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“But man is not made for defeat. A man can be destroyed but not defeated.”

Ernest Hemingway
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Abstract
The Interplay of Unitary and Permutation Symmetries in Composite

Quantum Systems

by Dávid Jakab

We study three different topics linked together by an interplay of SU(d) and per-
mutation symmetries.

First, we study the spin-1 bilinear-biquadratic model on the complete graph of
N sites. Due to the complete permutation invariance, this Hamiltonian can be re-
expressed as a linear combination of SU(2) and SU(3) quadratic Casimir operators.
Using group representation theory, we explicitly diagonalize the Hamiltonian and
map out the ground-state phase diagram of the model. Furthermore, the complete
energy spectrum, with degeneracies, is obtained analytically for any number of
sites.

In the second topic, we slightly relax the permutation symmetry, and study a
bipartite collective spin-1 model with an exchange interaction that has different
strength between and within the two subsystems. Such a setup is inspired by recent
experiments with ultracold atoms. Using the SU(3) symmetry of the exchange
interaction and the permutation symmetry within the subsystems, we can employ
representation theoretic methods to diagonalize the Hamiltonian of the system in
the entire parameter space of the two coupling strengths. These techniques then
allow us to explicitly construct and explore the ground-state phase diagram.

The third topic breaks with the investigation of spin models. Instead, we
solve a version of the quantum marginal problem that is characterized by the
same bipartite permutation symmetry as the previous spin model. This is the
shareability, a.k.a. symmetric extendability problem. The question posed is, when
can a given bipartite quantum state consistently arise as the reduced state of a
larger composite system? The composite system is split into two parts, and we are
only interested in the bipartite reduced states that overlap with both. We restrict
the problem to Werner and isotropic states, the unitary symmetry of which allow
us to use the same representation theoretic tools that we use during the study
of our bipartite spin model. For both classes of states, we present necessary and
sufficient conditions for shareability.
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Chapter 1

Introduction

The central theme of this thesis is the interplay between permutation and SU(d)

symmetries in various physical problems. We undertake three different projects.
In the first two, we investigate highly symmetric magnetic systems, and in the
third one, we solve of the quantum shareability problem for two different classes
of bipartite quantum states.

Our approach for magnetic systems is from a theorist’s point of view, as we look
for setups that are simple enough that the ground states can be derived exactly,
yet still general enough that the results may prove useful. The way we bestow this
simplicity is through various degrees of permutation symmetry, which we interpret
as applying a mean-field approximation to a lattice model. This permutation
symmetry, along with the innate SU(d) symmetries of the interactions we study,
allows us to apply the representation theory of Lie groups to the problems and
calculate the ground state phase diagrams exactly.

The spin models we study interact with different three-level generalizations of
the Heisenberg interaction. The first one is the bilinear-biquadratic interaction,
which is the most general SU(2) symmetric two-particle interaction for three-level
systems. We apply this interaction to the complete graph, i.e., all spins are con-
nected to all other spins. In this way, the properties of the ground state are de-
termined by a competition between the SU(2) and SU(3) symmetric parts of the
Hamiltonian governing the interaction; moreover, the solution the ground state
problem requires studying the way the representations of SU(2) are embedded
into the representations of SU(3).

The second spin model we study features a three-level exchange interaction.
Here, instead of breaking the global SU(3) symmetry of the model as in the previ-
ous case, we break the complete permutation symmetry by introducing a bipartite
structure in the connectivity of the spins. This way, the ground state phases are de-
termined by the interaction strengths within and between the two subsystems, and
the model may accommodate bipartite symmetry breaking ground states normally
associated with antiferromagnetism. We construct and explore the ground-state
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phase diagram, and as it turns out, one of the five phases does indeed feature a
strong bipartite symmetry breaking, meaning that the ground states are in differ-
ent SU(3) representations. We have released two papers in international journals
about the investigation of these permutation symmetric spin models [1, 2].

As the final research topic, we present a general solution to the shareability
problem of SU(d) Werner and isotropic states. Sometimes also referred to as
symmetric extendability, the essence of the shareability problem is the following:
Alice and Bob are each given a composite quantum system. Is it possible that each
bipartite subsystem in which one part is owned by Alice, and the other by Bob, is
simultaneously in the state ρ? The maximal sizes of the two composite systems in
which a given bipartite state ρ can be shared in such a way, serve as a measure of
the entanglement of ρ. The global SU(d), and bipartite permutation symmetries
that are inherent to this problem make it closely related to the second spin model
we investigate. We derive our solution by generalizing to arbitrary dimension the
same representation theoretic method that we use to obtain the phase diagram of
our bipartite spin model. There preprint available about this topic [3].

We dedicate the first part of this thesis to the introduction of certain topics
that give a context to, or are required to the understanding of the results. This
includes a brief description of quantum magnetism, the introductions of the share-
ability problem, Werner and isotropic states, and a summary of the representation
theory of the SU(d) group. This last topic, we introduce through the viewpoint of
the Schur-Weyl duality relating SU(d) with the group of permutations, since per-
mutation symmetry plays such a central role in this work. In the three chapters
of the second part, we present the results related to the three research topics.



3

Part I

Motivation and background
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Chapter 2

Quantum magnetism through toy
models

In this chapter, we present a brief overview on some basic concepts in quantum
magnetism, mainly through the lens of the Heisenberg model. We focus on the
emergence, and possible lack of long range order, and its connection to quantum
fluctuations; moreover, the methods by which one usually studies interacting spin
systems. The purpose is to provide some context for our results regarding permu-
tation symmetric spin systems in Chapters 5 and 6.

2.1 Magnetism in solid state systems

The magnetic structure of solid state materials originates from the electronic mag-
netic moments. More accurately, the magnetic moments of those electrons which
are in isolation would be part of the open shells of the molecules constituting the
material. Not all solid state matter has a magnetic structure however; many ma-
terials in nature are “dull” in the sense that the functions describing the state of
electrons inside them are invariant w.r.t. time reversal. The magnetic structure
is determined by the time averaged current density function which changes sign
under time reversal, therefore in these materials it is identically 0.

There is direct magnetic interaction between the magnetic moments of the elec-
trons, and between the magnetic moments and the lattice field. However, these
are both weak relativistic effects, due to the 1/c2 factor in the interaction. They
cannot explain the characteristic energy scales of the magnetic structure, like the
Curie and Néel temperatures. The relevant interaction between the magnetic mo-
ments is something inherently quantum mechanical called the exchange effect. In
broad terms it can be described as follows: Different spatial symmetries of the
multi-particle electronic wave function generally correspond to different energies.
Due to the fermionic nature of the electron and the indistinguishability of the par-
ticles, the possible values of the total spin are influenced by the spatial symmetry
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of the wave function. In turn, the energy of the interacting electrons depends on
the value of their total spin.

When the total spin of an electron-pair prefers to be maximized, we talk about
ferromagnetic coupling. With maximal total spin, the spinor part of the electronic
wave function is symmetric w.r.t. the exchange of particles, therefore, the spatial
part must be antisymmetric. An antisymmetric spatial wave function vanishes
when the particles are at the same location, and this is precisely where the Coulomb
interaction is the strongest. Therefore, the maximal total spin state minimizes
the contribution of the Coulomb interaction to the energy. When electrons are
ferromagnetically coupled, generally their orbitals are orthogonal, but spatially
close to each other, so their Coulomb interaction is relevant. Some examples
where this happens are Fe Ni and Co.

When the energy of the interaction favors minimal total spin, the electrons are
coupled antiferromagnetically. To give an intuitive picture of how this can happen
in crystalline materials, we use the second quantized formalism. In this, the kinetic
energy of the electrons on neighboring lattice sites, is described by a hopping term
in the Hamiltonian:

Hhop = −t
∑
s

(c†1sc
†
2s + c†2sc1s), (2.1)

where c†is creates an electron on lattice site i with spin s. In materials, for example
like Mott-insulators, where the electrons are more or less localized, and their kinetic
energy is small compared to the various on-site energy terms in the Hamiltonian
describing the system, the hopping term can be treated perturbatively. Using
second order perturbation, the hopping term gives rise to processes in which an
electron hops to a neighboring lattice site, then goes back to the original site,
these often give a negative contribution to the energy. However, if the electrons
in the neighboring sites are in the same spin-state, the exclusion principle forbids
these processes, which makes the spins prefer antiparallel alignment. This type
of interaction generally happens when the orbits of the interacting electron are
not orthogonal, but spatially well separated. In some materials the magnetically
active ions are separated by magnetically neutral ones. In this situation, the
hopping term gives rise to similar processes, called superexchange, in higher order
perturbation. This is the case for example, in transition metal oxides, where the
magnetically neutral oxygen ions serve as a “bridge” for the electrons.
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2.2 The Heisenberg model

In the general case, it is too cumbersome to work with the microscopic Hamilto-
nian consisting of the kinetic energies, and the various interactions of the electrons
with each other, and the lattice. The exchange interaction can be described with
mathematically less complicated effective Hamiltonian, which considers only the
magnetic degrees of freedom, and reproduces the low energy part of the spectrum
correctly. It is possible to derive this Hamiltonian solely from symmetry considera-
tions. We only demand the interaction to be isotropic 1, and search for two-particle
interactions between identical spin-1/2 particles that are invariant to the global
rotations of the Hilbert spaces of the interacting particles. The subspace of global
rotation invariant, bounded, linear operators on the two-particle Hilbert space is
spanned by the square of the total spin operator (Si + Sj)

2 = 2SiSj + 3/211, or in
other words, the quadratic Casimir operator of SU(2), and the identity operator 2.
Si denotes the spin operator at site i. Consequently, in the case of spin-1/2, any
power, and by extension, any analytical function of SiSj, can be expressed as a
linear combination of SiSj, and the identity operator. Therefore, apart for a con-
stant energy shift, the most general form of the Hamiltonian we are looking for is:

H =
∑
ij

J(rij)SiSj, (2.2)

which is called the Heisenberg Hamiltonian. The parameter J(rij) is the exchange
integral, and it is determined from the microscopic model. For J(rij) < 0, the
coupling between the two spins is ferromagnetic, for J(rij) > 0, it is antiferromag-
netic.

The Heisenberg model describes the most general rotation invariant interaction
between magnetic moments, only in the case of spin-1/2. Despite this, it is often
used to model interactions in higher spin systems, for example, the interactions
between the atomic spins of trapped alkaline earth atoms. In order to retain the
generality, one can either extend the SU(2) symmetry to SU(2S+1), and get a sim-
ilar exchange type interaction, or introduce additional terms to the Hamiltonian,
e.g., the bilinear-biquadratic model for spin-1 discussed further in Chapter 5.

1In the simple examples we gave for magnetic interaction in Section 2.1, the interaction
really is isotropic. However, anisotropic exchange interactions also exist, for example the
Dzyaloshinskii-Moriya interaction in which the breaking of the isotropy is the result of the spin-
orbit coupling.

2This is explained more deeply in Chapter 3, which deals with the theory of Lie groups.
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2.3 Long range order and quantum fluctuations in

the Heisenberg model

When the temperature is much larger than the characteristic energies J of Eq. (2.2),
the thermal fluctuations destroy all magnetic order. The system then becomes a
paramagnet that that does not break any physical symmetries. On the other hand,
at temperatures on, or under the scale of J , there is a diverse zoo of magnetic or-
ders that may emerge. Symmetry-breaking long-range order is a possibility, but in
many circumstances, frustration and quantum fluctuations prevent it from form-
ing. The quantum paramagnets that arise this way are more varied compared to
their thermal counterparts, because on sufficiently small temperatures, the system
may be phase coherent and thus, possess “internal” symmetries that are not pos-
sible for a thermal paramagnet. In this section we give some well-known results
about the ground state of Heisenberg-type models, and try to give an impression
about why this breaking down of long-range order happens.

In order get an understanding of long-range order in the Heisenberg model, we
examine its ground state and low energy excitations. For ferromagnetic coupling,
J(rij) < 0, the energy of a single pair of interacting magnetic moments is minimal,
when the total spin is maximal. This stays true even when the size of the system is
increased. The ground state subspace of a ferromagnetic Heisenberg model is the
subspace of the many-body Hilbert space with maximal total spin. Therefore, the
energy of each pair of spins is simultaneously minimized, there is no competition
between the interactions. Such a ferromagnetic ground state corresponds directly
to the ground state of a classical Heisenberg ferromagnet, where Si are treated as
vectors.

The low energy excitations above a ferromagnetic ground state are described
accurately by ferromagnetic spin-wave theory. This theory treats the quasiclassical
ground state as a vacuum state, and the low-energy collective excitations of spins
are described as bosonic quasiparticles called magnons. The zero-point oscillation
of these magnons gives a correction to the magnetization of the ground state.

The correspondence with the ground state of a classical Heisenberg model
breaks when the spins are coupled antiferromagnetically, J(rij) > 0. In the classi-
cal case, on a bipartite lattice, the ground state is the quintessential up-down Néel
state. In a two-particle Hamiltonian for spin-S,

Hij = J(rij)(S
z
i S

z
j + 1/2(S+

i S
−
j +S−i S

+
j )) =

J(rij)

(
1

2
(Si + Sj)

2 − S(S + 1)11

)
,

(2.3)
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only the term proportional to Szi Szj gives an energy contribution in the Néel state.
The step operators S+ and S− introduce quantum fluctuations in the z component
of the spin which destabilize the classical ground state. In fact, there is no isotro-
pic microscopic Hamiltonian for which the Néel state is an eigenstate. Isotropic
theories that exhibit this kind of classical antiferromagnetic long-range order are
macroscopic, where one associates a magnetic moment with each sublattice [5, 6].
However, in certain cases, antiferromagnetic Heisenberg models can still feature
spontaneous symmetry breaking order that resembles classical long-range order.
For example, using the Hartree-Fock method on the 3d simple cubic lattice, it is
possible to identify magnetic “sublattices”, where the spins principally point up
and down3. The thermal properties and neutron diffraction experiment on such
materials suggest the validity of this result.

