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1 Introduction

In the thesis, I undertake three separate projects, all having as a
central theme an interplay between permutation and SU(d) sym-
metries. In the first two topics I investigate the ground state
properties of highly symmetric magnetic systems, and in the third
one, I solve the quantum shareability problem for two different
classes of bipartite quantum states.

My approach to magnetic systems is from a theorist’s point
of view, as I look for setups simple enough that it is possible to
derive the ground states exactly, yet still general enough that the
results may prove useful. This simplicity is bestowed by vari-
ous degrees of permutation symmetry, which is a way of apply-
ing mean field approximation to lattice models. The connection
between the general notion of a mean field approximation, and
the permutation symmetric definition used by the mathematical
physics community, is formalized by the quantum de Finetti the-
orem [5–8]. Permutation symmetry, along with the innate SU(d)

symmetries of the interactions that I study, makes it possible to
diagonalize the Hamiltonians exactly through the application of
the representation theory of Lie groups.

When can quantum correlations in overlapping subsystems
of a larger, composite system be compatible with each other?
This fundamental question in quantum physics is the quantum
marginal problem; of which the final topic of the thesis, quantum
shareability, is a permutation symmetric subcase. The shareabil-
ity problem, posed for classes of SU(d) symmetric quantum states,
is closely related to my study of magnetic systems in a mathe-
matical sense through its symmetries. One could even argue that
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it is a generalized version of one of the ground state problems I
study restated from a different point of view. Accordingly, the
solution uses the extension of the same representation theoretic
tools as the ground state problems.

2 The bilinear biquadratic model on the
complete graph

In this project, I investigate the ground state phases of the most
general three-level SU(2) symmetric two-particle interaction in a
completely permutation symmetric setting. This is a three-level
generalization of the Heisenberg model. The two-particle Hilbert
space decomposes into 3 irreducible subspaces under global SU(2)
transformations, labeled by spin 0, 1 and 2. Thus, the desired
interaction Hamiltonian can be constructed as the linear combi-
nation of the identity matrix, and two other linearly independent,
SU(2) invariant two-particle operators. We choose these to be the
two-particle representations of the quadratic Casimir operators of
SU(2) and SU(3), and get a normalized interaction Hamiltonian
with a single parameter θ,

Hij = sin(θ)C
SU(3)
ij + cos(θ)C

SU(2)
ij . (1)

The same two particle interaction has been studied for a long
time by solid state physicists; although, with different choice of
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the two SU(2) symmetric operators. It is called the bilinear-
biquadratic (BLBQ) interaction, and its Hamiltonian is tradi-
tionally expressed as:

Hij = cos(γ)SiSj + sin(γ)(SiSj)
2. (2)

The BLBQ model was at the center of attention in the mid ’80s,
after Haldane’s discovery that spin-1 Heisenberg chains can have
a gapped excitation spectrum in contrary to spin-1/2 systems,
where the spectrum is always gapless [9, 10]. This remarkable
difference initiated an intensive study of the BLBQ model, par-
ticularly the chain, and its phase diagram.

Complete permutation symmetry in a spin model with two-
particle interaction implies that instead of a regular lattice, the
interconnectedness of the spins is described by a complete graph.
Classical spin models on complete graphs, such as the Curie-
Weiss [11] or Sherrington-Kirkpatrick [12] models, play an im-
portant role in statistical mechanics. The reason being that these
can be treated relatively easily, yet still describe general features
of the corresponding model on high-dimensional lattices. Besides
their usefulness as mean field approximations, with the advent of
ultracold atom experiments, complete graph models have a pos-
sible realization, and also a possible application in metrology, in
such a fashion as was proposed for the SU(d) model in [13].

On a complete graph of N sites, the Hamiltonian of our gen-
eral SU(2) symmetric interaction reduces to a linear combination
of the N -particle representations of the two quadratic Casimir
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operators from Eq (1).

HBLBQ = sin(θ)C
SU(3)
N + cos(θ)C

SU(2)
N . (3)

The ground state properties of this Hamiltonian are determined
by a competition between the SU(2) and SU(3) symmetric terms,
and its eigenspace decomposition can be obtained entirely through
representation theoretic considerations. As the Casimir opera-
tors in Eq (3) commute, and their eigenspaces are the SU(2) and
SU(3) irreducible subspaces of the N -particle Hilbert space, the
eigenspaces of HBLBQ correspond to a pair of SU(2) and SU(3) ir-
reducible representations (irreps). The heart of solving the eigen-
problem of HBLBQ then lies in determining which of these irrep
pairs are compatible. The image of the spin-1 representation of
SU(2) can be considered a subgroup of SU(3); accordingly, each
irrep of SU(3) decomposes into a direct sum of SU(2) irreps when
we restrict the representation to the SU(2) subgroup. Working
out the exact details of this decomposition lets us determine the
compatible Young diagram spin pairs.

3 Collective SU(3) spin system with bipar-
tite symmetry

In this project, I expand upon the theme started in the previ-
ous one, and investigate a different three-level generalization of
the Heisenberg model in a highly permutation symmetric setting.
Here, the spins interact with an SU(3) symmetric exchange inter-
action, and instead of breaking the SU(3) symmetry, the complete
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permutation invariance is broken in a minimal fashion, by the di-
vision of the system into two equal sized, permutation invariant
subsystems. In this way, the behavior of the system is determined
by the competition of the interactions within, and between the
two subsystems. Introducing this bipartite structure into a mean
field type model makes the phase structure more interesting, as it
relaxes the extreme frustration of the complete graph, and opens
the possibility for bipartite symmetry breaking. As it turns out,
the breaking of bipartite symmetry does happen in one of the
ground state phases. It is interesting that already such a simple
bipartite long-range model provides a phase that is absent in the
literature on short-ranged bipartite models.

