkel oldották meg. A kőfalak alkalmazásának a tégla széleskörű használata vetett véget a XIX század eleje körül.

7. ábra Terméskő falazat szabálytalan (bal oldali) és szabályos (jobb oldali) kőelem elrendezésben [8]

Vegyes falazatok alkalmazása egészen a XX. századig népszerű volt, mely azon alapult, hogy nagyobb méretű kősorok közé 1-3 téglasort helyeztek (8. ábra), ezzel stabilizálva a falazatot. A vegyes falazatok másik tipikus kialakítási módja az eltérő anyagú mag és burkolat használata. A tégla elterjedése előtt a vegyes falazat magját faragott terméskő alkotta és erre tégla burkolat került. A XIX. században a fontosabb épületek esetén téglafal lábazatára vagy akár a teljes homlokzatára kőburkolatot helyezetek. A vegyes falazatoknál jellemző károsodási mód volt a tégla és kő között fellépő repedés, mely a két építőanyag együttdolgoztatásának hiányából fakadt. Felismerve a problémát elődeink fém kapcsolóelemek segítségével próbálták felvenni a tégla és kő felületi határán fellépő húzóerőt. Nagyobb épületeknél fellépő magas igénybevételek esetén a vegyes falazatok alkalmazása problémás volt, mivel a tégla és kő eltérő viselkedése és együttdolgozásának pontos mechanikájának ismerete nélkül nem voltak képesek tartós épületeket készíteni.

8. ábra Szabályosan váltakozó kő és téglasorból épített pincefal [10]

Falazatok mechanikája

A falazott szerkezetek kialakításuktól függetlenül heterogén anyagi viselkedéssel bírnak. A két eltérő fizikai és mechanikai tulajdonsággal bíró falazatalkotó és a köztük lévő tapadás alapvetően befolyásolja a falazat szilárdságát. A falazott szerkezetek esetén a legtöbbet foglalkoztatott mechanikai jellemző a nyomószilárdság, mely konvencionálisan a fekvőhézagra merőleges irányú terhelés alapján számítható. Az ilyen típusú terhelés alatt a falazatalkotókban eltérő feszültségek ébrednek: falazóelemben egyirányú nyomó- és kétirányú húzófeszültség, a habarcsban háromirányú nyomófeszültség (9. ábra) [11]. Ez a jelenség a két falazatalkotó eltérő merevsége miatt következik be. A nyomóerő következtében a habarcs oldalirányú alakváltozást szenved el, miközben a habarcsnál merevebb tégla ennél kisebb mértékben alakváltozik [12]. Ennek következtében az oldalirányú megnyúlás a két falazatalkotóban eltérő lesz ugyanazon nyomófeszültség alatt. Emiatt a falazóelemben függőleges repedések keletkeznek, míg végül bekövetkezik a tönkremenetel.

9. ábra Falazatalkotókban ébredő feszültségek [12]

A fenti levezetés alapján az egyik legfontosabb nyomószilárdságot befolyásoló tényező a falazóelem húzószilárdsága. Tégla típusa (tömör vagy üreges) határozza meg elsősorban ezt a szilárdságot, míg habarcs esetén a keverési arány. Viszont ezeken túl más hatások is közrejátszanak a falazat nyomószilárdsága kapcsán. A heterogén anyagi viselkedés miatt nagy jelentősége van a fugáknak mivel felületi tapadás révén segítik a falazóelemek együttdolgozását. A fugák mentén létrejövő tapadószilárdság a falazóelem érdességének függvényében változhat, továbbá a tapadáshoz figyelembe vehető felületi nagyság egyenes arányban növeli a tapadási erőt. Falazatok esetén minden esetben figyelembe kell venni a falazat karcsúságát, mely döntően befolyásolja a falazat terhelhetőségét. Teher oldalról vizsgálva a terhelés helye alapján megkülönböztetünk koncentrált és külpontos terhelést. Koncentrált és külpontos terhelésnél jellemzően csökkentő tényezővel (pl. Eurocode 6 [13]) veszik figyelembe a falazat teherbíró képességét, figyelembe véve a külpontos terhelésből származó hajlítás miatti többlet nyomófeszültséget.

Azonban a fenti tervezhető jellemzőkön túl a falazat nyomószilárdságának egyik legnagyobb befolyásoló tényezője a kivitelezési munka minősége. A leggyakoribb kivitelezési hibák az alábbiak [14]:

- hibás habarcs keverés
- hibás téglakötés
- tégla vízfelvételének hibás ismerete
- indokolatlanul vastag fuga
- a habarcs szilárdulásának megkezdése utáni falazóelem elhelyezés

- egyenetlen vagy mélyen barázdált fekvőhézag
- üregek az állóhézagban

Rossz kivitelezés kiemelt hatással van a falazat teherbíró képességére, akár a felére is csökkenhet a teherbírás. A kivitelezés során fellépő potenciális hibák csak technológiai fegyelem betartása mellett biztosítható. A leginkább szembetűnő hiba a téglák helytelen rakása, a rossz téglakötés és a helytelen fuga vastagság. Ezzel szemben a többi hiba falazás végeztével nem észrevehető, rejtett hibák maradnak. A falazóelemet vagy épp a habarcsot enyhén nedvesíteni szokás a tégla rakása előtt elkerülve, hogy a téglakötéshez elengedhetetlen vizet szívjon fel a habarcsból. Ebben az esetben a habarcs szilárdsága csökkenni fog a tervezett állapothoz képest. Fekvőhézagban lévő barázdák vagy az állóhézagban lévő üregek pedig a falazatalkotók közti tapadást rontják. Továbbá nem szabad elfelejteni, hogy idő spórolás véget előszeretettel hagytak üregeket a falakban, vagy épp tégla helyett homokkal, habarccsal vagy építési törmelékkel töltötték azokat ki, ami rejtett hibaként csökkenti a szerkezet teherbíró képességét.

A falazatok méretezési eljárását az Eurocode 6 írja le. A nyomószilárdság karakterisztikus értékének meghatározása az összefüggés alapján számítható (04):

$$f_k = K f_b^{\alpha} f_m^{\beta} \tag{04}$$

ahol K a falazóelem és habarcs fajtáját figyelembe vevő tényező, f_b és f_m a falazóelem és habarcs nyomószilárdsága, α és β konstansok, melyek nemzeti szabvány mellékletben vannak rögzítve. A nyomószilárdság tervezési értékét a karakterisztikus érték és a γ_m parciális biztonsági tényező hányadosaként lehet figyelembe venni. A parciális biztonsági tényező meghatározása során tekintettel kell lenni a megvalósítási kategóriára, a falazóelem gyári minőség-ellenőrzés szerinti kategóriára és az alkalmazott habarcs fajtára. Az előbb említett jellemzők függvényében a parciális biztonsági tényező 1,5 és 3,0 között vehető fel. A parciális biztonsági tényező ily mértékű szórása is mutatja a falazott szerkezetekben rejlő bizonytalanság mértékét.

Falazóhabarcs

A falazóhabarcs a falazott szerkezetek második legfontosabb alkotóeleme. A habarcs szerepe a falazóelemek közti kapcsolat és ezáltal a falazóelemek együttdolgozásának biztosítása, a falazóelemek között kialakuló rések kitöltése, vagyis az épület légtömörségi jellemzőjének javítása, valamint különleges esetekben vízzáróság, hőszigetelőképesség, injektáló tulajdonság is szerepet játszhat.

A történeti épületek falazóhabarcsának eredeti kötőanyaga a mész volt. Az első mészhabarcsok alkalmazásának ideje nem ismert, viszont azt tudni lehet, hogy a Földközi tenger térségében már az időszámításunk előtti IV. században foglalkoztak mészégetéssel és mészhabarcs készítéssel. Az ókori Görögországban és a Római birodalomban is előszeretettel alkalmazták a mészhabarcsot kötőanyagként. A Római birodalom bukásával véget érő ókorral párhuzamosan a mészhabarcsok első virágzása is véget ért, a középkor zavaros időszakában a korábban megszerzett tudás nagy része feledésbe merült és csak rossz minőségű mészhabarcsok előállítására voltak képesek az akkori mesterek. A késő középkorban végmenő konszolidáció hatására már több energiát tudtak szánni az építőanyagok megismerésére, aminek hozományként jobb minőségű mészhabarcsot tudtak előállítani, mint korábban. Az újabb fellendülést az ipari forradalom és annak hatására kirobbant tudományos szemlélet és kísérletezési kedv okozta. Az iparosodás következtében lehetőség nyílt nagy mennyiségben

mészhabarcsot gyártani és a gyártók között fellépő versengés révén több különböző habarcsfajtát kísérleteztek ki. A mészhabarcsok virágkorának a cement és azon belül is a Portland cement széleskörű elterjedése vetett véget a XIX. század közepétől kezdve.

A habarcsok alkalmazhatóságának titka az alkotóelemek egyszerűségében rejlik: kötőanyag, homok és víz. A habarcs alkotóelemei szinte bárhol megtalálhatók vagy könnyen beszerezhetők, ezen felül könnyen szállíthatók elkülönítve egymástól és a helyszínen történő keverés következtében válnak teherhordó képességű falazatalkotóvá. Természetesen a habarcs alkotóelemek minősége és azok aránya jelentősen befolyásolja az elkészült habarcs jellemzőit. Elődeink tudatában voltak ennek és megkülönböztettek bányahomokot, folyami és tengerparti homokot, valamint kvarchomokot. Mészhabarcs készítésére kvarchomokot tartották az ideális választásnak, bár bányahomok alkalmazása is használatos volt. Már az ókori rómaiak is nagy figyelmet szenteltek a homok arányára, bányahomok esetén 1:4 arányú, míg folyami homok esetén 1:3 arányban keverték oltott mésszel [15]. A XIX. században elterjedt nézet szerint falazó mészhabarcs keverési aránya 1:4 és 1:5 között változott.

Tégla

A falazatalkotók tervezéséhez fontos tisztában lenni azok anyagi jellemzőivel. A leggyakrabban vizsgált anyagjellemzők tégla falazóelem esetén:

- testsűrűség
- porozitás/tömörség
- hővezetés
- vízfelvevő képesség
- tűzállóság
- nyomószilárdság
- húzószilárdság
- hajlítószilárdság
- rugalmassági modulus

Természetesen a fenti jellemzők erősen függnek a gyártástechnológiától, a falazóelem kialakításától (tömör vagy üreges) és a falazóelem anyagától (szárított agyag, égetett kerámia) [16]. A fent megfogalmazott jellemzők folyamatosan alakultak ki az évek során, az 1800-as években pl. a hővezetés még nem igen volt fontos tényező.

Azt már a régi korok építőmesterei is felismerték, hogy a tégla terhelhetősége erősen változik a készítésének technológiájától. Kezdetben a szilárdság becslése tégla karcolásával vagy kalapácsütéssel történt. Később két élére állított téglára keresztbe helyezték a vizsgálni kívánt téglát, melyre téglákat tettek fel így terhelve meg azt. A XIX. század második felétől kezdve a műszeres vizsgálati eszközök fejlődésével előírások és szabályzatok írták elő tégla szilárdságát. 1893-ban megjelent Részletes Építésügyi Szabályzat tartalmazott megengedett feszültségértékeket különböző falazatokra [17]:

-	vegyes falazat közönséges mészhabarcsban kőből és téglából	8 kg/cm ²
-	téglafalazat jó minőségű téglából közönséges mészhabarcsban	7-8 kg/cm ²
-	ugyanezen falazat vízálló mészhabarcsban	11 kg/cm ²
-	legjobb minőségű téglából portlandcementtel	11 kg/cm ²
-	beton	$8-10 \text{ kg/cm}^2$

A falazótégla mérete az évszázadok alatt folyamatosan változott az adott korszak igényeihez igazodóan. Az ókori rómaiak másfél láb hosszú és egy láb széles téglákat használtak

[18] (44x29 cm), melyek vastagsága nem haladta meg az 5-6 cm-t. Középkori Magyar királyságban a tégla fontos építőanyag volt főleg a kőben szegény régiókban. Írott anyag szinte nem található ebben a témában, így a régészeti feltárások tudnak ismeretanyagot biztosítani. A pécsi székesegyházban találtak 62x18x10 cm-es nagyobb és 46x18x10 cm-es kisebb méretű téglákat, paposi templom 26x13-14x3-3,5 valamint 30-32x14-16x7-10 cm-es méretű téglákból épült [19]. I Lipót császár törvényben szabályozta a falazótéglák méretét 1686-ban 66x138x301 mm méretben, mely 1:2:4 arányhoz igen közeli méretnek számított. Ez az arányra vonatkozó szabály a téglák esetén olyannyira erősnek bizonyult, hogy későbbi korokban is ez volt a mérvadó. A XIX. század elejétől fogva a nagy méretű tömör tégla volt használatos 30x14,5x6,5, amit a század vége fele a "porosz" kis méretű tömör tégla, mely a II világháborúig egyik alapvető építőanyag maradt. A kis méretű tömör téglák időtállóságát bizonyítja, hogy még mai napig is készítenek ebből a méretből falazótéglát.

Diagnosztikai vizsgálati módszerek

A diagnosztikai vizsgálatokat a vizsgált szerkezetben okozott roncsolás függvényében lehet roncsolásmentes, kis roncsolással járó és roncsolásmentes. A nemzetközi vasútegylet UIC 778-3R [20] kiadványa útmutatást tartalmaz falazott boltívek vizsgálatára, azonban a legtöbb vizsgálati szempont átültethető tégla falazatokra úgy mint, építőanyag meghatározása, mechanikai jellemzők, valamint fizikai és kémiai jellemzők meghatározása, rejtett szerkezeti elemek és szerkezeti károsodások feltérképezése (10. ábra).

			A vizsgálat célja								
Vizsgálati módszerek		Alkotóanyagok típusának	Mechanikai jellemzők meghatározása	Fizikai és kémiai jellemzők	Boltozat geometriai profiljának	Rejtett jellemzők meghatározása	Károsodások felmérése	Számítási modell verifikációja	Hídállapot általános jellemzése	Állapot monitoring	Beavatkozások hatásának vizsgálata
	Szónikus / szeizmikus / lyuk szeizmikus módszerek	3	3	3		2	2		2	3	2
RMV	Georadar / lyuk georadar	3	3	2		2	2		2	3	2
	Infravörös hőmérsékletmérés	2	3	3		3	2		2	3	3
	Elektromos ellenállásmérés	3	3	2		3	3		2	3	3
	Kis átmérőjű fúrt minták vizsgálata	1	1	1		2	3		3	3	1
KRV	Lyukkamera / endoszkópos vizsgálat	1	3	3		1	2		3	3	1
	Flat-jack vizsgálat		2					2	3	3	3

Történeti épületek falazatainak állapotértékelése Szilárdság értékelés roncsolásmentes diagnosztikai módszerek felhasználásával

	Schmidt kalapácsos vizsgálat	3	2				3		3		
	Behatolásmérés	2	2	3			3		3	3	3
	Kihúzóvizsgálat		2	3					3		3
	Kopogtatásos vizsgálat	3	3	3		3	2		2	2	3
	Akusztikus emisszió vizsgálat						3	2	2	2	2
ING	Repedés monitoring						3	3	3	2	3
VITOR	Lézeres alakmeghatározás				1		2	3	2	2	
MON	Nedvesség monitoring		3	2		3	2		3	3	2
	Deformáció monitoring				3		2	2	3	2	2
	Dinamikus vizsgálat						3	2	2	2	2

Jelmagyarázat:

RMV – Roncsolásmentes vizsgálatok

KRV – Kis roncsolással járó vizsgálatok

1: Használata általános esetben ajánlott

2: Más módszerek mellett kiegészítő vizsgálatként ajánlott

3: Használata csak speciális esetekben vagy kísérleti jelleggel javasolt

Üresen hagyva: Használata az adott célra nem javasolt

10. ábra Ajánlott roncsolásmentes, kis roncsolással járó és monitoring módszerek a vizsgálati szempont függvényében [20]

A konvencionális roncsolásos vizsgálati módok alkalmazásával a szerkezeti és anyagjellemzők közvetlenül határozhatók meg feltárással vagy épp magminta vételezéssel. A roncsolásos vizsgálatok biztosítják a legmegbízhatóbb eredményeket és információt, így lehetőséget adva szerkezetben lévő bizonytalanságok tisztázására. A műemléki épületek esetén alapvető vizsgálati szempont az épület eredeti állapotának megóvása, emiatt nem alkalmazhatók (vagy csak szigorú megkötésekkel) roncsolásos vizsgálatok. Amennyiben mégis lehetőség nyílik az alkalmazásukra, úgy gondoskodni kell az okozott károsodás helyreállítására (mely az eredetivel megegyező anyagú és szerkezetű javítást jelent), továbbá kizárólag lokális jellegű információval szolgálnak és az alacsony mintavételi szám miatti kevés adat nem nyújt kellően megbízható információt, így nem lehet vele az épületre vonatkozó globális szintű következtetést levonni. A kis roncsolással járó vizsgálatok gyorsabban és jelentősen kisebb roncsolással elvégezhető vizsgálatok, melyek még műemléki épületeknél is jól alkalmazhatók (a vizsgálat során több esetben csak egy apró lyuk keletkezik, melyet könnyű javítani). Ezek is lokális jellegű információt adnak, viszont a relatív alacsony vizsgálati időnek köszönhetően több helyen is alkalmazhatók egységnyi idő alatt. Emiatt az épület egészéről információ nyerhető. Roncsolásmentes vizsgálati módszerek alkalmazása a legindokoltabb műemléki épületek esetén, hiszen szerkezeti károsodás nélkül gyűjthetők be a szükséges tervezési adatok. A roncsolásmentes vizsgálati módszerek alapja, hogy a vizsgált szerkezeti vagy anyagjellemzőtől eltérő tulajdonság mérése történik, ezt felhasználva áttételesen meghatározható a kívánt jellemző. Mivel nem közvetlenül a kívánt jellemző mérése történik, így ezen vizsgálatok által meghatározott eredmények bizonytalanok lehetnek. Némely roncsolásmentes vizsgálat inkább csak közelítő jelleggel használható, a cél ebben az esetben, hogy szűkíthető legyen a várt eredmény tartománya. Viszont roncsolásmentes vizsgálatok jellemzően gyorsan elvégezhetők, így az épület közelítő állapotának gyors feltérképezésére hatékonyan alkalmazhatók.

A 10. ábra nem csak felsorolást nyújt a mérnökök számára a használatos diagnosztikai módszerekről, hanem osztályozza is azokat. 1-től 3-ig vannak osztályozva (ahol az 1-es a leginkább ajánlott módszer) az ajánlott vizsgálatok, míg a nem ajánlottakhoz nem társít számot. A dolgozatom további előmenetele szempontjából megvizsgáltam az itt lévő módszereket, az adott vizsgálathoz társított számértékek átlagát vettem ehhez alapul. A monitoring vizsgálatokat figyelmen kívül hagytam az elemzésben, mivel általában csak igen indokolt esetben szükséges az alkalmazásuk. A két legalacsonyabb átlagértéket a magminta és boroszkópia/endoszkópia kapta (1,88 és 2,13). Mindkét vizsgálatra egyaránt elmondható, hogy a tartószerkezet építőanyagával és szerkezeti kialakításával kapcsolatos információ begyűjtésére alkalmas. E szempontok szerint kifejezetten alacsony számok szerepelnek, viszont a többi szempont alapján egyáltalán nem vagy magas pontszámot kaptak. Sorrendben ezután következő vizsgálatok egészen közel vannak egymáshoz georadar, szónikus, flat-jack, pull-out és infravörös termográfia (2,38, 2,50, 2,60, 2,60 és 2,63). Ezek mindegyike 2-es vagy 3-as osztályzatot kapott, ami azt jelenti, hogy más vizsgálatok kiegészítése, vagy csak közelítő jellegű felmérés céljából alkalmazhatók. Közülük szónikus, georadar és infravörös termográfia roncsolásmentes vizsgálatok közé sorolható, míg flat-jack és pull-out kis roncsolással járó vizsgálatnak számít. A három legmagasabb pontszámot kapott vizsgálat penetrációs habarcs vizsgálat, Schmidt kalapácsos vizsgálat és nedvességmérés (2,71, 2,75 és 2,75). Mindhárom vizsgálati mód csak közelítő jelleggel használható, viszont a penetrációs habarcs és Schmidt kalapácsos vizsgálat (a roncsolásmentes módszerek közül egyedüliként) alkalmas a falazatalkotók nyomószilárdság becslésére. Nedvességtartalom vizsgálat segítségével a szerkezet állapotának qualitatív mérése lehetséges.

Összegzés

Mint az az előzőekben ismertetésre került a falazott szerkezetek története és szerkezeti kialakítása igen színes. A széleskörű szerkezeti kialakítás miatt a meglévő falazott szerkezet statikai állapotértékelésének elvégzéséhez szükséges erőtani számításokhoz tartozó bemenő paraméterek bizonytalansága magas lehet. Ezen bizonytalanságok csökkentése kizárólag diagnosztikai vizsgálatok alkalmazásával lehetséges. Történeti épületek állapotfelmérése során nagy hangsúlyt kell fektetni az épület épségére és amennyiben lehetséges a lehető legkevesebb roncsolással járó vizsgálatot kell elvégezni. A kis roncsolással járó és roncsolásmentes diagnosztikai módszerek kevésbé megbízható eredményeket adnak a roncsolásos módszerekkel szemben. A dolgozatom tovább haladása szempontjából irodalomkutatást végeztem, melynek szerkezeteknél alkalmazott célja а történeti falazott diagnosztikai módszerek megbízhatóságának vizsgálata és jelenlegi tudományos állásának "state of art" bemutatása. Különös figyelmet szentelve a hanghullámon alapuló vizsgálatokra és a nedvesség hatását a különböző diagnosztikai vizsgálati módszerek megbízhatóságára.

2. Irodalomkutatás

2.1 Falazatok anyagi jellemzőinek meghatározása fúrt magminták segítségével

A diagnosztikai módszerek konvencionális módja a vizsgált szerkezetből vett magmintán elvégzett laboratóriumi vizsgálatok. UIC 778 szabványosított eljárást mutat be nagy átmérőjű (150 mm-es) próbatestek nyomószilárdságának meghatározására (11. ábra). Ez a vizsgálat nagy roncsolást okoz a vizsgált szerkezetben, emiatt erős az igény építőmérnöki területen olyan vizsgálat kifejlesztése, mely hasonlóan megbízható eredményt ad kisebb mértékű roncsolás mellett. Az elmúlt időszakban történtek kutatások ennek a célnak az elérésére, melyek bemutatását taglalja ez az alfejezet.

11. ábra Magminta kinézete és nyomószilárdság vizsgálatának módja [20]

Pelá et al [21] kísérleteket végzett különböző átmérőjű fúrt magmintákon. 35 mm-es mintákat vett téglából, 90 és 150 mm-es mintákat pedig a falazatból oly módon, hogy 2 vagy 3 fugasor legyen bennük (12. ábra). A magmintákon elvégzett nyomószilárdsági értékeket összevetette a szabványos módszerrel elvégzett vizsgálatok eredményeivel. Az összehasonlításból azt találta, hogy a 35 mm-es tégla minták nyomószilárdsági átlaga szinte megegyezett a szabványos vizsgálat eredményével. A legfontosabb különbség a két mérési módszer eredményeiben a relatív szórásban adódott, mely több mint négyszeres volt a fúrt mintán. A nagyobb méretű magmintákon elvégzett vizsgálatok alapján a 3 fugasoros és szabványos mintákon végzett nyomószilárdsági átlagértékek és relatív szórások között elhanyagolható különbség volt. A 2 fugasoros minták átlagos nyomószilárdsága és relatív szórása is közel 20%-kal volt nagyobb, mint az etalon próbatesteken mért értékek. Pelá [22] egy másik kísérletében hasonló magminta vételezést végzett el, azonban ebben az esetben nem használt vizet a fúrógép hűtése során. A kísérletei sikeresen zárultak, a kivett minták nem sérültek meg a procedúra során, továbbá az így kinyert minták nyomószilárdság jó kapcsolatot mutatott a meglévő analítikus összefüggésekkel. Pelá bebizonyította, hogy vízhűtés nélküli mintavételezi mód is lehetséges, ami történeti falazatok esetén lehet kifejezetten hasznos, mert nem okoz károsodást a mészhabarcsban.

12. ábra Magminta fajták [21] kísérleteiben, 2 fekvősoros (a), szabványos (b) és 90 mm-es minta 1 fugával (c)

Sassoni [23] által publikált eredmények alapján 100 mm átmérőjű magminták nyomószilárdsága elenyésző eltérést mutatott a szabványos vizsgálat eredményétől. Sassoni két különböző magminta vételezést vizsgált: 1 fugasoros és 2 fugasoros, ahol a két fugasor egymást derékszögben keresztezi. A 2 fugasoros minták alacsonyabb relatív szórást mutattak, bár az eltérés nem volt kiemelkedően magas.

Segura et al [24] kísérleteket végzett, amelyben szabványos átmérőjű és 90 mm átmérőjű fúrt magmintákon mért különbségeket vizsgálta. A laboratóriumi és helyszíni vizsgálatok mindegyikén a 90 mm-es mintákon magasabb nyomószilárdságot és rugalmassági modulust mért. A vizsgált minták relatív szórása igen hasonló volt, így a két eltérő méretű mintákból származó mechanikai jellemzők ismeretében felállított egy arányszámot, ami nyomószilárdság esetén 0,75, rugalmassági modulus esetén 0,85 volt. Mindkét mechanikai jellemzőre felírt arányszám igen erős korrelációban^{*} volt a mért értékek arányával (0,98 és 0,92), így alkalmasnak találta az előbb említett mérettényező használatát a 90 mm-es furatokon elvégzett vizsgálatok eredményeinek szabványosított értékre történő egyenértékesítésre. Jafari et al [25] hasonló vizsgálatokat végzett, bár az ő általa mért arányszámok nagyobb relatív szórást mutattak, nyomószilárdság esetén 0,69 és 0,90, míg rugalmassági modulus esetén 0,44 és 0,71 között változott.

Dorji et al [26] megvizsgálta a fúrt magmintákban lévő fugák elhelyezkedésének hatását a nyomószilárdságra és rugalmassági modulusra. Négy különböző fuga konfigurációt vizsgált meg a szabványos elrendezésen túl (13. ábra). Azt találta, hogy a két fekvő és egy álló soros fuga konfigurációk nyomószilárdsági átlagértékei hasonlóak voltak, viszonylag alacsony relatív szórás mellett. Viszont a két álló és két fekvősoros, valamint a két fekvő és egy végigmenő fekvő soros konfiguráció jelentősen gyengébb szilárdságot mutattak magas relatív szórás mellett. A rugalmassági modulus tekintetében nagyobb eltérést mért, azonban 70%-os korrelációt tudott kimutatni az ausztrál szabványban szereplő összefüggés szerint számolt eredményeivel.

13. ábra Különböző fugakialakítások [26] kísérleteiben

^{*} Statisztikai jellemző, mely megmutatja két adathalmaz közti kapcsolat "szorosságát". Lásd 3.6 fejezet.

2.2 Falazatok jellemzőinek meghatározása roncsolásmentes diagnosztikai módszerekkel

2.2.1 Hanghullámokon alapuló vizsgálati módszerek

A hanghullámokon alapuló vizsgálati módszerek feltevése, hogy a hang a vizsgált homogén közegben konstans sebességgel halad. Amennyiben sikerül mérni a terjedési sebességet, úgy lehet következtetni a vizsgált anyag fajtájára, vagy amennyiben ismert a vizsgált anyag akkor az anyag minőségét lehet megállapítani. A hang terjedési sebességét alapvetően befolyásolja az anyag fajtája és az anyag sűrűsége, mely az alábbi összefüggéssel írható fel (05):

$$c = \sqrt{\frac{1.4P_0}{\rho}} \tag{05}$$

ahol P₀ az atmoszféranyomás és ρ a vizsgált anyag sűrűsége [27].

A fenti összefüggés gáz halmazállapotú közegben terjedő hanghullámok terjedési sebességét írja le. Szilárd halmazállapot esetén a terjedési sebességet a földrengéshullámok viselkedését leíró hullámegyenlet (06) alapján lehet meghatározni

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 u}{\partial t^2}$$
(06)

ahol u(x,y,z,t) a hullámfüggvény és v a hullám terjedési sebessége [28].

A hullámegyenlet alapján szilárd közegben terjedő térhullámok 2 jellemző típusa a nyomási vagy más néven longitudinális (angol nyelven primer wave, amit P wave-nek is szokás rövidíteni) és a nyírási vagy más néven transzverzális (angolul secondary wave, amit S wave-nek is szokás rövidíteni).

A P és S hullámok között elemi különbség a hullám okozta elmozdulások iránya, P hullám esetén a részecskék a hullám irányában mozognak, míg S hullám esetén a hullám irányára merőlegesen. Ebből a viselkedésből fakad a két hullám eltérő sebessége

$$v_P = \sqrt{\frac{\lambda + 2\mu}{\rho}} \tag{07}$$

$$v_s = \sqrt{\frac{\mu}{\rho}} \tag{08}$$

ahol ρ a közeg sűrűsége, λ és μ pedig rugalmassági állandók. Homogén közeg esetén a rugalmassági állandók kifejezhetők a Young féle rugalmassági modulussal és Poisson tényezővel. A két összefüggés összehasonlításából látszik, hogy a P hullámok sebessége nagyobb az S hullámokénál. Érdemes megjegyezni, hogy az S hullámok kizárólag szilárd halmazállapotú közegben képes haladni, míg a P hullámok szilárd és folyékony halmazállapotban egyaránt. Ennek a gyakorlati előnye, hogy átnedvesedett anyagok mérése P hullámok segítségével válik lehetővé.

A 05-ös egyenlet alapján kijelenthető, hogy amennyiben azonos atmoszféranyomáson történik a vizsgálat akkor kizárólag a sűrűség függvényében számítható a terjedési sebesség. A hang terjedési sebessége a sűrűséggel fordítottan arányos, tehát kis sűrűségű levegőben a terjedési sebesség jelentősen alacsonyabb, mint például nagy sűrűségű acél esetén. Ezt a jelenséget szokás akusztikus impedanciával vagy akusztikai keménységgel is nevezni, mely az anyag sűrűségének és hullám sebességének szorzataként írható fel. Hullám visszaverődés létrejöhet a közeghatár felületéről így megkülönböztetünk reflektáló és transzmissziós hullámokat. A reflektáló hullámokat a reflexiós együttható segítségével lehet jellemezni, mely megmutatja, hogy a réteghatárhoz érve milyen arányban reflektálódnak a hullámok. A reflexiós együttható a két közeg akusztikus impedanciájának arányában írható fel, mely alapján két egyforma közeg esetén nem lép fel reflexió, azonban nagyságrendekkel eltérő impedancia esetén tökéletes reflexió jón létre. Ez általában gáz és szilárd halmazállapotú agyagok találkozásánál tapasztalható, ezért közvetítő közeget (pl. ultrahangos zselé) kell beiktatni a transzmisszió érdekében.

A hanghullámokat kategorizálni szokás a hang frekvenciájának függvényében, 20 Hz alatt infrahang, 20 Hz és 16 kHz között hallható hang, 16 kHz és 100 MHz között ultrahang és 100 MHz felett hiperhang. Ennek jelentősége a hang behatolási mélységében rejlik, hiszen a behatolási mélység és a frekvencia fordított arányosságot mutat. Ennél fogva alacsony frekvenciájú hullám képes nagyobb behatolási mélységet elérni magas frekvenciájú hanghullámmal szemben.

A hanghullámos mérési módszernél a hanghullámok által megtett úthoz szükséges idő közvetlenül határozható meg, ami a vizsgált szerkezetre elhelyezett szenzorok segítségével végezhető el. A hullámok transzmissziója szerint 3 vizsgálati módszer lehetséges:

- direkt (13 ábra a)
- fél-direkt (13 ábra b)
- indirekt (13 ábra c)

14. ábra Hanghullám mérési módok transzmisszió szerint [29]

A direkt mérési mód esetén a hanghullámot gerjesztő eszköz (adó) és az érzékelő (vevő) ellentétes oldalon találhatók, a fél-direkt mód esetén egymás melletti oldalt találhatók, míg az indirekt esetben azonos oldalon helyezkednek el. A vizsgálat segítségével lehetőség nyílik a hanghullám útjának megtételéhez szükséges idő mérésére, így amennyiben ismert az adó és vevő egység közötti távolság a hanghullám terjedési sebessége kiszámítható.

A fenti ábrán egyszerű vizsgálati mód szemléltetése történt, ahol pusztán 1 db adó és 1 db vevő egység kerül felhelyezésre. Az ilyen mérési módok egyszerűsége és gyors vizsgálati ideje adja a legfőbb előnyét, azonban kizárólag egy dimenziós értékelést biztosít. A mérő egységek darabszámának növelésével és meghatározott elrendezésével lehetőség nyílik kétdimenziós vizsgálatra, jellemzően egy keresztmetszet felvételével. Ez a vizsgálati mód az egy dimenziós vizsgálati módnál jelentősen több információval kecsegtet, ezeket szokás szónikus vagy ultraszónikus tomográfnak nevezni (15. ábra) [30].

15. ábra Példa a tomográf elrendezési módra [30]

A szónikus/ultraszónikus tomográf esetén a vevő egységek sűrű elhelyezésével több sugárút mérésére van lehetőség, ami a megnőtt adatmennyiség statisztikai elemzésével csökkentheti a mérési bizonytalanságot a 2 szenzorral rendelkező 1 dimenziós vizsgálati változathoz képest. Továbbá a 2 dimenziós vizsgálat révén lehetőség van detektálni a szerkezeti folytonossági anomáliákat a keresztmetszeten belül.

A hanghullám mérésen alapuló vizsgálatok széleskörűen elterjedt megoldások a mérnöki tudományterületen belül. A vizsgált közegen áthatoló hullámok mérése által fontos információk nyerhetők ki úgy mint, anyag tömörsége, mechanikai jellemzők, geometriai jellemzők (repedések a szerkezet belsejében, inhomogén részek nagysága, injektált tartományok nagysága [31]). Jellemzően ezek a vizsgálati módszerek homogén anyag esetén működnek igazán hatékonyan.

Hullámterjedésen alapuló vizsgálati módszerek alkalmazása igen gyakori kőzetek jellemzőinek meghatározására, példaként lehetne megemlíteni Vasanelly [32], Parent [33], Sharma [34] és Elizabeth publikációit. Vasanelly és Parent mészkőből készült falazott szerkezetek nyomószilárdság, valamint egyéb mechanikai jellemzők és hullám terjedési sebesség kapcsolatát vizsgálták, míg Sharma több különböző kőzettel is foglalkozott. Elizabeth [35] gránit falazat nyomószilárdságát vizsgálta különböző szenzorelrendezés szerint és azt tapasztalta, hogy hullám sebesség értékek a falazatban ébredő nyomófeszültség alapján változik. Mind a négy publikáció alapján kijelenthető, hogy hanghullámokon alapuló vizsgálatok alkalmasak lehetnek nyomószilárdság megállapítására, hiszen erős kapcsolat mérhető a két jellemző között. A fent említett kutatások történeti épületek vizsgálatok esetén lehetnek hasznosak, mivel egészen az ipari forradalom koráig a kiemelt fontosságú épületek jellemzően faragott kőből készültek.

Történeti falazott szerkezetek inhomogenitásának kimutatására alkalmazta a szónikus vagy ultraszónikus vizsgálati módszereket Mesquita [36], Bosiljkov [37] és Faella [38]. Cámara [39] esettanulmányában San Jerónimo de Buenavista kolostor teherbírás megítélését végezte el. A történeti épület modellezésének egyik alappilére volt, hogy tomográf vizsgálat segítségével sikerült megállapítani a díszítésekkel teli pillérek tömör keresztmetszeti (teherhordásra alkalmas) méretét, azáltal segítve az erőtani vizsgálatok elvégzését. Velente [40] barokk stílusban épült templomokat vizsgált, melyek 2012-ben történt észak olaszországi földrengésben megsérültek. A károsodások felmérésében hatékony módszernek bizonyult a szónikus tomográf használata, aminek segítségével lehetőség nyílt a keresztmetszeti inhomogenitások kimutatására, valamint a földrengés okozta repedések miatt létrejött

szerkezeti folytonosság mérésére. Luchin laboratóriumi kísérletek segítségével vizsgálta a szónikus tomográf lehetőségét a falazat belsejében lévő falazóelemek kontúrjának meghatározására. Ez már magasabb rendű vizsgálati szempont, hiszen már nem csupán az inhomogenitás kimutatása a cél, hanem a falazatban lévő falazóelemek méretének és akár falazóhabarcs vastagságának megítélése volt a feladat. Luchin [41] szerint a tomográf vizsgálat alkalmas lehet akár ilyen adatok begyűjtésére, azonban ehhez igen nagy mennyiségű szenzorra van szükség. A laboratóriumi kísérletsorozatában akár 48 db szenzort is elhelyezett egy keresztmetszetben, melyek 9,5 cm távolságra voltak egymás mellett (16. ábra). Az ilyen magas szenzorszám alkalmazása gyakorlatban igen nehézkes és időigényes lehet, emiatt gyakorlati felhasználása csak bizonyos körülmények között lehet indokolt. A tomográf vizsgálatok egyik további felhasználási módja az utólagos injektálások hatékonyságának felmérése. Jorne [42] meglévő szerkezetből vett magmintákon végzett mérések segítségével igazolta az injektáló anyag behatolási mélységét és kiterjedését.