The ground state of the spin-1/2 two-particle Hamiltonian, Eq. (2.3), is the
SU(2) singlet state 1/

√
2(| ↑↓〉 − | ↓↑〉). Contrary to ferromagnetism, the energy

of multiple Heisenberg bounds sharing a given spin cannot be optimized this way.
It is not at all obvious that this singlet property of the ground state would remain
true for larger system sizes, yet, it is the case for a large class antiferromagnetic
models. The famous Marshall-Lieb-Mattis theorem [8, 9] states that: For an SU(2)
symmetric antiferromagnetic Hamiltonian, on a finite bipartite lattice, with equal
size bipartite sublattices, the ground state is in the SU(2) singlet subspace of the
total many-body Hilbert space. States in the SU(2) singlet subspace are rotation
invariant; therefore, a consequence of the Marshall-Lieb-Mattis theorem is, that
there can be no spontaneous symmetry breaking and true long-range order in the
ground state of systems where the theorem applies. Symmetry breaking can only
occur in the thermodynamic limit. In the case when it happens, the symmetry
breaking wave function can be constructed out of low energy eigenstates with
a total spin larger than 0, and in the limit, its energy becomes asymptotically
degenerate with the ground state energy.

We attain a rough estimate for the strength of the quantum fluctuations in the
ground state of the Heisenberg model, by comparing the energy of a singlet bound,
−J(rij)S(S + 1), with the energy of the quasiclassical Néel state, −J(rij)S

2, for
the two-particle Hamiltonian Eq. (2.3). One can think of the difference of these
two energies, as the energy contribution of the quantum fluctuations of Sz. The
ratio of the contribution of the fluctuations to the classical ground state energy is
1/S. If we assume that the energy of all bounds can be minimized simultaneously,
the ratio for a larger system is 1/(zS), where z is the coordination number of the
lattice. This assumption is obviously unsound, nevertheless, the general picture

3However, no proof exists for real magnetic sublattices in the ground state [7]
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its result provides is correct: The effect of the quantum fluctuations on the ground
state is larger for low spin and coordination number (and consequently, lattice
dimension).

One consequence of the large quantum fluctuations in 1 and 2d antiferromag-
netic systems is, that it is easier to for thermal fluctuations to destroy long range
order, than it is on lattices with higher dimension. In 1 and 2d, long-range thermal
fluctuations can be created with little energy cost. Since these increase the entropy
of the system more than short-range fluctuations, the free energy favors them,
and symmetry-breaking long-range correlations are destroyed on finite tempera-
tures. The Mermin-Wagner theorem [10] states that: There can be no spontaneous
breaking of a continuous symmetry on finite temperature in 1 and 2d systems with
sufficiently short-ranged interactions. The result of antiferromagnetic spin-wave
theory done on 1 and 1d Heisenberg models suggests that true long-range order
may not occur even in the ground state of such models: The magnon correction to
the magnetization diverges in 1d, and is comparable to the ground state magneti-
zation in 2d. This leads one to the conclusion, that the quasiclassical long-range
ordered ground state the theory assumes is incorrect.

There is another consequence of large quantum fluctuations in 1d: A fundamen-
tal difference between integer spin and half-integer spin irreducible representations
(irreps) of SU(2) creates a profound difference in the ground state of such systems.
The main effect of this difference is, that the wave-function of half-integer spin par-
ticles obtain a −1 factor when rotated by 2π, while the wave function of integer
spin particles remains unchanged. In the continuum limit of the antiferromagnetic
Heisenberg chain, one can treat the slowly varying part of the staggered magneti-
zation as a field, and describe the low-momentum excitations with an effective field
theory. Haldane showed, that in the integer spin case, the O(3) non-linear sigma
model is the correct field theory to use. This model does not have a mass explic-
itly, however, a mass is dynamically generated by quantum fluctuations. This is
the basis of the famous Haldane’s conjecture, stating that integer spin antiferro-
magnetic chains are gapped. When there is a gap, the Goldstone theorem forbids
spontaneous symmetry breaking in the ground state. The ground state of such
systems is therefore truly disordered, with an exponentially decaying two-point
correlation function.

In the half-integer spin case, the O(3) non-linear sigma model is no longer a
good effective field theory. This is because due to the rotation property of half-
integer spins, the long-wavelength fluctuations make additional terms relevant in
the action integral of the model. On the contrary, there is an important result for
half-integer spin systems, which states the opposite of Haldane’s conjecture: Lieb,
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Schultz, Mattis and Afflect showed [11], that on an even-length, antiferromagnetic,
half-integer spin chain, given a particular ground-state wave function, one can
construct on other wave function by rotations of spins, with an upper bound to its
energy, that becomes asymptotically degenerate with the ground state-energy in
the thermodynamic limit. The consequence of this is, that either there are gapless
excitations in the thermodynamic limit, or the wave function constructed is also
a ground state, and therefore the ground state is degenerate. The Bethe ansatz
solution for the 1/2-spin Heisenberg chain [12] is an example for the former case. In
general, the Heisenberg chains that fall in the former case do not have true long-
range order. Instead, they exhibit quasi-order, where the two-point correlation
function decays only algebraically. In these systems there are gapless Goldstone-
like excitations that “perceive” the system as ordered in their sufficiently large
environment.

Frustration, or in other words, the situation where interactions between differ-
ent pairs of particles cannot be optimized simultaneously, is yet another mechanism
that acts against the forming of long-range order in magnetic systems. This can re-
sult both from multiple types of competing interactions, e.g. in a J1-J2 Heisenberg
model, or from lattice geometry. The result is a macroscopic scale degeneracy of
the ground-state even in classical models. In certain cases however, quantum fluc-
tuations counteract the effect of frustration by selecting a certain preferred ground
state from the degenerate manifold with their contribution to the free energy. This
phenomenon is named “order by disorder”, and in a broad sense, it happens be-
cause the ground state degeneracy caused by frustration is “accidental”, and not
a result of some symmetry of the system. For example, order by disorder in an
antiferromagnetic Heisenberg model succeeds on the kagome lattice [13], but fails
on the pyrochlore lattice [14, 15].

2.4 Quantum paramagnets

In a thermal paramagnet, all magnetic order is destroyed by the thermal fluctua-
tions, and no continuous physical symmetry is broken. It is not possible to catego-
rize these paramagnets further if one takes only the magnetic degrees of freedom
into account. However, the situation is different in macroscopically phase coherent
quantum paramagnets, where long-range order is broken down by quantum fluc-
tuations. These systems can exhibit internal orders, and non-trivial excitations,
that cannot be described by Landau’s theories of phase transitions and Fermi liq-
uids respectively. The general theory of these magnetically disordered insulators
started forming only around two decades ago.
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In non phase-coherent matter, the mathematical object that describes the phys-
ical state of the system is a positive definite classical spatial probability distribu-
tion function. For example, in solid state materials, this is the time averaged
microscopic charge density function. The conventional phases that appear in such
systems are characterized by the spatial symmetries of this classical probability
distribution. These symmetry transformations form a group, that is identical to
one of the 230 space groups describing crystallographic structures.

When matter becomes phase-coherent, the relevant mathematical object that
describes its state, is a complex wave function. Spatial symmetries alone are
insufficient to characterize the phases arising in this situation. Such systems may
have different phases, that have the same set of spatial symmetries. Landau’s
idea of characterizing the phases by their symmetries still works to an extent, but
one has to extend spatial symmetries with the possible “internal” symmetries of
a wave function, and this can give rise to non-physical order parameters. This
categorization of paramagnetic phases by an extended set of symmetries is the
main idea behind the projective symmetry group approach pioneered by Wen [16].
Beyond the wider range of possible symmetries, phase-coherent systems can also
give rise to topological order. These phases cannot be categorized by symmetries
alone, for that purpose, one needs to introduce topological concepts.

The appropriate language to describe quantum paramagnets, is the language
of valence bonds. By Marshall’s theorem, the ground state of most quantum
antiferromagnets is in the total singlet subspace. This subspace is spanned by
wave functions in which all electrons are paired into singlets, or valence bonds.
Thus, the ground state can be expressed as a superposition of singlet coverings.
This description was first introduced by Anderson, who coined the term resonating
valence bond states for it [17, 18]. He also proposed, that there might be a link
between these states, and high temperature superconductivity, since electrons are
paired up [19, 20].

The two most qualitatively distinguishable types of quantum paramagnets are
valence bond crystals (VBC), and spin liquids. The long-distance two-point cor-
relation function vanishes in both, but in VBC states, there might be higher order
correlations, e.g. dimer-dimer. These VBC states contain only nearest neighbor
valence bonds, therefore, they break lattice translation symmetry with various
unit cells. Contrarily, spin liquids contain valence bonds of varying lengths. As
the name suggests, they do not break lattice translation symmetry, and all higher
order correlations vanish at long distances. Spin liquids can be further classified
by the lengths of the valence bonds that appear in them. There are short range,
or gapped Z2 spin liquids, and long-range algebraic spin liquids.
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One peculiarity of quantum spin liquids, is that in many cases, they exhibit
fractionalization even above 1d. A fractional excitation carries quantum numbers
which are fractions of the local degrees of freedom, therefore, it cannot be asso-
ciated with collective modes in the Landau sense. When true fractionalization
occurs, the fractional excitations are deconfined, meaning that they can be moved
infinitely apart, by expanding only finite energy. In 1d antiferromagnetic systems,
fractional spin-1/2 spinon excitations, or in other words, spin-charge separation is
rather common. These excitations are usually associated with kinks, domain walls
and solitons. Contrarily, above 1d, spin-1 collective magnon excitations are much
more prevalent. Not all spin liquids have fractionalization, for example fractional
excitations are confined in algebraic spin liquids, but it might occur in Z2 spin
liquids. In the phases where it does occur, generally, there is topological order.
Anderson proposed that fractionalization might play a role in high temperature
superconductivity [19].

2.5 Methods for studying models of quantum mag-

netism

One can employ a number of methods for studying interacting spin systems. Each
of these has its respective advantages and shortcomings.

In certain special cases, it is possible to find the exact ground state, and even the
entire spectrum of the system with analytical methods only. This is usually done
by finding some clever transformation that decouples the many coupled degrees of
freedom. For example, the XY-chain can be solved by means of a Jordan-Wigner
transformation, and the 2d Ising model by Bethe ansatz. Contrarily to these, some
other exactly solvable models were born by searching for a parent Hamiltonian that
has a given ground state. Such is the case with the AKLT state and its Haldane
gapped parent Hamiltonian on a spin-1 chain [21, 22]. Although these systems
might sometimes feel artificial, they do provide valuable insight into the nature of
quantum magnetism.

When analytical solution is not a possibility, perhaps the most obvious method
one can use is the exact diagonalization of the Hamiltonian for some finite lattice
size. This is the most universally applicable numerical method, since it works for
all parameter values and lattice configurations. Unfortunately, it is also the most
resource intensive method. Due to the size of the Hilbert space scaling exponen-
tially with the number of particles, the spectrum can only be calculated for at most
a few 10s of spins this way. In the case of SU(n) symmetric antiferromagnets, the
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efficiency of exact diagonalization can be improved somewhat, by restricting the
calculation to the singlet sector. The method for achieving this, is a relatively
recent development [23, 24].

For studying a larger number of spins, one has to give up on exact solutions,
and use approximate methods. The quasiclassical Spin-wave theory and its gen-
eralizations are able to treat very large lattices, however, they are applicable only
when the ground state is close to classical, and the quantum fluctuations can be
neglected; spin-wave theory is therefore unfit for the study of quantum paramag-
nets.

Large quantum fluctuations usually necessitate numerical methods. Quantum
Monte Carlo methods work for moderate system sizes, but they suffer from the
infamous sign problem: When calculating a highly oscillatory sum with a quantum
Monte Carlo method, the cancellations that arise greatly decrease the accuracy
of the result. Such cancellations are present, due to the Pauli principle, when
summing over many configurations in fermionic systems. This makes quantum
Monte Carlo unsuitable for half-integer spins. Even in the case of integer spin
systems, the sign problem usually limits the applicability of Quantum Monte Carlo
methods to a small set of parameter values [25–27].

Tensor network algorithms are a powerful alternative to Monte Carlo. A tensor
network, sometimes also referred to as a matrix product state, is a type of varia-
tional ansatz, that is really successful in describing frustrated magnetic systems,
provided that the energy gap is large enough. It is applicable to large systems
sizes, even for the thermodynamic limit in 1d [28–30], and can be generalized to
higher dimensions [31–33]. The way entanglement is distributed in the ansatz
states is governed by an auxiliary dimension d. For a large enough d, every state
has a matrix product state representation, however the computation time scales
with d12, thus only smaller values of it are feasible. Nevertheless, many of the
states arising in physics can be approximated well with a small value of d.

In spite of all the progress made with classical simulations, physical theories
must ultimately be judged by experiment. Unfortunately, experiments on solid
state systems have a number of inconveniences: It is usually difficult to find mate-
rials that realize magnetically interesting Hamiltonians; in the rare cases where this
is possible, these materials are described by rather complicated chemical formulas,
and fabricating them is a science on its own. Furthermore, the Hamiltonians that
can be implemented this way, are often plagued by undesirable residual interac-
tions, that cannot be entirely neglected, and their parameters are not tuneable.
Finally, due to the size of inter-atomic distances, the measurements one can make
on such a solid state sample, for example by neutron scattering, are restricted to
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observables that are averaged over many sites.
A possible solution to the problems of solid state experiments is, following the

suggestion of Feynman [34] to simulate quantum magnetic materials with different
quantum systems. There is no insurmountable theoretical barrier against build-
ing a universal quantum computer [35]. Such a machine could simulate any local
quantum system efficiently using a set of universal quantum gates. This approach
to simulation is usually referred to as a digital quantum simulator, and its real-
ization is still in the early stages. A much less ambitious enterprise is abandoning
the universal requirement, and constructing an easily controllable and measurable
quantum system, that can simulate a small class of different quantum systems.
The chief condition for this to be possible, is the existence of an isomorphic map-
ping between the observable algebras of the two systems. This approach is called
an analog quantum simulator, and it has already been realized with several exper-
imental platforms. Some examples are: ultracold quantum gases, polar molecules,
trapped ions, photonic systems, quantum dots and superconducting circuits [36].