In a similar fashion to the bilinear-biquadratic model on the
complete graph, due to the permutation symmetry, it is possible
to express the collective bipartite exchange (CBE) Hamiltonian
governing the entire system with Casimir operators. The nor-
malized Hamiltonian has a single parameter θ, and it contains
the natural representations of the quadratic SU(3) Casimir op-
erator on the two subsystems, CSU(3)

A , C
SU(3)
B , and on the entire

system C
SU(3)
AB .

HCBE = sin(θ)C
SU(3)
AB + cos(θ)

(
C

SU(3)
A + C

SU(3)
B

)
. (4)

The physical intuition one can gain from this form is that the
right parameters that characterize the system are actually not the
strengths of the interaction within and between the subsystems,
but the strength of the “baseline” uniform exchange interaction
on the entire system represented by CAB, and the strength of
the additional uniform interaction on the subsystems superposed
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with the former, represented by CA and CB.
The Casimir operators in Eq. (4) once again make it possible

to solve the ground state problem exactly by the use of represen-
tation theory. The eigenvalues of HCBE are labeled by triples of
SU(3) irreps, two for the subsystems, and the third for the en-
tire system. Whether three particular irreps are compatible with
each other, depends on the fusion rules of SU(3), which can be
calculated using the Littlewood-Richardson rule. This is a com-
binatorial algorithm involving Young diagrams. In the thesis, I
solve a combinatorial problem associated with the Littlewood-
Richardson rule by relying on the closed form expression of the
Littlewood-Richardson diagrams made by Schlosser [14]. This al-
lows me to reduce the number of variables to two SU(3) irreps,
then solve the remaining equations required to obtain the ground
state as a function of θ.

4 The shareability of Werner and Isotropic
states

The essence of the shareability problem is the following: Alice and
Bob are each given a composite quantum system made out of nA

and nB copies of the same system respectively. Is it possible, that
each bipartite subsystem in which one part is owned by Alice, and
the other by Bob, is simultaneously in the state ρ? If it is possible,
then ρ is called nA-nB shareable. On one hand, pure entangled
states are clearly not, or in other words, only 1-1 shareable, and
on the other hand, separable states are arbitrarily, i.e. ∞ − ∞
shareable. In general, the maximal values of nA and nB for which



7

a given bipartite state ρ is shareable, serves as a measure of the
entanglement of ρ.

In an attempt to make the problem approachable, I restrict
the candidates for ρ to two classes of U(d) symmetric bipartite
states. The Werner states, invariant to global unitary transfor-
mations, and the isotropic states, invariant to transformations of
the form U ⊗ U∗, where U ∈ U(d) and ∗ denotes complex conju-
gation. Both classes play an important role in our understanding
of entanglement, Werner states in particular were originally de-
fined in the same paper as entanglement itself [15]. The unitary
symmetry of these states, coupled with the bipartite permuta-
tion symmetry inherent to the shareability scenario itself, makes
it possible to solve the problem by using representation theory.
This same approach was previously taken by Johnson and Vi-
ola [16], who derived necessary and sufficient conditions of the
1-n shareability of both Werner and isotropic states. In my work,
I extend this result to arbitrary values of nA and nB.

In the thesis, I show that determining the full sets of nA-nB

shareable Werner and isotropic states is equivalent to finding the
extremal eigenvalues of certain linear operators, not unlike the
Hamiltonian in Eq. (4) of the bipartite spin model I study. In
the same fashion as in the ground state problem of the CBE Ha-
miltonian, the eigenvalues of these linear operators are labeled by
triples of SU(d) irreps. The set of “valid” irrep-triples, that cor-
respond to eigenvalues of these operators are determined through
the Littlewood-Richardson rule that governs the irrep decompo-
sition of products of SU(d) irreps. In order to find the extremal
eigenvalues, I generalize the procedure I used to solve the ground
state problem of the previous, bipartite spin model to arbitrary
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dimensions. In particular, I rely on the works of Lam [17] and
Azenhas [18] that describes the partial order of the Young dia-
grams that appear in the Littlewood-Richardson algorithm.

5 Thesis points

1. Through representation theoretic considerations, I exactly
diagonalized the Hamiltonian of the spin-1 bilinear-biquadra-
tic model on the complete graph (Eq. (3)), and analyzed
its ground state as a function of the external control pa-
rameter θ. I have found that the model has four distinct
ground state phases belonging to different symmetry sec-
tors. There is a ferromagnetic phase, a gapless partially
magnetized phase in which the quantum numbers describ-
ing the ground state change gradually with θ, a completely
permutation symmetric SU(2) singlet phase, and a phase in
which the ground state is both an SU(2) and SU(3) singlet.
I have a published paper in Journal of Physics A about this
topic [1].

2. I exactly diagonalized the collective bipartite exchange Ha-
miltonian (Eq. (4)) in the thermodynamic limit, and stud-
ied its ground state as a function of the external control
parameter θ. The model has five different ground state
phases: A ferromagnetic phase, a Néel-type antiferromag-
netic phase with ferromagnetically aligned bipartite subsys-
tems, an SU(3) singlet phase, a gapless partially magnetized
phase in which the ground state changes gradually with
the control parameter, and a bipartite symmetry breaking
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phase in which two subsystems are characterized by differ-
ent SU(3) representations. I have published a paper about
this topic in Physical Review B [2].

3. I have determined necessary and sufficient conditions for the
nA-nB shareability of SU(d) Werner and isotropic states, for
arbitrary values of nA, nB, and d. As of the writing of this
thesis, I have a preprint available about this topic [3].
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