16. ábra Szenzor elrendezés és képalkotás a vizsgált szerkezetről [41]

Több kutatás készült az ultrahangos vizsgálatok alkalmazásának lehetőségéről különböző falazóelemek mechanikai jellemzőinek meghatározására. Dizhur [43] történeti tömör téglák mechanikai jellemzőinek mérésére végzett kísérleteket és regressziós elemzéseket a mechanikai jellemzők és Schmidt kalapácsos, valamint ultrahangos vizsgálati eredmények közti kapcsolat megállapítása érdekében. Dizhur szerint a téglák nyomószilárdságának megbecslésére a Schmidt kalapácsos módszer alkalmas lehet akár csak az ultrahangos vizsgálat. Az ultrahangos vizsgálatoknál különbséget tett a direkt és féldirekt mérési irányok között és azt találta, hogy a féldirekt vizsgálat esetén szinte semmilyen korreláció nem tapasztalható. Noor-E-Khuda&Albermani [44] szintén végzett kutatást falazótéglákban ultrahangos terjedési sebesség, valamint a tégla nyomószilárdsága és hajlítószilárdság megítélésére, viszont a hajlítószilárdság esetén gyengébb korreláció volt tapasztalható. Falazóhabarcsok és hullám terjedési sebesség kapcsolatáról is készültek tudományos kísérletek. Estévez [45] és Nalon [46] cement kötőanyagú habarcs mintákat vizsgált és igen jó kapcsolatot talált a nyomószilárdság és hullám sebesség között.

Falazott szerkezetek vizsgálata és értékelése során figyelemmel kell lenni a szerkezet inhomogén viselkedésére. A falazat szilárdságának megállapítása során a tégla, a falazóhabarcs és a két falazat alkotó közötti kapcsolat egyformán fontos lehet. Zielinska&Rucka [47] és Schuller [48] kísérletei alapján a fugáknak nagy jelentősége van a hullámok terjedésében, hiszen a közegváltás miatt hullámok egy része visszaverődik a közeghatárról, míg a tovább haladó hullámok energiaveszteség árán folytatják útjukat (17. ábra). Tehát a fugák darabszámának függvényében terjedési sebesség csökkenése mérhető.

17. ábra Hanghullám terjedési sebességének változása fugák darabszámának függvényében [48]

Az irodalomkutatásom alapján a hanghullámon alapuló vizsgálati módszerek kiemelt fontossággal bírnak az épület diagnosztika során, mivel egyszerre alkalmasak a szerkezet geometriai és anyagi jellemzőinek meghatározására. Történeti épületek esetén elsősorban a keresztmetszet inhomogenitásának, falazóelemek geometriájának és repedések hosszúságának megállapítására használják, miközben mechanikai jellemzők (elsősorban nyomószilárdság és rugalmassági modulus) meghatározása is lehetséges. Homogén tartószerkezet esetén a mechanikai jellemzők vizsgálata és értékelése egyszerűen elvégezhető, azonban heterogén falazat esetén nehézségekbe ütközik. Ezen tudományterületen történt közelmúltbeli kísérletek ígéretes eredményeket mutattak jellemzően modern építőanyagú falazatoknál. Történeti falazatok anyagi jellemzőinek mérését bemutató szakirodalom azonban szűkkörű.

2.2.2 Elektromágneses hullámokon alapuló vizsgálati módszer

Az elektromágneses hullámokon alapuló vizsgálati módszerek közül a leggyakrabban alkalmazott módszer a GPR (Ground Penetrating Radar) vagy más néven Georadar. A Georadar hatékonyan használható az épületek/építmények tartószerkezeti jellemzőinek helyszíni roncsolásmentes vizsgálatára. A vizsgálatok eredményeként alapvetően geometriai jellemzőket lehet kimutatni, mint a szerkezet belsejében lévő rejtett szerkezeti elemek (acélbetét, feszítőpászma egyéb fémek), lokális hibák (kisebb üregek, fészkesedés, betonacél korrózió) és az eltérő anyagok réteghatára (rétegrend, rétegleválás) [49][50][51][52][53].

A GPR működési elve a készülék által kibocsátott elektromágneses hullámok visszaverődési képességén (reflexió) alapul. Reflexió jön létre abban az esetben, ha az elektromágneses hullám haladása során egy eltérő anyagi tulajdonságú tárgyba ütközik. Amennyiben a tárgy dielektromos állandója eltér az azt körülvevő közegétől akkor a kibocsátott elektromágneses hullámok bizonyos mértékben reflektálnak, míg a többi elektromágneses hullám tovább terjed (18. ábra). A Georadar érzékelni tudja a visszaverődő elektromágneses hullámokat és mérni az eltelt időt, így amennyiben ismert a hullám terjedési sebessége könnyen kiszámítható a tárgy helyzete (09)

$$v = \frac{c}{\sqrt{\varepsilon_r}} = \frac{0.3}{\sqrt{\varepsilon_r}} = \frac{Z}{t}$$
(09)

ahol, c a vákuumban mért elektromágneses hullám terjedési sebessége (m/ns), ε_r a közeg relatív dielektromos állandója, Z a tárgy távolsága a készüléktől, t a hullámok terjedési ideje.

A Georadar alkalmazhatóságát korlátozza, hogy az elektromágneses hullámok terjedési sebességét több tényező is befolyásolja pl. dielektromos állandó, a szerkezet tömörsége, a szerkezet nedvességtartalma, valamint a frekvencia beállítás. Ebből fakadóan bizonyos körülmények között a GPR csak közelítő vizsgálatként használható. A 3. táblázat néhány gyakori anyaghoz tartozó elektromágneses jellemzőket mutat be. Az elektromos vezetőképesség és a frekvencia szoros kapcsolatban állnak egymással, így a frekvencia változásával a vezetőképesség egyenes arányban változik. Ebből fakadóan a Georadar maximális behatolási képessége a frekvencia változásával fordítottan arányos. A maximális behatolási mélység felírható a (10) segítségével

18. ábra Visszaverődő és tovább terjedő hullámok sík felület esetén [53]

Anyag	Relatív dielektromos állandó	Elektromos vezetőképesség (s/m)	Elektromágneses hullám sebessége (m/ns)
Levegő	1	0	0,3
Agyag	19	0,1	0,068
Beton	6	0,001	0,12
Friss víz	81	0,01	0,033
Műanyag	4,5	0,0004	0,14
Vas	1,45	9,98*10 ⁶	0,249
Száraz homok	4	0,00001	0,15

3. táblázat Elektromágneses anyagjellemzők néhány gyakori anyag esetén [54]

$$Z = \sqrt{\frac{1}{\pi f \mu_0 \sigma}} \approx 503 \sqrt{\frac{1}{f\sigma}} \tag{10}$$

ahol, f a frekvencia (MHz), μ_0 a vákuumban mért mágneses permeabilitás, σ az elektromos vezetőképesség [54].

A GPR vizsgálat eredményét befolyásoló tényezők közül egyedül a frekvencia beállítás kezelhető hatékonyan, hiszen ez az egyedüli nem környezet függő tényező. A frekvencia nem csak a behatolási mélységet, hanem az adatfeldolgozás során készített felvétel minőségét is befolyásolja (magasabb frekvencia jobb kép minőséget ad). A 4. táblázat összefoglalja a GPR alkalmazási lehetőségéket frekvencia beállítás függvényében [55].

Történeti épületek falazatainak állapotértékelése Szilárdság értékelés roncsolásmentes diagnosztikai módszerek felhasználásával

Frekvencia tartomány [MHz]	Behatolási mélység [m]	Tipikus alkalmazási lehetőség					
1500-2600	0,3-0,6	Beton szerkezet esetén: üregek/fészkesedés felmérése, betonacélok és feszítőpászmák lokalizálása Falazott szerkezet esetén: üregek felmérése, betonacél és egyéb beágyazott elemek detektálása					
900-1000	1,0	Beton szerkezet esetén: üregek/fészkesedés felmérése, betonacélok és feszítőpászmák lokalizálása Falazott szerkezet esetén: üregek felmérése, rétegrend mérése, betonacél és egyéb beágyazott elemek detektálása					
400-500	4,0	Mérnöki és környezeti felhasználás: üregek felmérése rétegrend mérése, csövek és kábelek detektálása					
200-300	7,0	Geotechnikai, mérnöki és környezeti felhasználás: talajrétegek mérése, csövek és kábelek detektálása					
100	20,0	Geotechnikai, bányász és környezeti felhasználás: talajrétegek mérése, csövek és kábelek detektálása					
16-80	25-35	Geotechnikai felhasználás: talajrétegek mérése, csövek és kábelek detektálása					

4. táblázat Tipikus GPR alkalmazási lehetőségek a frekvencia függvényében [55]

A fenti táblázatból kiderül, hogy a GPR mérnöki célra 400-500 MHz feletti frekvencia beállítás esetén alkalmazható. 400 MHz alatti frekvencia beállítás mellett ugyan megnövekszik a behatolási mélység, azonban a felvétel felbontása jelentősen lecsökken és csak nagyobb kiterjedésű anomáliákat képes érzékelni. Továbbá viszonylag ritkán van szükség közel 4 méteres behatolási mélységre (igazán nagy szerkezeti vastagság vagy alaptest vizsgálat esetén lehet indokolt). Ebben a témában készített tudományos cikket mutat be épületek és hidak esetén [56].

A 5. táblázatban prezentált példák jól mutatják be milyen sokrétű a GPR alkalmazás a különböző mérnöki területeken, mint például ipari létesítmények, infrastruktúrához köthető építmények, útpálya, híd, de nem ipari célú épületek vizsgálatára is kiválóan használható.

Referencia	Antenna frekvencia	Helyszín	Épület típusa	Vizsgálat tárgya
Kanli et. al. [57]	400 és 900 MHz	Sopron, Magyarország	Tűztorony	Üregek és repedések vizsgálata injektálás előtt és után
Orlando & Slob [58]	2 GHz	Chieti, Olaszország	Történeti épület	Lemez stabilitás földcsuszamlás hatására
Rucka et al [59].	2 GHz	Gdansk, Lengyelország	Templom- torony	Falazott és vasbeton szerkezet kapcsolata
Perez-Gracia et al. [60]	900 és 1500 MHz	Palma, Spanyolország	Katedrális	Fal belső szerkezete, sérült tartományok
Ranalli et al [61].	600 és 1600 MHz	L'Auila, Olaszország	Templom	Fal vastagság, belső falazott szerkezet és repedések helye
González- Drigo et al. [62]	400 és 900 MHz	Barcelona, Spanyolország	Történeti épület	Megerősített oszlopok és teherhordó falak teherbírása
Kilic [63]	2 GHz	Urla, Törökország	Közép- iskola	Üregek és vízbehatolás

5. táblázat Példák épületeken végrehajtott GPR vizsgálatokról [56]

Irodalomkutatásom alapján jelenleg az egyik legértékesebb kutatásterület a GPR kapcsán a rejtett szerkezeti elemek vizualizációja. Lombardi et al [64] kísérletet végzett egy falazott szerkezeten kijelölt tartományban található tégla elemek és fugavastagság meghatározására nagy felbontású Georadar alkalmazásával megadott mélységben. Azt találta, hogy az általa használt képalkotási rekonstrukciója jó egyezést mutatott a valós állapottal. Az általa bemutatott módszerrel 1-2 cm pontossággal képes volt megállapítani a téglaelemek méretét (19. ábra). Negri&Aiello [65] szintén nagy felbontású GPR képek segítéségével próbált meg rejtett szerkezeti jellemzőket detektálni és méretüket kellő megbízhatósággal meghatározni a mért elektromágneses hullámok sebességének alapján számított reflexiós együttható segítségével. Továbbá a reflexiós együttható meghatározásával a rejtett üregek kitöltését is képes volt megállapítani. De Donno et al [66] GPR segítségével végzett kísérletet falazott szerkezetben lévő téglák és fugák képalkotására, valamint terhelés utáni állapotban létrejött repedés lokalizálásra. Samet el al [67] által végzett mérések alapján a nem látható szerkezeti elemek profiljának vizualizációjához használt interpolációs technika segítségével megállapította az optimális képalkotáshoz szükséges mérési paramétereket.

Height: 7.5 cm Length: 14 cm Height: 6 cm	Height: 6.5 cm Length: 14 cm Height: 5
Height: 6 cm	Height: 5
Length: 30	Length:
cm Height: 12 cm Length: 7	27 cm Height: 12 cm Length: 6
cm Height: 13 cm Length: 7	cm Height: 12 cm Length:
	Length: 7 cm Height: 13 cm Length: 7 cm

19. ábra Mért és tényleges tégla méretek GPR rekonstrukció alapján [64]

A meglévő épületek teherbírás ellenőrzése szempontjából kiemelt fontosságú a tartószerkezet geometriájának ismerete. Ehhez elengedhetetlen információt nyújthat a Georadar a nem látható szerkezeti elemek kimutatásával és egyéb tartószerkezetileg fontos információ is kinyerhető, viszont igazán hatékony akkor lehet, ha sikerül a Georadar vizsgálatot a térbeli lézerszkenneléses felméréssel együtt kezelni és kombinálni. A térbeli lézerszkenneléses módszerek révén lehetőség nyílik a látható szerkezet felmérésére (akár mm pontossággal), továbbá a pontfelhő alapú mérés segítségével a szkennelt épület átültethető szerkezettervező szoftverbe, ezáltal megkönnyítve modellezést [68]. A látható szerkezeti geometria és a rejtett szerkezeti jellemzők ismerete egyaránt fontos az épület tartószerkezeti modellezése szempontjából, így a jelenlegi kutatások a lézerszkenneléses módszerek és Georadar kombinálási lehetőségeit vizsgálják, illetve tervezői szoftver modellterébe ültetésének automatizmusáról [69][70][71][72].

A georadar vizsgálat egyik leghasznosabb roncsolásmentes diagnosztikai módszernek sorolható, mivel a szerkezet belső -nem látható- tartományaira mutat rálátást. Igen széleskörben alkalmazzák szinte bármilyen szerkezet vizsgálatához és történeti épületek vizsgálatához szinte elengedhetetlen. A technikai fejlődés hatására manapság már egyre megbízhatóbb képalkotás technikáknak köszönhetően a szerkezeti elemek rekonstruálása akár cm-es pontossággal is lehetséges (igaz csak korlátozott mélységig). A jövőbeli kutatási terület a georadar és a térbeli lézerszkennelés kombinálás hatékonyságának növelése, illetve bizonyos fokú automatizmus használata az épület szoftveres térbeli modellezésének segítése céljából.

2.2.3 Visszapattanásos elven működő szilárdságvizsgálat

A Schmidt kalapácsos vizsgálati módszert Ernest Schmidt fejlesztette ki az 1940-es évek végén, melynek célja a felületi keménység mérésen alapuló szilárdságbecslés. A vizsgálat alapelve, hogy a vizsgált anyag felületi keménysége és annak nyomószilárdsága között szoros összefüggés van. Felületi keménységmérési módszereket már alkalmaztak korábban például Brinelli és Vickers féle benyomódás vizsgálatokat, amiket acél felületek vizsgálatára használtak az 1930-as években. A Schmidt kalapácsos vizsgálat ezektől eltérően nem benyomódásból származtatja a becsült szilárdságot, hanem a felületről való visszapattanás mérésével. A készülékről leolvasott visszapattanási érték a kalapács ütőtömege által az ütés következtében megtett és a visszapattanás közben megtett út hányadosa, melyet R betűvel szokás jelölni az angol rebound index kifejezésből (11)

$$R = \frac{x_r}{x_0} \cdot 100 \tag{11}$$

ahol x_r a mozgó tömeg visszapattanás közben megtett útja, x_0 a mozgó tömeg az ütés közben megtett útja [73].

A Schmidt kalapács egyszerű és gyors alkalmazhatóságának hála széles körben terjedt el és manapság a világ minden táján használják. A leggyakoribb alkalmazási módja a nyomószilárdság becslése beton/vasbeton [74], különböző kőzetek [75][76] és akár falazott szerkezetek esetén [77].

A Schmidt kalapácsokat 3 kategóriára lehet bontani a kalapács által kifejtett ütési energia alapján: N típusú kalapács (ütési energia 2,207 Nm) beton és kemény kőzetek vizsgálatára, L típusú kalapács (ütési energia 0,735 Nm) puhább felületek vizsgálatára pl. tégla, alacsony szilárdságú beton és végül P típusú kalapács (ütési energia 0,883 Nm), mely igazán puha felületű anyagok (alacsony szilárdságú tégla, habarcs, gipsz) vizsgálatára alkalmas.

Látható, hogy a vizsgált felület minősége erős befolyással bír a készülék alkalmazhatóságára, melyet még további tényezők is módosíthatják. Mivel a vizsgálat alapelve a felületi keménység mérése, így elsősorban ennek a hatása a legerősebb. A felület érdessége és inhomogenitása rendkívül képes rontani a mérés megbízhatóságán. A vizsgált próbatest vagy szerkezet mérete és ezzel együtt annak merevsége is befolyásoló tényező lehet (nagyobb merevség általában magasabb visszapattanási értéket ad). A felület közelében lévő apró repedések és üregek is negatívan befolyásolják a vizsgálati eredményt. Beton anyag esetén a karbonátosodás okozta keménység növekedést is figyelembe kell venni. Nedvességtartalom szerepe is jelentős lehet. A hőmérséklet változásával is eltérések tapasztalhatók, azonban ennek kis jelentősége van [78][79].

Matthews et al [80] kőzeteken keletkező környezeti károsodás okozta mállási folyamatot vizsgálta. Azt találta, hogy a mállás miatt ugyanazon a ponton elvégzett Schmidt kalapáccsal mért visszapattanási érték eltérő lesz. Ezt a jelenséget a mállási index segítségével

írta le matematikailag, melyet Debailleux fejlesztett tovább égetett téglára [81]. Debailleux szerint a mállás okozta károsodás miatt az első öt ütés visszapattanási értékének bizonytalansága rontja a Schmidt kalapácsos vizsgálat megbízhatóságát. Megbízhatóbb eredményt ad, ha pusztán csak az ötödik ütésszámtól kezdve történik a visszapattanási értékek átlagolása történeti téglák esetén (20. ábra).

20. ábra Mállási index alakulás az ütésszám függvényében [81]

Brencich et al [82] részletes tanulmányban taglalja a Schmidt kalapács alkalmazási lehetőségét a falazat szilárdságának meghatározására. Történeti épületeknél a falazóhabarcs alacsony szilárdsága csak kis mértékben járul hozzá a falazat szilárdságához, így a tégla szilárdságának meghatározásával jó közelítéssel a falazat nyomószilárdsággal is megállapítható. Bi-lineáris összefüggést készített mely alapján jól megbecsülhető a falazat szilárdsága a Schmidt kalapács által mért visszapattanási érték alapján.

Schmidt kalapáccsal történő tégla vizsgálatkor a vizsgált felület típusa is befolyásolja a visszapattanási értéket. Gyurkó et al [83] vizsgálatai szerint a tégla oldallapján bal, jobb szélén, valamint középen végzett méréseket az eredeti tégla felületen és síkra vágott felületen egyaránt. Azt találta, hogy a felület típusa kevésbé befolyásolta a visszapattanási értéket, viszont az oldallap közepén mért visszapattanási értékek jó korrelációban álltak a normalizált nyomószilárdsági értékkel. Fódi [84] kísérleteket végzett a tégla nyomószilárdságának meghatározására a tégla eltérő oldallapjainak vizsgálatával előterhelés alatt. A vizsgálatok alapján eltérő visszapattanási érték volt tapasztalható a tégla két oldallapján. Úgy találta, hogy a rövidebb oldallapon mért értékek alkalmasabbak a tégla normalizált nyomószilárdság megállapítására. Habár a hosszabb oldallapon történő Schmidt kalapácsos vizsgálat eredményei kevésbé voltak megbízhatók, erre az esetre is készített egy empirikus összefüggést.

A Schmidt kalapácsos vizsgálat az egyik konvencionális roncsolásmentes diagnosztikai vizsgálat, mely már több mint 70 éve alkalmazott módszer a vizsgált anyag keménység mérésére. A módszer hosszú történelme alatt nagy mennyiségű publikáció jelent meg. Még mai napig is történnek kísérletek a visszapattanást befolyásoló tényezőkről azok mértékéről. A módszer bizonytalansága miatt csak közelítő jellegű értékeléshez használható, így önállóan nem alkalmazható szilárdság meghatározásra.

2.2.4 Penetrációs elven működő habarcs szilárdságvizsgálat

A habarcsok kiemelt fontossággal bírnak a falazat terhelhetősége szempontjából, hiszen a felületi tapadás révén kapcsolatot biztosítanak a falazóelemek között, így növelve a falazat teherbíróképességét és stabilitását. Meglévő épület falazóhabarcs szilárdságvizsgálatának a legmegbízhatóbb módszere a mintavételezés és laboratóriumban történő törésvizsgálata. Általában ez nehezen kivitelezhető feladat, mivel a mintavételezés során kifejezetten nagy nehézséget jelent tiszta mintát kinyerni, illetve a mintavételezés közben a fúrókorona túlhevülését vízhűtéssel lehet megoldani, így átnedvesedhet a minta. Történeti épületek esetén a mintavételezés önmagában korlátozott mértékben valósítható meg, így tovább nehezíti a falazóhabarcs jellemzőinek meghatározását.

A fent említett okokból kifolyólag falazóhabarcsok mechanikai jellemzőinek meghatározása céljából az in-situ vizsgálati módszerek alkalmazása előtérbe került és ma már több helyszíni vizsgálati módszer is létezik. A történeti falazóhabarcsok esetén fontos megemlíteni, hogy mész kötőanyag révén puhábbak és kisebb nyomószilárdsággal rendelkeznek, mint a cement kötőanyagú társaik. Emiatt a készülékeket megfelelően kell kalibrálni a várható szilárdság figyelembevételével. Windsor féle behatolásmérés (gyakran az alábbi kifejezéssel is illetik: Pin Penetration Testing) azon az elven alapszik, hogy a habarcsba meghatározott energiával 3 mm átmérőjű apró acélrudat ütnek be egyszeri alkalommal, a behatolás mértékét rögzítik és ennek ismeretében a nyomószilárdság megbecsülhető [85] (21. ábra). A módszer előnye az egyszerű használat, hordozható készülék révén helyszíni vizsgálatokra jól alkalmazható, illetve az acélrúd által okozott roncsolás mértéke is igen alacsony, így történeti falazóhabarcsok vizsgálatára alkalmas lehet.

21. ábra Windsor féle penetrációs készülék használat közben [85]

A Windsor vizsgálathoz erősen hasonlító módszer a Penetrometer Testing (22. ábra), mely annyiban tér el a Windsor módszertől, hogy nem egyszeri, hanem akár 20-30 alkalommal is ütést kell mérni ugyanarra a vizsgált pontra. A vizsgálat során kis átmérőjű tű beütése történik állandó nagyságú energiával, mely alapján a behatolási mélységet adott ütésszámonként dokumentálni lehet (5, 10, 15 ... 30). A mért penetrációt felhasználva egy jelleggörbe rajzolódik ki, mely sajátossága, hogy az első ütések (gyakran akár az első 10 is) magasabb behatolással járnak, mert a felületi súrlódás még igen alacsony ebben az állapotban. Amint állandósul ez a jelenség a jelleggörbe lineárissá válik és így a gyártó által készített jelleggörbe felhasználásával nyomószilárdság becslése válik lehetővé [86].

22. ábra Penetro Malta RSM 15 vizsgáló készülék [87]

Schmidt kalapácsra applikált fogadószerkezetet készített Felicetti&Gattesco [88], mely a Schmidt kalapács ütési energiáját használja fel az acél tű beütésére. Ezt a módszert kőfalazatok habarcsvizsgálatára fejlesztették ki, hiszen a kőfalak felületi egyenetlensége miatt komoly kihívást jelentene a penetrációs készülék illesztése a felületre (23. ábra). A készülék kalibrálása során figyelembe vették a kő elemek által kifejtett oldalirányú összeszorító hatást, mely befolyásolja a habarcs szilárdsági jellemzőit.

23. ábra A Felicetti és Gettesco féle fogadószerkezet a Schmidt kalapácson alapuló behatolás vizsgálathoz [88]

Innovatív eljárás lett publikálva 2023 januárjában, mely az előbb bemutatott penetrométer automatizált verziójaként fogható fel [89]. A cikk írói egy pisztolynak kinéző eszközt készítettek (24. ábra), mely teljesen automatikusan működik és az elsütő ravasz meghúzásával aktiválható. A penetrométerrel ellentétben nem kell manuálisan felhúzni a készüléket, így a használata végtelenül egyszerű és kifejezetten alkalmas lehet igazán alacsony szilárdságú habarcsok (0,1-0,5 MPa) vizsgálatára, 1,32 Nm ütési energiája miatt.

24. ábra Zalsky féle penetrációs eszköz vizsgálat közben [89]

A penetrációs elven működő habarcsvizsgáló módszerek hatékonysága a habarcs szilárdságának meghatározására viszonylag kiforrott. Ennek ellenére folyamatosan jönnek ki újabb eszközök, melyek jellemzően az alacsony szilárdságú habarcsok vizsgálatára alkalmasak. A módszer segítségével a külső felülethez közel lévő habarcs vizsgálatára alkalmas, emiatt nem ad információt a fuga belsejének állapotáról, mely nagy vastagságú falazatok esetén lehet fontos. Emiatt a Schmidt kalapácshoz hasonlóan más diagnosztikai vizsgálattal együtt kombinálva érdemes a használata.

2.2.5 Nedvességtartalom vizsgálat

A falazott szerkezetekre a nedvesség komoly hatással van. A mechanikai jellemzők romlása mellett a megfogyott víz okozta mállás idővel keresztmetszet csökkenést okoz, vízben lévő só és egyéb károsítók olyan kémiai változást okoznak, melynek következtében a mállás fokozódik. A falazat nedvességtartalma jelentősen képes csökkenteni a falazat és vele együtt a falazóelemek mechanikai jellemzőit, az alábbi kutatások alapján a tégla falazat nyomószilárdság és rugalmassági modulus egyaránt 8-24% között csökkent [90][91][92]. A fent említett károsodások miatt kiemelt fontossága van a nedvességtartalom vizsgálatnak falazott szerkezetek állapotfelmérése során.

A nedvességtartalom mérésére alapvetően 4 különböző módszer létezik: kémiai vizsgálat alapján, a felület hőtechnikai jellemzőinek mérésével pl. termográfia, atomi szinten történő vizsgálat pl. neutron módszer és végül az elektromos jellemzők mérésén alapuló módszerek. Az elektromos módszereken alapuló vizsgálatok a leginkább használt módszerek falazott szerkezetek vizsgálatára, ezek közül a mikrohullámos, dielektromos és elektromos ellenállás vizsgálat, valamint impedancia tomográfia [93] emelhető ki. A mikrohullámos vizsgálat a mikrohullámok víz által történő csillapítás mérésén alapul. A mikrohullámok vizsgálatával lehetőség nyílik a szerkezet mélyebb tartományainak mérésére. A dielektromos vizsgálati módszer a dielektromos állandó mérésén alapul, mely nedvesség hatására változik a vizsgált anyagban. Tégla falazatok esetén jól alkalmazható ez a módszer, mivel a sótartalomtól függetlenül képes a nedvességtartalom megállapítására, viszont érzékeny az anyagban lévő mikrorepedésekre, üregekre és sűrűség változásra [94]. Elektromos ellenállás mérésen alapuló technikákat előszeretettel alkalmazzák fa és fűrészárú vizsgálatára [95], de falazott szerkezeteknél is alkalmazható. A vizsgálat alapja, hogy két elektróda között fellépő elektromos ellenállás mérhető. A vizsgálat erősen függ az elektróda fajtájától, valamint az elektróda és vizsgált felület érintkezésétől. A vizsgálat előnye, hogy egyszerűen és gyorsan használható, viszont kizárólag lokális adat szolgáltatására alkalmas. Alapvetően felszíni mérésre alkalmas, de lehetséges mélységi nedvességmérést elvégezni, meghosszított elektródák segítségével, melyeket előfúrt lyukakba kell helyezni. Amennyiben a nedvesség mélységbeli eloszlás vizsgálata szükséges akkor az impedancia mérésen alapuló tomográf készülék jelenthet megoldást [96].

A falazatban lévő nedvesség komoly károsodás okozója lehet. A tartóssági jellemzők csorbulása mellett a mechanikai jellemzők romlását is okozza, emiatt komoly figyelmet kell szentelni az épületek statikai felülvizsgálata során. A roncsolásmentes diagnosztikai módszerek alkalmazásával csak közvetve lehet bizonyos jellemzőket meghatározni, melyek megbízhatóságát a szerkezetben lévő nedvesség ronthatja, emiatt a diagnosztikai módszerek hatékonysága romlik. Emiatt az átnedvesedett falazatok jellemzőinek megbízható meghatározása komoly nehézségekbe ütközik.

Irodalomkutatás összegzése

A mérnöki tudomány jelenlegi állása szerint a legmegbízhatóbb adatok a meglévő épület jellemzőiről a fúrt magmintán alapuló laboratóriumi vizsgálatok által biztosíthatók. Az utóbbi években kutatásokat végeztek a hagyományos nagy átmérőjű magminta vételezés helyett használható kisebb átmérőjű (90 vagy 100 mm-es) magmintákon történő nyomszószilárdság meghatározására. A kutatások azt bizonyították, hogy egy mérettényező segítségével átkonvertálható a mért szilárdság szabványos szilárdsággá. Azonban ezen módszerek még nem kiforrottak, szabványba történő adoptálásuk vagy műszaki utasításba helyezésük még nem történt meg.

Hanghullámon alapuló vizsgálatok igen hasznos információt biztosíthatnak a helyszíni diagnosztikai vizsgálatok során. Zömmel a szerkezet belső kialakításának, rejtett üregek helyzetének, inhomogén tartományok mértékének és repedések hosszúságának megállapítására használják. Kísérleteket végeztek falazott szerkezetek mechanikai jellemzőinek meghatározása céljából, viszont ezeket a kísérleteket döntően modern falazóelemből és habarcsból készült falazatokon végezték el. Történeti falazott szerkezetek és falazat alkotóinak nyomószilárdság meghatározásáról igen kevés információ áll rendelkezésre.

A történeti épületek esetén a vízszigetelés hiánya miatt a falazatok tartósan vagy hosszú ideig nedvesek lehetnek, főleg a felszínközeli falszakaszok vagy pincefalak vannak kitéve leginkább. A szerkezetben lévő nedvesség befolyásolhatja a helyszíni diagnosztikai vizsgáló eszközök megbízhatóságát. A vizsgáló eszköz nedvességre való "érzékenysége" kevésbé kutatott terület, így ez az ismeret különösen történeti épületek vizsgálata esetén igen fontos lenne a mérőeszközök újra kalibrálása vagy új empirikus összefüggések felírása szempontjából.

3. Kísérleti program bemutatása és eredményeinek értékelése

3.1 Kísérleti program célja és módszertana

Történeti épületek vizsgálatakor kiemelt szerepet kell tulajdonítani az eredeti szerkezet épségének megőrzésére, így a roncsolással járó diagnosztikai vizsgálatok alkalmazása nem, vagy csak korlátozott mértékben lehetséges. A 2. fejezetben bemutatásra kerültek a történeti falazott szerkezetek jellemzőinek meghatározására használható leggyakrabban alkalmazott roncsolásmentes és kis roncsolással járó diagnosztikai módszerek. Az irodalomkutatásom eredményeként a jelenleg meglévő falazat vagy falazatalkotók szilárdsági jellemzőinek meghatározására felállított összefüggések döntő részben száraz állapotra lettek kalibrálva, szilárdsági jellemzők parametrikus felírása során csak ritkán található a minta nedvességtartalmát figyelembe vevő tényező. Ez a hiányosság különösen a szónikus vagy ultrahangos vizsgálati módszereknél szembetűnő. A mész kötőanyagú habarcsok nyomószilárdságának szónikus vizsgálati alapon történő meghatározásáról is kevés információ lelhető.

A kísérletsorozat elsődleges célja tömör tégla falazott szerkezet nyomószilárdság és keresztmetszeti jellemzőinek meghatározására szolgáló in-situ diagnosztikai vizsgálati módszerek megbízhatóságának megítélése az alábbi feltételek betartásával:

- történeti jellegű falazott szerkezeti kialakítás szem előtt tartása. Az ipari forradalom okozta igény az épületek darabszámának növelésére hatalmas lökést adott az addigi kézműves elven működő gyártástechnológia fejlesztésére, így alakultak ki az első gyárak melyek ipari léptékben voltak képesek építőanyagot előállítani. Ebből fakadóan az 1800-as években rengeteg épület készült, melyek nagy része még a mai napig is áll. A kísérletsorozatomban ebben az időszakban készült falazott szerkezet imitálását tűztem ki célul.
- nagy méretű tömör tégla felhasználása. A fent említett időszak korai szakaszában még nem léteztek szabványosított méretek a téglákat illetően. Az első ily módon gyártott tömör téglák a század második felére estek. Az előző pontban megfogalmazott célt betartva az egyetlen szóba kerülhető tégla típus a nagy méretű tömör tégla volt.
- <u>mész kötőanyagú habarcs használata.</u> A cement megjelenéséig az egyetlen habarcsoknál használt kötőanyag a mész volt. A cement és vele együtt a cementhabarcs elterjedésének ideje szinte megegyezik a szabványosított nagyméretű tömör téglák megjelenésével. A mészhabarcsok használata több százéves múltra tekint vissza, így a történeti épületek nagy részében ez a fajta habarcs található. A tudományos kutatások csak kis szelete foglalkozik a történeti mészhabarcsok vizsgálatával, így nagy szükség van a ennek a tématerület ismeretanyagának bővítésére.
- <u>falazatok és falazatalkotók nyomószilárdságának vizsgálata különböző nedvességtartalom mellett.</u> A falazott szerkezetek és azok alkotói egyaránt érzékenyek a nedvességre. Köztudott, hogy a folyamatosan magas nedvességtartalom miatt a falazatban károsodások keletkeznek, melyek a falazat teherbírását is befolyásolják. Az épületek vízszigetelése kb. 40-es évektől kezdve kezdett előtérbe kerülni, de még későbbi időkben is sok probléma forrását jelentette a vízszigetelés hiánya. Értelemszerűen a történeti építmények esetén vízszigetelés nem kerülhetett szóba, így nedvesség okozta károsodások igen gyakori jelenségek.</u>
- <u>eltérő elven működő diagnosztikai vizsgálati módszerek alkalmazása falazat és</u> <u>falazatalkotók nyomószilárdságának meghatározására.</u> A falazat alkotói jelentős különbségeket mutatnak akár fizikai vagy mechanikai jellemzőket vesszük
számításba. Ebből fakadóan a falazatalkotókat nem lehet ugyanazzal a módszerrel vizsgálni, így a különböző elven működő vizsgálatok kombinálása elengedhetetlen. A falazat nyomószilárdságának megbízhatóbb meghatározására a felületi keménységmérések és szónikus vizsgálat kombinálása jelentheti megoldást. A kísérletsorozat végrehajtása során külön figyelmet szentelek a hanghullámok terjedési sebességét befolyásoló tényezőkre és hatására.

Másodlagos célként tűztem ki a szónikus vizsgálati módszer alkalmazási lehetőségének vizsgálatát falazott szerkezetek esetén. A hanghullámon alapuló eljárások jól alkalmazhatók homogén anyagi környezetben, viszont a falazat heterogén kialakítása miatt sajátos alkalmazást követelhet meg. Kiemelt cél a hanghullámok terjedési sebességének vizsgálata fugán való áthatolás következtében és ennek változása nedvesség határára. Irodalomkutatásom alapján a hanghullámok terjedési sebességét alapvetően a vizsgált anyag tömörsége befolyásolja. A falazatalkotókban nyomófeszültség ébred terhelés hatására, így rugalmas összenyomódás hatására tömörség növekedés történhet. A kísérleti program egyik célja az előbb felvázolt jelenség hatásának vizsgálata.

3.2 Kísérleti próbatestek kialakítása

A fent megfogalmazott feltételek szerint számos próbatest került elkészítésre. Mészhabarcsból 3 különböző receptúra alapján szabványos méretű próbatestek, valamint 15 cm-es élhosszúságú próbakockák készültek. Az eltérő mérethasználat célja a különböző vizsgálati módszerek használatához tartozó feltétel biztosítása, illetve a mészhabarcsra jellemző tulajdonság vizsgálata miszerint a mészhidrát kötéséhez CO₂ szükséges, mely a habarcs belső részében nem jöhet létre hiszen nem érintkezik levegővel, így eltérő szilárdsággal rendelkezik a keresztmetszeten belül. 4 db 4 cm-es és 3 db 15 cm-es próbakocka készült el a három eltérő receptúrájú habarcsból szobaszáraz állapotra és ugyanennyi telítettségig nedvesített állapotra, összesen 42 db. A 3 különböző receptúra összetételét a 6. táblázat tartalmazza.