A particular analog quantum simulator, that suits perfectly to the simulation of
solid state systems, can be implemented with ultracold atoms trapped in an optical
lattice. In this type of arrangement, neutral atoms are held at the nodes of an
interference pattern between laser beams, as a result of their polarization induced
by the laser light [37]. Perhaps the largest advantage of ultracold atomic systems
compared to other analog quantum simulators, is the scalability neutral atoms
provide. Many thousands of atoms can be trapped simultaneously. It is possible
to trap exactly one atom at each node, and the lattice geometry, dimensionality,
disorder and depth can all be controlled. Even lattices with artificial gauge fields
can be engineered [38]. These fields can be stronger than what is available in solid
state experiments, which enables the investigation of new topological quantum
phases. Quantum gas microscopes provide a way observe, and manipulate the
system on the level of individual atoms [39–41].

The simulation of quantum magnetism requires two or more local quantum
states, that can act as the elementary magnetic moments. These states can be en-
coded in various ways, for example, the Ising model can be realized by representing
the two spin states with the difference of the occupation numbers between neigh-
boring sites [42]. However, the most common approach is to use internal atomic
Zeeman levels. Alkaline earth atoms are a good candidate for the simulation of
SU(2), or even SU(N) symmetric magnetic models [43]. The two valence electrons
give them a rich atomic structure to be exploited. In particular, the g =1 S0 and
e =3 P0 electronic clock states of these atoms both have zero electronic angular
momentum J . This means, that in these states J is almost perfectly decoupled
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from the nuclear spin I. The charge neutral atoms interact in short range s-wave
scattering; since this interaction is governed by the electronic structure of the
atoms, the s-wave scattering lengths involving only the g and e states are going to
be independent of the nuclear spin to a very good approximation. This implies,
that by trapping the 2I + 1 hyperfine sublevels of these states, one can simulate
SU(2I + 1) symmetric magnetic interactions. The scattering lengths of these in-
teractions can be tuned in a wide range using external magnetic fields, by utilizing
various scattering resonances.

An additional perk quantum simulators provide, is experimental access to sys-
tems with long-range interaction. This can be achieved, for example, with Rydberg
atoms [44], or ion traps [45]. With the use of trapped atoms, even the infinite range
SU(N) symmetric interaction, which is a subject of this thesis, is achievable ex-
perimentally: In the proposal [46], instead of an optical lattice, many thermal
atoms are loaded into the same highly anharmonic trap, and the lattice sites are
encoded into the occupied orbitals of the trap potential. Experiments like these
open up a way to realize scenarios that were previously thought as being only
of theoretical interest, e.g., Curie-Weiss-type transverse-field Ising models (i.e.,
the Lipkin-Meshkov-Glick model) [47–50], or the Haldane-Shastry model [51, 52].
This allows the many-body community to study phenomena that do not exist in
short-range models, for example, the breaking of continuous symmetries in one-
dimensional models.

2.6 Mean field theories and permutation symme-

try

Of the many techniques used to investigate quantum spin systems, we give special
attention to perhaps the simplest one, mean-field theories. These use variational
wave functions of product form to characterize the ground state properties of cer-
tain problems. The use of this method excludes all effects of quantum correlations
from one’s analysis, thus the validity of the results depends heavily on the level
of entanglement of the ground state of the particular problem. In mathematical
physics literature, permutation symmetric models in the thermodynamic limit are
also often referred to as mean field models. The connection between the two inter-
pretations of the word is formalized by the quantum de Finetti theorem. Several
versions of this theorem have been developed in recent times [53–56]. Its funda-
mental statement is, that for an N -partite, permutation symmetric quantum state
ρ, the state of any k-partite subsystem can be efficiently approximated by a convex
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combination of independent, identically distributed product states,

TrN−k(ρ) ≈
∑
i

piσ
⊗k
i , where pi ≥ 0 and

∑
i

pi = 1. (2.4)

The different versions of the theorem use different types of distances, e.g., trace
distance, but the error of the approximation is always proportional to k/N . Note
that the permutation symmetry of ρ implies that the reduced state is independent
of which N − k subsystems one chooses to trace out.

The ground state of a permutation symmetric system is not necessarily permu-
tation symmetric itself; however, one can always create a permutation symmetric
mixture of ground states. Let PGS denote the orthogonal projector to the ground
state subspace of the permutation symmetric HamiltonianH of an N -partite quan-
tum system, and dGS the dimension of this subspace. Consider the “twirl” with
the permutation group of the subsystems, SN ,

ρGS =
1

dGSN !

∑
πi∈SN

π−1i PGSπi. (2.5)

With this, we have

Tr(ρGSH) =
1

dGSN !

∑
πi∈SN

Tr(PGSπiHπ
−1
i ) =

1

dGS
Tr(PGSH) = EGS; (2.6)

therefore, ρGS itself must be a statistical mixture of pure ground states.
Now assume that H contains at most k-particle interactions. This means that

the expected value of the energy depends only on the k-particle reduced states of
ρGS; therefore, in the thermodynamic limit by the quantum de Finetti theorem,

EGS = Tr(ρGSH) = Tr

(∑
i

piσ
⊗N
i H

)
. (2.7)

Since EGS is the lowest eigenvalue of H, this means that the non-entangled state,∑
i piσ

⊗N
i , must also be a statistical mixture of ground states. In this way, mean

field approximation yields an exact ground state for permutation symmetric spin
models in the thermodynamic limit.
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Chapter 3

The Schur-Weyl duality and the
representation theory of SU(d)

The purpose of this chapter is to introduce the classification of the irreducible
representations, and the fusion rules of the special unitary group SU(d). The usual
way to present these concepts is through the highest weights of representations,
see e.g. [57]. However, considering how significant permutation symmetry is for
this work, we take a path less traversed and answer our questions through the
relationship of SU(d) and the group of permutations of N element sets, SN . At the
heart of this connection lies the Schur-Weyl duality, which we use to trace back
the classification, and fusion rules of SU(d) irreps to the representation theory
of SN . This chapter assumes a basic understanding of the theory of Lie groups,
for a thorough introduction of this subject see [58]. We provide somewhat more
than the minimum amount of necessary facts; our reasoning is that this topic is
usually swept under the rug in the physical literature, while discussed in much
more abstract terms in the mathematical one. We hope that a good summary
might be useful to some even outside the context of this thesis.

3.1 The Schur-Weyl duality

In its most general form, the Schur-Weyl duality relates the finite dimensional
irreducible representations of the group of complex, invertible d× d matrices, the
general linear group GL(d), and SN . It is an archetypal situation in representation
theory, where two different kinds of symmetries determine each other.

Consider the N-partite composite Hilbert space H = (Cd)
⊗N , where the sym-

bols ⊗N in the exponent denote the N-th tensor power. The permutations in
SN act naturally on H by permuting the components of the tensor product; we
call this the natural representation, DSN

N . The natural representation, DGL(d)
N , of
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g ∈ GL(d) on H, acts globally with g:

D
GL(d)
N (g) = g⊗N . (3.1)

The natural actions of these two groups commute with each other. The fundamen-
tal statement of the Schur-Weyl duality is proved by using the double centralizer
theorem. It states that the connection goes further than mere commutation. We
denote the complex subalgebra generated by the A ⊆ A subset of a complex al-
gebra A with C[A]; the centralizer of A, i.e., the set of those elements of A that
commute with all elements of A, is denoted by A′.

Theorem 1 (Schur-Weyl duality). C[DSN
N [SN ]], and C[D

GL(d)
N [GL(d)]] are the full

centralizers of each other in the algebra of endomorphisms End(H). That is,

C[DSN
N [SN ]]′ = C[D

GL(d)
N [GL(d)]] and

C[D
GL(d)
N [GL(d)]]′ = C[DSN

N [SN ]].
(3.2)

In other words, every permutation invariant linear operator on H can be ex-
pressed as a complex linear combination of operators in DGL(d)

N [GL(d)]; vice versa,
every linear operator on H invariant to global GL(d) transformations can be ex-
pressed as a complex linear combination of permutations in DSN

N [SN ].
By using Schur’s lemma, one can rephrase the Schur-Weyl duality in terms of

irreducible representations. Let

DSN
N
∼=
⊕
λ

[
(DSN

λ )
⊕mSNλ

]
(3.3)

be the decomposition of DSN
N into irreducible representations DSN

λ of SN with
multiplicities mSN

λ , where by ∼= we denote unitary equivalence. Accordingly, the
Hilbert space decomposes as

H =
⊕
λ

(Hλ ⊗Kλ), (3.4)

where the permutations in DSN
N act irreducibly on Kλ, and as identity on Hλ; or

to put it in another way:

DSN
N (π) =

⊕
λ

11Hλ ⊗D
SN
λ (π) ∀π ∈ SN . (3.5)

Furthermore, dim(Kλ) = dim(DSN
λ ) and dim(Hλ) = mSN

λ . The terms Hλ ⊗ Kλ of
Eq. (3.4) are the irreducible sectors of SN , which contain all instances of the irrep
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λ on H.
The following is a simple corollary of Schur’s lemma:

Lemma 2. Let V and W be complex, finite dimensional vector spaces, G a group,
and DG

V a complex linear representation of G on V. DG
V is irreducible iff,

{DG
V (g)⊗ 11W : g ∈ G}′ = {11V ⊗ A : A ∈ End(W )}. (3.6)

Proposition 1. The irreducible sectors of GL(d) and SN on H coincide. That is,
the natural representation of GL(d) decomposes to irreducibles as:

D
GL(d)
N (g) ∼=

⊕
λ

D
GL(d)
λ (g)⊗ 11Kλ ∀g ∈ GL(d), (3.7)

where DGL(d)
λ is an irreducible representation acting on the Hλ tensor factors

of the Hilbert space decomposition Eq. (3.4).

Proof. According to Lemma 2, every element in the centralizer DSN
N [SN ]′ acts as

identity on the Kλ tensor factors, i.e.,

∀X ∈ DSN
N [SN ]′ ∃AXλ ∈ End(Hλ) : X =

⊕
λ

AXλ ⊗ 11Kλ . (3.8)

By the Schur-Weyl duality, this must also be a property of DGL(d)
N [GL(d)]. There-

fore, there must exist a linear representation D
GL(d)
λ of GL(d) on each Hλ, for

which
D

GL(d)
N (g) ∼=

⊕
λ

DGL
λ (g)⊗ 11Kλ ∀g ∈ GL(d). (3.9)

It is not yet clear if DGL
λ is irreducible. For this reason, we use the Schur-Weyl

duality again in the other direction. The commutant DGL(d)
N [GL(d)]′ must be

compatible with the irrep decomposition of DSN
N in Eq. (3.5), therefore,

∀X ∈ DGL(d)
N [GL(d)]′ ∃BX

λ ∈ End(Kλ) : X =
⊕
λ

11Hλ ⊗BX
λ , (3.10)

and according to Lemma 2, each DGL(d)
λ must be irreducible.

Proposition 1 implies that, for fixed values of N and d, the decomposition
Eq. (3.4) of H into irreducible sectors provides a bijection between the GL(d) and
SN irreps that appear in it.
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3.2 The Schur-Weyl duality for U(d) and SU(d)

The notion of compactness is in a sense, a way to generalize certain fundamental
properties of finite sets to infinite sets. Compact Lie groups are better understood,
and are easier to work with than non-compact Lie groups, because many properties
of finite groups carry over to them. GL(d) is not compact, however, in a qualitative
way, its representation theory is controlled by its maximal compact subgroup, the
group of unitary transformations U(d). Here, we show that the Schur-Weyl duality
is true when GL(d) is replaced by U(d) or SU(d).

Let gl(d) denote the (complex) Lie algebra of GL(d), or in other words, the set
of d× d complex matrices. Let u(d), denote the (real) Lie algebra of U(d), or the
set of d× d skew-hermitian matrices. The natural representation of m ∈ gl(d) on
H that corresponds to Eq. (3.1) is:

D
gl(d)
N (m) = m⊗ 11⊗ · · · ⊗ 11 + 11⊗m⊗ · · · ⊗ 11 + · · ·+ 11⊗ · · · ⊗ 11⊗m. (3.11)

Proposition 2.
gl(d) = C[u(d)]. (3.12)

Proof. For all m ∈ gl(d) we define the skew-hermitian matrices u(m) and v(m) with,

v(m) =
i

2
(m+m†), u(m) =

1

2
(m−m†). (3.13)

Then,
m = u− iv. (3.14)

Corollary. The Schur-Weyl duality is true with GL(d) replaced by U(d).

Proof. A matrix commutes with all elements of a connected Lie group of matrices
if and only if it commutes with all elements of its Lie algebra; therefore we have:

C[D
GL(d)
N [GL(d)]]′ = C[D

GL(d)
N [gl(d)]]′ =

C[D
GL(d)
N [u(d)]]′ = C[D

GL(d)
N [U(d)]]′.

(3.15)

The Lie algebra of SU(d), su(d) is the set of d × d traceless skew-hermitian
matrices. This tracelessness calls for an additional step compared to the U(d)

case.

Proposition 3. The Schur-Weyl duality is true with GL(d) replaced by SU(d).
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Proof. For all m ∈ gl(d) we define the traceless skew-hermitian matrices u(m) and
v(m) with:

v(m) = i

(
1

2
(m+m†)− <(Tr(m))

d
11

)
,

u(m) =
1

2
(m−m†)− =(Tr(m))

d
11,

(3.16)

and we have,

m = u(m) − iv(m) +
Tr(m)

d
11, (3.17)

therefore,
gl(d) = C[su(d) ∪ {11}], (3.18)

but,
C[su(d) ∪ {11}]′ = C[su(d)]′, (3.19)

because the additional identity matrix does not influence the commutant.

From here on we will use the notations DU(d)
λ , D

SU(d)
λ , for a representation of

GL(d) restricted to the corresponding subgroup. A consequence of propositions 2
and 3 is that the Schur-Weyl duality allows one to label the U(d) and SU(d) irreps
appearing in the irrep decompositions of DU(d)

N and DSU
N with the corresponding

irreps of SN .

3.3 Young diagrams, and the group of permuta-

tions

We are tracing back most problems concerning the irreps of SU(d) to the same
problems for SN , therefore, a few words about the group of permutations is in
order. The representation theory of SN was constructed by Frobenius, Schur, and
Young, and its distinctive feature is a close connection to combinatorics. This
connection can be ascribed to the fact that the irreducible representations of SN
are in a natural one-one correspondence with the integer partitions of N. In the
following, we elaborate on this classification.

An integer partition of a positive integer N , is a weakly decreasing sequence
of positive integers λ = (λ1, λ2, . . . , λl) satisfying

∑l
i=1 λi = N . For example, the

partitions of 4 are,

(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1). (3.20)

We denote λ being an integer partition of N by λ ` N . For integer partitions with
repeating numbers, we will sometimes use the power notation, e.g., (2, 2, 2, 1, 1) ∼=
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(23, 12). An integer partition λ = (λ1, λ2, . . . , λl) is often visualized with a Young
diagram: A collection of N boxes arranged in left justified rows, where the i-th
row contains λi boxes. For example,

(3, 2, 1) ∼= , (4, 2) ∼= . (3.21)

We will refer to the integer partition corresponding to a diagram as the shape
of the diagram. The irreducible representations of SN are labeled by integer par-
titions, or Young diagrams. Here, we give an intuitive understanding for why
this happens. Every permutation π ∈ SN can be uniquely decomposed into dis-
joint cycles, i.e., each number in {1, 2, . . . , N} appears in exactly one cycle. For
example, (1, 2)(3, 4, 5) ∈ S5 is the permutation that swaps 1 and 2, and sends
3 → 4 → 5 → 3. In this way, the lengths of the cycles of any given permutation
in SN , make up a partition of N when arranged in a weakly decreasing order. We
call this partition the cycle type of the permutation, e.g., the cycle type of the
permutation in the last example is (3, 2). One can think of the conjugation of a
permutation π with another one σ, as relabeling the elements in the cycle notation
of π with σ. For example, if σ maps x to x′ and

π = (abc)(de), then σπσ−1 = (a′b′c′)(d′e′). (3.22)

It follows, that π and σπσ−1 have the same cycle types, and also that two permuta-
tions are the conjugates of each other if and only if they have the same cycle type.
Therefore, the conjugacy classes of SN are characterized by the cycle types, or in
other words, the integer partitions of N . Elementary group theory tells us, that
the number of irreps of a finite group is equal to the number of conjugacy classes.
There is in fact an elaborate scheme which constructs an irrep of SN corresponding
to each integer partition of N. This is described in detail, for example in [59].

There is a different convention for labeling integer partitions, commonly used in
particle physics, that stems from the highest weight classification of irreps. These
are the so called Dynkin labels, which use the differences of the subsequent elements
of the integer partitions. We denote the use of Dynkin labels by square brackets:

(λ1,λ2, . . . , λl) ∼= [λ1 − λ2, λ2 − λ3, . . . , λl−1 − λl, λl]. (3.23)

An advantage of this convention, is that the partitions are labeled uniquely by un-
ordered sequences of non-negative integers, which sometimes removes cumbersome
constrains in calculations.
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3.4 The irrep decomposition of the composite Hil-

bert space

Now that we established that the irreps of SN can be labeled uniquely by parti-
tions of N , or Young diagrams, the next important question to answer is: Which
SN irreps appear in the decomposition of the natural representation, DSN

N , and
what are their dimensions and multiplicities? In this work, we do not plan to go
too deeply into the representation theory of SN , thus we merely state the results
without proof here. The reader can consult the classical works written by Little-
wood [60], Murnaghan [61], G. de B. Robinson [62] or a more recent summary by
Sagan [59] for further details on the representation theory of SN .

First, look at the case of d ≥ N . Let {|vi〉}Ni=1 be an orthonormal set of vectors
on Cd. Now consider the subspace of H = (Cd)

⊗N spanned by the product vectors:

VR = Span{|vσ(1)〉 ⊗ |vσ(2)〉 ⊗ · · · ⊗ |vσ(N)〉 : σ ∈ SN}. (3.24)

It is clear that VR is invariant to the natural action of SN on H. Moreover, the
basis vectors of VR can be identified with the elements of SN itself. In fact, the
SN representation we obtain by restricting DSN

N to VR is equivalent to the regular
representation of SN , i.e., the representation of SN on its own group algebra. The
regular representation of a compact group contains all of its irreducible represen-
tations, therefore DSN

N as well must contain all irreps of SN with some non-zero
multiplicities.

The case of d ≤ N is somewhat more complicated. Let λ be a Young diagram
that has at least one column of height k. A peculiarity of the irreps of SN , is that
for the irrep corresponding to λ, one can find a set of basis vectors {eλi } spanning
the irrep, and for each basis vector, a permutation subgroup

Hi ⊆ SN , Hi
∼= Sk, for which πeλi = Sgn(π)eλi ∀ π ∈ Hi; (3.25)

I.e., the basis vector eλi is antisymmetric for all odd permutations in Hi. In the
case of our natural representation on the composite Hilbert space H, this means
that eλi should be antisymmetric to the swapping of any pair out of k given one-
particle Hilbert spaces. It is not possible to construct such a vector when k > d,
thus, DSN

N cannot contain irreps corresponding to Young diagrams that have more
that d rows.

Now, we give the full irrep decomposition of DSN
N . First, we need some new

definitions: A semistandard Young tableau of shape λ and dimension d, is the
Young diagram with shape λ, filled with numbers ranging from 1 to d, in such a way
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that the numbers are non-decreasing in the rows, and increasing in the columns.
For example, the semistandard Young tableaux of shape (3, 1) and dimension 2
are:

1 1 1
2

, 1 1 2
2

, 1 2 2
2

. (3.26)

We denote that λ is an integer partition of N with at most d parts, i.e., a Young
diagram with at most d rows, by λ `d N .

Proposition 4. The irrep decomposition of DSN
N is given by,

DSN
N
∼=
⊕
λ`dN

m
(d)
λ DSN

λ , (3.27)

where the multiplicity m(d)
λ is given by the number of semistandard Young tab-leaux

with shape λ and dimension d.

The value of m(d)
λ can be expressed in a closed form by a so called Hook length

formula [57],

m
(d)
λ =

∏
(i,j)∈λ

d− i+ j

hλ(i, j)
, (3.28)

where hλ(i, j) is the “hook length” of the box at the i-th row and j-th column of
the diagram λ, meaning the number of boxes at positions (k, l), such that i = k

and l ≥ j, or i ≥ k and l = j. As an example, we write the corresponding hook
length inside every box in the diagram λ = (3, 2, 1):

5 3 1
3 1
1

, m
(3)
(3,2,1) = 8. (3.29)

For the cases of d = 2 and d = 3, it is relatively straightforward to express the
hook lengths with the Dynkin labels of the diagram, and calculate the product:

m
(2)
[p,q] = (p+ 1) and m

(3)
[p,q,l] = (p+ 1)(q + 1)(p+ q + 2)/2. (3.30)

The dimension of the irrep DSN
λ can also be expressed in a combinatorial way,

it is given by the number of standard Young tableaux with shape λ. A standard
Young tableau, is a Young diagram filled with numbers ranging from 1 to N , in
such a way that the numbers are strictly increasing in both the rows and the
columns. For example, the standard Young tableaux of shape (3, 1) are:

1 2 3
4

, 1 2 4
3

, 1 3 4
2

. (3.31)
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It is possible to express the number of standard Young tableaux with shape λ by
an other hook-length formula:

dim(DSN
λ ) =

N !∏
i,j hλ(i, j)

. (3.32)

In terms of the irrep decomposition Eq. (3.4) of the composite Hilbert space, m(d)
λ

is the dimension of Hλ, and dim(DSN
λ ) is the dimension of Kλ. According to

the Schur-Weyl duality, this means that m(d)
λ is the dimension, and dim(DSN

λ ) is
the multiplicity of the SU(d) irrep corresponding to the partition λ in the irrep
decomposition of DSU(d)

N . Indeed, m(2)
[p,q] is equal to the dimension of the spin-p/2

irreducible representation of SU(2). We will expand on this connection later on.

3.5 Classifying the irreps of U(d)

The Schur-Weyl duality allows one to uniquely label the U(d) irreps that appear
in the irreducible decomposition of an N-partite composite Hilbert space, with
the SN irreps, or Young diagrams, that correspond to them in Eq. (3.4). From
this, a new question arises: Can this method be extended to label the U(d) irreps
independently of any particular composite Hilbert space? That is, is it possible
to find for every U(d) irrep, a number N ∈ N and an irrep of SN which uniquely
determines it with the Schur-Weyl duality? This would be possible if for each
irrep of U(d), there exists exactly one N ∈ N for which the irrep appears in the
irreducible decomposition of DU(d)

N = (D
U(d)
(1) )

⊗N
, where DU(d)

(1) denotes the defining
representation of U(d). It turns out that for the group U(d), this statement is only
half-true. We are going to start with the true part.

Proposition 5. If DU(d)
λ is an irrep of U(d), then D

U(d)
λ cannot appear in the

irreducible decomposition of DU(d)
N for more than one value of N.

Proof. We can express any u ∈ U(d) as a product of a complex unit, and an
element of SU(d),

u = (detu)1/d
u

(detu)1/d
and therefore,

D
U(d)
N (u) = (detu)N/dD

U(d)
N

(
u

(detu)1/d

)
.

(3.33)
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It also follows, that if the irrep DU(d)
λ is present in the irrep decomposition of DU(d)

N ,
then

D
U(d)
λ (u) = (detu)N/dD

U(d)
λ

(
u

(detu)1/d

)
. (3.34)

If DU(d)
λ were to appear in the irrep decomposition both DU(d)

N and DU(d)
N ′ for some

N ′ 6= N , then for any fixed u ∈ U(d) we must have,

(detu)N
′/dD

U(d)
λ

(
u

(detu)1/d

)
∼= (detu)N/dD

U(d)
λ

(
u

(detu)1/d

)
, (3.35)

w.r.t. unitary equivalence. This is a contradiction that one can see e.g., by com-
paring the determinants of the two sides.

The false part of our statement at the beginning is, that every irrep of U(d)

appears in the irrep decomposition of DU(d)
N for some N ∈ N. An obvious coun-

terexample would be the complex conjugate of the defining representation, or in
other words, its dual representation DU(d)

(1) . In this representation, we have,

D
U(d)
(1) (u) = (detu)−1/dD

U(d)
(1)

(
u

(detu)1/d

)
, (3.36)

which is incompatible with Eq. (3.34) for any N ∈ N. Thus, according to Proposi-
tion 5, we can only uniquely label by a single Young diagram those irreps of U(d)

which appear in the decomposition of DU(d)
N for some N ∈ N.

3.6 Classifying the irreps of SU(d)

In this section we show that unlike in the case of U(d), it is truly possible to label
all irreps of SU(d) with Young diagrams. This endeavor is going to involve some
additional difficulties, because Proposition 5 does not apply for SU(d). Let us
start with showing that all the irreps of SU(d) appear in the tensor powers of the
defining representation.

We established with U(d), that for a compact group in general, the tensor
powers of the defining representation do not necessarily contain all irreps. This
changes if we add the dual of the defining representation to the mixture.

Proposition 6. For a compact group G, and a faithful, unitary, finite dimensional
representation D, every G-irrep appears in the irreducible decomposition of D⊗N⊗
D
⊗M for some N,M ∈ N.
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This Proposition is a corollary of a Galois correspondence between the closed
normal subgroups of G, and the representation subrings of the representation ring
of G. For a more through explanation see Appendix A.

Proposition 7. All irreps of SU(d) appear in the irreducible decomposition of
D

SU(d)
N = (D

SU(d)
(1) )

⊗N
, for some N ∈ N.

Proof. In Proposition 6, we can set D = D
SU(d)
(1) , therefore, we only have to show

that for SU(d), the dual of the defining representation appears in the irrep decom-
position of some tensor power of the defining representation.

Now consider the composite Hilbert space H = (Cd)
⊗d and its antisymmetric

subspace (Cd)
∧d. This subspace is one-dimensional and spanned by the wedge-

product vector,

|va〉 = |v1〉 ∧ |v2〉 ∧ · · · ∧ |vd〉 =
∑

i1,i2,...,id

εi1,i2,...,id |v〉i1 ⊗ |v〉i2 ⊗ . . .⊗ |v〉id , (3.37)

where {|vi〉}di=1 is an orthonormal basis of Cd. Projecting DSU(d)
d to the antisym-

metric subspace gives us,

(|va〉〈va|)DSU(d)
d (g)(|va〉〈va|) =

det(D
SU(d)
(1) (g))|va〉〈va| = |va〉〈va| ∀g ∈ SU(d),

(3.38)

or in other words, the trivial representation. Since the irrep decomposition of
(D

SU(d)
(1) )

⊗d
contains the trivial representation, the decomposition of (D

SU(d)
(1) )

⊗d−1

has to contain DSU(d)
(1) .

Now, we have to somehow deal with the fact that Proposition 5 does not
work for SU(d), and the same irrep can appear in the decomposition of DSU(d)

N

for multiple values of N . An easy example for this is the case of SU(2). The
well-known spin addition rule is,

DSU(2)
s1

⊗DSU(2)
s2

∼=
s1+s2⊕

s=|s1−s2|

DSU(2)
s , (3.39)

where we momentarily broke our previous convention and labeled irreps with their
spins. According to Eq. (3.39), the trivial representation, s = 0, appears in the
N-fold tensor powers of the defining representation, s = 1/2, for every even N .
A way to avoid this problem is to look at irreps of SU(d), as irreps of U(d) that
are restricted to the SU(d) ⊂ U(d) subgroup. An U(d) irrep, when restricted
to SU(d) stays irreducible. Indeed, assume that it contains a nontrivial SU(d)
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invariant subspace, then the subspace would also have to be U(d) invariant, since
U(d) transformations differ from SU(d) only by rotations of the complex plane.
According to Proposition 7, one can obtain all irreps of SU(d) as restrictions of
some U(d) irreps appearing in the decomposition of DU(d)

N for some N ∈ N; i.e.,
the restrictions of U(d) irreps that can be uniquely labeled by a Young diagrams.

It is not true however, that restricting different irreps of U(d) always results in
different SU(d) irreps.