Megnevezés	Mészhidrát	Homok	Víz
Kvarchomokos habarcs	1	2	1
Bányahomokos habarcs	1	4	1
Magas agyagtartalmú homokos	1	2	1,1
habarcs			

6. táblázat A kísérletsorozatban alkalmazott falazóhabarcsok összetétele

A falazóelemek beszerzése egy meglévő épület elbontásából megmaradt építőanyagokból történt. Sajnos manapság már egyre nehezebb korabeli nagyméretű téglákat találni, így a téglák kiválasztása során kompromisszumos megoldást kellett találni. A téglák eredete és gyártási módja nem ismert, ráadásul az eddigi használatból származó sérüléseket is tartalmaztak. A kísérletben felhasznált téglák esetén igyekeztünk a sérülésmentes téglákat felhasználni, de fontos tisztában lenni ezzel a ténnyel az eredmények értékelése során.

Alacsony magasságú falazott próbatestek készültek a falazat nyomószilárdságának közvetlen vizsgálatára. Ezen próbatestek főleg szónikus módszerrel lettek vizsgálva, így a próbatestek kialakítása során a hanghullámok terjedési sebességét befolyásoló tényezők is figyelembe lettek véve. A hanghullámok terjedési sebessége lelassul eltérő akusztikai impedanciával rendelkező anyagok találkozási felületén, így olyan próbatestek készültek, ahol ez a jelenség megfigyelhető. A falazott próbatestek 2, illetve 3 tégla összeépítésével készültek 1 és 2 fekvőhézag kialakítással, valamint eltérő habarcsvastagság figyelembevételével (1 és 2 cm habarcsvastagság) és a korábban bemutatott 3 eltérő habarcs receptúrával. Természetesen

itt is készültek szobaszáraz és telítettségig nedvesített próbatestek, így összesen 72 db próbatest lett vizsgálva (25. ábra).

25. ábra Az elkészült próbatestek vizsgálatra kész állapotban [saját felvétel]

Az alacsony magasságú próbatesteken csak korlátozott mértékben volt lehetőség a vizsgálatok elvégzésére, így készült egy tégla vastagságú próbafal (~1,1 m hosszú és ~1,1 m magas). Ebben az esetben a fal méretéből is anyagigényéből fakadóan a próbatest csak 1 féle habarcsból (bányahomokos habarcs) és habarcsvastagságból (2 cm) készült. A fal építése során megadott pozíciókban rejtett anomáliák kerültek beépítésre, melyek néhány jellemző építési hiba imitálására szolgáltak. Összesen 6 db anomália lett beépítve: 2 helyen fél tégla vastagságban téglatörmelék és 2 helyen fél tégla vastagságban habarcskitöltés (26. ábra). A fal nagy méretéből eredően lehetőség nyílt a szónikus vizsgálatok kiterjedtebb elvégzésére, továbbá Georadaros vizsgálat is alkalmazható volt. A 27. ábrán a próbafalban lévő anomáliák elhelyezése látható nézetben és metszetben.

26. ábra Rejtett anomáliák az épített falban (üreg, téglatörmelék és habarcs kitöltés) [saját felvétel]

A következő alfejezetekben (3.3, 3.4 és 3.5) bemutatásra kerülnek az előbb említett próbatesteken végrehajtott vizsgálatok és azok eredményei.

Történeti épületek falazatainak állapotértékelése Szilárdság értékelés roncsolásmentes diagnosztikai módszerek felhasználásával

27. ábra Illusztráció a próbafalról és a lokális anomáliák helyeiről (elölnézet és vízszintes metszet) [saját illusztráció]

3.3 Próbatestek méretei és nedvességtartalma

A falazott próbatestek és a tégla vizsgálatok előtt a falazóelemek mérete, tömege és testsűrűsége le lett mérve felhasználva az MSZ EN 772-16 [97] és MSZ EN 772-13 [98] utasításait. A nagy méretű tömör téglák szabványos mérete 14x29x6,5 cm, azonban a kísérletekhez beszerzett téglák bizonyos mérete ettől jelentősen - akár 2-3 cm-rel is - eltért (jellemzően a hosszúságokban volt erős szórás). A téglák átlagos testsűrűsége 1807 kg/m³ volt, egészen alacsony relatív szórás mellett (0,051), ami azt mutatja, hogy az egyes téglák testsűrűsége csak kis mértékben tért el a teljes minta alapján számított átlagértéktől.

A habarcs próbakockák elkészítése szabványos méretű fém sablonok segítségével készültek az MSZ EN 1015-2 szerint [99], így a próbakockák méretében is csak kis mértékű eltérések voltak (jellemzően csak 1-2 mm csökkenés volt a sablonból való kivétel után). A próbakockák mérete és testsűrűsége az MSZ EN 1015-10 [100] utasításai szerint lettek meghatározva. A habarcsok átlagos testsűrűsége FH esetén 1513 kg/m³, AH esetén 1385 kg/m³ és BH esetén 1609 kg/m³ volt. A próbakocka készítés megbízhatóságát mutatja, hogy a vizsgált kockák testsűrűségének relatív szórása alacsony maradt (0,045 0,073 és 0,075 az előző mondatban említett felsorolás szerint).

A falazott próbatestek elkészülte után az előző bekezdésekben említett módszerekhez hasonlóan a próbatestek mérete és tömege meg lett határozva szobaszáraz és telítettségig nedvesített állapotban egyaránt. A falazóelemek és habarcsok nedvességtartalmának meghatározása száraz állapotban Protimeter MMS készülék segítségével történt. A készülék a vizsgált anyagban lévő víztelítettség mérésére alkalmas. A telítettség értékét a mért anyag nedvességtartalma és telítési vízfelvételének hányadosa alapján számítható. A telítettség mértékének függvényében különböző kategóriákra sorolhatók a vizsgált anyagok, az Építésügyi Műszaki Irányelv a falazott szerkezetek nedvesség- és sóvizsgálatára vonatkozó dokumentuma tartalmazza az értékeléshez használható táblázatot (28. ábra) [101]. A mérések alapján mind a tégla mind a habarcs próbatestek esetén 12-13%-os telítettségi értéket sikerült kimutatni. 20% alatti érték esetén a vizsgált anyag száraznak tekinthető. A mérések ismétlése történt áztatás után, mely alapján 90% feletti értékek lettek rögzítve.

Nedvességi fokozatok	Telítettség
légszáraz	< 20%
kissé nedves	20-40%
közepesen nedves	40-60%
erősen nedves	60-80%
vizes	>80% feletti

28. ábra Nedvességi fokozatok a telítettség függvényében falazatok esetén [101]

A nedvesítés minden próbatest esetén áztatással lett végrehajtva. Habár több szabvány is foglalkozik nedvességtartalom vizsgálattal, de ezek jellemzően kapillárison történő vízfelvétel vizsgálatára irányulnak (pl. MSZ EN 1015-18 [102], ASTM C1585/C1585M-13 [103]). Mivel a kísérleti programban nem a kapilláris vízfelszívás mérése volt a cél ezért a programban használt próbatestek áztatása nem szabványos körülmények között történt. A próbatestek műanyag ládában voltak helyezve 3 napig ügyelve arra, hogy teljesen ellepje a víz a próbatesteket, emiatt naponta ellenőrizve lett a vízszint és amennyiben indokolt volt utántöltéssel volt biztosítva a kellő vízmennyiség. A 3 napos áztatást követően történt a műszeres nedvességtartalom mérés, valamint a tömeg mérés. Az áztatás utáni vízfelvétel az (12) alapján került meghatározásra és az eredmények összefoglalását az 7. táblázat mutatja be.

$$w = \frac{m_{wet} - m_{dry}}{m_{dry}} * 100\%$$

Átlagos vízfelvétel Átlagos tömeg Átlagos tömeg szárazon [kg] nedvesen [kg] [m%] Tégla minták 5,59 6,26 13,8 AH habarcs minták 0.088 0,101 14.7 FH habarcs minták 0,102 0,120 15,8 BH habarcs minták 0,094 0,109 14.2 Falazott próbatestek 12.71 15.10 18,0

(12)

7. táblázat A vizsgált próbatestek vízfelvételi vizsgálatát bemutató táblázat

ahol w a vízfelvételi érték m%-ban megadva, m_{wet} a vizsgált próbatest nedves tömege és m_{dry} a vizsgált próbatest száraz tömege. Az eredményekből jelentős vízfelvétel (13 m%-ot túlszárnyaló) mutatható ki a téglák, habarcs kockák és a falazott próbatestek esetén egyaránt.

3.4 Falazott próbatesteken elvégzett kísérletek leírása

3.4.1 A falazóelemek nyomószilárdságának meghatározására szolgáló kísérletek

A nagyméretű tömör téglák nyomószilárdság meghatározására 3 féle módszer lett alkalmazva: Schmidt kalapácsos, szónikus vizsgálat és szabványos nyomószilárdság vizsgálat MSZ 772-1:2011 [104] szerint.

Schmidt kalapácsos vizsgálat elvégzése DigiSchmidt 2000 készülékkel történt. A vizsgálat során ügyelni kell a felületi érdességre, így olyan vizsgálati pontot kell kiválasztani, ahol a lehető legsimább a tégla felülete. Ez sok esetben nehézséget okozott, mivel a téglák az eddigi használatukból fakadóan és vélhetően a korabeli gyártástechnológia kiforratlansága miatt egyaránt felületi hibákat tartalmaztak.

A Schmidt kalapács okozta ütőhatás miatt egy tégla vizsgálatát nem lehet elvégezni, hogy a tégla elmozdulása ne történjen meg. Ráadásul a téglák beépítése után nyomóerő is hat rájuk, emiatt célszerű a vizsgálatokat terhelt állapotban elvégezni. A kísérleteim során tekintettel voltam erre a hatásra és néhány kiválasztott tégla elem a várható nyomószilárdsági érték kb. 10%-ig előterhelt állapotában került vizsgálatra.

A 2.2.3 alfejezetben leírtak alapján látható, hogy a felületi keménységmérés erősen függ a vizsgált minta felületi sajátosságaitól továbbá a felületi keménységmérésen alapuló szilárdságvizsgálat csak közelítő jellegűnek tekinthető, tehát más vizsgálatokkal együtt célszerű alkalmazni. Ezért a kiegészítő vizsgálat kiválasztására egy olyan módszerre esett, amellyel lehetőség van a minta belső szerkezeti állapotát is vizsgálni. Hanghullámokon alapuló módszerek (szónikus vizsgálatok) alkalmasak lehetnek erre a feladatra, jól kombinálhatók a Schmidt kalapácsos módszerrel így átfogóbb képet adnak a keresztmetszet szilárdságát illetően.

A szónikus vizsgálat elvégzése FAKOPP által kifejlesztett ArborSonic 3D akusztikus tomográf készülékkel történt, frekvencia 600 Hz. A berendezés működési elve, hogy a vizsgálandó anyagra elhelyezett szenzorok segítségével a manuálisan gerjesztett hanghullámok utazási idejét mérni lehet, ami által a terjedési sebesség kiszámítható. A készülék eredeti funkciója szerint a szenzorok tűszerű végét be kell ütni a vizsgálandó mintába. Égetett agyag esetén ez a technika csak úgy járható, ha előfúrt lyukakba lesznek a szenzorok behelyezve ügyelve arra, hogy a szenzor hegye finoman fúródjon bele a téglába, valamint a palástja enyhén szoruljon bele a lyukba. A szenzorok egymástól 5 cm távolságban oldalanként 3-3 db lett elhelyezve a tégla rövidebb oldallapjai mentén (29. ábra).

29. ábra Tégla vizsgálata ArborSonic készülékkel [saját felvétel]

3.4.2 A falazóhabarcs nyomószilárdságának meghatározására szolgáló kísérletek

A falazóhabarcsok vizsgálatának koncepciója hasonlított a téglák vizsgálatához, azzal az eltéréssel, hogy Schmidt kalapácsos vizsgálat használata ebben az esetben nem volt járható út. Az elkészített próbakockák vizsgálata szónikus módszerrel történt. A vizsgálatok hasonló elven történtek, mint a tégla esetén: 2-2 érzékelő lett beütve a próbatestek 4 oldalán, lásd 30. ábra.

Történeti épületek falazatainak állapotértékelése Szilárdság értékelés roncsolásmentes diagnosztikai módszerek felhasználásával

30. ábra Habarcs próbakocka mérése ArborSonic készülékkel [saját felvétel]

Továbbá a mechanikai tulajdonságok vizsgálatához a minták mérete és tömege le lett mérve felhasználva az MSZ EN 1015-2 [105] és MSZ EN 1015-10:1999 [106] szabvány utasításait szobaszáraz állapotban és telítettségig nedvesített állapotban egyaránt. Az előbb felsorolt mérések a 4 cm-es és 15 cm-es próbakockák esetén egyaránt végre lettek hajtva.

Az elkészített habarcs próbakockák kis mérete miatt penetrációs elven működő vizsgálat elvégzése nem volt lehetséges (akár csak a tégla minták esetén a Schmidt kalapácsos vizsgálat). Emiatt a penetrációs vizsgálat kizárólag előterhelt állapotban az alacsony magasságú falazott próbatesteken történtek.

A tényleges nyomószilárdsági értékek megállapítása céljából a szabványos nyomószilárdság vizsgálat lett elvégezve felhasználva az MSZ EN 1015-11 utasításait [107].

3.4.3 Alacsony magasságú falazott próbatestek nyomószilárdságának meghatározására szolgáló kísérletek

A 3. fejezet bevezetőjében említés történ a falazott próbatestekkel kapcsolatban. A célja ezen vizsgálatoknak, hogy az elkészített próbatesteken elvégzett nyomószilárdság becslésre használt módszerek eredményeit felhasználva kielégítő megbízhatóságú kapcsolatot lehessen kimutatni a próbatesteken mért nyomószilárdsággal. Ennek érdekében több különböző vizsgálat elvégzése volt indokolt (Schmidt kalapácsos vizsgálat a téglák szilárdságbecslésére, penetrációs vizsgálat a habarcs szilárdságbecslésére, szónikus vizsgálat a habarcs, valamint a falazat szilárdságbecslésére). Az elkészült próbatestek 4 különböző állapotban lettek vizsgálva: nedvességtartalom függvényében 2 állapot (szobaszáraz és telítettségig nedvesített) és nyomófeszültség szerint terheletlen, valamint előterhelt állapot (31. ábra). Az előterhelt állapotban lehetőség nyílt a penetrációs vizsgálat használatára szobaszáraz és telítettségig nedvesített állapotú habarcsban egyaránt.

Történeti épületek falazatainak állapotértékelése Szilárdság értékelés roncsolásmentes diagnosztikai módszerek felhasználásával

31. ábra Alacsony magasságú falazott próbatesteken elvégzett vizsgálatok ArborSonic készülékkel terheletlen és előterhelt állapotban [saját felvételek]

Az előterhelés elvi lényege, hogy a várható nyomószilárdság kb. 10%-ig terhelt próbatesten a terhelés hatására rugalmas összenyomódás miatt tömörödnek a falazatalkotók, különösen a habarcs. A tömörödés következtében a pórusok összezárulhatnak, így javítva a hanghullámok terjedési körülményeit. Emiatt a terheletlen állapotban meghatározott habarcsra vonatkozó összefüggések valótlan állapotot írhatnak le. Az előterhelés során továbbá a téglák felületi keménysége is mérve lett Schmidt kalapács által.

Az előterhelés, valamint a tönkremenetelig történő terhelés az Építőmérnök Tanszék Tartószerkezet laboratóriumában lévő Instron 5595 többfunkciós vizsgáló berendezéssel történt. A berendezés képes nagy méretű próbatestek széleskörű vizsgálatára úgy, mint nyomószilárdság, hajlítószilárdság és akár szakítószilárdság. A törőgép számítógép vezérelt hidraulikusan működő munkahengerei révén akár 1500 kN terhelést is képes kifejteni. Az előterhelés során egységesen 20 kN mértékű nyomóerővel voltak terhelve a próbatestek (ami terhelt felület nagyságától függően kb. 0,44 N/mm² nyomófeszültséget jelentett), a tönkremeneteli állapotig terhelt vizsgálathoz 2 mm/perc elmozdulás vezérlés lett beállítva.

A próbatestek tényleges nyomószilárdsági értékének meghatározása az MSZ EN 1052-1:2000 szabvány használatával történt [108].

3.4.4 Próbafalon elvégzett kísérletek

Az előző alfejezetben bemutatott alacsony magasságú falazott próbatesteken elvégzett kísérletek során a hanghullámon alapuló vizsgálat használhatósága lett bemutatva, azonban csak korlátozott módon lehetett a vizsgálatokat elvégezni. Az egymásra épített próbatestek kialakításából fakadóan az alábbi szempontok szerinti vizsgálatra nem volt lehetőség:

- nagy távolságban elhelyezett szenzorok mérési megbízhatósága
- féldirekt és indirekt vizsgálati módban mért sebesség értékek elemzése és összehasonlítása a direkt mérési eredményekkel
- nem tömör szerkezeti kialakítás okozta eltérések mérése

A próbafal méretéből fakadóan lehetőség nyílt az alkalmazott szenzorok darabszámának növelésére, így tomográfként történő használatra. Vizsgálatok történtek különböző téglasorokban vízszintesen, valamint függőlegesen elhelyezett szenzorok segítségével a tömör és lokális anomáliákat tartalmazó tartományok kimutatására és mért sebességeloszlások elemzésére.

Továbbá a kiegészítő vizsgálatként Georadaros mérés is készült a rejtett anomáliák helyzetének kimutatása érdekében. A már bemutatott vizsgálatok szobaszáraz és nedvesített állapotban egyaránt elvégzésre került a fal tetején elhelyezett "injektáló" csonkokon keresztül történt mesterséges áztatásnak köszönhetően.

3.5 Elvégzett kísérletek eredményei

3.5.1 Falazóelemeken elvégzett kísérletek eredményei

A 3.1.1 alfejezetben bemutatott vizsgálatok elvégzését követő eredményértékelés látható ebben az alfejezetben. A vizsgált falazóelemeken először szónikus vizsgálatok lettek végrehajtva száraz és nedves állapotban egyaránt, majd előterhelt körülmény között megismételve kiegészítve Schmidt kalapácsos méréssel, végül pedig törésig terhelt nyomószilárdság vizsgálattal zárult a kísérletsorozat.

A szónikus vizsgálat elvégzéséhez 6 db szenzor lett rögzítve a minden tégla rövidebb oldallapja mentén 3-3 db. A mérések végeztével összesen 36 db sugárút lett elmentve, melynek sematikus mintája a 32. ábrán látható. 32a ábrán a szenzorok elrendezési módja látható, 32b ábra az összes sugárutat mutatja be, 32c jelű ábra csak az egymással szemközti sugárutakat, míg végül 32d ábra az összes sugárutat tartalmazza az egymás melletti szenzorok közti sugárutak kivételével.

32. ábra Téglákon mért sugárutak sematikus elrendezése szónikus vizsgálat során (balról jobbra: szenzorok elrendezése, összes lehetséges sugárút, egymással szemközt lévő szenzorok sugárútjai, szemközti és átlós sugárutak) [saját illusztráció]

A sugárutak szűrésére a készülék működési elve miatt volt szükség, mivel az a P hullámok mérésére van kalibrálva és az egymás mellett lévő szenzorok között S hullámok mérhetők. A 8. táblázat bemutatja a száraz és nedves mintákon elvégzett vizsgálatok eredményeit terheletlen és előterhelt állapotban különböző szűrések alkalmazásával.

Adat szűrési mód	Száraz terheletlen minta [m/s]	Száraz előterhelt minta [m/s]	Nedves terheletlen minta [m/s]	Nedves előterhelt minta [m/s]
Összes sugárút	1563 (0,301)	1774 (0,304)	1698 (0,242)	1701 (0,320)
Csak az egymással szemközti sugárutak	1839 (0,053)	1964 (0,032)	1966 (0,049)	1866 (0,056)
Egymás melletti sugárutak kivételével	1850 (0,056)	1983 (0,051)	1980 (0,046)	1880 (0,056)
Egymás melletti sugárutak	1132 (0,328)	1460 (0,374)	1276 (0,226)	1433 (0,367)

8. táblázat Téglákon mért sebesség átlagértékek terheletlen és előterhelt, valamint száraz és nedves állapotban (zárójelben relatív szórás) Az eredményekből egyértelműen kirajzolódik, hogy nedvesítés hatására a sebesség értékek növekedése tapasztalható. A táblázatból kirajzolódik P hullámokra kalibrált készülék sajátossága, az egymás mellett lévő szenzorok közötti sugárutakon majdnem feleakkora sebesség érték volt mérhető, mint az egymással szemközt lévő szenzorok közti sugárutakon. További fontos eredmény, hogy a relatív szórások között is eltérés tapasztalható: Az egymással szemközti szenzorok esetén a relatív szórás igen alacsony (0,05 körül) volt száraz állapotban. Ezzel szemben az egymás melletti szenzorok esetén a relatív szórás magasnak számít (0,328).

Jól látható, hogy a hanghullámok terjedési sebességére a nedvesség és nyomófeszültség egyaránt hatással van, így a mért adatokat a két hatás figyelembe vételéve kell kezelni. Teljesen tömör anyag esetén a hullámok egyenesen tudnak közlekedni a két szenzor között, azonban, ha porózus a vizsgált anyag akkor a hullámoknak meg kell kerülniük a porúsokat, ami úthossz növekedéssel jár, vagyis csökken a mért sebesség. Azonban a vízmolekulák képesek kitölteni az apró pórusokat, így hidat képezve a pórusok végei között lerövidítve a szükséges utazási időt, ezáltal növekedik a terjedési sebesség.

A szónikus vizsgálatok befejeztével a tégla minták szabványos nyomószilárdság meghatározása történt (lásd 12. egyenlet)

$$f_b = \frac{F_{max}}{A_{brutto}} * d \tag{12}$$

ahol f_b a falazóelem nyomószilárdsága N/mm²-ben, F_{max} a vizsgálat során mért legnagyobb terhelés, A_{bruttó} a terhelt bruttó keresztmetszeti felület és d alaki tényező (mely 0,75-re lett felvéve). A tégla minták száraz és nedves állapotban egyaránt vizsgálva lettek. A 9. táblázatban szerepelnek a tégla minták nyomószilárdsági vizsgálatának eredményei.

	Száraz tégla [N/mm²]	Nedves tégla [N/mm²]
Átlagos nyomószilárdság	12,6	10,1
Relatív szórás	0,072	0,151

9. táblázat Tégla minták nyomószilárdsággal kapcsolatos jellemzői száraz és nedves állapotban

Jelentős nyomószilárdság csökkenés volt tapasztalható a száraz és nedves minták között, közel 20%. A relatív szórás száraz téglák esetén egészen alacsony, míg nedves állapot közel ennek kétszerese volt. Jól kirajzolódik a nedves állapot okozta bizonytalanság a szilárdság tekintetében.

3.5.2 Falazóhabarcs próbatesteken elvégzett kísérletek eredményei

A vizsgálatok 2 féle módon történtek: kocka próbatesteken és a kis magasságú falazott próbatestben lévő habarcs fugán keresztül. Ebben az alfejezetben kizárólag a próba kockákon végzett eredmények vannak kifejtve.

A 3.1.2 alfejezetben bemutatott próbatestek készültek 3 különböző habarcs mixtúrából. 15 cm-es élhosszúságú kockákon lettek elvégezve a szónikus vizsgálatok, mivel a szabványos 4 cm-es kockákon a szenzorok elhelyezésére nem volt lehetőség. A kockák 4 oldallapjára kerültek a szenzorok 2-2 db oldalanként. Erről látható illusztráció a 33. ábrán.

33. ábra Habarcs kockákon mért sugárutak sematikus elrendezése szónikus vizsgálat során [saját illusztráció]

33b ábrán az összes lehetséges sugárút látható, 33c ábra az egymással szemközti szenzorok, míg a 33d ábrán az egymás melletti szenzorok kivételével vizsgált sugárutak vannak szemléltetve. A sugárutak ilyen mértékű szűrésére az előző alfejezetben részletezett okok miatt volt szükség. A kocka próbatesteken mért nedvesítést megelőző és azutáni eredményeket a 10. táblázat mutatja be.

Adat szűrési mód	Száraz AH habarcs [m/s]	Nedves AH habarcs [m/s]	Száraz FH habarcs [m/s]	Nedves FH habarcs [m/s]	Száraz BH habarcs [m/s]	Nedves BH habarcs [m/s]
Összes sugárút	702 (0,16)	699 (0,13)	600 (0,27)	675 (0,18)	552 (0,21)	686 (0,38)
Csak az egymással szemközti sugárutak	760 (0,07)	717 (0,05)	617 (0,09)	686 (0,05)	598 (0,09)	665 (0,02)
Egymás melletti sugárutak kivételével	758 (0,15)	726 (0,07)	646 (0,24)	666 (0,08)	576 (0,11)	640 (0,05)

10. táblázat Habarcs kockákon mért sebesség értékek száraz és nedves állapotban (zárójelben relatív szórás)

Az adatokból tisztán látható, hogy a sugárutak szűrését habarcsok esetén is el kell végezni, hiszen jelentős eltérés lehetséges a szűrések függvényében. Az összes sugárút átlagolásával jellemzően 10%-kal alacsonyabb értékek kaphatók, mint ha csak az egymással szemköztieket vesszük figyelembe. Ráadásul a relatív szórások is csökkenthetők a megfelelő szűrés alkalmazása mellett. Az egymással szemközti szenzorok esetén a relatív szórások mindössze 0,06-0,07 körül mozogtak, ezzel szemben az összes sugárút figyelembevételével ez az érték akár 0,27-re is felmehetett (nedves BH habarcsnál 0,38-ig is). A mérések alapján a BH jelű habarcs kockákon volt a legalacsonyabb sebesség (552 m/s száraz állapotban), FH esetén valamivel gyorsabb sebességek voltak mérhetők (600 m/s), míg a legmagasabb sebességek az AH habarcsnál voltak (702 m/s). A nedvesítés hatása egyértelműen kirajzolódik, a mért sebesség értékek szinte mindegyik esetben növekedést mutatnak (csak az AH jelű próbatesteken volt kis mértékű csökkenés). Összességében a szónikus vizsgálatok alapján felállított szilárdsági sorrend növekvő sorrendben BH, FH és végül AH habarcs.

A szónikus vizsgálatok végeztével szabványos nyomószilárdsági vizsgálatok következtek, a vizsgálatok a szabványos méretű és a 15 cm-es élhosszúságú próbatesteken egyaránt el lettek végezve. A nyomószilárdság meghatározása a 13. egyenlet felhasználásával történt.

$$f_m = \frac{F_{max}}{A} \tag{13}$$

ahol f_m a falazóhabarcs nyomószilárdsága N/mm²-ben, F_{max} a vizsgálat során mért legnagyobb terhelés és A a terhelt keresztmetszeti felület. A 11. táblázat bemutatja a vizsgálat eredményeit.

Habarcs típus	Nyomószilárdság száraz, 4 cm-es próbatest [N/mm ²]	Nyomószilárdság nedves, 4 cm-es próbatest [N/mm ²]	Nyomószilárdság száraz, 15 cm-es próbatest [N/mm ²]	Nyomószilárdság nedves, 15 cm-es próbatest [N/mm ²]
AH	2,16 (0,178)	1,74 (0,122)	0,87 (0,106)	0,67 (0,126)
FH	1,42 (0,090)	0,82 (0,058)	0,61 (0,068)	0,41 (0,087)
BH	0,65 (0,121)	0,55 (0,125)	0,48 (0,089)	0,33 (0,134)

11. táblázat Habarcs próbakockák nyomószilárdsági vizsgálat eredményei (zárójelben relatív szórás)

Az adatok elemzése után tisztán kirajzolódik az a megállapítás, ami a szónikus vizsgálatok végeztével is sejthető volt, miszerint a három habarcs mixtúra közül a BH a legkisebb nyomószilárdságú, FH a közepes és AH rendelkezik a legmagasabb szilárdsággal. A szabványos méretű próbatesteket elemezve látszik, hogy BH szilárdsága száraz állapotban 0,65 N/mm², FH habarcsé 1,42 N/mm², míg az AH 2,16 N/mm². Ezek az eredmények jól illeszkednek a szakirodalomban szereplő nagyságrendekhez. Az AH habarcs kiemelkedően jó szilárdsága vélhetően a habarcs keveréséhez használt agyagos homok kohéziós jellemzőjében keresendő. Ilyen alacsony szilárdság esetén az agyag által biztosított kohézió akár jelentős hatással lehet a nyomószilárdságra. A nedvesítés után elvégzett törési vizsgálatok alapján kijelenthető, hogy mindhárom habarcs típus esetén szilárdság csökkenés volt tapasztalható. A csökkenés AH és BH habarcsok esetén 19 és 15 % volt, azonban az FH habarcs esetén kiemelkedő 42%-os változás történt. Bármelyik értéket vesszük alapul jelentős változásnak mondható, az FH esetén mért 42% pedig már drasztikus mértékű. A 15 cm-es próba kockákon végzett vizsgálatok nem szabványos méretekkel történt, így a kapott eredmények csak tendenciális következtetésekre alkalmas. A habarcsok szilárdsági értékei jelentősen eltértek a szabványos méretű próbatestekétől, de az szilárdsági sorrendiség itt is kirajzolódik, valamint a nedvesítés hatására létrejött szilárdság csökkenés is tetten érhető. A szilárdság csökkenés ebben az esetben 20 és 30% között volt mérhető. A relatív szórások változásában érdekes tény, hogy a szabványos méretű próbatestek esetén jellemzően relatív szórás csökkenése volt tapasztalható, míg a 15 cm-es próbakockák esetén egyértelmű növekedés történt. Ennek az oka valószínűleg a próbatestek jelentős geometriai eltéréséből származik. A szabványos méretű próbatestek 4x4 cm-es kis keresztmetszete révén a szilárdulás a keresztmetszet belsejében végbement, ezzel szemben a 15x15 cm-es keresztmetszet belső része nem szilárdult meg. A törések végzetével a 15-ös kockákon létrejött egy külső kéreg kb. 2-3 cm vastagságban, mely kellően szilárdnak bizonyult, de a belső része még puha maradt.

3.5.3 Alacsony magasságú próbatesteken elvégzett kísérletek eredményei

Az alacsony magasságú falazott próbatestek révén lehetőség nyílt a szónikus vizsgálat magasabb szintű elemzésére úgy, mint pl. a közegváltás miatt létrejövő sebességcsökkenés, fugák darabszámának hatása a mért sebesség értékekre, sebességértékek változására a terhelés függvényében továbbá az előbb felsorolt jellemzők mérésére száraz és nedves állapotban egyaránt. A kísérletek során 2 féle szenzorelrendezés volt: függőleges síkban a téglába előfúrt lyukakba ütve és vízszintes síkban a habarcsba beütve. A kísérletek elvégzéséhez a 3. fejezet bevezetőjében leírt módon készültek próbatestek, melyek függőleges síkú vizsgálatára elrendezett szenzorkiosztás látható a 34. ábrán. A 34. ábra egy 3 tégla magasságú próbatestet és azon vizsgált szónikus sugárutak elrendezését mutatja be.

34. ábra Falazott próbatesteken mért sugárutak sematikus elrendezése szónikus vizsgálat során 3 tégla magasságú próbatesten [saját illusztráció]

A szónikus vizsgálatok elvégzése során a tégla mintákon és habarcs próbatesteken bemutatott hasonló szenzor elrendezés lett kiválasztva: a próbatest alsó és felső lapján 3-3 db szenzor egymástól 5 cm távolságra.

A nagy mennyiségű adatsor értelmezésének megkönnyítése érdekében összesítő diagrammok készültek, amelyeket a 35-37. ábrák szemléltetik.

35. ábra Terjedési sebesség változás FH habarccal készült falazott próbatestek esetén nedvesítés hatására különböző sugárút szűrések alapján

36. ábra Terjedési sebesség változás AH habarccal készült falazott próbatestek esetén nedvesítés hatására különböző sugárút szűrések alapján

37. ábra Terjedési sebesség változás BH habarccal készült falazott próbatestek esetén nedvesítés hatására különböző sugárút szűrések alapján

A diagrammok alapján egyértelműen megállapítható a hanghullámok terjedési sebességének erőteljes változása habarcs típustól függetlenül. A sebesség növekedés jelentős is lehet: FH habarcsú fuga esetén 24,9% ha az összes sugárutat vesszük figyelembe 28,4% ha csak az egymással szemközti szenzorok sugárútjaival számolunk és 21,5% csak a téglában megtett sugárutak esetén. Ugyanezek az értékek AH habarcs fuga esetén 40,7%, 44,8% és 41,7%. BH habarcsos fuga esetén rendre 46,2%, 49,0% és 39,5%. Az adatokból az is kiolvasható, hogy a habarcs típusnak nincs nagy befolyása a hang terjedési sebességében. Mindhárom habarcs fajta esetén a mért sebesség értékek száraz állapotban 600 m/s körül mozogtak, nedves állapotban pedig 900 m/s körül. A 3.2.2 pontban bemutatott habarcs próbakockákon mért sebesség értékek között jelentősebb eltérés volt tapasztalható, összeségében az látható, hogy a közegváltás miatti sebességcsökkenés hatása jelentősebb, mint a habarcs adalékanyag összetétele és fajtája. Az adatok szűrésére itt is nagy hangsúlyt kell fektetni, hiszen ebben a fajta szenzorfelosztásban mindig lesznek olyan sugárutak, melyek csak a téglában lesznek és nem metszik el a fugát. A tégla anyagi sajátossága miatt itt magasabb terjedési sebesség mérhető, mint azokon a sugárutakon, amelyek közegváltáson mennek keresztül. A szemközti szenzorok közötti sugárutak és a csak téglán áthaladó sugárutak sebességértékei között akár 160 m/s-t is maghaladó eltérés is lehetséges.

A vizsgálatok következő szempontja a közegváltás miatt létrejövő sebességcsökkenés mértékének megállapítása volt. A nagy mennyiségű adat egyszerűbb megértése érdekében diagrammokban lettek ábrázolva, melyeket a 38-40 ábrák mutatnak be.

38. ábra Terjedési sebesség változása 1 és 2 db fuga esetén FH habarcsból készült falazott próbatesten

39. ábra Terjedési sebesség változása 1 és 2 db fuga esetén AH habarcsból készült falazott próbatesten

40. ábra Terjedési sebesség változása 1 és 2 db fuga esetén BH habarcsból készült falazott próbatesten

Az adatok alapján jellemzően csökkenő sebességértékek voltak mérhetők az eltérő falazott próbatesteken (csak a BH habarcs esetén volt növekedés tapasztalható). Az FH habarcsból készült fugák esetén jelentős csökkenés jelentkezett: összes sugárúttal számolva 31,2% és csak a szemközti sugárutakkal 24,1%. Az AH habarcsból készült próbatesteknél ezek az értékek rendre 11,1% és 8,5%, míg BH habarcs esetén 22,6% és 23,3% voltak. Összességében kijelenthető, hogy ~20% csökkenés várható 1 db fugán való áthatolás következtében.

A fugákba elhelyezett szenzorok alkalmazásával lehetőség nyílt a falazóhabarcsban terjedő hanghullámok mérésére, melyet a habarcs próbakockákon mért sebességértékekkel lehet összehasonlítani. A 12. táblázat ezen mérések eredményeit foglalja össze terheletlen állapotban, míg a 13. táblázatban ugyanezen eredmények láthatók előterhelt állapotban.

	1 cm	1 cm	2 cm	2 cm
	vastagságú	vastagságú	vastagságú	vastagságú
	fuga száraz	fuga nedves	fuga száraz	fuga nedves
AH habarcs	849 (0.327)	830 (0.397)	721 (0.366)	543 (0.253)
összes sugárút	019 (0,527)	050 (0,577)	/21 (0,000)	515 (0,200)
AH habarcs				
szemközti	961 (0,371)	907 (0,352)	764 (0,360)	588 (0,175)
sugárút				
FH habarcs	600 (0 202)	707 (0.361)	535 (0 202)	650 (0.205)
összes sugárút	099 (0,292)	707 (0,301)	555 (0,295)	039 (0,203)
FH habarcs				
szemközti	832 (0,227)	791 (0,361)	593 (0,373)	705 (0,180)
sugárút				
BH habarcs	581 (0 202)	810 (0 300)	641 (0 212)	708 (0.274)
összes sugárút	381 (0,303)	819 (0,509)	041 (0,512)	708 (0,274)
BH habarcs				
szemközti	692 (0,226)	881 (0,185)	720 (0,270)	754 (0,214)
sugárút				

12. táblázat A falazott próbatest fugáiban elvégzett szónikus vizsgálat eredményei száraz és nedves állapotokban terhelés nélkül (zárójelben a relatív szórás)

	1 cm vastagságú fuga száraz	1 cm vastagságú fuga nedves	2 cm vastagságú fuga száraz	2 cm vastagságú fuga nedves
AH habarcs összes sugárút	1018 (0,326)	1167 (0,193)	913 (0,368)	972 (0,383)
AH habarcs szemközti sugárút	1237 (0,218)	1162 (0,184)	1066 (0,316)	1070 (0,198)
FH habarcs összes sugárút	976 (0,311)	1108 (0,369)	773 (0,306)	1066 (0,379)
FH habarcs szemközti sugárút	1148 (0,183)	1364 (0,262)	904 (0,204)	1183 (0,186)
BH habarcs összes sugárút	854 (0,451)	993 (0,296)	931 (0,285)	908 (0,273)

BH habarcs				
szemközti	1041 (0,428)	1152 (0,134)	1097 (0,231)	989 (0,154)
sugárút				

13. táblázat A falazott próbatest fugáiban elvégzett szónikus vizsgálat eredményei száraz és nedves állapotokban előterhelve (zárójelben relatív szórás)

A mérések alapján kijelenthető, hogy a nedvesítés és az előterhelés miatti nyomófeszültség mértékének függvényében változik a hanghullámok terjedési sebessége. A nedvesítést követően általában a mért sebességértékek növekedése volt tapasztalható, ennek mértéke 10 és 20% között erősen változó. Előterhelés nélküli állapotban az AH habarcsok esetén kb. 10%-os csökkenés, FH habarcs esetén kb. 8%-os növekedés és a BH habarcsok esetén pedig kb. 20%-os növekedés volt mérhető. Előterhelt állapotban az AH habarcs esetén kb. 4%-os csökkenés, FH habarcs esetén kb. 25%-os növekedés, míg BH habarcs esetén kb. 4%-os növekedés volt mérhető. Az előterhelés hatására a terjedési sebesség értékekben az alábbi változások történtek terheletlen állapothoz képest: az AH habarcsok esetén 28%-os növekedés száraz és 54% nedves állapotban, FH habarcsok esetén kb. 28%-os növekedés száraz és kb. 44%-os növekedés nedves állapotban. Továbbá az előterhelés hatására a mért relatív szórás értékek is több esetben csökkenést mutatnak, tehát megbízhatóbbak a kapott eredmények.