Proposition 8. By restricting the U(d) irreps corresponding to the Young-diagrams
with Dynkin labels [λ1, λ2, . . . , λd] and [µ1, µ2, . . . , µd] to the SU(d) ⊂ U(d) sub-
group, unitary equivalent SU(d) irreps are obtained if and only if: λi = µi for all
1 ≤ i ≤ d− 1.

The proof for this proposition can be found in [63]. Irreps of SU(d) are therefore
labeled uniquely by equivalence classes of Young diagrams. The diagrams in the
same equivalence class differ from each other only by columns of height d on their
left side. E.g., for SU(3)

∼= ∼= . (3.40)

Furthermore, every equivalence class has exactly one diagram with d− 1 rows
in it; thus, d − 1 row diagrams also uniquely label SU(d) irreps. We will use the
latter method by default, and drop the d-th number of the partitions corresponding
to SU(d) diagrams unless for some reason it is convenient to choose a different
representant.

The equivalence classes are consistent with the Schur-Weyl duality in the sense
that no two diagrams in an equivalence class have the same number of boxes,
therefore, by Proposition 4, no pair of Young diagrams can be from the same
equivalence class in the irrep decomposition of the Hilbert space H = (Cd)

⊗N in
Eq. (3.4).

3.7 The fusion rules of SU(d)

The fusion rules of a group describe how a tensor product of irreps decomposes
into a direct sum of other irreps, i.e., it gives the coefficients mµ,ν

λ in,

Dµ ⊗Dν
∼=
⊕
λ

mµ,ν
λ Dλ, (3.41)
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where Dµ, Dν and Dλ denote irreps. Attempting to determine the SU(d) fusion
rules through the link given by the Schur-Weyl duality, leads one further away
from the representation theory of SN , into the land of combinatorics. We shall
refrain from going too much into details about this topic, and give only a brief
summary.

The first thing to notice, is that we cannot simply trace back the SU(d) fusion
rules to the SN ones. Since the natural representations on composite Hilbert spaces
obey DSU(d)

N ⊗DSU(d)
M = D

SU(d)
N+M , the Schur-Weyl duality maps the tensor product of

SU(d) irreps into an operation between irreps of various permutation groups, that
maps a pair of SN and SM irreps into an SN+M irrep. The way to solve this problem
is to introduce a certain “outer product”. That is, to go from the representation, or
character ring of a single permutation group, R(SN), to ⊕NR(SN), and introduce
a ring product on it that maps a pair of elements from R(SN) and R(SM) into an
element of R(SN+M); this is sometimes referred to as a graded ring structure. To
obtain the desired ring product, we view SN × SM as a subgroup of SN+M , and
for the characters χµ ∈ R(SN), χν ∈ R(SM), define the product χµ · χν to be the
character of SN+M induced from the character χµχν of the group χµ × χν ,

χµ · χν = (χµχν) ↑SN+M , (3.42)

and extend this definition bilinearly to the entirety of ⊕NR(SN). The mapping
from the irreps of SU(d) to those of the permutation group provided by the Schur-
Weyl duality, maps the tensor product of SU(d) irreps to the product defined
with (3.42).

Determining the irrep decomposition of the product in (3.42) involves following
the thread of yet another mapping between different areas of mathematics. This
time, it is the additive isomorphism between the character ring of all permuta-
tion groups, ⊕NR(SN), and the ring of symmetric polynomials as described e.g.,
in [59]. The most important property of this isomorphism, is that it maps the
product in (3.42) to the product of polynomials, and the elements of R(SN), into
symmetric polynomials of degree N , thereby preserving the graded ring structure.
In particular, the isomorphism maps irreducible characters into Schur functions, a
specific class of symmetric polynomials that constitutes a basis of symmetric poly-
nomials. A unique Schur function can be constructed for each Young diagram.
The question of the SU(d) fusion rules is thus transformed into the question of
expanding the product of two Schur functions on the basis of Schur functions.
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3.7.1 The Littlewood-Richardson rule

A combinatorial algorithm for decomposing the product of Schur functions was
found by Littlewood and Richardson in 1934 [64], however they only proved its va-
lidity for certain simple cases. Their conjecture resisted rigorous proving attempts
for over 40 years, by which time the necessary combinatorial framework was de-
veloped by Robinson, Schensted, Schützenberger and Knuth. The first rigorous
proof for the general case was eventually achieved by Thomas [65].

In this section, we present the Littlewood-Richardson algorithm applied to the
SU(d) and U(d) fusion rules. This algorithm involves attaching the boxes of one
diagram in the product to the other. In order to be able to describe this process
in detail, we first introduce some new concepts regarding Young diagrams.

Let (λ, µ) be a pair of Young diagrams for which λ contains µ, i.e., λi ≥ µi ∀i.
The skew diagram λ/µ is the formal difference of the two diagrams: The set of
boxes of λ that are not contained in µ. E.g.,

(4, 3, 2)/(2, 1) ∼= , (5, 4, 3)/(3, 2, 1) ∼= . (3.43)

As the above example shows, the shape of λ/µ does not determine λ and µ uniquely.
The concepts of standard and semistandard tableaux are extended to skew shapes
in the obvious way.

The content of a Young tableau is the sequence of frequencies of the numbers
1, 2, . . . inside the boxes of the tableau. E.g.,

cont

(
1 1 1 2
2 2 3

)
= (3, 3, 1). (3.44)

Sorted in decreasing order, the content is an integer partition corresponding to the
same number as the shape of the tableau.

A ballot sequence is a sequence of positive integers, π = i1i2 . . . in, such that for
any prefix subsequence, πk = i1i2 . . . ik, and any positive integer l, the frequency
of the number l in πk is at least as large as the frequency of l + 1. E.g.,

π = 1 1 1 2 2 2 3, (3.45)

is a ballot sequence, but
π = 1 2 3 1 2 2 1, (3.46)

is not, as the 6th element breaks the rule. To make sense of the naming, think of
an election in which candidate l has a weak lead over candidate l + 1 during the
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entire process of counting the ballots.
Now, we are finally ready to state the Littlewood-Richardson rule.

Theorem 3 (Littlewood-Richardson rule). The multiplicity, mµ,ν
λ , of the irrep

D
SU(d)
λ in the irreducible decomposition of tensor product of irreps, DSU(d)

µ ⊗DSU(d)
ν ,

is equal to the number of semistandard skew-tableaux with shape λ/µ and content
ν, for which the sequence of numbers in the tableau read from right to left, top to
bottom is a ballot sequence.

One can visualize the rule by filling row i of the diagram ν with the number i,
and attaching the boxes of the tableau thus created to the diagram µ in all possible
ways such that the result has at most d rows, and the requirements of Theorem 3
are fulfilled. E.g, for the product of SU(4) representations,

D(2,1)⊗D(2,1,1)
∼= ⊗

1 1
2
3

∼=
1 1

2
3

⊕
1 1

2
3

⊕

1
1 2

3
⊕

1
1

2
3

⊕
1

2
1 3

⊕
1

2
1
3

⊕ 1
1 2
3

∼=

D(4,2,2) ⊕D(4,1,1,1) ⊕D(3,3,1) ⊕ 2D(3,2,1,1) ⊕D(3,2,2) ⊕D(2,2,2,1)
∼=

D(4,2,2) ⊕D(3) ⊕D(3,3,1) ⊕ 2D(3,2,1,1) ⊕D(3,2,2) ⊕D(1,1,1)

(3.47)

While it is not entirely apparent from Theorem 3, but in accordance with the
commutativity of the tensor product, the diagrams resulting from the algorithm
are independent of the order of λ and µ in the product. We will now show some
simple applications of the Littlewood-Richardson rules.

First, we confirm our statement in Section 3.4, about the dimension of DSN
λ

being equal to the number of standard Young tableaux with shape λ. According
to the Schur-Weyl duality, the dimension of DSN

λ is equal to multiplicity of DSU(d)
λ

in (DSU
(1))
⊗N . Now write the number i to the i-th single-box Young diagram in

this tensor power, and start expanding the tensor products, left to right, using the
fusion rule. At the end of the process we get all the standard Young tableaux of
all shapes µ `d N ; thus, the number of results with shape λ, i.e., the multiplicity
of DSU(d)

λ , is equal to the number of standard Young tableaux with shape λ.
Armed with the knowledge of the fusion rules, we can now explain why SU(d)

irreps labeled with diagrams differing only in height d columns are equivalent,
as stated in Proposition 8. Let us take a step back and look at the irreps of
U(d): As Eq. (3.38) shows, the partition (1d) corresponds to the irrep mapping
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each u ∈ U(d) to its determinant. Applying the Littlewood-Richardson algorithm
yields,

det(u)D
U(d)
(µ1,µ2,...µd)

(u) = D
U(d)
(µ1,µ2,...µd)

(u)⊗DU(d)

(1d)
(u) ∼=

D
U(d)
(µ1+1,µ2+1,...µd+1)(u) ∀u ∈ U(d).

(3.48)

Thus, U(d) representations labeled with Young diagrams µ1 +k, µ2 +k, . . . , µd +k

differ only in a detk factor.
Lastly, we introduce the relationship between the Young diagrams of an SU(d)

irrep and its dual. The decomposition of the tensor product DSU(d)
µ ⊗ D

SU(d)
ν

contains the trivial representation iff DSU(d)
ν

∼= D
SU(d)
µ . Since in the case of SU(d),

the trivial representation is labeled by any height d rectangle diagram, let us look
at the skew shape (µd1)/µ that complements µ to such a rectangle. This shape
does not, in general, describe a normal Young diagram; however, after rotation by
π, one gets the Young diagram µ = (µ1 − µd, µ1 − µd−1, . . . , µ1 − µ2, 0).

Proposition 9. The product DSU(d)
µ ⊗DSU(d)

µ contains the trivial representation.

Proof. We must show that we can reshuffle the boxes of µ into shape (µd1)/µ in a
way that meets the criteria of the Littlewood-Richardson rules. One can decompose
any skew diagram into a sequence of horizontal strips : The i-th horizontal strip
hi(λ/µ) of a skew diagram λ/µ, is the skew-diagram composed of the i-th box
in every column of λ/µ counted from top to bottom. We denote the length of
hi(λ/µ) with |hi(λ/µ)|. Clearly, for a normal Young diagram λ, |hi(λ)| = λi.
Rotating a Young diagram by π does not change the number of columns with any
given length, therefore, the length of the horizontal strips are invariant to such a
rotation. Thus, |hi(µd1/µ)| = µi. In order to get a skew tableau with shape (µd1)/µ,
content µ, and box labels that constitute a ballot sequence, simply fill hi

(
(µd1)/µ

)
with the number i, such as in Fig. 3.1.

Figure 3.1: The Littlewood-Richardson skew tableau with shape
(64)/(6, 3, 2, 1) and content (6, 3, 2, 1).

Motivated by this result, we define the dual of an integer partition µ as µi :=

µ1 − µd−i+1, and as a generalization of the concept, the M -dual for any positive
integer M ≥ µ1 as µMi := M − µd−i+1.
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3.7.2 A closed formula for the fusion rules

There is a less-known result by H. Schlosser [66], that expresses the outcome of
the Littlewood-Richardson algorithm with a closed formula. As we make use of it
in our work in Chapter 6, in this section, we present the formula without proof.

Using the equivalence relation defined by Proposition 8, we can assume without
loss of generality, that the SU(d) irreps in the tensor product have at most d − 1

rows. Additionally, since all the semistandard skew tableaux constructed in the
algorithm have ballot sequence fillings, boxes with label j can only appear in the
j-th row or below. Let kd−j,h, where 1 ≤ j ≤ d − 1 and 1 ≤ h ≤ d − j + 1,
denote the number of boxes with label j in the d− h + 1-th row of a λ/ν shaped
skew tableau constructed in the Littlewood-Richardson algorithm applied to the
product DSU(d)

ν ⊗DSU(d)
µ . Since the number of boxes with label j must be equal to

the length of the j-th row of µ, we eliminate d−1 variables by setting: kd−j,d−j+1 =

µj −
∑d−j

i=1 kd−j,i. With this notation, the length of the r-th line of a diagram λ in
the product DSU(d)

ν ⊗DSU
µ is expressed as,

λr = νr + µr −
d−r∑
i=1

kd−r,i +
r−1∑
i=1

kd−i,d−r+1, (3.49)

where we define
∑0

i=1 · · · = 0. The construction of the product diagrams using
the kd−j,h indices is illustrated in Fig. 3.2.

Figure 3.2: An illustration of the distribution of boxes corre-
sponding the kd−j,h indices in the product of the SU(3) diagrams ν

and µ.

We can express the irrep decomposition of the product by summing over the
kd−j,h indices,

DSU(d)
ν ⊗DSU(d)

µ
∼=

u(1,1)⊕
kd−1,1=
l(1,1)

· · ·
u(1,d−1)⊕
kd−1,d−1=
l(1,d−1)

u(2,1)⊕
kd−2,1=
l(2,1)

· · ·
u(2,d−2)⊕
kd−2,d−2=
l(2,d−2)

· · ·
u(d−1,1)⊕
k1,1=
l(d−1,1)

D
SU(d)
λ .

(3.50)

In order to obtain a semistandard tableau when attaching the boxes of µ to ν during
the process of the algorithm, one has to start by attaching all the boxes with label
1, then attach all boxes with label 2 etc. In this way, the possible distributions of
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the boxes with label j in the resulting skew tableau depend only on the distribution
of the already attached boxes with labels j′ ≤ j. Additionally, we choose to step
through all the possibilities of attaching the boxes with label j, by starting with
row d and then going upward. The order of the direct sums in Eq. (3.50) read
from the outside going inwards reflects this process, i.e., the lower and upper
limits of each kd−j,h index, are functions of the indices deeper in the expression.
The essence of Schlosser’s result is in determining these upper, and lower, limits.
A product diagram described by a set of kd−j,h indices stays consistent with all
the restrictions of Littlewood-Richardson algorithm iff the indices are within the
corresponding limits.

l(1, h) = 0,

l(j, h) = max

{
0,

h+1∑
i=1

kd−j+1,i −
h−1∑
i=1

kd−j,i − µj−1 + µj

}
for j > 1,

u(j, h) = min

{
νd−h − νd−h+1 +

j−1∑
i=1

(kd−i,h+1 − kd−i,h) ,

h−1∑
i=0

(µj+i − µj+1+1 − kd−j,i)

}
,

(3.51)

where we define kd−j,0 = 0. Note that in the cases when the multiplicity of a
diagram in the product is more than one, it will appear in Eq. (3.50) for multiple
sets of indices.