A szónikus vizsgálatokon felül Schmidt kalapácsos vizsgálatok is készültek a falazóelemek nyomószilárdságának megbecslése céljából. A felületi keménység vizsgálatok előterhelt állapotban készültek, így valósághűbb körülményeket biztosítva. Schmidt kalapácsos vizsgálatot minden falazott próbatesten el lett végezve, melynek az összesített eredményét mutatja be a 14. táblázat.

	Száraz próbatestek	Nedves próbatestek
Átlagérték	32,6	29,8
Relatív szórás	0,119	0,116

14. táblázat A falazott próbatesteken elvégzett Schmidt kalapácsos vizsgálatok visszapattanási értékei

A Schmidt kalapácsos vizsgálatok alapján kimutatható a visszapattanási érték (Rebound Index - RI) csökkenése a nedvesítést követő állapotban. Az RI változásban 8,5% csökkenést volt mérhető. A relatív szórások között érdemi különbség nem volt tapasztalható.

A falazóelemen kívül a másik fontos falazatalkotó a habarcs nyomószilárdság becslésére szolgáló in-situ (helyszínen is elvégezhető) vizsgálat a Penetrációs vizsgálat volt. A vizsgálat minden egyes falazott próbatesten el lett végezve előterhelt állapotban, ez által realisztikus körülményt biztosítva. A nagy adatmennyiség miatt csak egy összesítő táblázatban kerülnek bemutatásra az eredmények, lásd 15. táblázat.

	Átlagos behatolási mélység 5 ütés után [mm]	Átlagos behatolási mélység 10 ütés után [mm]	Átlagos behatolási mélység 15 ütés után [mm]	Átlagos behatolási mélység 20 ütés után [mm]
AH habarcs száraz	13,7	18,3	21,4	24,8
AH habarcs nedves	15,1	20,5	24,9	28,8

15. táblázat Penetrációs vizsgálat eredményei a falazott próbatestek fugáiban

Az eredmények alapján tisztán kirajzolódik a nedvesítés okozta szilárdságcsökkenés, ami miatt a vizsgálathoz alkalmazott tű nagyobb mértékben hatolt be a habarcsba. 20 ütés után AH habarcs esetén 24,8-ról 28,8-ra nőtt a behatolás. További konklúzió, hogy az első 5 ütés figyelmen kívül hagyható az elemzésnél, hiszen csak az ötödik ütés után jött létre lineáris növekedés. AH habarcs esetén az ötödik ütést követően az 5 ütésenkénti behatolás 4,6 3,1 és 3,4 mm száraz állapotban, valamint 5,4 4,8 és 4,9 mm nedves állapotban. A leolvasott behatolás értékek ábrázolását követően az ötödik ütés utáni leolvasások egyenesre illeszthetők, mely alapján nyomószilárdság megbecsülhető.

A diagnosztikai vizsgálatok végeztével az összes vizsgált próbatest törési állapotig lett terhelve, mely alapján a valós nyomószilárdság volt megállapítható. Ezek eredményei a 16-18 táblázatokban láthatók.

Az adatok elemzése után általánosan kijelenthető, hogy a nedvesítés következtében a próbatestek nyomószilárdság csökkenése volt mérhető széles tartományban, 4-29% között változott. Továbbá látható, hogy nyomószilárdságot befolyásolta a próbatest karcsúsága. A 3 tégla magasságú próbatestek nyomószilárdsága 27-51%-kal is alacsonyabb lett a 2 tégla magasságú próbatestekétől függetlenül a nedvességtartalomtól. A fuga vastagsága csak kis mértékben volt hatással a nyomószilárdságra, viszont a relatív szórások jelentős variabilitását okozta, hol 50%-os csökkenést, míg más állapotban ugyanilyen mértékű növekedés volt mérhető.

A falazóelem és habarcs szabványos nyomószilárdsági vizsgálatai alapján nyert szilárdsági értékek felhasználásával a falazott próbatestek várható szilárdsága lett meghatározva Eurocode 6 szerint. A várt szilárdsági értékek szinte minden esetben alulmaradtak a tényleges szilárdságtól, ráadásul a különbség több esetben jelentős volt, akár 30%-ot meghaladta (41. ábra). Az AH jelű habarcsból készített próbatestek várható nyomószilárdsága száraz állapotban kis mértékben meghaladta a tényleges értéket. Ennek a hátterében a próbatestekben lévő habarcs kora lehetséges. Az elkészült próbatestek vizsgálata hosszú folyamat volt és a nyomószilárdsági mérések nem egy időben történtek. Az AH jelű habarcsból készült próbatestek lettek először vizsgálva, így a falazott próbatestek tényleges nyomószilárdsága alacsonyabb lett a vártnál.

	Próbatest kialakítása	Átlagos nyomószilárdság [N/mm2]	Relatív szórás
ot	2 tégla magas 1 cm vastag fuga	11,87	0,037
állapc	2 tégla magas 2 cm vastag fuga	10,87	0,046
záraz	3 tégla magas 1 cm vastag fuga	10,07	0,065
S	3 tégla magas 2 cm vastag fuga	10,66	0,095
apot	2 tégla magas 1 cm vastag fuga	9,85	0,108
ves áll	2 tégla magas 2 cm vastag fuga	10,70	0,036
Nedv	3 tégla magas 1 cm vastag fuga	10,22	0,042

3 tégla magas 2 cm vastag fuga	9,98	0,036
-----------------------------------	------	-------

16. táblázat AH habarcsból készült alacsony magasságú próbatestek nyomószilárdsági eredményei

	Próbatest kialakítása	Átlagos nyomószilárdság [N/mm2]	Relatív szórás
Száraz állapot	2 tégla magas 1 cm vastag fuga	10,99	0,069
	2 tégla magas 2 cm vastag fuga	10,91	0,038
	3 tégla magas 1 cm vastag fuga	11,01	0,075
	3 tégla magas 2 cm vastag fuga	11,95	0,074
Nedves állapot	2 tégla magas 1 cm vastag fuga	10,65	0,049
	2 tégla magas 2 cm vastag fuga	10,03	0,028
	3 tégla magas 1 cm vastag fuga	10,11	0,062
	3 tégla magas 2 cm vastag fuga	10,33	0,040

17. táblázat FH habarcsból készült alacsony magasságú próbatestek nyomószilárdsági eredményei

	Próbatest kialakítása	Átlagos nyomószilárdság [N/mm2]	Relatív szórás
Száraz állapot	2 tégla magas 1 cm vastag fuga	10,23	0,141
	2 tégla magas 2 cm vastag fuga	10,72	0,065
	3 tégla magas 1 cm vastag fuga	10,83	0,018
	3 tégla magas 2 cm vastag fuga	11,30	0,067
Nedves állapot	2 tégla magas 1 cm vastag fuga	9,71	0,090
	2 tégla magas 2 cm vastag fuga	9,55	0,103
	3 tégla magas 1 cm vastag fuga	10,40	0,045
	3 tégla magas 2 cm vastag fuga	10,01	0,065

18. táblázat BH habarcsból készült alacsony magasságú próbatestek nyomószilárdsági eredményei

41. ábra Várható és tényleges falazott próbatest nyomószilárdságok száraz és nedves állapotban

3.5.4 Próbafalon elvégzett kísérletek eredményei

A nagy méretű falazott próbatest elkészítése után lehetőség adódott Georadarral történő vizsgálat elvégzésére, melyre a kis méretű próbatesteknél nem volt alkalom. A Georadar szerepe az volt, hogy a falba rejtett lokális anomáliák helyeit, valamint a teljesen tömör részeket kimutassa. Ennek érdekében több függőleges irányú szelvényről készült felvétel a próbatestről, melyek közül néhány a 42. ábrán látható.

42. ábra A próbafalon készült Georadar felvételek, a ábra tömör szakasz 2000 MHz frekvencia, b ábra üreges szakasz 2000 MHz, c ábra tömör szakasz 600 MHz és d ábra üreges szakasz 2000 MHz.

A felvételek a falazat külső síkján függőleges irányban mérve készültek, ezért a felvételek a vizsgálati síknak megfelelően elforgatásra kerültek. A felvétel függőleges metszetként értelmezhető, ahol a függőleges tengely a falazat magasságát, míg a vízszintes tengely a falazat vastagságát mutatja be. A felvétel értelmezését mindkét tengely esetén skála segíti (függőleges tengelynél méteres, míg vízszintes tengelyen 25 cm-es osztás). A felvételeket

elemezve meghatározható a falazott szerkezet vastagsága (vastag piros vonalak a fal külső síkját mutatják). A felvétel alapján 30-32 cm-es a falvastagság állapítható meg. A tömör szakaszról készült ábrán továbbá leolvasható, hogy a falazat másik oldalán reflexiók jöttek létre (az elektromágneses hullámok falazatból a levegőre való kilépése miatti közegváltás okán), illetve, a falazat belsejében is reflexiók keletkeztek a fugák és a falazóelemek határfelületén (sárga nyilak). A b jelű ábrán kék nyilakkal szerepelnek az üregek helyei. Erőteljes reflexiót okozott a legfelső (levegővel kitöltött) üreg, míg a téglatörmelékkel és habarccsal kitöltött üregekről kisebb parabolát rajzolt ki a szoftver. Ez a jelenség a levegő és tégla között lévő jelentősen eltérő dielektromos állandó miatt jött létre, míg a téglatörmelék és habarcs esetén ez a különbség kevésbé markáns. Felvételek készültek a fent bemutatott szelvényekben kisebb frekvenciájú (600 MHz) beállítás mellett is. Az így készült felvételek felbontása rosszabb, így nehezebb elvégezni a kiértékelést. A felbontás romlásának okozójaként a mérési pontosság lecsökken (10-12 cm). Emiatt a próbafalban lévő üregek helye határozható meg, azok mérete nem kellő megbízhatósággal. A Georadar vizsgálat segítségével relatív gyorsan kimutathatók a falazatban lévő tömör és üreges szakaszok. Habár a mérési pontosság a frekvencia beállítás függvényében változik (2000 MHz frekvencia esetén is kb. 2-3 cm-re szorítható le), még magas frekvencia mellett is csak közelítő jelleggel lehet alkalmazni.

A továbbiakban szónikus vizsgálatok készültek a falazatban lévő üreges és tömör részek helyeinek kimutatására. ArborSonic készüléket felhasználva függőleges és vízszintes metszősíkok készültek. A 43. ábrán bemutatásra kerül 1-1 az üreges, valamint tömör szakaszokról készült hanghullám alapú vizsgálati felvétel.

43. ábra Teljesen tömör részről készült vízszintes metszet (felső ábra) és üreget tartalmazó részről készült vízszintes metszet (alsó ábra) száraz állapotban

A 44. ábrán függőleges metszősíkok láthatók tömör és üreges szakaszokról.

44. ábra Teljesen tömör szakaszról készült függőleges metszet (bal oldali ábra), üreges részeket tartalmazó függőleges metszet (középső ábra) és kiragadott ábra az üreges tartományról (jobb oldali ábra)

A felvételeket megvizsgálva megállapítható, hogy a Geordarhoz képest tisztább kép kapható a falazatról. Sok reflexió miatt létrejövő parabola megnehezíti a Georadar által készített kép értelmezését, mely a szónikus vizsgálatnál nem tapasztalható. A vizsgálat során a metszősíkban 10 db szenzor került felhelyezésre vízszintes és függőleges vizsgálathoz egyaránt. A felvételek alapján meghatározható az üregek elhelyezkedése akár 1-2 cm-es pontossággal megállapítható (szaggatott fekete négyszög).

A falazott próbafal alsó szegmense teljesen tömör téglasorokkal volt falazva, lehetőséget biztosítva arra, hogy a nagy mennyiségű fuga okozta terjedési sebesség változás rögzítve és elemezve legyen. A mérés végeztével kigyűjtött sebességmátrixot elemezve egyértelműen kimutatható a sebességcsökkenés a hanghullámok útja során elmetszet fugák darabszámának függvényében (lásd 19. táblázat). Ez egy fontos információ, hiszen ebben az esetben nem szilárdságcsökkenés okozza mért sebességek visszaesését, hanem heterogén szerkezet anyagi sajátosságából fakad.

	Átlagos sebesség 0 fugán áthaladó sugárutak esetén	Átlagos sebesség 1 fugán áthaladó sugárutak esetén	Átlagos sebesség 2 fugán áthaladó sugárutak esetén	Átlagos sebesség 3 fugán áthaladó sugárutak esetén	Átlagos sebesség 4 fugán áthaladó sugárutak esetén
1. tégla sor	2148	1543	1014	1055	1162
3. tégla sor	2224	1771	1382	1181	1126
5. tégla sor	2119	1738	1275	1126	1061

19. táblázat Hanghullámok terjedési sebesség csökkenése a fugák darabszámának függvényében száraz állapot

A fent megfogalmazott anyagi sajátosság miatt fordulhat elő olyan körülmény mikor a vizsgált keresztmetszet közepén (ahol a sok fugán áthaladó átlós sugárutak metszik egymást) üreges rész rajzolódik ki. Ezt mutatja be a 45. ábra.

45. ábra A fugák okozta sebességcsökkenés miatti anomália a középen lévő tégla közepén

Az ábra könnyebb megértését segítendő az adott síkban lévő falazóelemek körvonalai is be lettek rajzolva. Ebből tisztán látszódik, hogy a középen lévő falazóelem középső részét üregesnek ábrázolja a szoftver, ami abszurd, hiszen a beépítés során ide nem került üreg.

A fent bemutatott szónikus vizsgálatok a fal nedvesítését követően megismétlésre kerültek, melyek eredményeit a 46. ábra szemlélteti.

46. ábra Teljesen tömör részről készült vízszintes metszet (felső ábra) és üreget tartalmazó részről készült vízszintes metszet (alsó ábra) nedves állapotban

Összehasonlítva a 43. ábrával szembetűnő különbség tapasztalható az üreges részen készült metszeten. Száraz állapotban készült felvételen jól kivehető a beépített üreg körvonala, azonban nedvesítés után a körvonal egyáltalán nem kivehető (a kirajzolt üreges rész alakja nem négyzetes alakú, hanem elnyújtott háromszögre hasonlít). Pusztán azt lehet megállapítani, hogy a falszerkezet belsejében üreges tartomány található. A száraz állapothoz képest tapasztalt eltérések egyértelműen a nedvesítés miatt bekövetkezett hullám terjedési sebesség változásában keresendők. A 20. táblázat bemutatja a hanghullám terjedési sebességét az elmetszett fugák függvényében a nedvesített falon mérve.

	Átlagos sebesség 0 fugán áthaladó sugárutak esetén	Átlagos sebesség 1 fugán áthaladó sugárutak esetén	Átlagos sebesség 2 fugán áthaladó sugárutak esetén	Átlagos sebesség 3 fugán áthaladó sugárutak esetén	Átlagos sebesség 4 fugán áthaladó sugárutak esetén
1. tégla sor	2016	1147	979	990	1071
3. tégla sor	2141	1321	1081	976	917
5. tégla sor	2099	1404	1014	963	840

20. táblázat Hanghullámok terjedési sebesség csökkenése a fugák darabszámának függvényében nedves állapot

Az eredményekből kirajzolódik, hogy sebesség csökkenés történt nedvesítés hatására (az 5. és 3. téglasor esetén 14-20% közötti csökkenés volt mérhető, míg az 1. téglasor csak 6-7% eltérést mutatott). A mérési eredmények alapján kijelenthető, hogy a korábban bizonyítást nyert tapasztalattal ellentétben nedvesítést hatására hanghullám sebesség csökkenés történt. A korábbi vizsgálatok során a tégla és falazóhabarcs próbatestek külön-külön lettek vizsgálva nedvesítés hatására, mely alapján sebesség növekedés volt tapasztalható. A próbafalon bekövetkezett sebesség csökkenés azt igazolja, hogy a hanghullám terjedése során a fugáknál létrejövő közegváltás hatása jelentős. Olyannyira, hogy a téglában és a falazóhabarcsban mért akár 20%-os sebesség növekedést körülbelül hasonló mértékű csökkenéssé módosítja.

3.6 A mért eredmények közti összefüggések vizsgálata

Gyakran előforduló feladat tudományos vizsgálatok során, hogy két jellemző közötti kapcsolatot és annak "erősségét" kell vizsgálni. Ezt a jelenséget leíró matematikai tudományterület a statisztika és azon belül a regresszió analízis. A korrelációs együttható két minta közötti kapcsolat szorosságát írja le. A korrelációs együttható értéke -1 és 1 között változhat, ahol az előjel mutatja a minták közötti kapcsolat egyenes vagy fordított arányosságát (pozitív érték esetén egyenes, negatív értéknél fordított arány áll fenn), míg maga az érték a minták közti kapcsolat erősségét mutatja (0 vagy közel 0 esetén nincs, vagy csak nagyon gyenge, míg 1 vagy közel 1 esetén tökéletes vagy nagyon erős a kapcsolat). A korreláció felhasználásával felírható regressziós egyenlet, mely az adott mintára legjobban megközelíthető egyenlet. Az ilyen típusú összefüggések lehetnek lineáris és nem lineáris jellegűek. Lineáris összefüggés esetén a két vizsgált minta közötti kapcsolat egy egyenes segítségével felírható, míg nem lineáris kapcsolat esetén logaritmikus, exponenciális, parabolikus stb. összefüggés alkalmazható.

3.6.1 Falazóelemeken elvégzett vizsgálatok

A kísérletek eredményeként a hullám terjedési sebesség és nyomószilárdság kapcsolatának korrelációs vizsgálata történ tégla falazóelemeken, melyet a 47. ábra szemléltet.

47. ábra Tégla nyomószilárdság és hanghullám terjedési sebesség kapcsolat

Az elvégzett korrelációs analízis alapján megállapítható, hogy a vizsgált téglákon mért hanghullám terjedési sebesség erős kapcsolatban áll azok nyomószilárdsági jellemzőjével száraz állapotban, azonban nedves állapotban ez a kapcsolat csupán közepesnek mondható. Az előterhelés nem okozott jelentős változást a hanghullám sebességében, sőt néhány tégla esetén csökkenés volt tapasztalható. Ennek az oka vélhetően, hogy pár téglán repedés keletkezett még a kívánt előterhelés elérése előtt és ez a folytatólagosság részleges megszűnése hosszabb utat okozott a hanghullámok számára.

3.6.2 Falazóhabarcsokon elvégzett vizsgálatok

A 3.4.2 fejezetben bemutatott módon elvégzett szónikus vizsgálatok és nyomószilárdsági mérések közti kapcsolatot mutatja be ez a fejezet.

A 48. ábra szemlélteti az összes 150 mm-es kockán mért hanghullám terjedési sebesség és nyomószilárdság kapcsolatát.

48. ábra Habarcs nyomószilárdság és hanghullám terjedési sebesség kapcsolata 150-es próbakockákon

Az ábrán jól kivehető a száraz és nedves minták közti hanghullám sebesség különbség a nedvesség függvényében. A nyomószilárdság és hanghullám terjedési sebesség egyenes arányban áll egymással száraz állapotban, azonban nedves minták alapján szinte semmilyen kapcsolat nem fedezhető fel. Száraz állapotban vizsgált minták eredményei alapján a R² értéke 0,592, míg ugyanez nedves állapotban 0,005. A hanghullámok terjedési sebessége a legerősebb habarcs típust leszámítva elég alacsony volt. A vizsgálatok 150 mm-es élhosszúságú próbakockákon készültek, melyek nagy tömegükből fakadóan a belsejük nem tudtak kellő mértékben megszilárdulni a rendelkezésre álló szűkös időkeret miatt. Emiatt a kockák belsejében kevésbé tömör részek alakultak ki, ez a jelenség rontotta a hanghullámok terjedését, ami végül alacsony mért sebesség értékekhez vezetett.

3.6.3 Alacsony magasságú falazott próbatesteken elvégzett vizsgálatok

3.4.3 alfejezetben leírt vizsgálati eredmények közti korrelációs elemzését mutatja be ez az alfejezet.

A falazóelemeken elvégzett Schmidt kalapácsos vizsgálat során mért visszapattanási érték és a falazat nyomószilárdság közti kapcsolat erősségét mutatják be a 49, 50 és 51 ábrák a habarcs fajták függvényében.

49. ábra AH habarcsból készült falazatok nyomószilárdság és Schmidt kalapácsos vizsgálat visszapattanási érték közti kapcsolat

50. ábra FH habarcsból készült falazatok nyomószilárdság és Schmidt kalapácsos vizsgálat visszapattanási érték közti kapcsolat

51. ábra BH habarcsból készült falazatok nyomószilárdság és Schmidt kalapácsos vizsgálat visszapattanási érték közti kapcsolat

Megvizsgálva a fenti ábrákat általánosan elmondható, hogy függetlenül az alkalmazott habarcs fajtától a visszapattanási érték és falazat nyomószilárdság közti kapcsolat hasonló tartományban mozog. Száraz próbatesteken végzett mérések közti korreláció egy esetet kivéve 0,475 és 0,815 között volt, míg nedves próbatesteknél szintén egy esetet kivéve 0,21 és 0,46. A korreláció analízis alapján kijelenthető, hogy száraz próbatesteken mért kapcsolat közepesen erősnek, míg nedves próbatesteken gyengének mondható.

A falazott próbatestek fugáiban történt szónikus vizsgálatok egyik célja, hogy beépített állapotban milyen mértékű eltérések tapasztalhatók a habarcs próbatesteken mért sebesség értékekhez képest. A 52. ábra mutatja be az összes fugán mért sebesség értékek és habarcsok szabványos nyomószilárdság vizsgálat alapján meghatározott szilárdságának kapcsolatát a 3 vizsgált habarcs fajtára, 53. ábra csak 1 cm vastagságú fugákon mért sebességek szűrését tartalmazza. Az ábrákból jól kirajzolódik, hogy az összes fugára irányuló elemzésnél a számított korreláció száraz állapotban 76%, míg nedves állapotban csupán 19%. Száraz állapotra kapott korreláció közepesnek, míg nedves állapotra gyengének mondható. A korreláció analízis értékeléséhez azonban meg kell említeni, hogy mindössze 3-3 pontpárt lehetett összefüggésbe hozni, mivel a habarcs keverékek átlagos szilárdsága volt ismert. Száraz állapotban a két gyengébb szilárdságú habarcsban mért átlagos hullám sebességek egészen hasonlók, viszont a legszilárdabb habarcs esetén jelentősen magasabb sebesség volt mérhető. Nedvesen mért habarcsok esetén a gyenge korreláció mellett ráadásul ellentétes arányosság volt tapasztalható (leggyengébb habarcshoz tartozott a legmagasabb sebesség átlag). Az 1 cm vastagságú fugákra való szűrést követően kicsit más kép rajzolódik ki. A száraz minták esetén szinte tökéletes egyezés látható, továbbá a 3 eltérő szilárdságú habarcsban mért sebesség értékek is jól elkülönülnek egymástól. Nedves habarcsban a korreláció hasonló mértékű, mint az előző esetben (24%). Összeségében elmondható, hogy a fugákban elvégzett vizsgálatok szükségesek voltak, hiszen egyértelműen erősebb korrelációt sikerült kimutatni, mint a 150-es kockák esetén.

52. ábra Az összes fugán mért sebesség érték és habarcs nyomószilárdság kapcsolata

53. ábra Az 1 cm vastag fugákon mért sebesség érték és habarcs nyomószilárdság kapcsolata

A fugákban elvégzett habarcs kísérletek másik fő célja a hanghullámok terjedési sebességének mérése nyomófeszültség függvényében, ennek érdekében vizsgálatok készültek terheletlen és előterhelt állapotban egyaránt. A 54. és 55. ábra bemutatja a falazott próbatestek fugáiban elvégzett szónikus vizsgálatok alapján mért hanghullám terjedési sebesség a falazóhabarcsban és azok nyomószilárdságának kapcsolatát.

54. ábra Habarcs nyomószilárdság és hanghullám sebesség terheletlen állapot

55. ábra Habarcs nyomószilárdság és hanghullám sebesség előterhelt állapot

Az ábrák alapján megállapítható az előterhelés okozta tömörség növekedés hatás miatti hanghullám sebesség növekedés száraz és nedves állapotban egyaránt. Terheletlen állapotban a nyomószilárdság és hanghullám sebesség közti "erősség" 0,194 és 0,764 volt. Előterhelt állapotban ugyanezen jellemzők 0,342 és 0,568.

Az elvégzett penetrációs vizsgálatok leolvasási értékei alapján korrelációs vizsgálat készült az ötödik ütéstől kezdőden, melyet a 56. ábra mutatja be.

56. ábra AH habarcs próbatesteken végzett penetrációs mérés korrelációs vizsgálata

Az ábrát elemezve megállapítható, hogy az ötödik ütést követően a leolvasott behatolások átlagos értékei egy szinte tökéletes egyenest alkotnak száraz és nedves állapotban egyaránt. A korrelációs együtthatók száraz és nedves mintákon 99% feletti értékekre jöttek ki. Jól kivehető a nedvesítés okozta szilárdságcsökkenés, 10%-ot meghaladó behatolás növekedés volt mérhető, továbbá a regressziós egyenes meredeksége is magasabb volt a száraz mintákhoz képest.

Latka&Matysek [110] kísérlete alapján 2,41 N/mm² nyomószilárdságú mészhabarcs esetén átlagosan 1,5 mm/ütést regisztrált penetrációs vizsgálattal száraz mintákon. AH habarcs esetén 1,24 mm/ütés volt mérhető 2,16 N/mm² mellett. Latka eredményei 20% relatív szórást mutattak, míg a saját vizsgálatok 24%-os relatív szórást tartalmaztak. Az RSM gyártója által kiadott jelleggörbe felhasználásával meghatározható a vizsgált habarcs nyomószilárdsága (57. ábra). A saját kísérleteim alapján az 5. ütést követő leolvasások átlagértékéből egyenes rajzolható, így a jelleggörbe felhasználáshoz a 15. és 5. ütés különbözetét lehet számításba venni (7,8 mm). Ez alapján a habarcs feltételezhető nyomószilárdsága 2,21 N/mm², ami mindössze 0,05 N/mm² eltérés a mért nyomószilárdságtól száraz állapotban. Nedves állapotban a leolvasások különbsége 9,8 mm, mely alapján a görbe szerint 1,67 N/mm² lenne a várható nyomószilárdság, miközben a valós érték 1,74 N/mm².

A kísérlet alapján kijelenthető, hogy a penetrációs vizsgálat alkalmas lehet habarcs nyomószilárdság megállapításra az ötödik ütést követő pontok által felrajzolt egyenes segítségével száraz vagy nedves állapotban egyaránt, bár nedves állapotban kevésbé megbízható ez az eljárás.

57. ábra Jelleggörbe a habarcs nyomószilárdság meghatározására Penetrációs vizsgálattal [109]

3.6.4 Próbafalon elvégzett vizsgálatok

3.4.4 alfejezetben leírt vizsgálati eredmények közti kapcsolatot mutatja be ez az alfejezet. A próbafal alsó (tömör) szakaszán mért hanghullám sebesség értékek láthatók az elmetszett fugák darabszámának függvényében, lásd 58. 58. és 60. ábra.

58. ábra 5. téglasoron mért hanghullám sebesség értékek az elmetszett fugák darabszámának függvényében

59. ábra 3. téglasoron mért hanghullám sebesség értékek az elmetszett fugák darabszámának függvényében

60. ábra 1. téglasoron mért hanghullám sebesség értékek az elmetszett fugák darabszámának függvényében

A fenti ábrákon látható, hogy amennyiben tömör keresztmetszet vizsgálatról van szó, úgy az elmetszett fugák darabszáma logaritmikusan csökkenti a hanghullámok sebességét. A korreláció analízis alapján kifejezetten erős kapcsolat volt található a 3. és 5. téglasor mérése során száraz és nedves állapotban egyaránt, míg az 1. téglasor esetén közepesnek mondható száraz, és gyenge kapcsolat nedves állapotban. Az elemzést erősen befolyásolja az egyes falazóelemek tömörsége, illetve a fugák vastagsága. A falazat készítése során a fugák egyenletes vastagsága biztosítva volt és mivel ugyanaz a habarcskeverék lett használva, így bármilyen eltérés a regressziós függvénytől a falazótégla jellemzői miatt adódott. Valószínűleg az 1. sor esetén egy kisebb tömörségű tégla került a falazat közepébe, ami miatt erősebb eltérés volt tapasztalható a regressziós függvénytől, mint a másik két téglasor esetén.

Továbbá a hanghullám sebességek és elmetszett fugák száma közti kapcsolat is vizsgálva lett a tömör és üreges metszősíkon készült mérések alapján, melyet a 61. ábra mutat be.

61. ábra Hanghullám sebesség és elmetszett fugák közti kapcsolat tömör és üreges tartomány esetén

A tömör szakaszról készült korreláció az előbb bemutatásra került (mely egészen erős kapcsolatot igazolt). Az üreges tartomány elemzése alapján egyértelműen látható, hogy a tömör szakaszra igazolt logaritmikusan csökkenő sebesség jelensége nem kimutatható (ebben az üreg elrendezésben a 2 fugát elmetsző sugárutak esetén magasabb átlagsebesség volt mérhető, mint 1 fugát metszők esetén). Továbbá a tömör tartományoknál jól alkalmazható logaritmikus regressziós összefüggést felhasználva jelentősen rosszabb kapcsolat írható fel. Ezáltal bizonyítást nyert, hogy a falazott szerkezet tömör tartományának tényét meg lehet állapítani egy logaritmikus regressziós analízissel. Amennyiben a fugák darabszáma alapján vizsgált hanghullám terjedési sebesség logaritmikusan csökken és a pontokra felírható korreláció 0,95 feletti, úgy a szerkezet tömörnek mondható.

4. Tézisek

I-es Téziscsoport: Nedvesség hatása a falazatalkotók nyomószilárdságára és a roncsolásmentes diagnosztikai módszerek megbízhatóságára (vonatkozó publikációk: 5, 13)

Laboratóriumi roncsolásos és roncsolásmentes módszerekkel végrehajtott vizsgálataim alapján megállapítottam, hogy a történeti tégla falazatok nedvességének növekedése jelentős mértékben csökkentheti a falazat jellemző nyomószilárdságát, növeli a szilárdság variabilitását, valamint a roncsolásmentes vizsgálati módszerekkel kapott eredmények bizonytalanságát

Altézis 1

A falazat nedvesség hatására bekövetkező szilárdságcsökkenése és annak eloszlása visszavezethető a falazatalkotók mért szilárdságcsökkenésére, amely az egyes összetevők esetében különböző mértékben jelentkezett. Ezzel kapcsolatos megállapításaim:

- Nagy méretű téglákon elvégzett szabványos nyomószilárdsági vizsgálatok eredményeként kimutattam, hogy a telítettségig nedvesített téglák nyomószilárdsága a "szobaszáraz" állapothoz képest közel 20%-kal csökkent, a nyomószilárdság relatív szórás pedig megduplázódott.
- A rekonstruált korabeli különböző habarcs keverékek esetén a szilárdság csökkenés eltérő volt különböző anyagi összetételek esetén: agyagos és bányahomokos habarcs esetén 15-19 %-os, míg kvarchomokos habarcsnál 42%-os szilárdságcsökkenést mutattam ki.

Altézis 2

A falazatalkotók nyomószilárdságának meghatározására irányuló roncsolásmentes vizsgálati módszerek kiértékelését követően megállapítottam, hogy a falazatok nedvességének növekedésével a mért eredmények változása a szilárdság csökkenéssel eltérő mértékű volt.

- A szónikus vizsgálat eredményeként a rekonstruált korabeli habarcsokban a hanghullám terjedési sebesség 10-20%-os növekedését mutattam ki, míg a korabeli tömör téglák esetén átlagosan 6,5% növekedést.
- A falazott próbatestek fekvőhézagain elvégzett penetrációs vizsgálat alapján megállapítottam, hogy a mért behatolás és a nedvességtartalom egyenes arányosságot mutat. A nedvesség okozta relatív szórás növekedés miatt a gyártó által ajánlott jelleggörbe nedves állapotú habarcs nyomószilárdságának megállapítására kevésbé alkalmas (száraz állapotban 0,05 N/mm2 különbség volt a tényleges és prediktív érték között, míg nedves állapotban 0,07 N/mm2).
- A Schmidt kalapácsos vizsgálat eredményei alapján megállapítottam, hogy a visszapattanási értékek átlagosan 8,5%-os csökkenést mutattak nedvesítés hatására, miközben a falazott próbatestek szilárdság csökkenése a roncsolásos vizsgálatok alapján átlagosan 18,7% volt. A visszapattanások relatív szórásában nem volt jelentős különbség a száraz állapothoz képest.

II-es Téziscsoport: Hanghullámok terjedési sebességét befolyásoló tényezők (tézist ismertető publikáció: 14)

Korabeli falazott szerkezethez hasonlóan kialakított, rekonstruált próbatesteken elvégzett szónikus vizsgálat alapján megállapítottam, hogy a hanghullámok terjedési sebességét

a nedvességtartalom, a nyomófeszültség és a fugán való áthatolás miatti közegváltás befolyásolja.

Altézis 1

Nagy méretű tömör tégla és rekonstruált korabeli mészhabarcs próbatesteken mért hanghullám terjedési sebesség és szilárdság kapcsolat fordított arányosságot mutat a nedvességtartalom függvényében. A falazatalkotók külön-külön történő szónikus vizsgálata során bebizonyítottam, hogy nem lehet a kellő megbízhatósággal elvégezni az eredmények kiértékelését a falazatalkotók nedvességtartalmának ismerete nélkül.

Altézis 2

Megállapítottam, hogy az előterhelés okozta nyomófeszültség a hanghullámok terjedési sebességének növekedését okozta a terheletlen állapothoz képest a rekonstruált korabeli mészhabarcs próbatesteken.

- Előterhelés okozta nyomófeszültség a rekonstruált korabeli mészhabarcs mintákban a hanghullámok sebesség növekedését okozta. Habarcs fajtától függően száraz állapotban 28-44%-os növekedés történt, nedves állapotban 44-64%-os.

Altézis 3

A falazott próbatesteken elvégzett szónikus vizsgálatok alapján bebizonyítottam, hogy a hanghullámok terjedési sebessége lecsökken minden egyes fugán való áthatoláskor a mészhabarcs és a falazóelem eltérő akusztikai jellemzői miatt.

Kvarchomokos és bányahomokos mészhabarcsból készült falazatok esetén 23 és 24%, míg magas agyagtartalmú mészhabarcs alkalmazása esetén 9%-os terjedési sebesség csökkenést lehetett megállapítani 1 db fugán történő áthaladás során. A csökkenés aránya a 4. elmetszett fugáig állandó.

III-as Téziscsoport: szónikus vizsgálat kiértékelése falazott szerkezet esetén (tézist ismertető publikáció: 14)

Bebizonyítottam, hogy falazott szerkezetek szónikus vizsgálatának kiértékelése során a mért sebesség adatok elemzése és szükség esetén bizonyos adatok figyelmen kívül hagyása elengedhetetlen a valótlan jelenségek kiszűrésére.

Altézis 1

Bebizonyítottam, hogy P hullám érzékelésre kalibrált szónikus vizsgáló készülék esetén a mért sebesség adatok szűrése indokolt. A vizsgálatok alapján az egymással szemközt lévő szenzorok sugárútjai adják a legmegbízhatóbb eredményeket, míg az egymás mellett lévő szenzorok esetén, a felület mentén mért sebesség értékek általában nem reálisak, így a kiértékelésnél ezeket az eredményeket javasolt kivenni az adatsorból.

 Az egymás mellett lévő szenzorok között 38%-kal alacsonyabb a sebesség értéket tapasztaltam korabeli tömör téglákon, valamint a rekonstruált mészhabarcs mintákon 18-28%-os csökkenését mértem (habarcsfajtától függően) az egymással szemközt lévő szenzorokhoz képest.