As an example, we apply Eq. (3.50) to SU(2),

D
SU(2)
(ν1,0)

⊗DSU(2)
(µ1,0)

∼=
min{ν1,µ1}⊕
k1,1=0

D
SU(2)
(ν1+µ1−k1,1,k1,1)

∼=
min{ν1,µ1}⊕
k1,1=0

D
SU(2)
(ν1+µ1−2k1,1,0). (3.52)

This recovers the spin addition formula, Eq. (3.39), that we expect, with the Young
diagram (ν, 0) corresponding to the spin-ν/2 irrep of SU(2). Another example,
which we will make use of later, is the case of d = 3. We use Proposition 8, and
dispose of the 3rd row of the resulting Young diagrams from the start,

D
SU(3)
(ν1,ν2)

⊗DSU(3)
(µ1,µ2)

∼=
u(1,1)⊕
k2,1=0

u(1,2)⊕
k2,2=0

u(2,1)⊕
k1,1=l(2,1)

D
SU(3)
(ν1+µ1−2k2,1−k2,2−k1,1,ν2+µ2−k2,1+k2,2−2k1,1) where,

u(1, 1)=min{µ1 − µ2, ν2}, u(1, 2)=min{ν1 − ν2, µ1−k2,1},

u(2, 1)=min{ν2+k2,2−k2,1, µ2}, l(1, 1)=max{0, k2,2+k2,1−µ1 + µ2}.

(3.53)
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3.8 The quadratic Casimir operator of SU(d)

The universal enveloping algebra of the Lie algebra g, is the largest associative
algebra generated by g, in which the Lie bracket {x, y} corresponds to the com-
mutator xy−yx. The Casimir operators of g, are a set of symmetric, homogeneous
polynomials of elements of g, that form a basis of the center of the universal en-
veloping algebra. The eigenvalues of these operators are often used to characterize
the irreducible representations of g. su(d) has d−1 independent Casimir operators.
Out of these, only the quadratic one will be relevant in this work; this section is
dedicated to its definition.

First, we have to specify a basis on su(d). The real Lie algebra su(d) con-
sists of traceless skew-hermitian matrices. Constructing a basis on this algebra
for arbitrary dimension d is a convoluted problem; however, if we use the basis
elements only for the purpose of defining Casimir operators, we can introduce a
major simplification: We use the complexified algebra C[su(d)] in place of su(d);
this changes the resulting Casimir operators by at most a complex factor.

C[su(d)] consists of traceless, complex d × d matrices. It is easy to specify
a basis on this algebra for arbitrary dimensions. As explained in Section 3.2,
C[u(d)] = gl(d). The matrix units {|α〉〈β|}dα,β=1, where {|α〉}

d
α=1 is an orthonormal

basis of Cd, form a basis on gl(d). In order to obtain a set of elements that span
C[su(d)], we only have to impose the tracelessness condition. We define,

Eαβ = |α〉〈β| − 1

d
δαβ11. (3.54)

This can be interpreted as projecting the matrix units |α〉〈β| to the subspace
of traceless matrices using the Hilbert-Schmidt inner product. Since we have∑

αE
αα = 0, only d − 1 of the d diagonal elements are linearly independent; in

order to get a proper basis of C[su(d)], we discard Edd. From the commutator of
the basis elements, we get the structure constants cµναβ,γδ of the algebra.

[
Eαβ, Eγδ

]
=

d∑
µ,ν=1

cµναβ,γδE
µν where cµναβ,γδ = δβγδµαδνβ − δαδδµγδνβ. (3.55)

Using the structure constants, the quadratic Casimir operator is expressed as,

C
SU(d)
2 =

d∑
α,β,γ,δ=1

(g−1)αβ,γδE
αβEγδ =

d∑
α,β=1

EαβEβα where,

gαβ,γδ =
d∑

µ,ν,ε,ζ=1

cµναβ,εζc
εζ
γδ,µν is the metric tensor.

(3.56)
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The eigenvalues of the U(d) and SU(d) Casimir operators were worked out by
Perelomov and Popov in the 1960s [67]. Their result for the eigenvalue of CSU(d)

2

corresponding to the irrep λ = (λ1, λ2, . . . , λd) is,

D
SU(d)
λ (C

SU(d)
2 ) = c

SU(d)
2 (λ)11 where,

c
SU(d)
2 (λ) =

d∑
i=1

[
(λ̃i + d− i)2 − (d− i)2

]
, and

λ̃i = λi −
1

d

d∑
j=1

λi.

(3.57)

Here, we did not explicitly use the previously established convention of setting λd =

0 for SU(d) diagrams. It is apparent however, that the λ̃i values are identical for
equivalent SU(d) diagrams, and thus, so are the cSU(d)

2 (λ) eigenvalues. In particular,
the eigenvalue for SU(3), with the convention reintroduced, is

c
SU(3)
2 ((λ1, λ2)) =

2

3
(λ21 + λ22 − λ1λ2 + 3λ1). (3.58)

From here on, we introduce another convention regarding the Casimir operators.
Since only the quadratic ones will be important to us, we stop denoting the order in
the lower index, and instead, use it to denote the number of sites in the tensor prod-
uct representations of the quadratic Casimir operator, i.e., CSU(d)

N = DN(C
SU(d)
2 ).
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Chapter 4

The shareability of Werner and
isotropic states

Suppose we partition the subsystems of a composite quantum system into two
groups of sizes nL and nR. A bipartite quantum state is nL-nR shareable if it
can simultaneously arise as the reduced state of all subsystem-pairs in which the
components are taken from different groups. In order to provide the necessary
background knowledge for our results concerning shareability, in this chapter, we
formally introduce the concept along with its most important properties. In par-
ticular, we explore the relationship of shareability and quantum entanglement.
After this basic introduction, we restrict our investigation to two special classes of
unitary invariant bipartite quantum states: Werner [68] and isotropic [69] states.
This chapter assumes that the reader is familiar with the concept of quantum
states, and their basic properties. For an introduction to this topic, see e.g. [70].

4.1 Shareability

Assume we have two experimenters, each with absolute control over his own local
quantum system, but with no way to directly influence the other experimenter’s
system. If they cannot communicate at all, and their systems received no prior
preparation, then the two systems must be uncorrelated, i.e., the joint quantum
system is in a product state, ρ = ρL ⊗ ρR. If the experimenters are allowed to
exchange classical information, e.g., talk on the phone, they are able to realize a
class of transformations known as local operations and classical communication or
LOCC for short. Starting from uncorrelated states, with these transformations,
they are able to achieve a certain degree of correlation, but they still cannot prepare
any arbitrary state on their joint system. The joint states they are able to prepare
are statistical mixtures, i.e., convex combinations of uncorrelated states; these are
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called separable,

ρ =
∑
i

piρL,i ⊗ ρR,i, where
∑
i

pi = 1, 0 ≤ pi ≤ 1. (4.1)

Preparing any other state in the composite quantum system requires the sending
of some third, auxiliary quantum system from one experimenter to the other. The
correlations that can be created in such a way are peculiar to quantum physics;
we call the non-separable states that exhibit these correlations entangled. Un-
derstanding the nature of quantum correlations present in entangled states, and
the ways in which they are different from classical correlations, is one of the cen-
tral goals of quantum information science; an endeavor that has many practical
consequences in quantum chemistry, many-body physics, statistical physics, etc.

Determining whether a pure state is entangled or not is a simple task. As a
direct consequence of the Schmidt decomposition, |ψ〉〈ψ| ∈ S(HL ⊗ HR) can be
written in the form of Eq. (4.1) iff |ψ〉 = |ψL〉 ⊗ |ψR〉 is a product vector. This
means that correlated pure states cannot be only classically correlated. Confirm-
ing or denying entanglement for a mixed state is significantly harder. The main
source of difficulty is, that the decomposition of a mixed state into a convex com-
bination of pure states is not unique. For example, a mixed state of a qubit can be
mapped to a point inside the Bloch sphere. Each chord of the sphere that inter-
sect this point, corresponds to a decomposition of the mixed state into a convex
combination of the two pure states at the ends of the chord. The problem this
lack of uniqueness brings about, is that even though a given decomposition might
give the impression that the state is entangled, it is hard to rule out the existence
of a different decomposition into a mixture of pure product states.

Many approaches have been developed for the confirmation, and characteri-
zation of entanglement. The one we will study here, hinges on the observation
that entanglement cannot be arbitrarily shared between many parties. This is
commonly known as the monogamy of entanglement [71–74]. In the most extreme
case, pure entangled states cannot be shared at all, i.e., a bipartite system in a
pure entangled state cannot be correlated with any third system. This result is
used to guarantee the security of many quantum protocols. We give a proof here,
as it is short and enlightening.

Proposition 10. Let |ψAB〉〈ψAB| ∈ S(HA ⊗HB) be a pure, entangled state. If a
state on a larger system ρABC ∈ S(HA⊗HB⊗HC) has reduced state TrC(ρABC) =

|ψAB〉〈ψAB|, then it must be of the form ρABC = |ψAB〉〈ψAB| ⊗ ρC, for some ρC ∈
S(HC).
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Proof. Consider first a simple corollary of the Schmidt decomposition: If a pure
state, |ψAB〉〈ψAB| ∈ S(HA ⊗ HB), has Schmidt rank r and Schmidt coefficients
{λk}rk=1, then its marginals, TrA|ψAB〉〈ψAB| and TrB|ψAB〉〈ψAB|, have rank r, and
non-zero eigenvalues {λ2k}

r
k=1. An immediate consequence is that the marginals of

pure entangled states must always be mixed.
The state ρABC , can be either pure or mixed, let us start with the former case.

Since TrCρABC = |ψAB〉〈ψAB| is rank 1, ρABC must have Schmidt rank 1; thus, its
marginal on C must also be pure, i.e., ρABC = |ψAB〉〈ψAB| ⊗ |ψC〉〈ψC|.

Now assume that ρABC is mixed. In this case, it can be expressed as a con-
vex combination of pure states: ρABC =

∑n
i=1 pi|ψ

(i)
ABC〉〈ψ

(i)
ABC|, where pi ∈ [0, 1],

and
∑n

i=1 pi = 1. Therefore, for the marginal on AB, we have |ψAB〉〈ψAB| =∑n
i=1 piTrC|ψ(i)

ABC〉〈ψ
(i)
ABC|. Since pure states are the extremal points of the convex

set S(HA ⊗HB), |ψAB〉〈ψAB| can be expressed in the form of such a convex com-
bination iff TrC|ψ(i)

ABC〉〈ψ
(i)
ABC| = |ψAB〉〈ψAB| ∀i. Now using the corollary of the

Schmidt decomposition again yields |ψ(i)
ABC〉〈ψ

(i)
ABC| = |ψAB〉〈ψAB| ⊗ |ψ(i)

C 〉〈ψ
(i)
C |.

It is natural to ask: Does a similarly strict monogamy equation exist for mixed
entangled states? The answer is no, and we demonstrate this with a counterex-
ample. Suppose A sends one half of a Bell state, |ψ+〉 = 1/

√
2(|01〉 + |10〉), to

B; however, C intercepts the message with 50% probability, and sends a blank
(maximally mixed) state in its place. The resulting joint quantum state of A, B
and C is:

ρABC =
1

2

(
|ψ+〉〈ψ+|AB ⊗

11C

2
+ |ψ+〉〈ψ+|AC ⊗

11B

2

)
. (4.2)

This joint state shares the same correlations between AB and AC,

TrCρABC = TrBρABC =
1

2

(
|ψ+〉〈ψ+|+ 11

4

)
. (4.3)

One can confirm that this reduced state is entangled, e.g., by verifying that its
partial transpose is not positive. In general, it has been established that such
explicit attempts at eavesdropping generate bipartite states that can be shared
across multiple parties [72, 75].

As the last example demonstrates, the correlations described by some mixed
entangled states can be shared simultaneously between multiple pairs. However,
as we will show later, entangled states still have certain limits to how much they
can be distributed across many systems. In order to explain this properly, we need
a way to quantify how much a given quantum state can be shared.
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Definition 1. A bipartite quantum state ρ ∈ S(HL ⊗HR) is nL-nR shareable for
some nL, nR ∈ N if there exists an nL + nR-partite “sharing” state, ρ̂ ∈ S(H⊗nL

L ⊗
H⊗nR

R ), such that all left-right pairwise reduced states of ρ̂ are equal to ρ. I.e.,

TrLiRj ρ̂ = ρ, ∀i = 1, 2, . . . , nL; j = 1, 2, . . . , nR, (4.4)

where LiRj denotes the partial trace that restricts the composite Hilbert space to
the i-th left and j-th right Hilbert space.

In this work, we deal only with the case where HL
∼= HR

∼= Cd, but it is still
useful to differentiate the left and right Hilbert spaces in the notation. With this
definition, the bipartite state Eq. (4.3) in the eavesdropping example is at least 1-2
shareable, while pure entangled states are not, i.e. only 1-1 shareable. On the other
end of the spectrum are the product states, which are clearly arbitrarily, or ∞-∞
shareable. In general, one can get the intuition that states get more shareable as
they get less entangled, and thus, shareability can be used as a way to characterize
the degree of entanglement; we will give further arguments for this later.

We can now finally clarify what “more shareable” means. A trivial consequence
of Definition 1 is, that if a state is nL-nR shareable, then it must also be n′L-n′R
shareable for all n′L ≤ nL and n′R ≤ nR. This motivates the introduction of a partial
order on shareabilities: (n′L, n

′
R) ≤ (nL, nR) iff n′L ≤ nL and n′R ≤ nR. Accordingly,

each quantum state has a set of maximal shareabilities, that potentially gives
information about its entanglement.

We note that a sharing state need not be unique. In fact, for a permutation
π ∈ SnL

× SnR
⊂ SnL+nR

, that permutes only within the left and right sides, (A
left-right permutation for short.) if ρ̂ nL-nR shares ρ then,

TrLiRj(D
(SnL+nR

)
nL+nR

(π−1)ρ̂D
(SnL+nR

)
nL+nR

(π)) = TrLπ−1(i) Rπ−1(j)
ρ̂ = ρ

∀i = 1, 2, . . . , nL; j = 1, 2, . . . , nR; (4.5)

therefore D(SnL+nR
)

nL+nR
(π−1)ρ̂D

(SnL+nR
)

nL+nR
(π) also nL-nR shares ρ. This permutation in-

variance of the sharing property is what essentially connects this topic to the other
parts of this thesis. It allows us to apply the set of tools we use for dealing with
Hamiltonians of high permutation symmetry to this problem. Beyond permuta-
tions, the convex combination of two sharing states that nL-nR share ρ is also
an nL-nR sharing state for ρ; consequently, the sharing states of a given bipartite
state form a convex set. In a similar fashion, the nL-nR shareable states also form
a convex set. A sharing state for a convex combination of two nL-nR shareable
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states, is just the convex combination of two corresponding sharing states with the
same coefficients.

What we call a sharing state, is sometimes also referred to as a state exten-
sion. The relevance of state extension properties to entanglement was realized
already in the late eighties by Werner [76, 77], after which the concept was further
investigated. Some good summary papers of this are [78] and [79].

The problem of shareability can also be thought of as a special case of the
quantum marginal, or local consistency problem. In this problem, we ask if some
overlapping multipartite states, e.g. ρAB and ρAC, can be combined into a state
of a larger system? I.e., does a state ρABC exists, such that TrCρABC = ρAB

and TrBρABC = ρAC? This problem has been investigated extensively in both
mathematical physics [80–82] and quantum chemistry [83]. In the shareability
scenario, we instead want to know whether a given state is consistent with copies
of itself, this simplifies the problem quite a bit. For example, the most obvious
requirement of local consistency, that the single Hilbert space marginals should
agree, i.e., TrBρAB = TrCρAC , is already built into shareability. Furthermore, in
the case of the local consistency problem, it is possible even for classical probability
distributions (with agreeing single party marginals) to not be consistent with each
other due to certain convexity requirements [78]; while, as we are about to show,
there are no restrictions for the shareability of classical probability distributions.

It is clear that uncorrelated, or product states are arbitrarily shareable. This
brings about the next question: What are the shareability properties of the clas-
sically correlated, i.e., separable states? As it turns out, arbitrary shareability is
a necessary and sufficient condition for separability. In fact, the concept of share-
ability itself was first introduced as a consequence of this result, which was born
in the context of infinite quantum de Finetti theorems, and is credited to both [76]
and [84]. We replicate it here, although most of the real work is offloaded to a
theorem we will only refer to.

Proposition 11. A bipartite quantum state ρ ∈ S(HL ⊗HR) is separable iff it is
arbitrarily shareable.

Proof. We start with the easier direction of assuming ρ is separable. In this case,
it can be expressed in the form ρ =

∑
i piρ

(L)
i ⊗ ρ

(R)
i , where

∑
i pi = 1. Let nL and

nR be arbitrary, then the state

ρ̂ =
∑
i

pi(ρ
(L)
i )
⊗nL ⊗ (ρ

(R)
i )

⊗nR

, (4.6)

nL-nR shares ρ.
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Now assume that ρ is arbitrarily shareable. In truth, we only need to consider
the case in which nL = 1 and nR is arbitrary. If we manage to show that 1-∞
shareable states are separable, then they must also be∞-∞ shareable according to
the previous part of the proof. Let SnR

⊂ S1+nR
be the subgroup of permutations

of the elements 2, 3, . . . , nR + 1, and ρ̂ a 1-nR sharing state for ρ. Consider the SnR

symmetric sharing state,

ρ̂′ =
1

nR!

∑
π∈SnR

D
S1+nR
nR+1 (π−1)ρ̂D

S1+nR
nR+1 (π). (4.7)

If we let nR → ∞, then Fannes’ theorem [84] implies, that ρ̂′ has a unique repre-
sentation as a convex combination of SnR

symmetric product states,

ρ̂′ =
∑
i

piρ
(L)
i ⊗ ρ

(R)
i ⊗ ρ

(R)
i ⊗ . . . (4.8)

The bipartite reduced state of such a ρ̂′ to any left-right pair of Hilbert spaces is
separable.

Now we have on one hand, separable states, which are the same as arbitrarily
shareable states; and on the other hand, pure entangled states, which are not share-
able at all. Next, we present some results about the entanglement of the shareable
states that are in between. LOCC transformations play a central role in the ways
entanglement is quantified, for an introduction into this topic see e.g. [85]. In gen-
eral, the functions used to quantify entanglement are entanglement monotones.
These are functions f : S(H) → R+, that are monotonic under LOCC transfor-
mations. It is natural to ask, is the function that maps a given state to its set
of maximal shareabilities an entanglement monotone in a generalized sense, w.r.t.
the partial order of shareabilities? I.e., is it impossible for LOCC transformations
to decrease the maximal shareabilities of a given state? The answer is conjectured
to be yes, but as to the best of our knowledge, there are only partial proofs for
it. As a basic example, consider the subset of LOCC transformations that can be
expressed as a convex combination of local unitary operations U (L)

i , U
(R)
i ∈ U(d),

M(ρ) =
∑
i

piU
(L)
i ⊗ U

(R)
i ρU

(L)†
i ⊗ U (R)†

i , where
∑
i

pi = 1. (4.9)

It is easy to see that if ρ̂ is an nL-nR sharing state for ρ, then (U
(L)
i )

⊗nL ⊗
(U

(R)
i )

⊗nR

ρ̂(U
(L)†
i )

⊗nL⊗(U
(R)†
i )

⊗nR

is an nL-nR sharing state for U (L)
i ⊗U

(R)
i ρU

(L)†
i ⊗

U
(R)†
i . Since the set of nL-nR shareable states is convex, the M(ρ) must also be
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nL-nR shareable. It is much less trivial to prove the conjecture when we incor-
porate local measurements, and local unitary transformations that depend on the
measurement outcomes into the possible transformations. Nevertheless, in [86] it
is proved that the set of 1-nR shareable states, for arbitrary nR, is closed under
1-LOCC transformations, i.e., local operations with only a single round of classical
communications.

Besides LOCC transformations, an other way to connect the degree of share-
ability with that of entanglement, is to construct a bound for the distance from
separable states in terms of shareability. We have established with Eq. (4.5), that
when a sharing state exists, it can always be chosen to be symmetric to left-right
permutations, i.e., to be a state on H∨nL

L ⊗H∨nR
R . In Section 2.6, we showed that

finite quantum de Finetti theorems can be used to derive an upper bound on the
distance between completely permutation symmetric, and i.i.d. separable states.
The techniques used in the proofs of these theorems can be easily extended to the
left-right symmetric sharing states that appear in the shareability problem. Here,
we present a version of the trace norm bound for 1-nR shareability from [79], that
we extended to the nL-nR case.

Proposition 12. Let ρ ∈ S(HL ⊗ HR) be nL-nR shareable. Then there exists a
separable state, σ ∈ S(HL ⊗HR) such that

||ρ− σ||1 ≤ 2− 2nLnR

(d+ nL)(d+ nR)
. (4.10)

The proof is fairly straightforward, and also gives insight into how finite quan-
tum de Finetti theorems work, we present it in Appendix B. The key idea is to
take a left-right permutation symmetric sharing state, ρ̂, and turn it into a separa-
ble state by coarse graining it with a left-right permutation symmetric projection
valued measure (PVM) that corresponds to a set of pure product states; i.e, we
prepare each |φ〉 that we measure in, with the probability of measuring |φ〉 in ρ̂. If
the PVM is chosen to be highly symmetric, then Schur’s lemma can be used to do
the heavy lifting in calculating the trace norm distance between ρ̂ and the coarse
grained state.

There is an operational interpretation of the trace norm bound in Eq. (4.10):
Suppose we have an nL-nR shareable state ρ, and want to construct a two outcome
positive operator valued measurement (POVM), that distinguishes ρ from some
particular separable state σ. The outcome that our system is in state ρ, is described
by the element 0 ≤ M ≤ 11, while the outcome that the system is in state σ by
11 −M . If we assume that our system is in state ρ or σ with equal probabilities,
then it can be shown [70], that if we chose M optimally, the probability of our
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measurement giving the correct result is:

1

2
Tr(Moptρ) +

1

2
Tr((11−Mopt)σ) =

1

2
+
||ρ− σ||1

4
. (4.11)

When ρ is highly shareable, Eq. (4.10) implies that we can always find a separable
state σ, for which the efficiency of our distinguishing measurement cannot be much
higher than 1/2.

Proposition 12 has an interesting connection with many-body physics as well.
Consider the quantum state of a lattice system with coordination number nL;
concentrating on the “star” formed by a central site, and its nL nearest neighbors.
The bipartite reduced states along the edges of this star must be at least 1-nL

shareable due to the lattice symmetries. According to Eq. (4.10), the higher the
coordination number of the lattice, the closer its quantum state must be to a
separable state. This explains the observation that mean field theories are more
effective on lattices with high coordination numbers.

4.2 Werner states

Calculating the shareability properties of an arbitrary bipartite quantum state is
a difficult task, that can only be done numerically. Finding an nL-nR sharing state
for a given bipartite quantum state can be translated to a problem in semidefinite
programming [87–89]. The time taken by state-of-the-art algorithms, e.g. [90], to
solve such a problem scales polynomially in the dimension of the sharing state,
which itself scales exponentially with nL and nR.

Our solution to this difficulty, is to restrict the types of states that we share
to highly symmetric ones; this way, we are able to apply representation theory
and derive exact results. For this endeavor, we choose two closely related sets of
bipartite states. The first one is composed of all bipartite states invariant to global
unitary transformations of the form U ⊗ U , where U ∈ U(d); these states are also
known as Werner states. The second one is the set of bipartite states invariant
to transformations of the form U ⊗ U∗, where ∗ denotes complex conjugation is
some fixed basis, known as the set of isotropic states. We start our discussion with
Werner states.

States invariant to U ⊗ U transformations were first introduced by Werner
as an example for entangled states that can be described by a hidden variable
model [68]. Since then, they found many uses in quantum information science; e.g.,
in the description of noisy quantum channels [91], in the study of deterministic
purification [92], in the description of photonic qubits [93] where they may have
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a role in combating decoherence [94, 95]. Additionally, they can also be prepared
as the steady state of coherently driven atoms undergoing collective spontaneous
decay [96].

D
U(d)
2 decomposes to the two irreps, (2, 0, . . . , 0) and (1, 1, 0, . . . , 0), supported

on the symmetric and antisymmetric subspaces of Cd ⊗ Cd respectively. Accord-
ingly, all operators invariant to DU(d)

2 , can be expressed as linear combinations of
two fixed, linearly independent, DU(d)

2 invariant operators. We choose these to be
the identity, and the flip operator F , which exchanges the two parts of the tensor
product. The additional condition, Tr(ρ) = 1, further reduces the number of pa-
rameters to 1. We use the expected value of the flip operator, Tr(ρF ) = φ, as this
single parameter to express an arbitrary Werner state as,

ρW(φ) =
d

d2 − 1

[
(d− φ)

11

d2
+

(
φ− 1

d

)
F

d

]
. (4.12)

The positivity of ρW(φ) restricts the parameter space to −1 ≤ φ ≤ 1.
Some insight can be gained by finding values of φ where Werner states take

special forms. The most obvious of these is the completely mixed state, 11/d2,
that we get at φ = 1/d. For additional special values, consider how the flip
operator has eigenvalues 1 and −1, corresponding to the symmetric and antisym-
metric subspaces. Thus, ρW(1) is proportional to the projector to the symmetric
subspace, Π+

2 , and ρW(−1) is proportional to the projector to the antisymmetric
subspace, Π−2 . Assume that we make measurements in an orthonormal product ba-
sis, {|i〉 ⊗ |j〉}di,j=1. The latter case of complete Fermi symmetry can be interpreted
as a state in which these collective measurements cannot have agreeing outcomes,
e.g, |1〉 ⊗ |1〉, etc. Since Werner states can be regarded as convex combinations
of the states with complete Fermi, and complete Bose symmetries, we can think
about the parameter φ as a number that characterizes the tendency of collective
measurements to disagree.

We can immediately say something about the shareability properties at these
special parameter values: As a start, the completely mixed state is clearly arbi-
trarily shareable, i.e. separable. Additionally, the projectors to the symmetric and
antisymmetric parts of an N -partite Hilbert space, Π+

N and Π−N , have the special
property TrnΠ

+/−
N = Π

+/−
N−n independently of which n < N Hilbert spaces we choose

to trace out. This implies that ρW(1) is arbitrarily shareable, since the projection
to the completely symmetric subspace is always a valid sharing state regardless of
the number of Hilbert spaces on the left and right side. We conclude that, since
convex combinations of separable states are also separable, Werner states with
parameters φ ∈ [1/d, 1] must all be arbitrarily shareable. The previous reasoning
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does not work for ρ(−1), because depending on the dimension, a non-trivial, com-
pletely antisymmetric subspace might not exist. More precisely, iff N > d then
Π−N = 0, and iff N = d, Π−N is 1-dimensional. Consequently, in the case of d = 2,
ρW(−1) is the pure singlet state, which is not shareable at all due to the monogamy
of entanglement. For d > 2, ρW(−1) can be regarded as the partial trace of the
pure, d-partite, antisymmetric state, 1√

d!

∑
π∈Sd sgn(π)DSd

d (π)|1〉 ⊗ |2〉 ⊗ . . .⊗ |d〉;
thus it is at least i-(d− i) shareable for i = 1, 2, . . . , d− 1.