Altézis 2

Bebizonyítottam, hogy a standard tomográfiai képalkotás eredményeként hibás, a szerkezet valós kialakítását nem megfelelően mutató sebesség-eloszlási kép rajzolódhat ki többrétegű falazott szerkezet közepén. A fellépő kiértékelési hiba miatt tévesen azt a következtetést lehet levonni, hogy üreges a szerkezet belseje. Az általam kidolgozott logaritmikus összefüggésen alapuló elemzési eljárással a fent említett kiértékelési hiba kiküszöbölhető, így a valós szerkezeti kialakítás detektálási pontossága javítható.

- Amennyiben a mért hanghullám sebességek és az elmetszett fugák alapján felírt logaritmikus regressziós görbe magas korrelációs értéket mutat (R²>0,95) a keresztmetszet tömörsége igazolható.

IV-es Tézis: Roncsolásmentes diagnosztikai vizsgálatok ajánlott kombinálása (tézist ismertető publikációk: 2, 4, 6, 9)

Laboratóriumi kísérletek eredményei alapján megállapítottam, hogy a Schmidt kalapácsos szilárdságvizsgálat, a penetrációs elven működő habarcs vizsgálat, valamint a georadaros és szónikus vizsgálatok önállóan nem adnak kellően megbízható eredményt a falazat szilárdsági és geometriai jellemzőire vonatkozóan, így ezen vizsgálatok kombinálása indokolt lehet az egyes vizsgálatokban rejlő bizonytalanság csökkentése érdekében.

- A felületi keménység és behatolás mérésen alapuló vizsgálatok egyszerű és gyors használatával nagy mennyiségben lehet vizsgálatokat végezni, így az eredmények statisztikai elemzésével nemcsak a szilárdsági jellemzők közelítő értéke határozható meg, hanem azok statisztikai eloszlása is. Ezen mérésekkel ugyanakkor csak a felület közeli jellemzők határozhatók meg, így nem nyújtanak információt a szerkezet belső (eltakart) részének állapotáról, sem annak kialakításról.
- Georadaros vizsgálat viszonylag gyorsan elvégezhető és a helyszínen történő azonnali közelítő értékelés lehetőségét nyújtja. Megállapíthatók a tömör, illetve üreges tartományok (a mérési frekvencia függvényében) helyei és mérete, de az anyagjellemzők kvantitatív meghatározására általában nem alkalmas.
- A szónikus vizsgálat hasznos információt nyújthat a szerkezet struktúrális kialakításáról és durva szilárdságbeli anomáliáiról, de az anyagjellemzők kvantitatív meghatározására csak igen közelítően alkalmas. A vizsgálat időigénye miatt csak célirányos jelleggel használható, olyan helyeken, ahol más vizsgálatok alapján a szerkezeti kialakítással, vagy az anyaghasználattal kapcsolatos anomália volt kimutatható.
5. Összefoglalás

A történeti falazott szerkezetek tartószerkezetének erőtani vizsgálata komoly nehézséget jelent az építőmérnökök számára a számítások elvégzéséhez szükséges paraméterek nagy bizonytalansága miatt. Ellentétben egy új építésű szerkezettel, az építéskori tervek jellemzően nem állnak rendelkezésre a vizsgálatokat megelőzően, pedig az eredeti tervdokumentáció ismerete rendkívül hasznos információval szolgáltatna az épület szerkezeti kialakításáról, építéstechnológiájáról és anyaghasználatáról. Ezen ismereteket nem lehet pusztán irodalomkutatás alapján pótolni, hiszen a falazott szerkezetek kialakítása rendkívül változatos lehet (pl. tömör vagy üreges, egy- vagy több rétegű, illetve anyagát tekintve tégla, kő vagy vegyes falazat), a falazat építőanyagainak jellemzői jelentősen eltérhetnek egymástól még az adott falazaton belül is, illetve a falazóelemek használatos mérete is folyamatosan változott az elmúlt történelmi időszakok alatt. A történeti épületek teherhordó falazatai általában helyi alapanyagok felhasználásával készültek, emiatt eltérő anyaghasználat fordulhatott elő régiónként (kőben gazdag térségben kőből, míg kőszegény térségekben általában téglából építkeztek), csak kiemelten fontos épületek esetén (pl. egyházi, kormányzati épületek és paloták) engedhették meg, hogy távolról szállított, jó minőségű építőanyagokat használjanak. A falazóelemek mellett a falazóhabarcsok tekintetében is hasonló eltérések tapasztalhatók az anyaghasználatban. Történeti falazatok esetében gyakori megoldás volt a vegyes falazat alkalmazása, amikor tégla és kősorok váltakozásával építkeztek, vagy a falazat magja és külső burkolata eltérő anyagokból készült. Ennek oka a jó minőségű építőanyag iránti igény és a korlátozott anyagi erőforrás kompromisszuma volt. Előfordult azonban, hogy idő és/vagy pénz hiányában a falazat belsejében üreges tartományokat alakítottak ki, melyeket pl. építési törmelékkel, vagy jóval gyengébb minőségű anyagokkal töltöttek fel. Az ipari léptékű téglagyártás megjelenése után a felhasznált falazóelemek jellemzői még hosszú évtizedekig igen változékonyak voltak, akár téglagyáranként is eltérő méretű és minőségű termékek készültek. Csak a szabványosítás elterjedése hozott e tekintetben pozitív változást. Az 1893ban megjelent Részletes Építésügyi Szabályzat már megengedhető feszültségeket írt elő különböző falazatokra és 1894-ben rögzítve lett hazánkban a nagyméretű tömör tégla mérete, ezáltal a falazatok általános minősége is javult. Az erőtani elemzés szempontjából további nehézség, hogy a látható szerkezetek csak ritkán adnak támpontot a teherhordó szerkezet valós méreteit illetően, mivel jellemzően díszítések vagy vastag vakolat takarják. A történeti épületek a korukból fakadóan akár többször is funkcióváltáson eshettek át, ami miatt átépítési vagy bővítési munkákat hajtottak végre rajtuk. Az építési munkák során az aktuális korban alkalmazott építőanyagokat és technikákat használták, mely nehezíti az épület tényleges felépítésének megállapítását. Összességében elmondható, hogy a fent felsorolt tényezők miatt a történeti falazatok erőtani vizsgálatához szükséges tervezési paraméterek bizonytalansága általában igen nagy, ami szokványos állapotvizsgálati módszerekkel nehezen csökkenthető. Az utóbbi időben kidolgozott új roncsolásmentes diagnosztikai eljárások viszont új távlatokat nyitnak a falazatok ismeretlen jellemzőinek helyszínen történő megállapításhoz.

Történeti épületek esetén kifejezetten fontos azok történeti jellegének vagy építészeti értékének megőrzése. A helyszíni diagnosztikai vizsgálatok elvégzése során a roncsolással járó vizsgálati módszerek (pl. nagy átmérőjű fúrt magmintán történő vizsgálatok) emiatt nem, vagy csak korlátozott mértékben használhatók. A kis roncsolással járó vagy roncsolásmentes módszerek viszont alkalmasak lehetnek a szükséges tervezési paraméterek meghatározására (pl. falvastagság, fal szerkezeti felépítése, belső üregek mérete, falazatalkotók szilárdsági jellemzői), viszont megbízhatóságuk elmarad a roncsolásos vizsgálatokétól, mert nem közvetlenül adnak információt a statikai elemzéshez szükséges paraméterekről.

Történeti épületek falazatainak állapotértékelése Szilárdság értékelés roncsolásmentes diagnosztikai módszerek felhasználásával

Dolgozatomban felkutattam azokat a vizsgálati módszereket, amelyek alkalmasak lehetnek a történeti falazott szerkezetek mechanikai, geometriai és egyéb állapot jellemzőinek helyszíni vizsgálatára. Ezek között megtalálhatók a felületi keménység mérésén illetve penetrációs elven működő szilárdságvizsgálati módszerek, különböző geofizikai módszerek, valamint ezek kombinációján alapuló eljárások a nedvességmérésekkel kiegészítve. Az irodalomkutatásom eredményeként azt a következtetést vontam le, hogy a szerkezetben lévő nedvesség a szerkezeti károsodáson felül a vizsgálati módszer megbízhatóságát is befolyásolja, azonban az ezzel kapcsolatos ismeretek jelenleg még nem elég részletesek. További konklúzió, hogy egyes geofizikai (pl. a szónikus elven működő) vizsgálati módszerrel végzett, a falazat nyomószilárdságának megállapítására szolgáló eddigi kutatások szinte kizárólag modern falazatokon történtek, történeti falazatokról kevés ismeretanyag található ebben a témában. Ennek ismeretében kísérleti program végrehajtása mellett döntöttem, mely alapvető célja az előbb említett hiányos ismeretanyag bővítéséhez való hozzájárulás.

A kísérleti program keretében korabeli építőanyagok rekonstrukciójával és felhasználásával 1800-as években épült falazat imitálása történt. A vizsgálatok egyik fő célja a nedvesség hatásának vizsgálata falazott próbatestek és a falazatalkotók nyomószilárdságára, továbbá a roncsolásmentes diagnosztikai vizsgálatok megbízhatóságára. Ennek érdekében a próbatestek egyik felét "szobaszáraz", másik felét telítettségig nedvesített állapotban vizsgáltam meg N típusú Schmidt kalapács, szónikus tomográf készülék és penetrációs elven működő habarcs szilárdság vizsgáló készülék felhasználásával, roncsolásmentes módon. A több roncsolásmentes módszerrel végrehajtott szilárdsági mérések mellett a szabványban előírt roncsolásos módon is megállapítottam a próbatestek tényleges nyomószilárdságát. Az így nyert adatok elemzésével megállapítottam a nedvesség okozta nyomószilárdság csökkenés kimutatható mértékét az egyes vizsgálatokkal a "szobaszáraz" állapothoz képest, valamint a roncsolásmentes vizsgáló készülékek által mért jellemzőket összevetettem a roncsolásos mérések eredményeivel.

A kísérleti program másik fő célja a szónikus vizsgálati módszer alkalmazhatóságának igazolása történeti falazatok esetén, továbbá a hanghullámok terjedési sebességét befolyásoló hatások és azok mértékének megállapítása, különböző falazat kialakítás és nedvességi állapot mellett. A falazatban lévő nedvesség hatásának elemzésén túl a fal terheléséből adódó nyomófeszültség és a hanghullámok fugán való áthatolásának hatása is a vizsgálatok tárgyát képezte. A szónikus vizsgálatok további célja az volt, hogy megállapítsuk a próbafalba épített rejtett anomáliák (pl. üregek) felderítésének megbízhatóságát. Ugyanezen vizsgálatokat georadarral is elvégeztem, így lehetőséget biztosítva a két módszer hatékonyságának összehasonlítására.

A kísérletek alapján megállapított téziseim hozzájárulhatnak falazott szerkezetek során használt roncsolásmentes diagnosztikai módszerek bizonytalanságának megértéséhez. Ezen felül bemutatásra került szónikus vizsgálat alkalmazásának módja történeti falazatok esetén, továbbá a szerkezeti kialakítás sajátosságaiból fakadó adat elemzési eljárás is készült.

Summary

The structural analysis of historical masonry structures presents a significant challenge for civil engineers due to the high uncertainty in the parameters required for calculations. Unlike in the case of newly constructed structures, the original construction plans are typically not available for historical buildings before conducting structural assessments. Having access to the original architectural documentation would provide valuable information about the structural design, construction techniques, and material usage of the building. Such knowledge cannot be easily substituted through literature research because the construction of masonry structures can vary significantly (e.g., solid or hollow and in terms of materials, they could be brick, stone, or a mix of both). Even within a single structure, the characteristics of the masonry materials can differ significantly, and the dimensions of masonry elements have continuously changed throughout different historical periods. The load-bearing masonry of historical buildings was generally constructed using local materials. This resulted in different material usage practices in various regions (e.g., stone in regions with abundant stone resources, while brick was commonly used in areas with fewer stone resources). Exceptional buildings like churches, government structures, and palaces may have used high-quality building materials that were transported from a distance. In the case of mortar, similar variations can be observed in material usage. It was common in historical masonry to employ mixed masonry, where rows of bricks and stones alternated, or the core and exterior of the masonry were made from different materials. This was often a compromise due to the demand for high-quality building materials and limited financial resources. However, in cases where time and money were scarce, void areas within the masonry were created, which were filled with construction debris or lowerquality materials. Even after the emergence of industrial-scale brick production, the properties of used masonry elements remained quite variable for many decades, with different sizes and qualities of products even from the same brickworks. It was only with the widespread adoption of standardization that positive changes occurred. The Detailed Building Regulations of 1893 specified allowable stresses for various types of masonry, and in 1894, large solid brick sizes were standardized in Hungary, leading to an improvement in the overall quality of masonry. From a structural analysis perspective, another challenge is that visible structures often provide little information about the actual dimensions of load-bearing structures since they are typically covered by decorations or thick plaster. Historical buildings may have undergone changes in function multiple times, leading to renovation or expansion works that involved using contemporary construction materials and techniques, making it difficult to determine the original structure. In summary, due to the factors mentioned above, there is usually a high degree of uncertainty in the design parameters required for the structural analysis of historical masonry structures, and conventional condition assessment methods struggle to reduce this uncertainty. However, recent advancements in non-destructive diagnostic methods open up new possibilities for determining the unknown characteristics of masonry structures on-site.

Preserving the historical nature or architectural value of historical buildings is particularly important. During in-situ diagnostic assessment, destructive testing methods (e.g., tests on large-diameter core samples) cannot, or can only be used to a limited extent, due to the risk of damage. Non-destructive or minor destructive methods, however, can be suitable for determining the necessary design parameters (e.g., wall thickness, structural composition of walls, internal void dimensions, strength characteristics of masonry elements). Nevertheless, their reliability falls behind that of destructive tests because they do not directly provide information about the parameters necessary for structural analysis.

In my thesis, I explored assessment methods that may be suitable for in-situ assessment of the mechanical, geometrical, and other condition characteristics of historical masonry

structures. Among these, methods based on surface hardness measurement and penetration based strength testing, various geophysical techniques, and approaches based on the combination of these methods supplemented with moisture measurements can be found. As a result of my literature research, I concluded that moisture within the structure not only affects structural damage but also influences the reliability of the testing method. However, knowledge in this regard is currently not detailed enough. Another conclusion is that most of the research on determining the compressive strength of masonry using certain geophysical methods (e.g., those working on sonic principles) has been conducted almost exclusively on modern masonry, and there is limited information available regarding historical masonry on this subject. With this awareness, I decided to undertake an experimental program with the primary goal of contributing to the expansion of this deficient knowledge base.

Within the framework of the experimental program, an imitation of masonry dating back to the 1800s was carried out by reconstructing and using period-appropriate building materials. One of the primary objectives of the experiments was to investigate the impact of moisture on masonry test specimens and the compressive strength of masonry elements, as well as the reliability of non-destructive diagnostic tests. To achieve this, the test specimens were examined in a non-destructive manner. One half of the specimens was kept "room-dry," while the other half was saturated with moisture. Non-destructive testing methods, including the N-type Schmidt hammer, sonic tomography equipment, and a penetration-based mortar strength testing device, were used to assess the specimens. In addition to the compressive strength measurements performed with multiple non-destructive testing methods, the actual compressive strength of the specimens was determined through destructive testing methods, as prescribed by standards. By analyzing the data obtained in this manner, I determined the extent of the reduction in compressive strength caused by moisture in comparison to the "room-dry" condition for each test. Furthermore, I compared the characteristics measurements.

Another primary objective of the experimental program was to confirm the applicability of the sonic testing method for historical masonry and to determine the effects and magnitudes of factors influencing the propagation velocity of sound waves under various masonry designs and moisture conditions. In addition to analyzing the influence of moisture within the masonry, the tests also focused on the impact of compressive stress on the wall and the penetration of sound waves through mortar joints. Furthermore, the sonic testing aimed to establish the reliability of detecting concealed anomalies (e.g., voids) within the test wall. These same tests were also conducted using ground-penetrating radar, providing an opportunity to compare the effectiveness of the two methods.

The theses derived from the experimental program can contribute to the understanding of the uncertainties associated with non-destructive tests used in masonry structures.. Additionally, the method of applying sonic testing in the case of historical masonry was presented, along with an data analysis procedure based on the specific characteristics of the masonry structure.

6. Alkalmazási lehetőségek

A dolgozatom eredményeként megállapított tézisállítások hozzájárulhatnak a történeti falazott szerkezetek helyszíni diagnosztikai vizsgálatokat befolyásoló tényezők ismeretéhez, azok hatásáról és mértékéről adnak információt. Történeti falazatok esetén a szerkezetben lévő nedvesség károsodást okoz, továbbá befolyásolja a roncsolásmentes diagnosztikai vizsgálatok megbízhatóságát. Az elvégzett kísérletek alapján levonható egyik konklúzió, hogy a falazat alkotóinak nyomószilárdsága nem állapítható meg helyszínen elvégzett roncsolásmentes diagnosztikai módszerek alkalmazásával a falazat nedvességtartalmának ismerete nélkül. Ez a tény a történeti falazatok diagnosztikai vizsgálata során lehet hasznos információ, illetve a kapott eredmények kiértékelése során is hasznosítható, ezáltal pontosabb képet adva a szerkezet valódi állapotáról.

A dolgozat másik konklúziója a hanghullámon alapuló diagnosztikai vizsgálatokkal kapcsolatos. Bebizonyítottam, hogy a hanghullámok terjedési sebességét a nedvesség, a falazatalkotóban ébredő nyomófeszültség és a fugán váló áthatolás miatti közegváltás befolyásolja. Kísérleteket végeztem el az előbb említett tényezők hatásának vizsgálatára. A kísérletek alapján a szónikus vizsgálat felhasználásával közelítőleg meghatározható falazatalkotók nyomószilárdsága és jó közelítéssel felmérhető a szerkezetben lévő rejtett anomáliák helye és mérete. Továbbá a dolgozatban bemutatásra került egy a tomográf vizsgálat alkalmazása során kialakuló szoftveres képalkotási hiba és annak kiszűrésére alkalmazható eljárás. Mindezek segítséget nyújthatnak a történeti falazott szerkezetek állapotértékeléséhez.

7. Kitekintés és jövőbeli kutatási feladatok

A statikai ellenőrzéshez szükséges paraméterek többségének bizonytalansága igen nagy lehet történeti épületek esetén. Ez jellemzően az ismeretlen geometria, anyaghasználat, anyagjellemzők, ismeretlen szerkezeti kialakítás és hosszú élettartam alatt bekövetkezett károsodás miatt lehetséges. A kis roncsolással járó és roncsolásmentes diagnosztikai módszerek felhasználásával lehetőség nyílik az erőtani vizsgálatokhoz szükséges bemenő paraméterek meghatározására az épület épségének megtartása mellett. A roncsolásmentes diagnosztikai módszerek alapján a várt jellemző nem közvetlen módon kerül meghatározásra, emiatt az eredmények bizonytalanságának kezelése fontos feladat. A különböző diagnosztikai módszerek megbízhatóságát számos hatás befolyásolja. Ezen hatások figyelembevétele és matematikai eljárásának kidolgozása adatfúzió segítségével megvalósítható. Ebben a témakörben még folynak a kutatások, sikeres alkalmazás esetén az anyagi jellemzőkhöz tartozó parciális biztonsági tényező csökkentése érhető el, így könnyítve a történeti falazott szerkezetek erőtani megfeleltethetőségét.

8. Köszönetnyilvánítás

Szeretném kifejezni hálámat a témavezetőm Dr. Orbán Zoltán felé, aki a doktori tanulmányom során végig segítette munkámat. Már a TDK dolgozatom elkészítésében is sokat jelentett a támogatása, majd a tanulmányaim végeztével az Építőmérnök Tanszékre való bejutásomhoz hozzájárul, így már kollégaként tekintve egymásra. Az elmúlt évek számos közösen elvégzett munka után joggal nevezhetem őt mentoromnak, amiért nem tudok elég hálás lenni.

Továbbá szeretném megköszönni Dr. Fülöp Attila segítségét, nélküle a próbatestek törési vizsgálatai nem lettek volna elvégezhetők.

A kísérletekben létrehozott próbatestek készítésében aktívan részt vett Király János és Vucskics Péter, akik személyes tapasztalatuk révén hasznos tanácsokkal láttak el. János ezen felül mindig lelkesen állt rendelkezésemre és segített a kísérletek lebonyolításában is.

Kedves kis feleségemnek, aki folyamatos lelkesítéssel lelki támogatást nyújtott számomra és segített átlendíteni a nehéz időszakokon.

9. Publikációs lista

A doktori fokozat megszerzése érdekében készített publikációk megjelenésük dátuma szerint listázva.

- [1] Orbán Zoltán, Dormány András, Juhász Tamás: Korai vasbeton építmények tartószerkezeti biztonságának megítélése, In: anon (szerk.) Építményeink 2018: mély- és infrastruktúraépítés, felújítás, Budapest, Magyarország: Konferencia Iroda Bt. (2018) 68 p. pp. 11-12., 2 p.
- [2] Orbán Zoltán, Dormány András, Török Brigitta: Hidak állapotvizsgálata kombinált szerkezet-diagnosztikai módszerekkel, In: anon (szerk.) Építményeink 2018: mély- és infrastruktúraépítés, felújítás, Budapest, Magyarország: Konferencia Iroda Bt. (2018) 68 p. pp. 33-34., 2 p.
- [3] Orbán Zoltán, Török, Brigitta, Dormány András: Műemlék épületek tartószerkezetének állapot-vizsgálata, In: Szalay, László (szerk.) Épületeink és Műemlékeink 2018, Budapest, Magyarország: Konferencia Iroda Bt. (2018) 76 p. p. 76
- [4] Orbán Zoltán, Török, Brigitta, Dormány András: Assessment and rehabilitation of heritage structures helped by combined non-destructivce tests, In: Tamás, Molnár; Aleksandra, Krstić-Furundžić; Eva, Vaništa Lazarević; Aleksandra, Djukić; Gabriella, Medvegy; Bálint, Bachmann; Milena, Vukmirović Conference Proceedings 6th International Academic Conference on Places and Technologies, Pécs, Magyarország : Pécsi Tudományegyetem Műszaki és Informatikai Kar Breuer Marcell Doktori Iskola (2019) 660 p. pp. 64-71., 8 p.
- [5] Balla Brigitta, Orbán Zoltán, Dormány András: Falazott szerkezetek szilárdságvizsgálati eredményeinek hasznosítása infrastruktúra létesítmények tartószerkezeti értékelésében, absztraktfüzet, Építményeink 2019, Konferencia Iroda Bt. (2019)
- [6] Dormány András, Orbán Zoltán, Balla Brigitta: Falazott hidak geometriai felmérése georadaros és 3D szkenneléses vizsgálattal, absztraktfüzet, Építményeink 2019, Konferencia Iroda Bt. (2019)
- [7] Orbán, Z., Kovács, I. P., Roncik, L., Dormán, A., & Kovács, D. M. (2021). Az InSAR technológia integrálása a szerkezeti stabilitás értékelésébe. Kalasnyikov ISTU Bulletin, 24(2), 60–67. https://doi.org/10.22213/2413-1172-2021-2-60-67
- [8] Dormány András, Orbán Zoltán: Történeti vasbeton építmények tartószerkezeti vizsgálata = Structural assessment of heritage reinforced concrete buildings, In: Prisztóka, Gyöngyvér; Kertai, Bendegúz (szerk.) XIX. Szentágothai János Mutidiszciplináris Konferencia és Hallgatói Verseny: Absztrakt kötet = XIX. János Szentágothai Multidisciplinary Conference and Student Competition: Book of Abstracts, Pécs, Magyarország : Szentágothai János Szakkollégium (2021) 272 p. pp. 47-48., 2 p.
- [9] Orbán, Z., Dormány, A. (2022). Assessment of Masonry Bridges with the Help of Combined NDT Methods. In: Pellegrino, C., Faleschini, F., Zanini, M.A., Matos, J.C., Casas, J.R., Strauss, A. (eds) Proceedings of the 1st Conference of the European Association on Quality Control of Bridges and Structures. EUROSTRUCT 2021. Lecture Notes in Civil Engineering, vol 200. Springer, Cham. https://doi.org/10.1007/978-3-030-91877-4_38
- [10] Dormány, A., Orbán, Z. (2022). Structural and Durability Assessment of Heritage Reinforced Concrete Structures. In: Pellegrino, C., Faleschini, F., Zanini, M.A., Matos, J.C., Casas, J.R., Strauss, A. (eds) Proceedings of the 1st Conference of the European Association on Quality Control of Bridges and Structures. EUROSTRUCT 2021. Lecture Notes in Civil Engineering, vol 200. Springer, Cham. https://doi.org/10.1007/978-3-030-91877-4_37

- [11] R.K. Shetiya, S. Elhadad, Z. Orban, A. Dormany, A. Fulop, A. Len, "A Comparative Investigation of Self- Repairing Concrete Incorporating Penetron Admix with Ordinary Concrete", in P. Ivanyi, J. Kruis, B.H.V. Topping, (Editors), "Proceedings of the Seventeenth International Conference on Civil, Structural and Environmental Engineering Computing", Civil-Comp Press, Edinburgh, UK, Online volume: CCC 6, Paper 11.3, 2023, doi:10.4203/ccc.6.11.3
- [12] Orbán Zoltán, Dormány András, Kovács Dániel Márton, Állapotmonitoring roncsolásmentes diagnosztika és műholdradar alapú mérések alkalmazásával, HÍDÉPÍTŐK 50. : 1 pp. 42-47., 6 p. (2023)
- [13] Dormany, A., & Orban, Z. (2023). The relationship between compressive strength and sonic velocity depending on moisture content in case of historical masonry. Acta Technica Jaurinensis, 16(2), 75–82. <u>https://doi.org/10.14513/actatechjaur.00695</u>
- [14] Dormany, A., & Orban, Z. EXPERIMENTAL INVESTIGATION OF THE SONIC VELOCITY IN HISTORICAL MASONRY WALLS, Pollack Periodica, 2023, lektorálás alatt

10. Irodalomjegyzék

- [1] Farkas, Huszár, Kovács, Szalai: Betonszerkezetek méretezése az Eurocode alapján, TERC Kft., Budapest, 2006
- [2] EN 1990:2002+A1, Eurocode Basis of structural design, CEN, 2002
- [3] Farkas, Kovács, Szalai: A valószínűség elven történő méretezés történeti előzménye hazánkban, <u>https://hsz.bme.hu/sites/default/files/hirek/farkas-kovacs-szalai.pdf</u>, letöltve: 2023.02.06
- [4] ISO 13822:2010 Bases for design of structures Assessment of existing structures, 2010
- [5] fib. 80. Partial factor methods for existing concrete structures. Recommendation (129 pages, ISBN 978-2-88394-120-5, 2016)
- [6] Sýkora, Miroslav & Holický, Milan. (2010). Probabilistic Model for Masonry Strength of Existing Structures. Engineering MECHANICS, Vol. 17, 2010, No. 1, p. 61–70
- [7] Déry Attila: Öt könyv a régi építészetről 2. kőműves szerkezetek, TERC Kft, Budapest, 2020
- [8] Déry Attila: Történeti szerkezettan, TERC Kft., Budapest, 2002
- [9] Bársony István: Magasépítéstan I, Szega Books Kft., Pécs, 2008
- [10] Nemes Rita&Józsa Zsuzanna: Vegyes falazatok jellemzői és problémái Budapest belső kerületeiben, Mérnökgeológia-Kızetmechanika 2010, 63-72
- [11] Luca Pelá: Continuum damage model for nonlinear analysis of masonry structures, PhD thesis 2009
- [12] Drydale, Hamid, Baker: Masonry structures behavior and design, Prentice Hall, Michigani egyetem, 1994
- [13] EN 1996-1-1:2005, Eurocode 6 Design of masonry structures Part 1-1: General rules for reinforced and unreinforced masonry structures, CEN, 2005
- [14] Durgesh C. Rai: Structural use of unreinforced masonry
- [15] Déry Attila: Öt könyv a régi építészetről, 1. az építés anyagai, TERC Kft., Budapest, 2020
- [16] A.W. Hendry: Masonry walls: materials and construction, Construction and Building Materials, Volume 15, Issue 8, 2001, Pages 323-330, ISSN 0950-0618, https://doi.org/10.1016/S0950-0618(01)00019-8.
- [17] Régi méretezési előírások 1839-1950, TTI, Budapest, 1987
- [18] Gulyás Dénes: Vitruvius Tíz könyv az építészetről, Quintus kiadó, Szeged, 2009
- [19] Lővei Pál: Adatok a magyarországi téglagyártás és felhasználás történetéhez, Magyar műemlékvédelem, Az országos műemlékvédelmi hivatal évkönyve (1991-2001), Kulturális Örökségvédelmi Hivatal, Budapest, 2002

- [20] UIC Code 778-3R, Recommendation for the inspection, assessment and maintenance of masonry arch bridges, UIC International Union of Railways, 2011
- [21] Luca Pelà, Pere Roca & Andrea Benedetti (2016) Mechanical Characterization of Historical Masonry by Core Drilling and Testing of Cylindrical Samples, International Journal of Architectural Heritage, 10:2-3, 360-374, DOI: 10.1080/15583058.2015.1077906
- [22] Luca Pelà, Elisa Canella, Alessandra Aprile, Pere Roca, Compression test of masonry core samples extracted from existing brickwork, Construction and Building Materials, Volume 119, 2016, Pages 230-240, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2016.05.057
- [23] Enrico Sassoni, Claudio Mazzotti, The use of small diameter cores for assessing the compressive strength of clay brick masonries, Journal of Cultural Heritage, Volume 14, Issue 3, Supplement, 2013, Pages e95-e101, ISSN 1296-2074, https://doi.org/10.1016/j.culher.2012.11.027
- [24] Jorge Segura, Luca Pelà, Pere Roca, Albert Cabané, Experimental analysis of the size effect on the compressive behaviour of cylindrical samples core-drilled from existing brick masonry, Construction and Building Materials, Volume 228, 2019, 116759, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2019.116759
- [25] Jafari, S., Esposito, R., & Rots, J. (2017). Literature review on the assessment of masonry properties by tests on core samples. In W. J. Quist, S. J. C. Granneman, & R. P. J. van Hees (Eds.), Proceedings of the 4th WTA International PhD Symposium (pp. 173-180). WTA Nederland - Vlaanderen.
- [26] Jigme Dorji, Tatheer Zahra, David Thambiratnam, Daniel Lee, Strength assessment of old masonry arch bridges through moderate destructive testing methods, Construction and Building Materials, Volume 278, 2021, 122391, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2021.122391
- [27] Dr. Wersényi György: Műszaki akusztika (egyetemi jegyzet), 2010
- [28] Völgyesi L: Geofizika, Műegyetem kiadó, Budapest, 2002
- [29] D.M. McCann, M.C. Forde: Review of NDT methods in the assessment of concrete and masonry structures, NDT&E International, Volume 34, 2001, 71-84
- [30] Mohd Taufiq Mohd Khairi, Sallehuddin Ibrahim, Mohd Amri Md Yunus, Mahdi Faramarzi, Goh Pei Sean, Jaysuman Pusppanathan, Azwad Abid, Ultrasound computed tomography for material inspection: Principles, design and applications, Measurement, Volume 146, 2019, Pages 490-523, ISSN 0263-2241, https://doi.org/10.1016/j.measurement.2019.06.053
- [31] Fernando Jorne, Fernando M.A. Henriques, Luis G. Baltazar, Evaluation of consolidation of grout injection with ultrasonic tomography, Construction and Building Materials, Volume 66, 2014, Pages 494-506, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2014.05.095
- [32] Vasanelli, E., Micelli, F., Colangiuli, D. et al. A non destructive testing method for masonry by using UPV and cross validation procedure. Mater Struct 53, 134 (2020). https://doi.org/10.1617/s11527-020-01568-8

- [33] Thomas Parent, Nathalie Domede, Alain Sellier, Ludivine Mouatt. Mechanical characterization of limestone from sound velocity measurement. International Journal of Rock Mechanics and Mining Sciences, 2015, 79, pp.149-156. (hal-02005919)
- [34] Sharma, P.K., Singh, T.N. A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength. Bull Eng Geol Environ 67, 17–22 (2008). https://doi.org/10.1007/s10064-007-0109-y
- [35] Manning, E., Ramos, L.F., & Fernandes, F.M. (2014). Direct Sonic and Ultrasonic Wave Velocity in Masonry under Compressive Stress, 9th International Masonry Conference 2014 in Guimarães
- [36] Esequiel Mesquita, Rachel Martini, André Alves, Paulo Antunes, Humberto Varum, Non-destructive characterization of ancient clay brick walls by indirect ultrasonic measurements, Journal of Building Engineering, Volume 19, 2018, Pages 172-180, ISSN 2352-7102, https://doi.org/10.1016/j.jobe.2018.05.011
- [37] Vlatko Bosiljkov, Mojmir Uranjek, Roko Žarnić, Violeta Bokan-Bosiljkov, An integrated diagnostic approach for the assessment of historic masonry structures, Journal of Cultural Heritage, Volume 11, Issue 3, 2010, Pages 239-249, ISSN 1296-2074, https://doi.org/10.1016/j.culher.2009.11.007
- [38] Giuseppe Faella, Giorgio Frunzio, Mariateresa Guadagnuolo, Alfonso Donadio, Luca Ferri, The Church of the Nativity in Bethlehem: Non-destructive tests for the structural knowledge, Journal of Cultural Heritage, Volume 13, Issue 4, Supplement, 2012, Pages e27-e41, ISSN 1296-2074, https://doi.org/10.1016/j.culher.2012.10.014
- [39] Margarita Cámara, Manuel Romero, Pablo Pachón, Víctor Compán, Paulo B. Lourenço, Integration of disciplines in the structural analysis of historical constructions. The Monastery of San Jerónimo de Buenavista (Seville-Spain), Engineering Structures, Volume 230, 2021, 111663, ISSN 0141-0296, https://doi.org/10.1016/j.engstruct.2020.111663
- [40] Marco Valente, Gaia Barbieri, Luigi Biolzi, Seismic assessment of two masonry Baroque churches damaged by the 2012 Emilia earthquake, Engineering Failure Analysis, Volume 79, 2017, Pages 773-802, ISSN 1350-6307, https://doi.org/10.1016/j.engfailanal.2017.05.026
- [41] Guillermo Luchin, Luís F. Ramos & Michele D'Amato (2020) Sonic Tomography for Masonry Walls Characterization, International Journal of Architectural Heritage, 14:4, 589-604, DOI: 10.1080/15583058.2018.1554723
- [42] Fernando Jorne, Fernando M.A. Henriques, Luis G. Baltazar, Evaluation of consolidation of grout injection with ultrasonic tomography, Construction and Building Materials, Volume 66, 2014, Pages 494-506, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2014.05.095
- [43] Dizhur, D., Lumantarna, R., Biggs, D.T. et al. In-situ assessment of the physical and mechanical properties of vintage solid clay bricks. Mater Struct 50, 63 (2017). https://doi.org/10.1617/s11527-016-0939-9
- [44] Sarkar Noor-E-Khuda, Faris Albermani, Mechanical properties of clay masonry units: Destructive and ultrasonic testing, Construction and Building Materials,

Volume 219, 2019, Pages 111-120, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2019.05.166

- [45] Estévez, E.; Martín, D.A.; Argiz, C.; Sanjuán, M.Á. Ultrasonic Pulse Velocity— Compressive Strength Relationship for Portland Cement Mortars Cured at Different Conditions. Crystals 2020, 10, 133. https://doi.org/10.3390/cryst10020133
- [46] Gustavo Henrique Nalon, Marcelo Arruda Alves, Leonardo Gonçalves Pedroti, José Carlos Lopes Ribeiro, Wellington Emílio Hilarino Fernandes, Diôgo Silva de Oliveira, Compressive strength, dynamic, and static modulus of cement-lime laying mortars obtained from samples of various geometries, Journal of Building Engineering, Volume 44, 2021, 102626, ISSN 2352-7102, https://doi.org/10.1016/j.jobe.2021.102626
- [47] Zielińska M, Rucka M. Non-Destructive Assessment of Masonry Pillars using Ultrasonic Tomography. Materials. 2018; 11(12):2543. https://doi.org/10.3390/ma11122543
- [48] Schuller, M.P., Berra, M., Atkinson, R.H., & Binda, L. (1997). Acoustic tomography for evaluation of unreinforced masonry. Construction and Building Materials, 11, 199-204.
- [49] Wael Zatar, Tu T. Nguyen, Hai Nguyen, Environmental effects on condition assessments of concrete structures with ground penetrating radar, Journal of Applied Geophysics, Volume 203, 2022, 104713, ISSN 0926-9851, https://doi.org/10.1016/j.jappgeo.2022.104713
- [50] Sai Teja Kuchipudi, Debdutta Ghosh, Hina Gupta, Automated Assessment of Reinforced Concrete Elements using Ground Penetrating Radar, Automation in Construction, Volume 140, 2022, 104378, ISSN 0926-5805, https://doi.org/10.1016/j.autcon.2022.104378
- [51] Francisco J. Pallarés, Michele Betti, Gianni Bartoli, Luis Pallarés, Structural health monitoring (SHM) and Nondestructive testing (NDT) of slender masonry structures: A practical review, Construction and Building Materials, Volume 297, 2021, 123768, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2021.123768
- [52] Md Istiaque Hasan, Nur Yazdani, "An Experimental and Numerical Study on Embedded Rebar Diameter in Concrete Using Ground Penetrating Radar", Chinese Journal of Engineering, vol. 2016, Article ID 9714381, 7 pages, 2016. https://doi.org/10.1155/2016/9714381
- [53] Zhou F, Chen Z, Liu H, Cui J, Spencer BF, Fang G. Simultaneous Estimation of Rebar Diameter and Cover Thickness by a GPR-EMI Dual Sensor. Sensors. 2018; 18(9):2969. https://doi.org/10.3390/s18092969
- [54] Hamdaoui, Mohammed. (2020). Effect of electromagnetic parameters of the medium on the GPR data. International Journal of Emerging Trends in Engineering Research. 8. 1749-1755. 10.30534/ijeter/2020/42852020.
- [55] Topczewski, Lukasz. (2012). Guidelines for the application of ground penetrating radar (GPR) to inspection of concrete bridges reflection mode. ROADS AND BRIDGES DROGI I MOSTY. 11. 329-343. 10.7409/rabdim.012.005.

- [56] Wallace Wai-Lok Lai, Xavier Dérobert, Peter Annan, A review of Ground Penetrating Radar application in civil engineering: A 30-year journey from Locating and Testing to Imaging and Diagnosis, NDT & E International, Volume 96, 2018, Pages 58-78, ISSN 0963-8695, https://doi.org/10.1016/j.ndteint.2017.04.002
- [57] Ali Ismet Kanli, Gabor Taller, Peter Nagy, Peter Tildy, Zsolt Pronay, Endre Toros, GPR survey for reinforcement of historical heritage construction at fire tower of Sopron, Journal of Applied Geophysics, Volume 112, 2015, Pages 79-90, ISSN 0926-9851, https://doi.org/10.1016/j.jappgeo.2014.11.005
- [58] Luciana Orlando, Evert Slob, Using multicomponent GPR to monitor cracks in a historical building, Journal of Applied Geophysics, Volume 67, Issue 4, 2009, Pages 327-334, ISSN 0926-9851, https://doi.org/10.1016/j.jappgeo.2008.09.003
- [59] Magdalena Rucka, Jacek Lachowicz, Monika Zielińska, GPR investigation of the strengthening system of a historic masonry tower, Journal of Applied Geophysics, Volume 131, 2016, Pages 94-102, ISSN 0926-9851, https://doi.org/10.1016/j.jappgeo.2016.05.014
- [60] V. Pérez-Gracia, J.O. Caselles, J. Clapés, G. Martinez, R. Osorio, Non-destructive analysis in cultural heritage buildings: Evaluating the Mallorca cathedral supporting structures, NDT & E International, Volume 59, 2013, Pages 40-47, ISSN 0963-8695, https://doi.org/10.1016/j.ndteint.2013.04.014
- [61] Danilo Ranalli, Marco Scozzafava, Marco Tallini, Ground penetrating radar investigations for the restoration of historic buildings: the case study of the Collemaggio Basilica (L'Aquila, Italy), Journal of Cultural Heritage 5 (2004) 91–99
- [62] Ramo'n Gonza'lez-Drigo, Vega Pe'rez-Gracia, Daniel Di Capua, Luis G. Pujades, GPR survey applied to Modernista buildings in Barcelona: The cultural heritage of the College of Industrial Engineering, Journal of Cultural Heritage 9 (2008) 196e202
- [63] Gokhan Kilic, Using advanced NDT for historic buildings: Towards an integrated multidisciplinary health assessment strategy, Journal of Cultural Heritage, Volume 16, Issue 4, 2015, Pages 526-535, ISSN 1296-2074, https://doi.org/10.1016/j.culher.2014.09.010
- [64] Federico Lombardi, Maurizio Lualdi, Elsa Garavaglia, Masonry texture reconstruction for building seismic assessment: Practical evaluation and potentials of Ground Penetrating Radar methodology, Construction and Building Materials, Volume 299, 2021, 124189, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2021.124189
- [65] S. Negri, M.A. Aiello, High-resolution GPR survey for masonry wall diagnostics, Journal of Building Engineering, Volume 33, 2021, 101817, ISSN 2352-7102, https://doi.org/10.1016/j.jobe.2020.101817
- [66] Giorgio De Donno, Luca Di Giambattista, Luciana Orlando, High-resolution investigation of masonry samples through GPR and electrical resistivity tomography, Construction and Building Materials, Volume 154, 2017, Pages 1234-1249, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2017.06.112
- [67] Refik Samet, Ertuğ Çelik, Serhat Tural, Erkan Şengönül, Merve Özkan, Emre Damcı, Using interpolation techniques to determine the optimal profile interval in ground-

penetrating radar applications, Journal of Applied Geophysics, Volume 140, 2017, Pages 154-167, ISSN 0926-9851, https://doi.org/10.1016/j.jappgeo.2017.04.003

- [68] Adamopoulos, E., Colombero, C., Comina, C., Rinaudo, F., Volinia, M., Girotto, M., and Ardissono, L.: INTEGRATING MULTIBAND PHOTOGRAMMETRY, SCANNING, AND GPR FOR BUILT HERITAGE SURVEYS: THE FAÇADES OF CASTELLO DEL VALENTINO, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., VIII-M-1-2021, 1–8, https://doi.org/10.5194/isprs-annals-VIII-M-1-2021-1-2021, 2021
- [69] Nicko Kassotakis, Vasilis Sarhosis, Employing non-contact sensing techniques for improving efficiency and automation in numerical modelling of existing masonry structures: A critical literature review, Structures, Volume 32, 2021, Pages 1777-1797, ISSN 2352-0124, https://doi.org/10.1016/j.istruc.2021.03.111
- [70] Garavaglia E, Anzani A, Maroldi F, Vanerio F. Non-Invasive Identification of Vulnerability Elements in Existing Buildings and Their Visualization in the BIM Model for Better Project Management: The Case Study of Cuccagna Farmhouse. Applied Sciences. 2020; 10(6):2119. https://doi.org/10.3390/app10062119
- [71] M.E. Stavroulaki, B. Riveiro, G.A. Drosopoulos, M. Solla, P. Koutsianitis, G.E. Stavroulakis, Modelling and strength evaluation of masonry bridges using terrestrial photogrammetry and finite elements, Advances in Engineering Software, Volume 101, 2016, Pages 136-148, ISSN 0965-9978, https://doi.org/10.1016/j.advengsoft.2015.12.007
- [72] Eduardo Diz-Mellado, Emilio J. Mascort-Albea, Rocío Romero-Hernández, Carmen Galán-Marín, Carlos Rivera-Gómez, Jonathan Ruiz-Jaramillo, Antonio Jaramillo-Morilla, Non-destructive testing and Finite Element Method integrated procedure for heritage diagnosis: The Seville Cathedral case study, Journal of Building Engineering, Volume 37, 2021, 102134, ISSN 2352-7102, https://doi.org/10.1016/j.jobe.2020.102134
- [73] Szilágyi, Katalin & Borosnyoi-Crawley, Dorian. (2008). A Schmidt-kalapács 50 éve: Múlt, jelen, jövő. 3. rész: Tudományos megfontolások és kitekintés (50 years of Schmidt Rebound Hammer. Part 3. Scientific Considerations and Outlook). Vasbetonépítés. 10. 73-82.
- [74] Szilágyi, Katalin & Borosnyoi-Crawley, Dorian & Zsigovics, István. (2015). Understanding the rebound surface hardness of concrete. Journal of Civil Engineering and Management. 21. 10.3846/13923730.2013.802722.
- [75] A. Aydin, A. Basu, The Schmidt hammer in rock material characterization, Engineering Geology 81 (2005) 1–14
- [76] Singgih Saptonoa, Suseno Kramadibratab, Budi Sulistianto, Using the Schmidt Hammer on Rock Mass Characteristic in Sedimentary Rock at Tutupan Coal Mine, Procedia Earth and Planetary Science 6 (2013) 390 – 395
- [77] MS.D.2: Determination of masonry rebound hardness. Mat. Struct. 31, 375–377 (1998). https://doi.org/10.1007/BF02480709
- [78] Hemraj R. Kumavat, Narayan R. Chandak, Ishwar T. Patil, Factors influencing the performance of rebound hammer used for non-destructive testing of concrete

members: A review, Case Studies in Construction Materials, Volume 14, 2021, e00491, ISSN 2214-5095, https://doi.org/10.1016/j.cscm.2021.e00491

- [79] Samia Hannachi, andM Nacer Guetteche, Review of the Rebound Hammer Method Estimating Concrete Compressive Strength on Site, Proceedings of International Conference on Architecture And Civil Engineering (ICAACE'14), Dubai, December 25-26, 2014, pp. 118-127
- [80] John A. Matthews, Geraint Owen, Stefan Winkler, Amber E. Vater, Peter Wilson, Richard W. Mourne, Jennifer L. Hill, A rock-surface microweathering index from Schmidt hammer R-values and its preliminary application to some common rock types in southern Norway, CATENA, Volume 143, 2016, Pages 35-44, ISSN 0341-8162, https://doi.org/10.1016/j.catena.2016.03.018
- [81] Laurent Debailleux (2019) Schmidt hammer rebound hardness tests for the characterization of ancient fired clay bricks, International Journal of Architectural Heritage, 13:2, 288-297, DOI: 10.1080/15583058.2018.1436204
- [82] Antonio Brencich, Dawid Lątka, Piotr Matysek, Zoltan Orban, Enrico Sterpi, Compressive strength of solid clay brickwork of masonry bridges: Estimate through Schmidt Hammer tests, Construction and Building Materials, Volume 306, 2021, 124494, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2021.124494
- [83] Mengistu GM, Gyurkó Z, Nemes R. The Influence of the Rebound Hammer Test Location on the Estimation of Compressive Strength of a Historical Solid Clay Brick. Solids. 2023; 4(1):71-86. https://doi.org/10.3390/solids4010005
- [84] Fódi, A. "Effects influencing the compressive strength of a solid, fired clay brick", Periodica Polytechnica Civil Engineering, 55(2), pp. 117–128, 2011. https://doi.org/10.3311/pp.ci.2011-2.04
- [85] Luca Pelà, Pere Roca & Alessandra Aprile (2018) Combined In-Situ and Laboratory Minor Destructive Testing of Historical Mortars, International Journal of Architectural Heritage, 12:3, 334-349, DOI: 10.1080/15583058.2017.1323247
- [86] Dawid Łątka, Piotr Matysek, Assessment of the compressive strength of lime mortar in the joints of brick walls - case study, MATEC Web Conf. 163 02006 (2018) DOI: 10.1051/matecconf/201816302006
- [87] User Manual Penetrometro Malta RSM 15 Version 1.0, https://www.drcitalia.it/en/project/mortar-penetrometer-rsm/ Letöltve: 2023.02.21
- [88] Roberto Felicetti and Natalino Gattesco, A penetration test to study the mechanical response of mortar in ancient masonry buildings, Materials and Structures/Mat6riaux et Constructions, Vol. 31, June 1998, pp 350-356
- [89] Žalský J, Vokáč M, Hrabánek M, Hurtig K. Development of a New Nondestructive Method for the In-Situ Determination of Mortar Strength. Buildings. 2023; 13(2):273. https://doi.org/10.3390/buildings13020273
- [90] Elisa Franzoni, Cristina Gentilini, Gabriela Graziani, Simone Bandini, Compressive behaviour of brick masonry triplets in wet and dry conditions, Construction and Building Materials, Volume 82, 2015, Pages 45-52, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2015.02.052

- [91] Amde, A.M., Martín, J., & Colville, J. (2004). The Effects of Moisture on Compressive Strength and Modulus of Brick Masonry
- [92] Navaratnarajah Sathiparan, Udayakumar Rumeshkumar, Effect of moisture condition on mechanical behavior of low strength brick masonry, Journal of Building Engineering, Volume 17, 2018, Pages 23-31, ISSN 2352-7102, https://doi.org/10.1016/j.jobe.2018.01.015
- [93] Adelajda Goetzke-Pala, Anna Hoła, Łukasz Sadowski, A non-destructive method of the evaluation of the moisture in saline brick walls using artificial neural networks, Archives of Civil and Mechanical Engineering, Volume 18, Issue 4, 2018, Pages 1729-1742, ISSN 1644-9665, https://doi.org/10.1016/j.acme.2018.07.004
- [94] Livio D'Alvia, Erika Pittella, Emanuele Rizzuto, Emanuele Piuzzi, Zaccaria Del Prete, A portable low-cost reflectometric setup for moisture measurement in cultural heritage masonry unit, Measurement, Volume 189, 2022, 110438, ISSN 0263-2241, https://doi.org/10.1016/j.measurement.2021.110438
- [95] Pedro Palma, René Steiger, Structural health monitoring of timber structures Review of available methods and case studies, Construction and Building Materials, Volume 248, 2020, 118528, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2020.118528
- [96] Hoła, Jerzy & Matkowski, Zygmunt & Schabowicz, Krzysztof & Sikora, Jan & Nita, K. & Wójtowicz, S.. (2012). Identification of moisture content in brick walls by means of impedance tomography. COMPEL: Int J for Computation and Maths. in Electrical and Electronic Eng.. 31. 10.1108/03321641211267119.
- [97] MSZ EN 772-16:2011: Falazóelemek vizsgálati módszerei. 16. rész: A méretek meghatározása
- [98] MSZ EN 772-13:2000: Falazóelemek vizsgálati módszerei. 13. rész: A falazóelemek nettó és bruttó száraz testsűrűségének meghatározása (a természetes kő kivételével)
- [99] MSZ EN 1015-2:1999 Falszerkezeti habarcsok vizsgálati módszerei. 2. rész: Összesített minta vétele habarcsokból és a vizsgálati habarcsok elkészítése
- [100] MSZ EN 1015-10:1999 Falszerkezeti habarcsok vizsgálati módszerei. 10. rész: A megszilárdult habarcs testsűrűségének meghatározása
- [101] Építésügyi Műszaki Irányelv 2/2019 (VII.1): Falazott szerkezetek nedvesség- és sóvizsgálata
- [102] MSZ EN 1015-18:2003: Falszerkezeti habarcsok vizsgálati módszerei. 18. rész: A megszilárdult habarcs kapilláris-vízfelvételi együtthatójának meghatározása
- [103] ASTM C1585/C1585M-13: Standard Test Method For Measurement Of Rate Of Absorption Of Water By Hydraulic-Cement Concretes
- [104] MSZ EN 772-1:2011: Falazóelemek vizsgálati módszerei. 1. rész: A nyomószilárdság meghatározása
- [105] MSZ EN 1015-2:1999 Falszerkezeti habarcsok vizsgálati módszerei. 2. rész: Összesített minta vétele habarcsokból és a vizsgálati habarcsok elkészítése
- [106]. MSZ EN 1015-10:1999 Falszerkezeti habarcsok vizsgálati módszerei. 10. rész: A megszilárdult habarcs testsűrűségének meghatározása

- [107] MSZ EN 1015-11:2020: Falszerkezeti habarcsok vizsgálati módszerei. 11. rész: A megszilárdult habarcs hajlító- és nyomószilárdságának meghatározása
- [108] MSZ EN 1052-1:2000 Falazatok vizsgálati módszerei. 1. rész: A nyomószilárdság meghatározása
- [109] Łątka D, Matysek P. Determination of Mortar Strength in Historical Brick Masonry Using the Penetrometer Test and Double Punch Test. Materials. 2020; 13(12):2873. https://doi.org/10.3390/ma13122873

Történeti épületek falazatainak állapotértékelése Szilárdság értékelés roncsolásmentes diagnosztikai módszerek felhasználásával

11. Mellékletek

M1 melléklet: Nagy méretű tömör téglán elvégzett szabványos nyomószilárdsági vizsgálatok

	Tégla _l	próbatestek	c méretei és	tömege			
Jel	Tömeg száraz [kg]	Tömeg nedves [kg]	Szélesség [cm]	magasság [cm]	hosszúság [cm]	Törőerő [kN]	Nyomószilárdság [N/mm2]
T1	5.600		14.5	7.0	29.0	683.3	12.19
T2	5.605		14.5	7.0	29.0	676.4	12.06
Т3	5.850		15.0	7.0	30.0	821.8	13.70
T4	5.360	6.115	15.0	7.3	28.0	655.4	11.70
T5	5.085	5.855	15.0	7.3	27.0	466.7	8.64
Т6	5.445	6.29	15.0	7.0	29.0	584.1	10.07

M2 melléklet: Rekonstruált korabeli habarcs próbatesteken elvégzett nyomszilárdsági vizsgálatok

На	barcs próba	atest méret	ek és töme	gek		
Jel	Tömeg [kg]		Méretek cm		Törő erő [kN]	Nyomószilárdság [N/mm2]
FH1	0.099	4.00	3.91	4.00	2.21	1.38
FH2	0.098	3.94	3.91	3.91	2.57	1.58
FH3	0.110	3.94	3.94	3.94	2.04	1.28
FH4	0.101	3.94	3.97	4.00	2.38	1.44
FH5	4.740	14.50	14.55	14.50	12.30	0.58
FH6	4.690	14.45	14.45	14.45	13.80	0.66
FH7	4.740	14.50	14.45	14.60	12.50	0.60

	Ned	ves próbate	estek			
اما	Tömeg		Méretek		Törő erő	Nyomószilárdság
Jei	[kg]		cm		[kN]	[N/mm2]
FH8	0.119	3.83	3.94	3.89	1.17	0.76
FH9	0.121	4.00	4.00	4.00	1.34	0.83
FH10	0.118	3.94	3.94	3.83	1.36	0.83
FH11	0.123	4.00	3.94	3.89	1.46	0.87
	-					
FH12	4.640	14.60	14.50	14.30	9.00	0.43
FH13	4.630	14.60	14.50	14.30	9.20	0.43
FH14	4.640	14.50	14.60	14.60	7.80	0.37

На	barcs próba	atest méret	ek és töme	gek		
Jel	Tömeg		Méretek		Törő erő	Nyomószilárdság
	[Kg]		cm		[KN]	[N/mm2]
AH1	0.087	3.89	3.83	3.77	3.40	2.51
AH2	0.086	3.71	3.94	3.83	3.56	2.23
AH3	0.094	3.83	3.83	3.71	2.24	1.34
AH4	0.086	3.83	3.83	3.71	3.01	1.75
AH5	4.145	14.50	14.30	14.30	16.70	0.81
AH6	4.130	14.40	14.30	14.30	20.10	0.98
AH7	4.025	14.30	14.40	14.50	17.30	0.83

	Ned	ves próbate	estek			
اما	Tömeg		Méretek		Törő erő	Nyomószilárdság
Jei	[kg]		cm		[kN]	[N/mm2]
AH8	0.100	3.94	3.89	3.83	2.41	1.51
AH9	0.098	4.00	3.77	3.83	1.76	1.05
AH10	0.108	3.89	3.89	3.77	3.22	1.92
AH11	0.097	3.83	3.83	3.83	2.98	1.78
AH12	4.175	14.50	14.40	14.10	15.40	0.74
AH13	4.630	14.60	14.50	14.30	12.20	0.58
AH14	4.640	14.50	14.60	14.60	14.90	0.70

На	barcs próba	itest méret	<u></u> gek			
lal	Tömeg		Méretek		Törő erő	Nyomószilárdság
Jei	[kg]		cm		[kN]	[N/mm2]
BH1	0.094	4.00	4.00	4.00	1.02	0.62
BH2	0.095	4.00	4.00	4.00	1.15	0.75
BH3	0.093	4.00	4.00	3.94	0.98	0.56
BH4	0.094	4.00	4.00	3.83	1.10	0.66
	F 10F	14.70	14.90	14.00	11.40	0.52
вно	5.185	14.70	14.80	14.60	11.40	0.52
BH6	4.850	14.80	14.80	14.80	9.60	0.44
BH7	5.110	14.70	14.70	14.60	10.40	0.48
	Nod	voc práboto	stok		Į.	
	Ned	ves próbate	stek			
lel	Nedv Tömeg	ves próbate	stek Méretek		Törő erő	Nyomószilárdság
Jel	Nedv Tömeg [kg]	ves próbate	estek Méretek cm		Törő erő [kN]	Nyomószilárdság [N/mm2]
Jel BH8	Ned ^y Tömeg [kg] 0.111	ves próbate 4.00	estek Méretek cm 4.00	4.00	Törő erő [kN] 0.83	Nyomószilárdság [N/mm2] 0.62
Jel BH8 BH9	Ned ⁴ Tömeg [kg] 0.111 0.109	ves próbate 4.00 4.00	estek Méretek cm 4.00 4.00	4.00	Törő erő [kN] 0.83 0.89	Nyomószilárdság [N/mm2] 0.62 0.55
Jel BH8 BH9 BH10	Ned Tömeg [kg] 0.111 0.109 0.109	ves próbate 4.00 4.00 4.00	estek Méretek cm 4.00 4.00 4.00	4.00 4.17 4.00	Törő erő [kN] 0.83 0.89 0.88	Nyomószilárdság [N/mm2] 0.62 0.55 0.57
Jel BH8 BH9 BH10 BH11	Ned Tömeg [kg] 0.111 0.109 0.109 0.106	4.00 4.00 4.00 4.00 4.00	estek Méretek cm 4.00 4.00 4.00 4.00	4.00 4.17 4.00 4.23	Törő erő [kN] 0.83 0.89 0.88 0.72	Nyomószilárdság [N/mm2] 0.62 0.55 0.57 0.46
Jel BH8 BH9 BH10 BH11	Ned Tömeg [kg] 0.111 0.109 0.109 0.106	4.00 4.00 4.00 4.00 4.00	estek Méretek cm 4.00 4.00 4.00 4.00	4.00 4.17 4.00 4.23	Törő erő [kN] 0.83 0.89 0.88 0.72	Nyomószilárdság [N/mm2] 0.62 0.55 0.57 0.46
Jel BH8 BH9 BH10 BH11 BH12	Ned Tömeg [kg] 0.111 0.109 0.109 0.106 5.630	4.00 4.00 4.00 4.00 14.80	estek Méretek cm 4.00 4.00 4.00 4.00 14.70	4.00 4.17 4.00 4.23 14.40	Törő erő [kN] 0.83 0.89 0.88 0.72	Nyomószilárdság [N/mm2] 0.62 0.55 0.57 0.46 sikertelen
Jel BH8 BH9 BH10 BH11 BH12 BH13	Ned Tömeg [kg] 0.111 0.109 0.109 0.106 5.630 5.455	4.00 4.00 4.00 4.00 14.80 14.80	estek Méretek cm 4.00 4.00 4.00 14.70 14.90	4.00 4.17 4.00 4.23 14.40 14.60	Törő erő [kN] 0.83 0.89 0.88 0.72 7.90	Nyomószilárdság [N/mm2] 0.62 0.55 0.57 0.46 sikertelen 0.36

M3 melléklet: Falazott próbatesteken elvégzett nyomószilárdsági vizsgálatok

	Falazott próbatest méretek és tömegek												
	+====	tömeg		Felső tégla		k	(özépső tég	la		Alsó tégla		T#########	Nu sa na é antil é uda é a
Jel	tomeg	nedves	Szélesség	magasság	hosszúság	Szélesség	magasság	hosszúság	Szélesség	magasság	hosszúság	Toroero	Nyomoszilardsag
	Szaraz (Kgj	[kg]	[cm]	[cm]	[cm]	[cm]	[cm]	[cm]	[cm]	[cm]	[cm]	[KN]	[N/mm2]
FH1/1	10.660		15.0	6.0	30.0				14.5	7.0	30.0	210.50	4.68
FH1/2	10.590		15.0	6.0	30.0				14.5	6.5	30.0	347.21	7.72
FH1/3	9.670		15.0	6.0	30.0				14.5	6.5	29.5	285.95	6.35
FH 1/4	16.320		15.0	6.5	30.0	14.5	6.5	30.0	15.0	6.5	30.0	209.63	4.66
FH 1/5	12.970		14.5	6.5	25.0	14.5	6.5	24.0	14.5	6.5	23.0	115.10	3.18
FH 1/6	11.320		14.5	6.5	22.0	14.5	7.0	22.0	15.0	7.0	24.0	108.83	3.02
FH1/7	9.610	11.380	15.0	5.5	30.0				15.0	6.0	30.0	260.28	5.78
FH1/8	9.735	11.500	14.5	6.0	29.5				15.0	7.0	30.5	283.90	6.21
FH1/9	8.220	10.000	13.5	6.5	28.0				14.0	6.5	28.0	234.40	5.98
FH1/10	15.560	18.190	15.5	6.5	30.0	15.0	7.0	30.0	15.0	6.5	30.0	157.48	3.50
FH1/11	14.250	16.940	15.0	6.0	30.0	14.0	7.0	29.5	15.0	6.5	29.5	221.61	5.01
FH1/12	14.195	17.100	14.5	6.5	29.5	15.0	6.5	30.5	15.0	7.0	30.0	197.36	4.39
EU 2 / 1	10.465		14.0	6.0	20.0				14 E	7.0	20.0	274.09	6.20
FH2/1 FH2/2	10.405		14.0	6.0	20.0				14.5	7.0	30.0	274.00	0.30
FH2/2	10.545		15.0	0.0	30.0 20.5				14.0	0.5	29.0	209.25	6.70
	10.645		14.5	0.5	30.5 20 F	14.0	6 5	20 F	15.0	0.5	30.0 20.5	306.23	6.74
EU2/5	16.290		14.5	6.5	29.5	14.0	6.5	29.5	15.0	6.0	29.5	275.22	0.22 E 01
EU2/6	15 590		15.0	6.5	29.5	14.0	7.0	29.0	15.0	7.0	28.0	122 72	2.91
ELI2/7	10.905	12 600	15.0	7.0	21.0	14.5	7.0	30.5	15.0	6.5	20.0	252.06	Z.73
FH2/8	9 890	11.680	15.0	6.5	30.0				14.5	6.0	29.5	232.00	5.42
FH2/0	10 765	12 600	15.0	7.0	30.0				15.0	6.5	20.5	243.31	1.88
FH2/10	17 190	20.260	15.0	6.5	29.5	15.0	75	30.0	15.0	7.0	30.0	106 77	
FH2/11	15 010	18 020	13.5	6.0	29.0	14.5	7.5	29.5	15.0	6.5	30.0	171 02	2.37
FH2/12	13 285	15 560	14.5	6.5	23.0	14.5	6.0	29.5	15.0	7.0	25.5	1/1.02	3.00
1112/12	13.205	13.500	14.5	0.5	24.0	14.0	0.0	24.4	13.0	7.0	25.5	142.33	3.72

	Falazott próbatest méretek és tömegek												
	tämog	tömeg		Felső tégla		ķ	(özépső tégl	la		Alsó tégla		Tärőarő	Nuomáczilárdcág
Jel	[kg]	nedves	Szélesség	magasság	hosszúság	Szélesség	magasság	hosszúság	Szélesség	magasság	hosszúság	[LN]	Nyomosznarusag
	[Kg]	[kg]	[cm]	[cm]	[cm]	[cm]	[cm]	[cm]	[cm]	[cm]	[cm]	[KN]	[14/11112]
AH1/1	10.680		15.0	6.5	30.0				15.0	7.0	30.0	413.42	9.19
AH1/2	8.950		14.0	6.5	25.0				15.0	6.5	25.0	366.33	9.77
AH1/3	9.750		15.0	6.5	30.0				15.0	6.5	29.0	382.61	8.80
AH1/4	16.400		15.0	6.5	30.5	15.0	7.0	30.0	14.5	7.0	30.0	169.13	3.70
AH1/5	14.755		15.0	7.0	30.0	14.5	6.5	30.0	15.0	6.5	30.0	132.87	2.95
AH1/6	14.520		15.0	7.0	30.0	14.0	6.0	28.5	14.5	7.0	30.5	162.47	3.61
AH1/7	9.830	11.580	15.0	6.5	29.5				15.0	6.5	30.0	291.23	6.47
AH1/8	10.240	11.810	15.0	6.5	30.0				15.0	6.5	30.0	162.75	3.62
AH1/9	9.050	10.350	15.0	6.5	28.0				15.0	6.5	28.0	299.79	7.14
AH1/10	14.915	17.560	15.5	6.5	29.5	14.5	6.5	28.5	15.0	6.5	29.5	153.16	3.46
AH1/11	15.660	18.550	15.5	6.5	30.5	15.0	6.0	30.0	15.0	7.0	30.0	254.83	5.66
AH1/12	16.030	18.940	15.5	6.5	30.0	15.5	6.5	28.5	15.0	7.5	30.0	208.56	4.63
				1			1						1
AH2/1	10.400		14.0	6.0	30.0				15.0	6.5	30.0	265.44	5.90
AH2/2	10.330		13.0	6.5	29.5				14.5	6.5	29.0	191.10	4.47
AH2/3	9.955		14.5	6.5	30.0				14.0	6.5	29.0	263.78	6.06
AH2/4	14.295		15.0	6.5	30.5	15.0	6.5	28.0	15.0	7.0	29.5	107.32	2.35
AH2/5	16.170		15.0	6.0	30.0	15.0	6.5	29.5	15.0	7.0	31.0	116.51	2.51
AH2/6	15.570		14.5	6.5	29.5	15.0	6.0	29.5	14.0	7.0	30.0	178.99	4.11
AH2/7	8.940	10.550	15.0	7.5	24.0				15.0	7.0	26.5	174.60	4.39
AH2/8	11.135	13.030	15.0	6.5	30.5				15.0	7.0	30.0	287.92	6.40
AH2/9	10.970	12.750	15.0	6.0	30.5				15.0	6.5	30.5	280.91	6.14
AH2/10	16.740	19.680	15.5	7.0	30.0	15.5	7.0	30.0	15.5	6.5	30.5	225.57	4.77
AH2/11	16.140	19.440	15.0	6.5	30.5	15.0	7.0	30.0	15.0	7.0	30.0	135.36	3.01
AH2/12	17.580	20.800	15.5	7.0	29.5	15.5	7.5	30.5	15.0	6.5	30.0	156.16	3.36

Falazott próbatest méretek és tömegek													
	tämog	tömeg		Felső tégla		ł	<özépső tég	la		Alsó tégla		Törőorő	Nyomáczilárdság
Jel	[kg]	nedves	Szélesség	magasság	hosszúság	Szélesség	magasság	hosszúság	Szélesség	magasság	hosszúság	IUIUEIU [LN]	Nyomosznarusag
	[Kg]	[kg]	[cm]	[cm]	[cm]	[cm]	[cm]	[cm]	[cm]	[cm]	[cm]	[KN]	[14/11112]
BH1/1	9.750	I	15.0	5.5	29.5				15.0	6.5	30.0	309.52	6.88
BH1/2	10.815		15.0	7.0	30.0				14.5	6.5	30.0	223.44	4.97
BH1/3	10.645		14.5	6.5	29.5				15.5	7.0	30.5		0.00
BH1/4	15.360		15.0	7.0	30.0	15.0	6.5	30.0	15.0	6.5	28.0	203.98	4.53
BH1/5	16.010		15.5	7.0	31.5	15.5	6.0	30.0	15.0	7.0	30.0	221.47	4.54
BH1/6	14.705		15.5	7.0	30.0	15.0	7.0	29.0	14.5	6.5	30.0	153.24	3.30
BH1/7	11.240	13.190	15.5	6.5	30.5				15.0	7.0	30.0	205.90	4.58
BH1/8	9.975	11.860	15.5	7.0	31.0				15.0	6.0	30.0	305.77	6.79
BH1/9	8.985	10.650	15.5	6.0	26.0				15.0	6.5	25.5	300.47	7.86
BH1/10	16.320	19.170	16.0	7.0	32.0	14.5	7.0	31.0	15.5	6.5	30.0	106.19	2.28
BH1/11	16.000	18.680	15.0	6.5	30.0	15.0	6.5	30.0	15.0	6.0	30.0	93.13	2.07
BH1/12	14.200	16.670	15.0	6.5	27.0	13.0	6.5	29.0	15.0	6.5	26.5	176.63	4.44
DU12/4	40.245		45.0	6.0	20 5				45.0	6.5	20.0	274 70	6.04
BH2/1	10.345		15.0	6.0	29.5				15.0	6.5	30.0	2/1./0	6.04
BH2/2	10.800		14.5	7.0	30.0				14.5	5.5	29.5	211.01	4.85
BH2/3	10.290		15.0	6.5	29.5				15.0	6.5	30.0	303.95	6.75
BH2/4	17.700		15.0	6.5	30.5	15.5	6.5	30.0	15.0	6.0	30.0	153.31	3.35
BH2/5	15.480		14.0	6.0	29.0	14.5	6.0	27.5	15.0	7.0	30.0	184.64	4.10
BH2/6	15.390		15.5	6.5	30.0	14.0	6.5	28.5	15.0	6.5	30.0	170.16	3.66
BH2/7	6.025	7.140	15.0	6.5	16.5				15.0	6.0	16.5	77.00	3.11
BH2/8	9.900	11.710	15.0	6.0	30.5				14.0	6.0	29.5	266.03	6.44
BH2/9	7.505	8.930	13.0	6.5	25.5				13.5	6.5	25.0	177.38	5.26
BH2/10	17.390	20.210	15.0	6.0	30.5	14.5	6.5	29.5	14.0	6.0	29.5	78.22	1.89
BH2/11	16.630	19.800	15.5	7.0	30.0	14.0	6.5	29.0	15.0	7.0	30.0	147.53	3.28
BH2/12	17.500	20.230	15.5	6.0	30.5	15.0	6.0	30.0	15.0	6.5	30.0	120.28	2.67

M4 melléklet: Tégla mintákon elvégzett szónikus vizsgálatok eredményei

T1 tégla										
	Sebesség mátrix terheletlen[m/s]									
	894	800	2012	1728	1619					
894		823	2084	1789	1728					
800	823		1877	1596	1585					
2012	2084	1877		666	906					
1728	1789	1596	666		626					
1619	1728	1585	906	626						

Sebesség mátrix előterhelve[m/s]									
916 1544 1883 2053 2286									
916		1232	1894	2078	2341				
1544	1232		2060	2216	2479				
1883	1894	2060		932	1375				
2053	2078	2216	932		1261				
2286	2341	2479	1375	1261					

T2 tégla										
	Sebesség mátrix terheletlen[m/s]									
	1036	1252	1693	1694	1637					
1036		913	1688	1691	1684					
1252	913		1730	1758	1782					
1693	1688	1730		896	1195					
1694	1691	1758	896		2353					
1637	1684	1782	1195	2353						

Sebesség mátrix előterhelve[m/s]								
	1117 1434 1988 1886							
1117		1185	1913	1857	1809			
1434	1185		1893	1860	1827			
1988	1913	1893		4545	1425			
1886	1857	1860	4545		1437			
1801	1809	1827	1425	1437				

T3 tégla									
	Sebesség mátrix terheletlen[m/s]								
	765	1384	2232	2168	2208				
765		836	2006	1913	1951				
1384	836		2025	1958	2031				
2232	2006	2025		1429	1642				
2168 1913 1958 1429									
2208	1951	2031	1642	2725					

Sebesség mátrix előterhelve[m/s]								
	1413 1694 2000 1994							
1413		1270 1931 1877		1958				
1694	1270		1902	1857	1986			
2000	2000 1931			993	1474			
1994 1877 1857 993 1								
1927	1927 1958 1986 1474 1040							

T4 tégla									
	Sebesség mátrix terheletlen[m/s]								
	1520	1629	2324	2207	1935				
1520		2604	2257	2152	1932				
1629	2604		2330	2231	1995				
2324	2257	2330		1309	1397				
2207	2152	2231	1309		1208				
1935 1932 1995 1397 1208									

Sebesség mátrix előterhelt[m/s]								
	5682 1595 1992 2152 23							
5682		1553	1960	2152	2362			
1595	1553		1985	2199	2412			
1992	1992 1960			1269	1695			
2152	2152	2199	1269		1553			
2358	2362	2412	1695	1553				

T5 tégla									
	Sebessé	ég mátrix	terheletl	en[m/s]					
	873	1250	2027	1985	1885				
873		998	1849	1834	1774				
1250	998		1910	1925	1881				
2027	1849	1910		1272	1319				
1985 1834 1925 1272 1171									
1885	1885 1774 1881 1319 1171								

Sebesség mátrix előterhelt[m/s]								
	1037 1232 1817 1739							
1037		1033 1829 1768		1861				
1232	1033		1832	1795	1917			
1817	1829	1832		777	1191			
1739	1768	1795	777		804			
1802	1861	1917	1191	804				

T6 tégla								
	Sebesség mátrix terheletlen[m/s]							
	1429	1429	1934	1920	1886			
1429		1229	1876	1866	1886			
1429	1229		1860	1838	1877			
1934	1876	1860		1264	1202			
1920 1866 1838 1264 988								
1886	1886	1877	1202	988				

Sebesség mátrix előterhelt[m/s]								
	1225 1149 1744 1761							
1225		943	1708	1753	1641			
1149	943		1547	1567	1506			
1744	1708	1547		1216	1017			
1761	1753	1567	1216		832			
1604	1641	1506	1017	832				

M5: Rekonstruált korabeli habarcs próbakockákon elvégzett szónikus vizsgálatok eredményei

	FH 5							
		Se	ebesség n	nátrix [m/	/s]			
	868	1043	899	883	567	522	400	
868		400	557	708	743	832	1159	
1043	400		524	696	626	742	717	
899	557	524		571	494	748	746	
883	708	696	571		562	669	749	
567	743	626	494	562		486	508	
522	832	742	748	669	486		675	
400	1159	717	746	749	508	675		

	FH 6							
		Se	ebesség n	nátrix [m/	′s]			
	423	713	398	728	510	512	370	
423		370	370	622	683	882	1139	
713	370		370	560	542	710	621	
398	370	370		370	370	613	518	
728	622	560	370		510	685	655	
510	683	542	370	510		425	443	
512	882	710	613	685	425		710	
370	1139	621	518	655	443	710		

	FH 7							
		Se	ebesség n	nátrix [m/	's]			
	400	793	507	731	540	467	400	
400		400	400	599	666	724	753	
793	400		400	590	581	649	575	
507	400	400		400	403	587	549	
731	599	590	400		656	639	639	
540	666	581	403	656		415	483	
467	724	649	587	639	415		529	
400	753	575	549	639	483	529		

	AH 5										
	Sebesség mátrix [m/s]										
	632	650	848	726	806	690	573				
632		556	789	693	807	756	667				
650	556		635	561	727	732	719				
848	789	635		423	686	784	816				
726	693	561	423		454	589	669				
806	807	727	686	454		566	668				
690	756	732	784	589	566		492				
573	667	719	816	669	668	492					

	AH 6										
Sebesség mátrix [m/s]											
	595	1195	931	916	750	608	400				
595		400	548	716	877	942	1174				
1195	400		517	639	734	767	717				
931	548	517		504	680	791	770				
916	716	639	504		676	781	795				
750	877	734	680	676		685	707				
608	942	767	791	781	685		675				
400	1174	717	770	795	707	675					

AH 7										
Sebesség mátrix [m/s]										
	522	628	625	732	839	700	569			
522		579	638	817	953	888	764			
628	579		503	659	868	839	806			
625	638	503		400	625	693	720			
732	817	659	400		709	731	786			
839	953	868	625	709		631	794			
700	888	839	693	731	631		772			
569	764	806	720	786	794	772				

	FH 12									
Sebesség mátrix [m/s]										
	916	548	640	665	671	588	494			
916		460	554	653	691	683	590			
548	460		862	594	672	662	617			
640	554	862		499	651	650	636			
665	653	594	499		856	575	631			
671	691	672	651	856		457	573			
588	683	662	650	575	457		763			
494	590	617	636	631	573	763				

	FH 13									
Sebesség mátrix [m/s]										
	556	515	621	650	602	553	471			
556		553	615	681	674	699	612			
515	553		1110	563	674	716	691			
621	615	1110		504	626	691	685			
650	681	563	504		841	670	711			
602	674	674	626	841		514	607			
553	699	716	691	670	514		853			
471	612	691	685	711	607	853				

			FH	14					
	Sebesség mátrix [m/s]								
	741	760	825	778	761	730	558		
741		689	760	732	747	747	613		
760	689		902	668	743	772	696		
825	760	902		626	725	781	718		
778	732	668	626		736	699	677		
761	747	743	725	736		559	616		
730	747	772	781	699	559		1255		
558	613	696	718	677	616	1255			

	AH 12										
	Sebesség mátrix [m/s]										
	754	713	737	731	714	646	669				
754		618	688	741	767	782	757				
713	618		1218	712	768	809	787				
737	688	1218		653	716	797	796				
731	741	712	653		715	682	766				
714	767	768	716	715		663	701				
646	782	809	797	682	663		747				
669	757	787	796	766	701	747					

	AH 13									
	Sebesség mátrix [m/s]									
	932	757	848	890	844	779	701			
932		754	812	854	847	843	824			
757	754		1046	774	776	790	806			
848	812	1046		705	769	820	840			
890	854	774	705		787	816	886			
844	847	776	769	787		696	832			
779	843	790	820	816	696		889			
701	824	806	840	886	832	889				

			AH	14						
	Sebesség mátrix [m/s]									
	531	444	582	642	535	487	526			
531		400	500	611	465	546	514			
444	400		526	476	400	498	577			
582	500	526		433	400	528	629			
642	611	476	433		646	589	717			
535	465	400	400	646		485	592			
487	546	498	528	589	485		721			
526	514	577	629	717	592	721				

	BH 5									
	Sebesség mátrix [m/s]									
	400	465	636	631	649	600	414			
400		400	474	525	573	565	429			
465	400		469	461	554	587	538			
636	474	469		419	554	629	618			
631	525	461	419		413	531	574			
649	573	554	554	413		429	534			
600	565	587	629	531	429		473			
414	429	538	618	574	534	473				

	BH 6										
	Sebesség mátrix [m/s]										
	513	607	666	589	676	617	409				
513		475	577	535	655	634	509				
607	475		563	473	673	663	580				
666	577	563		400	689	675	635				
589	535	473	400		519	532	545				
676	655	673	689	519		551	575				
617	634	663	675	532	551		1407				
409	509	580	635	545	575	1407					

	BH 13										
	Sebesség mátrix [m/s]										
	543	610	619	651	658	648	510				
543		555	587	658	651	673	608				
610	555		1672	618	640	687	658				
619	587	1672		499	568	673	645				
651	658	618	499		488	599	637				
658	651	640	568	488		613	622				
648	673	687	673	599	613		1774				
510	608	658	645	637	622	1774					

	BH 7								
		Se	ebesség n	nátrix [m/	′s]				
	454	483	666	594	577	562	444		
454		400	612	582	584	600	553		
483	400		415	433	525	562	575		
666	612	415		401	551	635	679		
594	582	433	401		400	471	579		
577	584	525	551	400		402	513		
562 600 562 635 471 402							628		
444	553	575	679	579	513	628			

	BH 14									
		Se	ebesség n	nátrix [m/	's]					
	544	656	643	697	665	621	509			
544		602	603	689	666	658	579			
656	602		525	653	667	690	652			
643	603	525		501	601	667	604			
697	689	653	501		1281	675	632			
665	666	667	601	1281		525	573			
621	658	690	667	675	525		1656			
509	579	652	604	632	573	1656				

BH 12

Sikertelen vizsgálat

M6 melléklet: A falazott próbatestek habarcs rétegeiben elvégzett szónikus vizsgálatok eredményei

	AH-1/1 terhelés nélkül							
	Se	ebesség n	nátrix [m,	/s]				
	699	818	1256	746	568			
699		868	1160	620	544			
818	868		1896	852	651			
1256	1160	1896		622	544			
746	620	852	622		982			
568	544	651	544	982				

	AH-1/3 terhelés nélkül							
	Se	besség n	nátrix [m,	/s]				
	400	524	894	975	1211			
400		609	612	621	694			
524	609		933	926	505			
894	612	933		496	610			
975	621	926	496		400			
1211	694	505	610	400				

	AH-1/4 terhelés nélkül							
	Se	besség m	nátrix [m/	/s]				
	828	984	785	1046	674			
828		934	1122	927	655			
984	934		988	748	638			
785	1122	988		500	500			
1046	927	748	500		980			
674	655	638	500	980				

AH-1/5 terhelés nélkül							
	Se	besség n	nátrix [m,	/s]			
	1596	927	762	1128	668		
1596		860	784	1322	888		
927	860		774	1489	989		
762	784	774		555	691		
1128 1322 1489 555 9							
668	888	989	691	962			

	AH-1/6 terhelés nélkül						
	Se	besség n	nátrix [m,	/s]			
	500	684	889	1030	847		
500		687	1109	1232	879		
684	687		1138	1262	1008		
889	1109	1138		719	751		
1030	1232	1262	719		994		
847	879	1008	751	994			

	AH-1/7 terhelés nélkül						
	Se	besség n	nátrix [m,	/s]			
	644	848	1252	1076	1040		
644		500	925	625	749		
848	500		951	828	777		
1252	925	951		814	826		
1076 625 828 814 54							
1040	749	777	826	541			

	AH-1/1 terhelés alatt							
	Se	besség n	nátrix [m,	/s]				
	888	881	1304	913	1398			
888		724	1425	983	1487			
881	724		1106	572	837			
1304	1425	1106		500	792			
913	983	572	500		728			
1398	1487	837	792	728				

AH-1/3 terhelés alatt							
	Se	besség n	nátrix [m/	/s]			
	571	739	1127	1254	1634		
571		710	739	765	887		
739	710		979	990	1054		
1127	739	979		730	921		
1254 765 990 730							
1634	887	1054	921	722			

	AH-1/4 terhelés alatt							
	Se	besség n	nátrix [m/	/s]				
	651	607	881	821	985			
651		650	1575	1577	945			
607	650		1432	1351	931			
881	1575	1432		858	797			
821	1577	1351	858		531			
985	945	931	797	531				

AH-1/5 terhelés alatt							
	Sebesség mátrix [m/s]						
	726	553	891	1048	1279		
726		500	1067	1290	1758		
553	500		1100	1258	903		
891	1067	1100		790	717		
1048	1290	1258	790		817		
1279	1758	903	717	817			

AH-1/6 terhelés alatt									
Sebesség mátrix [m/s]									
	768	772	902	1154	1297				
768		713	1192	1473	1648				
772	713		1216	1107	1258				
902	1192	1216		582	833				
1154 1473 1107 582									
1297	1648	1258	833	842					

AH-1/7 terhelés alatt									
	Sebesség mátrix [m/s]								
	708	822	1080	1491	1601				
708		606	1068	1373	1501				
822	606		1525	1294	1465				
1080	1068	1525		660	974				
1491 1373 1294 660 85									
1601	1501	1465	974	855					

AH-1/8 terhelés nélkül									
Sebesség mátrix [m/s]									
	784	475	847	1374	1756				
784		400	886	1606	1720				
475	400		485	571	696				
847	886	485		588	798				
1374 1606 571 588 8									
1756	1720	696	798	898					

AH-1/9 terhelés nélkül									
Sebesség mátrix [m/s]									
	471	752	733	626	773				
471		425	634	641	800				
752	425		762	580	914				
733	634	762		603	693				
626	641	580	603		608				
773	800	914	693	608					

AH-1/10 terhelés nélkül								
	Se	besség n	nátrix [m/	/s]				
	471	605	872	877	749			
471		400	1526	840	769			
605	400		817	1417	999			
872	1526	817		400	532			
877 840 1417 400 259								
749	769	999	532	2591				

AH-1/11 terhelés nélkül									
	Sebesség mátrix [m/s]								
	814	643	1001	884	643				
814		686	1013	915	739				
643	686		845	772	669				
1001	1013	845		699	625				
884 915 772 699 4									
643	739	669	625	400					

AH-1/12 terhelés nélkül									
Sebesség mátrix [m/s]									
	622	750	961	1004	1020				
622		730	987	989	1104				
750	730		869	958	1009				
961	987	869		654	803				
1004 989 958 654 79									
1020	1104	1009	803	796					

AH-2/2 terhelés nélkül									
Sebesség mátrix [m/s]									
	897	500	500	501	570				
897		713	572	500	682				
500	713		628	561	803				
500	572	628		535	678				
501 500 561 535 6									
570	682	803	678	611					

AH-2/3 terhelés nélkül									
	Sebesség mátrix [m/s]								
	755	791	1140	950	1139				
755		586	1238	1009	1148				
791	586		1239	1047	1054				
1140	1238	1239		1847	871				
950 1009 1047 1847 7									
1139	1148	1054	871	779					

AH-1/8 terhelés alatt									
	Sebesség mátrix [m/s]								
	659	950	726	1168	1195				
659		758	797	1348	1349				
950	758		967	1244	1330				
726	797	967		501	631				
1168 1348 1244 501 61									
1195	1349	1330	631	611					

AH-1/9 terhelés alatt									
Sebesség mátrix [m/s]									
	737	1346	1544	1216	1405				
737		461	991	963	1555				
1346	461		1308	1358	1481				
1544	991	1308		1426	1009				
1216 963 1358 1426 1157									
1405	1555	1481	1009	1157					

AH-1/10 terhelés alatt									
Sebesség mátrix [m/s]									
	589	743	1197	1025	983				
589		692	1307	1073	1015				
743	692		1057	902	893				
1197	1307	1057		661	723				
1025 1073 902 661 870									
983	1015	893	723	870					

AH-1/11 terhelés alatt									
Sebesség mátrix [m/s]									
	633	689	1388	1200	1037				
633		400	1035	928	813				
689	400		919	854	735				
1388	1035	919		625	763				
1200 928 854 625 53									
1037	813	735	763	532					

AH-1/12 terhelés alatt									
Sebesség mátrix [m/s]									
	628	762	1210	1143	1153				
628		574	1150	1096	1228				
762	574		997	1074	1275				
1210	1150	997		617	1010				
1143 1096 1074 617									
1153	1228	1275	1010	810					

AH-2/2 terhelés alatt									
Sebesség mátrix [m/s]									
	541	795	955	1216	1266				
541		546	957	765	874				
795	546		1021	857	920				
955	957	1021		1623	702				
1216	765	857	1623		628				
1266	874	920	702	628					

AH-2/3 terhelés alatt									
Sebesség mátrix [m/s]									
	709	859	1260	1289	1183				
709		742	1418	1036	1280				
859	742		1401	954	1466				
1260	1418	1401		500	1256				
1289 1036 954 500 607									
1183	1280	1466	1256	607					

AH-2/4 terhelés nélkül									
Sebesség mátrix [m/s]									
	500	516	504	500	900				
500		791	504	500	576				
516	791		727	567	717				
504	504	727		544	549				
500 500 567 544 500									
900	576	717	549	500					

	AH-2/5 terhelés nélkül									
Sebesség mátrix [m/s]										
	744 593 907 666 620									
744		552	1272	1179	1185					
593	552		925	903	562					
907	1272	925		656	677					
666	1179	903	656		1014					
620	1185	562	677	1014						

AH-2/6 terhelés nélkül									
	Sebesség mátrix [m/s]								
	650	500	537	500	500				
650		500	641	500	544				
500	500		526	500	503				
537	641	526		500	501				
500	500	500	500		500				
500	500 544 503 501 500								

AH-2/7 terhelés nélkül										
	Sebesség mátrix [m/s]									
	859	524	697	661	692					
859		438	596	637	742					
524	438		568	532	606					
697	596	568		432	617					
661	637	532	432		799					
692	742	606	617	799						

692	/42	606	617	799		
	AH	1-2/8 terl	helés néll	kül		
	Se	besség n	nátrix [m	/s]		
	400	423	695	684	694	
400		400	579	611	669	
423	400		499	493	559	
695	579	499		400	545	
684	611	493	400		856	
694	669	559	545	856		

AH-2/9 terhelés nélkül									
Sebesség mátrix [m/s]									
	730 400 679 637 585								
730		400	679	656	684				
400	400		400	400	400				
679	679	400		583	580				
637	656	400	583		411				
585	684	400	580	411					

	AH-2/10 terhelés nélkül									
	Sebesség mátrix [m/s]									
	400	690	400	509	719					
400		568	449	525	759					
690	568		599	717	1033					
400	449	599		400	508					
509	525	717	400		445					
719	759	1033	508	445						

AH-2/4 terhelés alatt									
	Sebesség mátrix [m/s]								
	706	829	998	1215	1267				
706		635	1191	1312	1282				
829	635		1293	1376	1288				
998	1191	1293		539	713				
1215 1312 1376 539 50									
1267	1267 1282 1288 713 500								

AH-2/5 terhelés alatt								
Sebesség mátrix [m/s]								
	562	852	891	948	1081			
562		832	1461	1231	1013			
852	832		1699	1346	932			
891	1461	1699		794	635			
948	1231	1346	794		500			
1081	1013	932	635	500				

AH-2/6 terhelés alatt									
	Sebesség mátrix [m/s]								
	650	441	537	465	400				
650		400	641	493	544				
441	400		526	500	503				
537	641	526		488	501				
465	493	500	488		400				
400	544	503	501	400					

AH-2/7 terhelés alatt									
	Sebesség mátrix [m/s]								
	623	832	1106	1067	898				
623		539	875	912	863				
832	539		860	962	936				
1106	875	860		475	592				
1067	912	962	475		464				
898	863	936	592	464					

AH-2/8 terhelés alatt								
Sebesség mátrix [m/s]								
	684	756	1298	1364	1342			
684		611	1376	1460	1495			
756	611		1218	1177	1133			
1298	1376	1218		688	902			
1364	1460	1177	688		868			
1342	1495	1133	902	868				

AH-2/9 terhelés alatt									
	Sebesség mátrix [m/s]								
	547	650	1115	1193	1241				
547		1802	1103	1140	1227				
650	1802		872	954	1036				
1115	1103	872		3185	881				
1193	1140	954	3185		665				
1241	1227	1036	881	665					

AH-2/10 terhelés alatt								
Sebesség mátrix [m/s]								
	617	933	1230	1126	1281			
617		615	1207	1137	1453			
933	615		1323	1284	1664			
1230	1207	1323		693	1166			
1126	1137	1284	693		926			
1281	1453	1664	1166	926				

AH-2/11 terhelés alatt								
Sebesség mátrix [m/s]								
	747	702	1051	903	1076			
747		487	1016	947	1218			
702	487		822	797	1022			
1051	1016	822		507	857			
903	947	797	507		462			
1076	1218	1022	857	462				

AH-2/12 terhelés alatt								
Sebesség mátrix [m/s]								
	732	746	949	739	1012			
732		513	808	677	1014			
746	513		1056	1058	1192			
949	808	1056		479	741			
739	677	1058	479		563			
1012	1014	1192	741	563				

BH-1/2 terhelés alatt								
Sebesség mátrix [m/s]								
	500	633	905	1691	1611			
500		603	1353	1099	939			
633	603		1797	1355	843			
905	1353	1797		920	901			
1691	1099	1355	920		1004			
1611	939	843	901	1004				

BH-1/4 terhelés alatt									
	Sebesség mátrix [m/s]								
	400	488	996	693	562				
400		400	849	646	400				
488	400		687	466	400				
996	849	687		400	468				
693	646	466	400		400				
562	400	400	468	400					

BH-1/5 terhelés alatt								
Sebesség mátrix [m/s]								
	456	531	683	811	400			
456		696	1043	1389	695			
531	696		1037	1259	747			
683	1043	1037		598	494			
811	1389	1259	598		602			
400	695	747	494	602				

BH-1/6 terhelés alatt								
Sebesség mátrix [m/s]								
	400	550	919	805	505			
400		615	1294	1208	878			
550	615		1145	1101	828			
919	1294	1145		1000	777			
805	1208	1101	1000		665			
505	878	828	777	665				

BH-1/7 terhelés alatt								
Sebesség mátrix [m/s]								
	493	751	1087	1242	1063			
493		595	1022	1140	1017			
751	595		1050	1121	1015			
1087	1022	1050		680	752			
1242	1140	1121	680		602			
1063	1017	1015	752	602				

AH-2/11 terhelés nélkül									
	Sebesség mátrix [m/s]								
	585	620	695	685	522				
585		400	669	707	578				
620	400		731	811	685				
695	669	731		882	563				
685	707	811	882		400				
522	578	685	563	400					

AH-2/12 terhelés nélkül								
	Se	besség m	nátrix [m,	/s]				
	400	467	624	628	412			
400		458	481	461	429			
467	458		582	547	609			
624	481	582		400	1112			
628	461	547	400		482			
412	429	609	1112	482				

	BF	I-1/2 teri	neles nell	cul				
	Se	besség m	nátrix [m,	/s]				
	400	400	400	486	822			
400		400	522	944	419			
400	400		682	984	697			
400	522	682		734	400			
486	944	984	734		577			
822	419	697	400	577				

	BH-1/4 terhelés nélkül								
	Sebesség mátrix [m/s]								
	443	658	956	839	771				
443		439	690	602	499				
658	439		550	783	644				
956	690	550		400	451				
839	602	783	400		400				
771	499	644	451	400					

	BH-1/5 terhelés nélkül								
	Sebesség mátrix [m/s]								
	565	424	846	696	892				
565		553	844	782	662				
424	553		617	400	400				
846	844	617		437	441				
696	782	400	437		421				
892	662	400	441	421					

BH-1/6 terhelés nélkül									
	Sebesség mátrix [m/s]								
	640	400	781	661	690				
640		400	709	563	674				
400	400		400	400	400				
781	709	400		400	400				
661	563	400	400		400				
690	674	400	400	400					

BH-1/7 terhelés nélkül								
	Se	besség n	nátrix [m,	/s]				
	571	614	665	769	716			
571		526	1050	1052	766			
614	526		930	879	749			
665	1050	930		535	643			
769	1052	879	535		1961			
716	766	749	643	1961				

BH-1/8 terhelés nélkül									
	Sebesség mátrix [m/s]								
	747	753	923	845	943				
747		507	1019	971	1096				
753	507		838	1299	1393				
923	1019	838		724	763				
845	971	1299	724		749				
943	1096	1393	763	749					

BH-1/9 terhelés nélkül									
	Sebesség mátrix [m/s]								
	992	1026	1117	1009	1227				
992		579	927	865	926				
1026	579		701	709	532				
1117	927	701		939	611				
1009	865	709	939		537				
1227	926	532	611	537					

	BH-1/10 terhelés nélkül								
	Se	besség n	nátrix [m,	/s]					
	400	513	774	1008	471				
400		525	932	969	642				
513	525		841	735	788				
774	932	841		400	1165				
1008	969	735	400		468				
471	642	788	1165	468					

BH-1/11 terhelés nélkül									
	Sebesség mátrix [m/s]								
	691	545	814	627	861				
691		521	731	814	989				
545	521		766	914	1064				
814	731	766		433	769				
627	814	914	433		499				
861	989	1064	769	499					

801	909	1004	709	455							
BH-1/12 terhelés nélkül											
	Se	besség n	nátrix [m/	/s]							
	657	923	853	1208	905						
657		608	766	994	806						
923	608		1009	1394	1186						
853	766	1009		608	722						
1208	994	1394	608		711						
905	806	1186	722	711							

BH-2/1 terhelés nélkül									
Sebesség mátrix [m/s]									
	500	500	742	663	523				
500		626	977	892	500				
500	626		968	896	500				
742	977	968		587	500				
663	892	896	587		500				
523	500	500	500	500					

BH-2/2 terhelés nélkül									
	Sebesség mátrix [m/s]								
	468	424	606	514	531				
468		400	610	570	498				
424	400		544	660	436				
606	610	544		586	400				
514	570	660	586		586				
531	498	436	400	586					

BH-1/8 terhelés alatt									
	Sebesség mátrix [m/s]								
	843	898	1061	1079	1244				
843		666	1220	1137	1389				
898	666		1385	1499	1696				
1061	1220	1385		890	884				
1079	1137	1499	890		759				
1244	1389	1696	884	759					

BH-1/9 terhelés alatt									
Sebesség mátrix [m/s]									
	865	557	1193	1054	1096				
865		438	1282	1188	1295				
557	438		1111	1000	777				
1193	1282	1111		856	801				
1054	1188	1000	856		426				
1096	1295	777	801	426					

BH-1/10 terhelés alatt										
	Sebesség mátrix [m/s]									
	642	672	872	809	1174					
642		662	1145	991	1538					
672	662		951	977	1201					
872	1145	951		476	812					
809	991	977	476		556					
1174	1538	1201	812	556						

BH-1/11 terhelés alatt									
	Sebesség mátrix [m/s]								
	520	698	731	825	873				
520		840	1029	1105	1170				
698	840		1146	1335	1381				
731	1029	1146		609	806				
825	1105	1335	609		671				
873	1170	1381	806	671					

BH-1/12 terhelés alatt									
Sebesség mátrix [m/s]									
	920	1214	1356	1595	1395				
920		898	1176	1485	1377				
1214	898		1210	1540	1474				
1356	1176	1210		646	869				
1595	1485	1540	646		865				
1395	1377	1474	869	865					

BH-2/1 terhelés alatt									
	Sebesség mátrix [m/s]								
	517	912	1190	1010	885				
517		500	723	1016	1271				
912	500		1200	1045	876				
1190	723	1200		609	719				
1010	1016	1045	609		596				
885	1271	876	719	596					

BH-2/2 terhelés alatt									
	Sebesség mátrix [m/s]								
	643	814	1128	767	957				
643		524	919	768	891				
814	524		1127	1056	965				
1128	919	1127		646	684				
767	768	1056	646		638				
957	891	965	684	638					

BH-2/3 terhelés nélkül									
	Sebesség mátrix [m/s]								
	445	512	867	903	829				
445		767	553	547	600				
512	767		437	442	444				
867	553	437		510	500				
903	547	442	510		400				
829	600	444	500	400					

	BH-2/4 terhelés nélkül									
I	Sebesség mátrix [m/s]									
I		639	845	1188	1005	1050				
I	639		711	1009	894	1105				
I	845	711		1029	971	1155				
I	1188	1009	1029		630	729				
I	1005	894	971	630		493				
I	1050	1105	1155	729	493					

	BH-2/5 terhelés nélkül							
	Se	besség n	nátrix [m/	/s]				
	512	477	654	455	663			
512		423	528	629	424			
477	423		587	400	491			
654	528	587		400	541			
455	629	400	400		445			
663	424	491	541	445				

	BH-2/6 terhelés nélkül						
	Sebesség mátrix [m/s]						
	400	494	620	663	874		
400		589	662	624	959		
494	589		784	826	847		
620	662	784		690	645		
663	624	826	690		543		
874	959	847	645	543			

	BH-2/7 terhelés nélkül						
Sebesség mátrix [m/s]							
	400	400	811	654	675		
400		400	933	423	615		
400	400		584	1197	454		
811	933	584		400	400		
654	423	1197	400		527		
675	615	454	400	527			

	BH-2/8 terhelés nélkül						
	Sebesség mátrix [m/s]						
	400	400	514	438	520		
400		400	690	606	743		
400	400		735	760	875		
514	690	735		658	525		
438	606	760	658		527		
520	743	875	525	527			

	BH-2/9 terhelés nélkül							
	Se	besség n	nátrix [m,	/s]				
	751	764	972	949	979			
751		649	981	973	1055			
764	649		899	1011	958			
972	981	899		688	993			
949	973	1011	688		803			
979	1055	958	993	803				

	BH-2/3 terhelés alatt						
Sebesség mátrix [m/s]							
	822	945	1234	1446	1743		
822		625	1009	1205	1484		
945	625		1062	1217	1337		
1234	1009	1062		608	846		
1446	1205	1217	608		878		
1743	1484	1337	846	878			

BH-2/4 terhelés alatt							
	Se	besség n	nátrix [m,	/s]			
	693	996	1250	1123	1133		
693		824	1034	905	967		
996	824		1354	1174	1235		
1250	1034	1354		566	714		
1123	905	1174	566		490		
1133	967	1235	714	490			

BH-2/5 terhelés a	alatt
Sebesség mátrix [m/s]

Sikertelen vizsgálat

BH-2/6 terhelés alatt							
	Sebesség mátrix [m/s]						
	494	858	1077	848	1097		
494		587	900	723	966		
858	587		1291	989	1269		
1077	900	1291		627	887		
848	723	989	627		702		
1097	966	1269	887	702			

BH-2/7 terhelés alatt								
	Sebesség mátrix [m/s]							
	613	666	986	1014	934			
613		604	913	1001	1034			
666	604		889	1010	888			
986	913	889		1398	661			
1014	1001	1010	1398		674			
934	1034	888	661	674				

		BH-2/8 terhelés alatt						
Sebesség mátrix [m/s]								
		597	801	948	878	996		
	597		666	951	906	1139		
	801	666		982	1076	1288		
	948	951	982		830	704		
	878	906	1076	830		879		
	996	1139	1288	704	879			

	BH-2/9 terhelés alatt						
	Sebesség mátrix [m/s]						
	655	788	786	1219	703		
655		619	717	1211	997		
788	619		1230	920	1871		
786	717	1230		424	1681		
1219	1211	920	424		666		
703	997	1871	1681	666			

BH-2/10 terhelés nélkül							
Sebesség mátrix [m/s]							
	595	630	1016	883	821		
595		478	893	789	724		
630	478		854	803	762		
1016	893	854		792	794		
883	789	803	792		529		
821	724	762	794	529			

BH-2/11 terhelés nélkül									
	Sebesség mátrix [m/s]								
	835	511	696	758	928				
835		497	630	844	1047				
511	497		618	904	802				
696	630	618		824	699				
758	844	904	824		585				
928	1047	802	699	585					

BH-2/12 terhelés nélkül								
	Se	besség n	nátrix [m,	/s]				
	400	435	645	508	655			
400		696	851	791	768			
435	696		895	914	813			
645	851	895		614	656			
508	791	914	614		504			
655	768	813	656	504				

	FH-1/1 terhelés nélkül								
	Sebesség mátrix [m/s]								
	468	400	607	580	849				
468		572	979	814	788				
400	572		915	577	489				
607	979	915		557	599				
580	814	577	557		510				
849	788	489	599	510					

849	/88	489	599	510		1285	
	FH						
	Se	besség m	nátrix [m,	/s]			
	457	400	754	707	893		
457		479	800	763	877	742	
400	479		609	557	790	1803	
754	800	609		516	1004	1991	
707	763	557	516		645	1178	
893	877	790	1004	645		887	

FH-1/3 terhelés nélkül									
	Sebesség mátrix [m/s]								
	400	400	469	812	566				
400		400	657	882	703				
400	400		1136	918	617				
469	657	1136		590	528				
812	882	918	590		473				
566	703	617	528	473					

FH-1/4 terhelés nélkül
Sebesség mátrix [m/s]
Sikertelen vizsgálat

BH-2/10 terhelés alatt								
	Sebesség mátrix [m/s]							
	701	897	1139	849	872			
701		571	920	718	798			
897	571		891	764	854			
1139	920	891		678	757			
849	718	764	678		508			
872	798	854	757	508				

BH-2/11 terhelés alatt								
Sebesség mátrix [m/s]								
	654	647	1035	987	952			
654		556	1146	1203	1252			
647	556		1074	1183	1209			
1035	1146	1074		901	999			
987	1203	1183	901		822			
952	1252	1209	999	822				

BH-2/12 terhelés alatt								
	Sebesség mátrix [m/s]							
	657	755	1136	1015	1160			
657		584	1152	1063	1211			
755	584		1029	970	1117			
1136	1152	1029		602	820			
1015	1063	970	602		586			
1160	1211	1117	820	586				

FH-1/1 terhelés alatt								
	Sebesség mátrix [m/s]							
	605	637	1330	1331	1285			
605		568	1357	1185	1209			
637	568		1186	941	881			
1330	1357	1186		750	1103			
1331	1185	941	750		684			
1285	1209	881	1103	684				

FH-1/2 terhelés alatt								
	Sebesség mátrix [m/s]							
	742	1803	1991	1178	887			
742		470	936	792	969			
1803	470		1296	966	990			
1991	936	1296		607	489			
1178	792	966	607		485			
887	969	990	489	485				

FH-1/3 terhelés alatt									
Sebesség mátrix [m/s]									
	509	722	1192	1200	1325				
509		509	1121	1111	1057				
722	509		1305	970	983				
1192	1121	1305		654	855				
1200	1111	970	654		865				
1325	1057	983	855	865					

FH-1/4 terhelés alatt									
Sebesség mátrix [m/s]									
	675	823	1245	1336	1080				
675		557	1260	1449	1108				
823	557		1146	1310	937				
1245	1260	1146		724	791				
1336 1449 1310 724 7									
1080	1108	937	791	743					

FH-1/5 terhelés nélkül									
Sebesség mátrix [m/s]									
	855	949	1024	887	1043				
855		745	927	784	1052				
949	745		933	777	1045				
1024	927	933		500	776				
887 784 777 500									
1043	1052	1045	776	500					

FH-1/6 terhelés nélkül									
Sebesség mátrix [m/s]									
	456	442	400	591	535				
456		608	752	1122	972				
442	608		640	983	823				
400	752	640		581	538				
591	1122	983	581		691				
535	972	823	538	691					

FH-1/7 terhelés nélkül									
Sebesség mátrix [m/s]									
	549	719	585	1074	564				
549		784	889	1981	1274				
719	784		711	1628	1083				
585	889	711		494	524				
1074	1981	1628	494		722				
564	1274	1083	524	722					

FH-1/8 terhelés nélkül									
	Sebesség mátrix [m/s]								
	585	662	1034	961	975				
585		534	1014	957	949				
662	534		866	761	815				
1034	1014	866		563	847				
961	957	761	563		621				
975	949	815	847	621					

FH-1/9 terhelés nélkül									
	Sebesség mátrix [m/s]								
	481	640	722	850	552				
481		496	714	854	564				
640	496		714	876	638				
722	714	714		547	518				
850	854	876	547		516				
552	564	638	518	516					

FH-1/10 terhelés nélkül									
	Sebesség mátrix [m/s]								
	400	609	470	497	583				
400		451	497	515	644				
609	451		545	537	705				
470	497	545		434	400				
497 515 537 434									
583	644	705	400	403					

FH-1/11 terhelés nélkül									
	Sebesség mátrix [m/s]								
	594	707	819	555	400				
594		585	901	591	493				
707	585		859	571	694				
819	901	859		400	546				
555	591	571	400		438				
400	493	694	546	438					

FH-1/5 terhelés alatt								
Sebesség mátrix [m/s]								
	567	784	1227	1032	1264			
567		566	1080	907	1206			
784	566		1156	1056	1371			
1227	1080	1156		765	1091			
1032	907	1056	765		763			
1264	1206	1371	1091	763				

FH-1/6 terhelés alatt									
Sebesség mátrix [m/s]									
	690 740 801 1256 1165								
690		658	911	1442	1432				
740	658		698	1084	1000				
801	911	698		565	635				
1256	1442	1084	565		772				
1165	1432	1000	635	772					

FH-1/7 terhelés alatt									
	Sebesség mátrix [m/s]								
	778	902	883	1650	1649				
778		839	997	2087	1918				
902	839		1045	1826	1698				
883	997	1045		493	800				
1650	2087	1826	493		962				
1649	1918	1698	800	962					

FH-1/8 terhelés alatt								
Sebesség mátrix [m/s]								
	739 1072 1810 1752 1850							
739		537	1586	1485	1516			
1072	537		1519	1332	1392			
1810	1586	1519		1062	1546			
1752	1485	1332	1062		1124			
1850	1516	1392	1546	1124				

FH-1/9 terhelés alatt								
Sebesség mátrix [m/s]								
692 1063 1346 1411 12								
692		754	1355	1383	1345			
1063	754		1316	1343	1348			
1346	1355	1316		747	1109			
1411	1383	1343	747		1012			
1271	1345	1348	1109	1012				

FH-1/10 terhelés alatt									
Sebesség mátrix [m/s]									
	400	413	622	400	888				
400		515	1017	579	894				
413	515		1561	950	825				
622	1017	1561		624	785				
400	579	950	624		400				
888	894	825	785	400					

FH-1/11 terhelés alatt									
Sebesség mátrix [m/s]									
	634	873	1456	1443	1631				
634		644	1222	1178	1302				
873	644		1444	1346	1457				
1456	1222	1444		696	1126				
1443	1178	1346	696		720				
1631	1302	1457	1126	720					

FH-1/12 terhelés nélkül									
Sebesség mátrix [m/s]									
	730	741	993	871	980				
730		536	937	798	951				
741	536		804	683	796				
993	937	804		425	701				
871	798	683	425		470				
980	951	796	701	470					

FH-2/1 terhelés nélkül									
Sebesség mátrix [m/s]									
	400	537	686	564	617				
400		427	705	605	725				
537	427		658	621	801				
686	705	658		400	662				
564	605	621	400		455				
617	725	801	662	455					

FH-2/2 terhelés nélkül									
Sebesség mátrix [m/s]									
	465 445 527 469 501								
465		461	471	468	466				
445	461		400	400	400				
527	471	400		540	588				
469	468	400	540		506				
501	466	400	588	506					

FH-2/3 terhelés nélkül									
	Sebesség mátrix [m/s]								
	400	400	404	468	696				
400		405	434	400	436				
400	405		431	400	487				
404	434	431		400	400				
468	400	400	400		400				
696	436	487	400	400					

FH-2/4 terhelés nélkül									
Sebesség mátrix [m/s]									
	400	400	455	400	400				
400		400	457	400	461				
400	400		406	400	504				
455	457	406		400	400				
400	400	400	400		400				
400	461	504	400	400					

FH-2/5 terhelés nélkül								
Sebesség mátrix [m/s]								
	640	576	740	901	942			
640		635	791	978	833			
576	635		1003	735	708			
740	791	1003		586	585			
901	978	735	586		669			
942	833	708	585	669				

FH-2/7 terhelés nélkül									
Sebesség mátrix [m/s]									
	745	634	555	529	706				
745		523	536	637	667				
634	523		707	631	825				
555	536	707		611	586				
529	637	631	611		860				
706	667	825	586	860					

FH-1/12 terhelés alatt								
Sebesség mátrix [m/s]								
	510	474	1472	1503	1527			
510		400	1166	1065	1052			
474	400		1090	1055	1055			
1472	1166	1090		899	1303			
1503	1065	1055	899		826			
1527	1052	1055	1303	826				

FH-2/1 terbelés alatt						
	Se	besseg m	natrix [m/	/sj		
586 838 1156 1000 10						
586		601	985	873	966	
838	601		1067	1028	1132	
1156	985	1067		627	856	
1000	873	1028	627		735	
1003	966	1132	856	735		

FH-2/2 terhelés alatt						
Sebesség mátrix [m/s]						
559 716 504 1110 109						
559		466	400	875	960	
716	466		580	579	685	
504	400	580		400	400	
1110	875	579	400		487	
1098	960	685	400	487		

FH-2/3 terhelés alatt						
Sebesség mátrix [m/s]						
445 581 769 910 7						
445		400	734	938	672	
581	400		654	798	629	
769	734	654		420	444	
910	938	798	420		628	
711	672	629	444	628		

FH-2/4 terhelés alatt						
Sebesség mátrix [m/s]						
470 676 970 851 8						
470		456	915	742	795	
676	456		833	780	846	
970	915	833		506	749	
851	742	780	506		496	
815	795	846	749	496		

FH-2/5 terhelés alatt						
Sebesség mátrix [m/s]						
587 836 1026 1208 111						
587		629	985	1191	1158	
836	629		1072	1224	1178	
1026	985	1072		569	735	
1208	1191	1224	569		622	
1115	1158	1178	735	622		

FH-2/7 terhelés alatt									
Sebesség mátrix [m/s]									
607 1122 1573 1537 129									
607		422	997	1242	1552				
1122	422		1240	1341	1429				
1573	997	1240		750	957				
1537	1242	1341	750		793				
1297	1552	1429	957	793					
FH-2/8 terhelés nélkül									
------------------------	-----	-----	-----	-----	-----	--	--	--	--
Sebesség mátrix [m/s]									
	510	573	731	780	929				
510		696	678	718	961				
573	696		685	783	993				
731	678	685		741	757				
780	718	783	741		607				
929	961	993	757	607					

FH-2/9 terhelés nélkül									
Sebesség mátrix [m/s]									
	526	614	763	814	715				
526		406	870	931	876				
614	406		485	494	496				
763	870	485		400	586				
814	931	494	400		502				
715	876	496	586	502					

FH-2/10 terhelés nélkül									
Sebesség mátrix [m/s]									
	466	456	609	635	671				
466		510	519	590	692				
456	510		521	627	728				
609	519	521		672	564				
635	590	627	672		400				
671	692	728	564	400					

FH-2/11 terhelés nélkül									
	Sebesség mátrix [m/s]								
	574	533	535	665	684				
574		682	719	943	648				
533	682		725	932	566				
535	719	725		485	544				
665	943	932	485		721				
684	648	566	544	721					

FH-2/12 terhelés nélkül									
Sebesség mátrix [m/s]									
	443	655	839	698	688				
443		615	670	605	677				
655	615		761	664	746				
839	670	761		873	765				
698	605	664	873		669				
688	677	746	765	669					

FH-2/8 terhelés alatt									
	Sebesség mátrix [m/s]								
	781	1036	1199	1285	1391				
781		3106	1323	1367	1503				
1036	3106		1507	1578	1610				
1199	1323	1507		692	958				
1285	1367	1578	692		812				
1391	1503	1610	958	812					

FH-2/9 terhelés alatt									
Sebesség mátrix [m/s]									
	780	563	1242	1483	1317				
780		400	1148	1397	1285				
563	400		617	715	722				
1242	1148	617		715	773				
1483	1397	715	715		786				
1317	1285	722	773	786					

FH-2/10 terhelés alatt									
	Sebesség mátrix [m/s]								
	743	736	1079	1063	1087				
743		559	1176	1207	1298				
736	559		1171	1143	1198				
1079	1176	1171		602	902				
1063	1207	1143	602		670				
1087	1298	1198	902	670					

FH-2/11 terhelés alatt									
Sebesség mátrix [m/s]									
	468	1351	1091	1193	1014				
468		400	705	914	1208				
1351	400		900	1113	1174				
1091	705	900		505	750				
1193	914	1113	505		772				
1014	1208	1174	750	772					

FH-2/12 terhelés alatt									
Sebesség mátrix [m/s]									
	596	821	1198	1224	1239				
596		541	1058	1049	1126				
821	541		1349	1313	1254				
1198	1058	1349		2317	950				
1224	1049	1313	2317		792				
1239	1126	1254	950	792					

M7 melléklet: Falazott próbatesteken elvégzett függőleges irányú szónikus vizsgálatok eredményei

AH-1/1									
	Sebesség mátrix [m/s]								
	543	757	663	585	572				
543		640	648	635	721				
757	640		618	723	877				
663	648	618		500	691				
585	635	723	500		520				
572	721	877	691	520					

	AH-1/4								
	Sebesség mátrix [m/s]								
	616	1070	869	757	696				
616		651	782	710	686				
1070	651		860	792	780				
869	782	860		696	879				
757	710	792	696		558				
696	686	780	879	558					

AH-1/6								
	Sebesség mátrix [m/s]							
	726	1120	644	588	535			
726		737	599	576	555			
1120	737		590	609	617			
644	599	590		760	954			
588	576	609	760		634			
535	555	617	954	634				

	AH-1/8								
	Sebesség mátrix [m/s]								
	887	1074	646	773	807				
887		682	645	672	765				
1074	682		738	626	670				
646	645	738		711	970				
773	672	626	711		760				
807	765	670	970	760					

	AH-1/10								
	Sebesség mátrix [m/s]								
	833	1102	870	885	822				
833		763	864	891	827				
1102	763		869	930	880				
870	864	869		773	1163				
885	891	930	773		860				
822	827	880	1163	860					

	AH-1/12							
	Sebesség mátrix [m/s]							
	1124	1353	1150	1069	911			
1124		1214	1232	1199	1027			
1353	1214		1149	1181	1067			
1150	1232	1149		962	1247			
1069	1199	1181	962		1043			
911	1027	1067	1247	1043				

AH-1/3								
	Sebesség mátrix [m/s]							
	966	1146	773	666	560			
966		868	782	780	785			
1146	868		702	826	928			
773	782	702		620	862			
666	780	826	620		630			
560	785	928	862	630				

AH-1/5								
	Sebesség mátrix [m/s]							
	434	702	504	507	500			
434		429	415	439	464			
702	429		402	442	485			
504	415	402		430	579			
507	439	442	430		400			
500	464	485	579	400				

AH-1/7								
	Sebesség mátrix [m/s]							
	712	1053	762	691	669			
712		637	534	531	638			
1053	637		606	555	707			
762	534	606		731	1144			
691	531	555	731		760			
669	638	707	1144	760				

AH-1/9								
	Sebesség mátrix [m/s]							
	939	1103	595	600	760			
939		759	595	500	654			
1103	759		679	569	587			
595	595	679		608	1035			
600	500	569	608		659			
760	654	587	1035	659				

AH-1/11								
	Sebesség mátrix [m/s]							
	946	1211	884	945	913			
946		877	850	892	901			
1211	877		875	861	868			
884	850	875		850	1055			
945	892	861	850		717			
913	901	868	1055	717				

AH-2/1								
	Sebesség mátrix [m/s]							
	474	709	470	400	400			
474		507	505	437	400			
709	507		520	542	530			
470	505	520		539	652			
400	437	542	539		520			
400	400	530	652	520				

AH-2/2								
	Sebesség mátrix [m/s]							
	752	1029	622	538	492			
752		778	652	545	520			
1029	778		675	650	547			
622	652	675		676	740			
538	545	650	676		611			
492	520	547	740	611				

AH-2/5								
	Sebesség mátrix [m/s]							
	457	704	554	495	521			
457		506	531	493	530			
704	506		571	543	601			
554	531	571		453	695			
495	493	543	453		505			
521	530	601	695	505				

	AH-2/7								
	Sebesség mátrix [m/s]								
	1992	1477	1110	1080	828				
1992		1087	1075	1152	979				
1477	1087		908	1056	1017				
1110	1075	908		864	1181				
1080	1152	1056	864		763				
828	979	1017	1181	763					

	AH-2/9								
	Sebesség mátrix [m/s]								
	1509	1711	1145	1193	1008				
1509		1238	1060	1051	1185				
1711	1238		1094	1037	1457				
1145	1060	1094		705	1808				
1193	1051	1037	705		929				
1008	1185	1457	1808	929					

AH-2/11								
	Sebesség mátrix [m/s]							
	794	1134	881	873	904			
794		838	911	915	994			
1134	838		815	837	924			
881	911	815		771	1231			
873	915	837	771		768			
904	994	924	1231	768				

FH-1/1								
	Sebesség mátrix [m/s]							
	752	1127	723	729	653			
752		950	639	715	798			
1127	950		621	709	886			
723	639	621		767	1068			
729	715	709	767		748			
653	798	886	1068	748				

	AH-2/3								
	Sebesség mátrix [m/s]								
	883	1344	781	865	790				
883		953	682	814	864				
1344	953		660	861	956				
781	682	660		770	1117				
865	814	861	770		807				
790	864	956	1117	807					

AH-2/6								
	Sebesség mátrix [m/s]							
	500	753	597	556	508			
500		500	535	514	500			
753	500		615	626	609			
597	535	615		596	805			
556	514	626	596		585			
508	500	609	805	585				

AH-2/8								
	Sebesség mátrix [m/s]							
	1251	1482	1173	1082	1033			
1251		1200	1098	1087	1076			
1482	1200		1069	1123	1155			
1173	1098	1069		1059	1312			
1082	1087	1123	1059		828			
1033	1076	1155	1312	828				

AH-2/10								
	Sebesség mátrix [m/s]							
	718	839	689	616	583			
718		852	830	714	652			
839	852		891	777	685			
689	830	891		664	899			
616	714	777	664		559			
583	652	685	899	559				

AH-2/12								
	Sebesség mátrix [m/s]							
	702	1043	722	681	695			
702		907	795	734	739			
1043	907		847	820	834			
722	795	847		682	1020			
681	734	820	682		627			
695	739	834	1020	627				

FH-1/2								
	Sebesség mátrix [m/s]							
	827	974	835	720	657			
827		895	826	855	959			
974	895		607	806	1050			
835	826	607		889	1315			
720	855	806	889		842			
657	959	1050	1315	842				

FH-1/3								
	Sebesség mátrix [m/s]							
	1455	1205	855	568	632			
1455		1258	990	694	755			
1205	1258		816	749	899			
855	990	816		666	1230			
568	694	749	666		653			
632	755	899	1230	653				

FH-1/6								
	Sebesség mátrix [m/s]							
	690	860	650	553	593			
690		504	646	540	565			
860	504		643	562	542			
650	646	643		590	739			
553	540	562	590		435			
593	565	542	739	435				

	FH-1/8								
	Sebesség mátrix [m/s]								
	867	1020	764	811	901				
867		765	698	707	955				
1020	765		652	630	791				
764	698	652		769	1243				
811	707	630	769		890				
901	955	791	1243	890					

FH-1/10								
	Sebesség mátrix [m/s]							
	756	1117	710	691	585			
756		815	680	697	619			
1117	815		727	805	727			
710	680	727		606	723			
691	697	805	606		575			
585	619	727	723	575				

FH-1/12								
	Sebesség mátrix [m/s]							
	905	1201	920	791	802			
905		746	858	774	830			
1201	746		842	790	872			
920	858	842		672	1150			
791	774	790	672		669			
802	830	872	1150	669				

	FH-2/3							
	Sebesség mátrix [m/s]							
	470	680	487	556	510			
470		478	400	459	492			
680	478		400	533	601			
487	400	400		471	647			
556	459	533	471		592			
510	492	601	647	592				

	FH-1/5							
	Sebesség mátrix [m/s]							
	565	900	571	533	400			
565		585	522	522	424			
900	585		463	503	443			
571	522	463		697	811			
533	522	503	697		539			
400	424	443	811	539				

FH-1/7									
	Sebesség mátrix [m/s]								
	816	992	635	540	500				
816		609	604	529	611				
992	609		589	577	705				
635	604	589		739	1130				
540	529	577	739		837				
500	611	705	1130	837					

FH-1/9									
	Sebesség mátrix [m/s]								
	885	1149	898	819	661				
885		947	952	987	846				
1149	947		902	1126	1074				
898	952	902		905	1091				
819	987	1126	905		924				
661	846	1074	1091	924					

FH-1/11								
Sebesség mátrix [m/s]								
	702	836	620	701	775			
702		714	720	798	1011			
836	714		704	710	969			
620	720	704		728	1013			
701	798	710	728		808			
775	1011	969	1013	808				

FH-2/1								
	Sebesség mátrix [m/s]							
	758	774	605	699	714			
758		597	606	881	713			
774	597		590	695	490			
605	606	590		817	832			
699	881	695	817		829			
714	713	490	832	829				

FH-2/4								
	Sebesség mátrix [m/s]							
	795	1795	709	598	625			
795		594	523	533	708			
1795	594		539	541	694			
709	523	539		670	1137			
598	533	541	670		724			
625	708	694	1137	724				

FH-2/5								
	Sebesség mátrix [m/s]							
	545	714	500	500	500			
545		548	550	541	500			
714	548		610	638	591			
500	550	610		590	724			
500	541	638	590		624			
500	500	591	724	624				

FH-2/7								
	Sebesség mátrix [m/s]							
	1000	929	899	817	758			
1000		697	857	797	800			
929	697		693	696	727			
899	857	693		884	1191			
817	797	696	884		806			
758	800	727	1191	806				

	FH-2/9								
	Sebesség mátrix [m/s]								
	935	1212	839	820	863				
935		883	873	845	896				
1212	883		822	817	862				
839	873	822		800	1172				
820	845	817	800		883				
863	896	862	1172	883					

FH-2/11								
	Sebesség mátrix [m/s]							
	854	1299	482	530	517			
854		940	493	532	529			
1299	940		494	532	536			
482	493	494		617	862			
530	532	532	617		664			
517	529	536	862	664				

BH-1/1								
	Sebesség mátrix [m/s]							
	502	721	517	500	500			
502		567	541	500	500			
721	567		622	630	632			
517	541	622		569	793			
500	500	630	569		618			
500	500	632	793	618				

BH-1/3								
	Sebesség mátrix [m/s]							
	465	886	566	414	487			
465		505	507	400	422			
886	505		599	541	571			
566	507	599		493	728			
414	400	541	493		488			
487	422	571	728	488				

	FH-2/6							
	Sebesség mátrix [m/s]							
	512	727	634	652	733			
512		460	557	486	570			
727	460		728	621	639			
634	557	728		661	967			
652	486	621	661		651			
733	570	639	967	651				

FH-2/8								
	Sebesség mátrix [m/s]							
	1459	1368	1026	1013	962			
1459		1056	1018	1059	995			
1368	1056		1026	1157	1087			
1026	1018	1026		1103	1372			
1013	1059	1157	1103		1068			
962	995	1087	1372	1068				

FH-2/10								
	Sebesség mátrix [m/s]							
	849	998	924	905	925			
849		819	888	839	865			
998	819		877	820	843			
924	888	877		795	1168			
905	839	820	795		760			
925	865	843	1168	760				

FH-2/12								
	Sebesség mátrix [m/s]							
	874	1176	901	866	864			
874		785	900	871	857			
1176	785		877	888	868			
901	900	877		915	1120			
866	871	888	915		825			
864	857	868	1120	825				

BH-1/2								
Sebesség mátrix [m/s]								
	529 714 443 400 400							
529		587	459	400	400			
714	587		455	435	400			
443	459	455		523	731			
400	400	435	523		417			
400	400	400	731	417				

BH-1/4								
	Sebesség mátrix [m/s]							
	587	1077	680	762	830			
587		615	500	516	608			
1077	615		500	609	724			
680	500	500		847	1280			
762	516	609	847		957			
830	608	724	1280	957				

BH-1/5								
	Sebesség mátrix [m/s]							
	666	957	725	691	649			
666		635	704	708	702			
957	635		734	794	815			
725	704	734		700	824			
691	708	794	700		653			
649	702	815	824	653				

BH-1/7								
	Sebesség mátrix [m/s]							
	1081	1085	843	910	768			
1081		984	924	896	1064			
1085	984		936	803	1181			
843	924	936		657	2028			
910	896	803	657		968			
768	1064	1181	2028	968				

BH-1/9								
	Sebesség mátrix [m/s]							
	912	1382	1204	1086	801			
912		1049	1118	1126	1034			
1382	1049		957	1188	1234			
1204	1118	957		923	1199			
1086	1126	1188	923		1180			
801	1034	1234	1199	1180				

BH-1/11								
	Sebesség mátrix [m/s]							
	904	1064	464	451	409			
904		615	400	401	400			
1064	615		442	400	481			
464	400	442		521	766			
451	401	400	521		522			
409	400	481	766	522				

BH-2/1								
	Sebesség mátrix [m/s]							
	418	593	445	400	400			
418		459	417	400	438			
593	459		424	407	587			
445	417	424		488	865			
400	400	407	488		533			
400	438	587	865	533				

BH-2/3								
	Sebesség mátrix [m/s]							
	912	1335	906	786	667			
912		875	871	848	739			
1335	875		945	1076	994			
906	871	945		800	1234			
786	848	1076	800		930			
667	739	994	1234	930				

	BH-1/6							
	Sebesség mátrix [m/s]							
	461	626	405	518	567			
461		461	400	452	537			
626	461		424	434	498			
405	400	424		463	644			
518	452	434	463		581			
567	537	498	644	581				

BH-1/8								
	Sebesség mátrix [m/s]							
	802	1034	998	859	783			
802		1047	1063	1004	1087			
1034	1047		1080	1064	1224			
998	1063	1080		948	1431			
859	1004	1064	948		1053			
783	1087	1224	1431	1053				

BH-1/10									
	Sebesség mátrix [m/s]								
	631	1015	745	672	774				
631		624	689	621	749				
1015	624		721	625	761				
745	689	721		560	1174				
672	621	625	560		575				
774	749	761	1174	575					

BH-1/12									
	Sebesség mátrix [m/s]								
	726	1134	765	759	746				
726		749	614	618	655				
1134	749		632	622	645				
765	614	632		679	1057				
759	618	622	679		683				
746	655	645	1057	683					

BH-2/2								
	Sebesség mátrix [m/s]							
	622 1015 642 644 500							
622		655	528	571	534			
1015	655		500	611	636			
642	528	500		677	706			
644	571	611	677		553			
500	534	636	706	553				

BH-2/4								
Sebesség mátrix [m/s]								
	840	1151	676	628	580			
840		866	650	627	606			
1151	866		613	616	617			
676	650	613		668	1031			
628	627	616	668		660			
580	606	617	1031	660				

BH-2/5								
	Sebesség mátrix [m/s]							
	711	1124	559	607	584			
711		731	500	532	546			
1124	731		517	549	568			
559	500	517		615	974			
607	532	549	615		727			
584	546	568	974	727				

BH-2/7								
	Sebesség mátrix [m/s]							
	820	917	712	742	662			
820		969	799	972	978			
917	969		654	914	991			
712	799	654		758	1031			
742	972	914	758		1587			
662	978	991	1031	1587				

BH-2/9										
	Se	besség n	nátrix [m/	/s]						
	1509	1711	1174	1240	1056					
1509		1238	1101	1101	1232					
1711	1238		1146	1078	1494					
1174	1101	1146		705	1808					
1240	1101	1078	705		929					
1056	1232	1494	1808	929						

	BH-2/11									
	Sebesség mátrix [m/s]									
	713	858	702	732	764					
713		753	774	762	797					
858	858 753		828	795	798					
702	774	828		795	1125					
732	762	795	795		889					
764	797	798	1125	889						

	BH-2/6									
	Sebesség mátrix [m/s]									
	549	822	547	602	652					
549		623	499	529	634					
822	623		512	480	516					
547	499	512		644	1000					
602	529	480	644		595					
652	634	516	1000	595						

	BH-2/8									
	Sebesség mátrix [m/s]									
	1091	1477	952	989	944					
1091		1170	871	916	949					
1477	1170		876	986	1014					
952	871	876		795	1035					
989	916	986	795		739					
944	949	1014	1035	739						

	BH-2/10									
Sebesség mátrix [m/s]										
	816 1340 1073 925 989									
816		863	1003	917	1050					
1340	863		1007	987	1198					
1073	1003	1007		716	2090					
925	917	987	716		1112					
989	1050	1198	2090	1112						

	BH-2/12								
	Sebesség mátrix [m/s]								
	754	756	898	887	872				
754		774	1015	1010	996				
756	774		831	854	870				
898	1015	831		1271	1448				
887	1010	854	1271		1251				
872	996	870	1448	1251					

M8: melléklet: Próbafalon elvégzett szónikus vizsgálatok eredményei

		S	záraz álla	ipotban e	lvégzett	vizsgálato	ok		
11. téglasorról készült metszet (üreg)									
			Se	ebesség n	nátrix [m,	/s]			
	487	594	661	541	628	716	733	1045	2233
487		400	445	400	466	481	720	791	633
594	400		1028	924	1142	1000	2116	719	689
661	445	1028		1013	1056	772	1292	557	744
541	400	924	1013		2348	1148	966	569	591
628	466	1142	1056	2348		783	841	606	602
716	481	1000	772	1148	783		614	401	654
733	720	2116	1292	966	841	614		400	619
1045	791	719	557	569	606	401	400		709
2233	633	689	744	591	602	654	619	709	

	9. téglasorról készült metszet (törmelék)									
	Sebesség mátrix [m/s]									
	1072	910	847	611	709	999	1043	1138	2325	
1072		919	932	909	1027	1257	1481	926	1479	
910	919		872	908	1057	1443	1971	1180	1116	
847	932	872		1015	1013	1003	1398	1077	1011	
611	909	908	1015		2150	1470	1075	972	674	
709	1027	1057	1013	2150		883	944	878	704	
999	1257	1443	1003	1470	883		962	792	964	
1043	1481	1971	1398	1075	944	962		710	985	
1138	926	1180	1077	972	878	792	710		1064	
2325	1479	1116	1011	674	704	964	985	1064		

I	7. téglasorról készült metszet (habarcs)										
I	Sebesség mátrix [m/s]										
		1041	841	824	651	702	847	937	1225	2316	
ſ	1041		838	918	908	1013	1016	1217	981	1348	
I	841	838		986	987	1139	1111	1457	1196	939	
	824	918	986		1099	1405	919	1335	1111	937	
ſ	651	908	987	1099		2426	1533	984	986	715	
I	702	1013	1139	1405	2426		947	818	902	682	
ſ	847	1016	1111	919	1533	947		631	717	780	
ſ	937	1217	1457	1335	984	818	631		703	815	
ſ	1225	981	1196	1111	986	902	717	703		832	
ſ	2316	1348	939	937	715	682	780	815	832		

	5. téglasorról készült metszet (tömör)									
	Sebesség mátrix [m/s]									
Ľ		931	1008	1036	782	812	1120	1184	1472	2116
Ľ	931		683	788	889	967	1008	1371	1718	1377
Ľ	1008	683		1015	1033	1141	1858	1952	1619	1150
Ľ	1036	788	1015		1111	1015	2946	1726	1282	1118
Γ	782	889	1033	1111		2518	1413	1109	1077	831
Ľ	812	967	1141	1015	2518		875	880	937	762
Γ	1120	1008	1858	2946	1413	875		737	951	957
Γ	1184	1371	1952	1726	1109	880	737		774	936
Γ	1472	1718	1619	1282	1077	937	951	774		897
Г	2116	1377	1150	1118	831	762	957	936	897	

n											
		3. téglasorról készült metszet (tömör)									
	Sebesség mátrix [m/s]										
		1120	936	1045	864	861	1075	1162	1663	2549	
	1120		977	1084	1009	1104	1273	1626	2259	1528	
	936	977		1098	1052	1188	1579	2098	1749	1140	
	1045	1084	1098		1128	1260	2053	1777	1533	1184	
	864	1009	1052	1128		2333	1332	1108	1126	956	
	861	1104	1188	1260	2333		864	959	1017	863	
	1075	1273	1579	2053	1332	864		865	932	978	
	1162	1626	2098	1777	1108	959	865		806	997	
	1663	2259	1749	1533	1126	1017	932	806		1208	
	2549	1528	1140	1184	956	863	978	997	1208		

	1. téglasorról készült metszet (tömör)									
	Sebesség mátrix [m/s]									
	1078	1017	1079	1303	1393	1222	1110	1265	2429	
1078		883	842	1005	1113	945	1378	2358	1021	
1017	883		934	915	1078	1312	1637	1518	1148	
1079	842	934		930	1200	1759	1252	1148	1192	
1303	1005	915	930		2157	1107	969	1135	1357	
1393	1113	1078	1200	2157		879	922	1130	1339	
1222	945	1312	1759	1107	879		553	737	1089	
1110	1378	1637	1252	969	922	553		732	958	
1265	2358	1518	1148	1135	1130	737	732		942	
2429	1021	1148	1192	1357	1339	1089	958	942		

	Nedves állapotban elvégzett vizsgálatok											
	11. téglasorról készült metszet (üreg)											
	Sebesség mátrix [m/s]											
	580	400	429	400	400	523	425	780	2159			
580		400	400	536	576	451	811	741	830			
400	400		509	705	601	860	1957	636	400			
429	400	509		831	1067	665	1296	472	514			
400	536	705	831		2131	995	869	490	400			
400	576	601	1067	2131		713	747	459	429			
523	451	860	665	995	713		652	400	572			
425	811	1957	1296	869	747	652		400	400			
780	741	636	472	490	459	400	400		602			
2159	830	400	514	400	429	572	400	602				

I	9. téglasorról készült metszet (törmelék)										
ĺ				Se	ebesség n	nátrix [m	/s]				
		947	696	616	419	444	721	812	968	2210	
I	947		650	654	680	741	958	1169	803	956	
I	696	650		561	737	853	1178	1733	1047	696	
I	616	654	561		785	865	777	1136	835	626	
ſ	419	680	737	785		1999	1171	773	747	416	
I	444	741	853	865	1999		732	690	687	434	
ſ	721	958	1178	777	1171	732		880	684	710	
I	812	1169	1733	1136	773	690	880		619	760	
I	968	803	1047	835	747	687	684	619		899	
ſ	2210	956	696	626	416	434	710	760	899		

7. téglasorról készült metszet (habarcs)												
Sebesség mátrix [m/s]												
		927	778	604	486	565	777	842	1035	2361		
	927		875	815	801	900	987	1059	929	1034		
	778	875		800	875	1036	1050	1330	1131	910		
	604	815	800		678	835	734	1049	946	697		
	486	801	875	678		2193	1163	650	856	493		
	565	900	1036	835	2193		763	745	803	554		
	777	987	1050	734	1163	763		804	751	743		
	842	1059	1330	1049	650	745	804		660	770		
1	035	929	1131	946	856	803	751	660		752		
2	361	1034	910	697	493	554	743	770	752			

	5. téglasorról készült metszet (tömör)											
			Se	besség n	nátrix [m	/s]						
	740	794	770	473	589	850	977	1238	1949			
740		565	623	713	808	770	1243	1701	1169			
794	565		767	728	1005	1490	2031	1423	924			
770	623	767		745	906	2495	1463	979	836			
473	713	728	745		2322	1025	949	868	538			
589	808	1005	906	2322		785	820	826	596			
850	770	1490	2495	1025	785		767	780	785			
977	1243	2031	1463	949	820	767		731	797			
1238	1701	1423	979	868	826	780	731		856			
1949	1169	924	836	538	596	785	797	856				

3. téglasorról készült metszet (tömör)											
			Se	besség n	nátrix [m	/s]					
	820	804	861	714	730	939	1015	1085	2654		
820		639	837	774	861	856	1244	2054	1275		
804	639		870	832	975	1304	1898	1311	950		
861	837	870		951	1154	1913	1426	935	977		
714	774	832	951		2186	1184	964	892	774		
730	861	975	1154	2186		755	830	821	745		
939	856	1304	1913	1184	755		731	754	885		
1015	1244	1898	1426	964	830	731		697	901		
1085	2054	1311	935	892	821	754	697		1022		
2654	1275	950	977	774	745	885	901	1022			

	1. téglasorról készült metszet (tömör)											
	Sebesség mátrix [m/s]											
	1031	927	924	1210	1350	1168	1088	1271	2416			
1031		793	701	965	1045	905	1241	2322	952			
927	793		587	833	987	1087	1591	1136	1001			
924	701	587		770	905	1583	1126	891	1061			
1210	965	833	770		2169	951	886	1011	1283			
1350	1045	987	905	2169		777	822	1071	1332			
1168	905	1087	1583	951	777		540	707	1017			
1088	1241	1591	1126	886	822	540		659	846			
1271	2322	1136	891	1011	1071	707	659		762			
2416	952	1001	1061	1283	1332	1017	846	762				

	1. függőleges metszet (tömör)											
	Sebesség mátrix [m/s]											
	877	703	778	699	702	894	914	1470	2640			
877		701	821	670	867	966	1374	2095	1350			
703	701		1090	672	913	1242	2161	1270	827			
778	821	1090		738	1274	2242	1154	1039	848			
699	670	672	738		2478	1266	831	816	670			
702	867	913	1274	2478		612	687	722	638			
894	966	1242	2242	1266	612		636	612	692			
914	1374	2161	1154	831	687	636		692	692			
1470	2095	1270	1039	816	722	612	692		761			
2640	1350	827	848	670	638	692	692	761				

	2. függőleges metszet (tömör)										
	Sebesség mátrix [m/s]										
	800	647	755	654	690	935	982	1201	2457		
800		737	653	620	723	907	1361	1713	1431		
647	737		705	422	704	1317	2457	1117	809		
755	653	705		616	1065	2212	1320	857	878		
654	620	422	616		2433	1089	672	679	698		
690	723	704	1065	2433		613	565	630	616		
935	907	1317	2212	1089	613		638	691	712		
982	1361	2457	1320	672	565	638		592	630		
1201	1713	1117	857	679	630	691	592		706		
2457	1431	809	878	698	616	712	630	706			

3. függőleges metszet (anomália)												
	Sebesség mátrix [m/s]											
	644	723	675	498	519	827	1121	1339	2220			
644		526	608	456	570	787	1166	1790	1219			
723	526		713	470	549	1051	923	1188	1048			
675	608	713		438	904	917	1148	876	864			
498	456	470	438		833	692	529	547	539			
519	570	549	904	833		453	400	536	496			
827	787	1051	917	692	453		726	702	692			
1121	1166	923	1148	529	400	726		757	764			
1339	1790	1188	876	547	536	702	757		712			
2220	1219	1048	864	539	496	692	764	712				

ľ										
				4. füg	gőleges r	netszet (t	ömör)			
				Se	ebesség n	nátrix [m,	/s]			
		936	918	711	567	638	907	877	1513	2267
	936		735	628	570	665	962	1295	2238	1439
	918	735		807	561	759	1280	1521	1306	1003
	711	628	807		452	806	2191	982	894	827
	567	570	561	452		2530	802	680	655	605
	638	665	759	806	2530		560	553	589	581
	907	962	1280	2191	802	560		566	696	742
	877	1295	1521	982	680	553	566		644	712
	1513	2238	1306	894	655	589	696	644		763
	2267	1439	1003	827	605	581	742	712	763	

5. függőleges metszet (anomália)												
	Sebesség mátrix [m/s]											
	804	773	683	613	641	871	1109	1557	2067			
804		608	507	564	680	807	1265	2792	1329			
773	608		863	400	717	1284	893	1080	895			
683	507	863		482	926	966	934	662	768			
613	564	400	482		831	979	603	630	637			
641	680	717	926	831		646	516	579	587			
871	807	1284	966	979	646		603	512	713			
1109	1265	893	934	603	516	603		658	594			
1557	2792	1080	662	630	579	512	658		699			
2067	1329	895	768	637	587	713	594	699				

1										
6. függőleges metszet (tömör)										
				Se	ebesség n	nátrix [m,	/s]			
		800	692	671	644	688	789	921	1537	2067
	800		606	677	632	708	850	1220	2165	1604
	692	606		1072	491	633	856	2069	1048	759
	671	677	1072		585	971	2122	1024	861	813
	644	632	491	585		2232	1174	631	721	694
	688	708	633	971	2232		584	533	622	646
	789	850	856	2122	1174	584		525	619	690
	921	1220	2069	1024	631	533	525		581	614
	1537	2165	1048	861	721	622	619	581		789
	2067	1604	759	813	694	646	690	614	789	

	7. függőleges metszet (tömör)								
	Sebesség mátrix [m/s]								
	725	741	715	678	741	825	910	1290	2201
725		627	743	653	798	844	999	2255	1421
741	627		950	707	852	1268	2037	991	891
715	743	950		663	1274	2021	1187	894	833
678	653	707	663		2400	1259	875	783	654
741	798	852	1274	2400		660	706	670	668
825	844	1268	2021	1259	660		648	720	727
910	999	2037	1187	875	706	648		798	788
1290	2255	991	894	783	670	720	798		827
2201	1421	891	833	654	668	727	788	827	

M9 melléklet: A falazott próbatestek habarcsrétegében elvégzett penetrációs vizsgálat eredményei

اما	Leolvasás [mm]					
Jei	5 ütés	10 ütés	15 ütés	20 ütés		
AH-1/1	13	17	21	26		
AH-1/2	10	11	13	14		
AH-1/3	19	24	28	34		
AH-1/4	10	15	17	19		
AH-1/5	13	15	17	20		
AH-1/6	14	24	31	36		
AH-1/7	11	14	16	20		
AH-1/8	17	28	34	39		
AH-1/9	23	30	37			
AH-1/10	15	22	30	33		
AH-1/11	12	15	19	23		
AH-1/12	14	19	22	29		

Ial	Leolvasás [mm]				
Jei	5 ütés	10 ütés	15 ütés	20 ütés	
AH-2/1	17	20	21	23	
AH-2/2	12	16	20	24	
AH-2/3	12	19	22	25	
AH-2/4	sikertelen				
AH-2/5	14	16.5	17	20	
AH-2/6	14	18	22.5	24	
AH-2/7	14	22	27	34	
AH-2/8	10	14	22	27	
AH-2/9	13	15	18	21	
AH-2/10	12	16	22	34	
AH-2/11	14	20	25	30	
AH-2/12	20	24	27	30	

M10 melléklet: Schmidt kalapácsos vizsgálat eredményei

	Visszapattanási érték				
Jel	Felső	Középső			
	tégla	tégla	Alsó tégla		
AH-1/1	33.9		39.3		
AH-1/2	37.5		34.9		
AH-1/3	35		32.8		
AH-1/4	30.5	28.5	34.1		
AH-1/5	32.4	23.9	24.9		
AH-1/6	33.5	30.3	28		
AH-1/7	31.1		31.5		
AH-1/8	28.6		20.9		
AH-1/9	29.6		31.3		
AH-1/10	32.1	25.5	33.9		
AH-1/11	30.3	31.9	31.5		
AH-1/12	30	26.3	29.1		
	-	•	•		
AH-2/1	33.8		33.9		
AH-2/2	34.7		30		
AH-2/3	28.9		32.1		
AH-2/4	29.6	27.8	27.9		
AH-2/5	33.4	27	32.8		
AH-2/6	30.1	34.4	41		
AH-2/7	28.4		33.6		
AH-2/8	31.7		30		
AH-2/9	31.3		35		
AH-2/10	28.9	33.8	26.7		
AH-2/11	30.6	25.5	27.5		
AH-2/12	24.4	32	33.9		
AH-2/13	31.6	27.9	31.1		
AH-2/14	30.4	37	32.4		
-					
FH-1/1	22.6		37.2		
FH-1/2	35.1		34.6		
FH-1/3	33.5		32.9		
FH-1/4	36	33.8	35.1		
FH-1/5	36.7	28.6	35.3		
FH-1/6	31.7	27.5	29.7		
FH-1/7	31		31.4		
FH-1/8	29.7		30.1		
FH-1/9	30.9		35.8		
FH-1/10	27	24.5	32.1		
FH-1/11	31.5	30.3	34.2		
FH-1/12	30.3	29.6	28		

	Visszapattanási érték				
Jel	Felső	Középső			
	tégla	tégla	Alsó tégla		
FH-2/1	33.4		31.7		
FH-2/2	31.4		30.4		
FH-2/3	34.4		32.9		
FH-2/4	31.6	33.4	39.1		
FH-2/5	36.4	48.6	32.6		
FH-2/6	35.8	32.1	32.9		
FH-2/7	25.5		31.5		
FH-2/8	25.5		35.3		
FH-2/9	24.6		34.2		
FH-2/10	26.1	25.3	35.8		
FH-2/11	29.9	35.1	30.4		
FH-2/12	29.9	30.8	30.4		
BH-1/1	32.5		34.5		
BH-1/2	27.4		26		
BH-1/3					
BH-1/4	29.1	34.1	35.1		
BH-1/5	31.4	30.8	34		
BH-1/6	29	30	35.5		
BH-1/7	30.8		31.6		
BH-1/8	26.6		30.4		
BH-1/9	26.7		24.1		
BH-1/10	36.3	21.6	36.7		
BH-1/11	30	31.9	24.7		
BH-1/12	27.4	30.9	36.4		

BH-2/1	33.4		32.8
BH-2/2	30.1		28
BH-2/3	35.3		30.8
BH-2/4	34.1	28.8	29.4
BH-2/5	36.1	34	35.4
BH-2/6	29.6	37.8	37.9
BH-2/7	22		26.9
BH-2/8	27.2		28.8
BH-2/9	29		33
BH-2/10	24.9	26.3	31.5
BH-2/11	32.3	31.3	31.7
BH-2/12	27.6	27.4	31.5