Now, we show that the parameter interval of separable Werner states is larger
than [1/d, 1]. Consider the unitary “twirl”, a completely positive, trace preserving
(CPTP) superoperator, defined for some A ∈ B(HL ⊗HR) with,

PU⊗U(A) =

∫
U(d)

dUU ⊗ UAU † ⊗ U †, (4.13)

where dU denotes the invariant Haar measure of U(d). It is easy to confirm, that
this twirl is an orthogonal projection, w.r.t. the Hilbert-Schmidt inner product,
from B(HL ⊗ HR), to the subspace of DU(d)

2 invariant operators. In order to see
which Werner state an arbitrary state, σ ∈ S(HL ⊗HR), is mapped to by PU⊗U ,
it is not necessary to calculate the integral. Since Werner states are described by
a single parameter, it is enough to check what happens to the expected value of
the flip operator,

Tr [PU⊗U(σ)F ] =

∫
U(d)

dUTr
(
σ(U † ⊗ U †)F (U ⊗ U)

)
= Tr(σF ), (4.14)

i.e., the expected value of the flip is invariant to the twirl; thus PU⊗U(σ) =

ρW (Tr(σF )). Using this result, we show that:

Proposition 13. A Werner state ρW(φ) is separable iff φ ≥ 0.

Proof. If σ ∈ S(Cd ⊗ Cd) is separable then so must be (U ⊗ U)σ(U † ⊗ U †). Ex-
pressing the integral with Riemann sums, PU⊗U(σ) can be interpreted as the limit
of a series of convex combinations of separable states, and therefore it is separable
itself. Consequently, the set of separable Werner states is the image of the set of
separable states under the twirl PU⊗U . In other words, it is enough to check what
expected values can the flip operator have in separable states.

First, consider the product states σ = σL ⊗ σR. We have Tr[(σL ⊗ σR)F ] =

Tr(σLσR) ≥ 0, since the product of two positive operators is positive. The same
inequality is also true for separable, i.e., convex combinations of product states.
The equality is achieved, when the supports of σL and σR are orthogonal, and
Tr[(σL ⊗ σR)F ] = 1 is achieved when σL and σR are identical pure states. Every
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expected value of the flip operator in between can be realized by an appropriate
convex combination of the previous two.

Since the nL-nR shareable Werner states form a convex set, they must corre-
spond to a closed interval in the parameter φ. Now that we also know which are the
arbitrarily shareable Werner states, this statement can be refined: Werner states
are nL-nR shareable in some interval φ ∈ [φnL,nR

, 1], where −1 ≤ φnL,nR
≤ 0. Fur-

thermore, According to the partial order of shareabilities described in Section 4.1,
we can tell that if n′L ≤ nL and n′R ≤ nR then φn′L,n′R ≤ φnL,nR

. This leads us to
expect that the entanglement of Werner states grows as φ decreases.

The suspicion is confirmed after looking at some standard measures of en-
tanglement that are known for Werner states. Entanglement of formation is an
entanglement measure, that can be interpreted as quantifying the resource cost of
preparing ρ from maximally entangled states [85]. It is defined in a form that is
easy to calculate only for pure states; for mixed states the definition is extended by
a convex roof construction, that involves finding the minimum of a function over
all decompositions of the mixed state into convex combinations of pure states. For
this reason, there is no closed formula for the entanglement of formation of an
arbitrary quantum state; however, for Werner states specifically, one was derived
in [97]:

EF (ρW(φ)) =

H2

(
1
2

[
1−

√
1− φ2

])
if φ < 0

0 if φ ≥ 0
, (4.15)

where H2 is the binary entropy function. Concurrence is another entanglement
measure, defined for pure states in a way that vanishes on product states:

C(|ψ〉) =
√

2
(
1− Tr[TrL|ψ〉〈ψ|]2

)
, (4.16)

and extended to mixed states by a convex roof construction. Similarly to the case
of EF , there is no closed formula for an arbitrary quantum state, but one was
developed for Werner states in [98]:

C(ρW(φ)) =

−φ if φ < 0

0 if φ ≥ 0
. (4.17)

This shows that we essentially parameterize our Werner states with their concur-
rence; which suggests that concurrence for Werner states could have some close
connection with the flip operator. Both entanglement of formation, and concur-
rence are monotonously decreasing with φ, which confirms our intuitions about
the entanglement of Werner states.
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4.3 Isotorpic states

A parametrization of isotropic states follows straightforwardly from the parametriza-
tion of Werner states in Eq. (4.12). As a consequence of the identity,(

U ⊗ UA(U ⊗ U)†
)tR

= U ⊗ U∗AtR(U ⊗ U∗)†, (4.18)

an operator A ∈ B(HL ⊗HR) is invariant to U ⊗ U transformations iff its partial
transpose is invariant to U⊗U∗ transformations. It follows that like Werner states,
isotropic states can also be described with a single parameter,

ρI(β) =
d

d2 − 1

[
(d− β)

11

d2
+

(
β − 1

d

)
F tR

d

]
, (4.19)

where β = Tr(ρI(β)F tR), and the positivity of ρI(β) requires that 0 ≤ β ≤ d.
It is perhaps more descriptive to interpret F tR/d as the maximally entangled

state |ψ+〉 =
√

1/d
∑

i |ii〉. A result of this state appearing in our parametrization
is, that the Choi–Jamiołkowski isomorphism between states and channels maps
ρI(β) into the depolarization channel that completely randomizes a d-level system
with probability p = (d − β)/(d2 − 1), and does nothing with probability 1 − p.
As the sets of Werner and isotropic states are identical for qubits, this connection
with the depolarization channel is often mistakenly ascribed to Werner states. We
also note that the connection is not merely mathematical. Using an isotropic
state as the shared resource in the standard teleportation protocol realizes the
corresponding depolarizing channel physically [99].

We can derive the parameter range where isotropic states are separable with
an argument similar to that in the proof of Proposition 13.

Proposition 14. An isotropic state ρI(β) is separable iff 0 ≤ β ≤ 1.

Proof. We start with showing that if 0 ≤ β ≤ 1, then ρI(β) is separable. The
isotropic twirl superoperator PU⊗U∗ maps any separable state into a separable
isotropic state; moreover, the expected value of F tR is invariant to PU⊗U∗ , thus we
need only to find separable states ρ with 0 ≤ Tr(ρF tR) ≤ 1. Consider the family
of states ρx = |1〉〈1| ⊗ |x〉〈x|, where |x〉 = x|1〉 +

√
1− |x|2|2〉 and 0 ≤ |x| ≤ 1.

With these explicitly separable product states, we get Tr(ρxF
tR) = |x|2.

For the other direction, we use the reduction criterion for separability,

(TrRρ)⊗ 11− ρ ≥ 0. (4.20)

Since ρI(β) violates Eq. (4.20) for β > 1, these states must be entangled.
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As a consequence of violating the reduction criterion, entangled isotropic states
can be distilled. In fact, this is the context in which isotropic states were first
introduced in [69].

From the parameter range of arbitrary shareable isotropic states, it follows, that
the parameter range corresponding to nL-nR shareability is [0, βnL,nR

], where 1 ≤
βnL,nR

≤ d. Moreover, βnL,nR
must conform to the partial order of shareabilities,

i.e., βn′L,n′R ≥ βnL,nR
if n′L ≤ nL and n′R ≤ nR. This suggests that the entanglement

of isotropic states grows monotonously with β. Our intuition is supported by the
concurrence,

C(ρI(β)) =

√
2

d(d− 1)
(β − 1), (4.21)

which was derived in [100].
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Part II

Results
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From here on, we formulate the results of this thesis. In Chapters 5 and 6, we
investigate two types of exactly solvable permutation symmetric models for three-
component spin systems. In Chapter 5, the interaction we use can be interpreted
as a generalization of the Heisenberg model to spin-1 particles, in the sense that
it retains rotation invariance, while not admitting the more general SU(3) invari-
ance. In solid state physics literature it, is referred to as the bilinear-biquadratic
(BLBQ) interaction. We use a group theoretic approach to solve the eigenproblem
of the Hamiltonian for an arbitrary number of sites. In Chapter 6, we use similar
techniques on a different model. In this case, we use a highly symmetric SU(3)
invariant exchange interaction. Instead of breaking the SU(3) symmetry with ad-
ditional terms, like in Chapter 5, we break the complete permutation symmetry of
the model and replace it with two permutation symmetric subsystems. In Chap-
ter 7, we investigate a problem that is, at the first glance, completely different: The
shareability problem of Werner and isotropic states; this is a permutation sym-
metric subproblem of the well-known quantum marginal problem. For the SU(d)

symmetric Werner and isotropic states the shareability problem can be traced back
to a ground state problem of a certain “Hamiltonian” that is similar to the one
investigated in Chapter 6. We solve the problem extending the technique used to
solve the ground state problem in Chapter 6 to arbitrary dimensions.
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Chapter 5

The bilinear-biquadratic model on
the complete graph

5.1 Introduction

A main theme of this thesis is approaching quantum spin systems in a very prag-
matic manner, from the theorists point of view, by looking for systems that are
simple enough to be exactly solvable, while still relevant enough, so that one can
extract some more general wisdom from the results. Our key tool for bestowing
this simplicity to our models is requiring permutation symmetry. This will allow
us, through applying the theory of Lie groups, to calculate the spectrum of our
models exactly for an arbitrary number of sites.

Permutation symmetry in a spin model with two-particle interaction implies
that every pair of spins interacts with the same two-particle Hamiltonian; i.e.,
instead of a regular lattice, the interconnectedness of the spins is described by
a complete graph. Classical spin models on complete graphs, such as the Curie-
Weiss [101] or Sherrington-Kirpatrick [102] models, play an important role in sta-
tistical mechanics. The reason being that these can be treated relatively easily,
yet still describe general features of the corresponding model on high-dimensional
lattices. Due to recent results on quantum de Finetti theorems, see Section 2.6,
these models can also be interpreted as mean-field approximations to regular lat-
tice models. Inspired by this, several quantum spin boson and fermion models
have been investigated on complete graphs [103–105]. The complete graph how-
ever, is the most frustrated layout of interactions possible; therefore, if there are
competing interactions, e.g., antiferromagnetism, we expect the ground state to
not resemble the classical mean-field analog at all.

The results obtained for fully connected systems are also potentially useful
for types of cluster mean-field theories [106] where the “cluster” is chosen to be
the complete graph. In such an approach one partitions the lattice into small
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identical clusters, the interactions within a cluster are described exactly, while the
interactions between cluster are treated in a mean-field way.

One of the effect of ultracold atom experiments on many-body physics, is a
newfound interest in long-range systems. In some of these experiments, the inter-
actions decay with an inverse power-law [45] or even of mean-field type [46]. This
opens the way to experimentally realize long-range models and scenarios that were
previously only thought of being of theoretical importance, e.g., Curie-Weiss type
transverse-field Ising models (i.e., the Lipkin-Meshkov-Glick model) [47–50] or the
Haldane-Shastry model [51, 52]; and to study phenomena that are not possible
in short-range models, e.g., breaking of continuous symmetries in one-dimensional
systems. Even complete graph models have a possible realization, and also a pos-
sible application in metrology, in such a fashion as was proposed for the SU(N)
model in [46].

We chose the specific interaction that we put on the complete graph with
the intent of getting something that is fairly general, while still remaining simple
enough so that calculating the exact ground state is possible. To this end, we make
use of the Schur-Weyl duality between the group of permutations and the general
linear group, by imposing another symmetry condition on our interaction. This
new symmetry should be described by some appropriate subgroup of the general
linear group.

Since the beginning of quantum many-body physics, spin lattice system with
rotational invariant, i.e., SU(2) symmetric, interaction terms have received a spe-
cial attention. From a theoretical point of view, it was a natural generalization to
also consider quantum spin models where SU(2) is enlarged to the symmetry group
SU(N) with N > 2 [107–109]. A particular application was the case of materials
described by spin models with orbital degeneracy yielding an SU(4) symmetric
point [110–115], but the main motivation to study SU(N) spin systems remained
mainly formal. In particular, one of the driving forces behind the theoretical stud-
ies was the realization that SU(N) symmetric spin models have very rich phase
diagrams [108, 109, 116–120] [4]. Later these studies gained an unexpected exper-
imental relevance with the advent of experiments with ultracold atomic systems.

As permutation symmetry would make two-level systems too simple to con-
sider, we chose to focus on three-level systems. Our most symmetric, i.e., least
general option is to impose SU(3) invariance. One way to achieve this is through
generalizing the Heisenberg interaction to a three-level system, by substituting the
spin operators with the generators of su(3). This gives us an interaction Hamil-
tonian that is, analogously to the square of the total spin operator in the case
of SU(2), proportional to the two-particle representation of the quadratic Casimir
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operator CSU(3)
2 . In fact, this is the most general SU(3) symmetric two-particle

interaction: As explained in Section 3.4, under global SU(3) transformations, the
two-particle Hilbert space, C3 ⊗ C3, decomposes into two irreducible subspaces,
labeled by (2, 0) and (1, 1). This means that any SU(3) invariant two-particle
operators can be expressed as a linear combination of two, linearly independent
operators of this nature, that is, in the form

H = αC
SU(3)
2 + β11. (5.1)

A permutation symmetric system built with this two-particle interaction has a
Hamiltonian that is proportional, not taking identity terms into account, to the
N -site representation of the quadratic Casimir operator, CSU(3)

N . We deem this
Hamiltonian too simple to be interesting. Indeed, the eigenspaces of CSU(3)

N are
the SU(3), and consequently SN , irreducible sectors of the composite Hilbert space
H = (C3)

⊗N described in Section 3.4, and its eigenvalues are given in Eq. (3.58).
For this reason, we can relax our symmetry requirements, and chose a more

general interaction. Hence, we pick the other popular way of generalizing the
Heisenberg interaction, and search for the most general SU(2) symmetric1 two-
particle interaction for three-level systems. The naive approach of replacing the
spin operators with their spin-1 representation, while yields an SU(2) symmet-
ric interaction, does not satisfy our need for generality. The two-particle Hilbert
space, C3⊗C3, decomposes into 3 irreducible subspaces under global SU(2) trans-
formations, labeled by spin 0, 1 and 2; Thus, our desired interaction Hamiltonian
can be constructed from the linear combination of 11 and two other SU(2) sym-
metric and linearly independent two-particle operators. We chose these to be the
two-particle representations of the quadratic Casimir operators CSU(2)

2 and CSU(3)
2 ,

and get the interaction Hamiltonian,

Hij = sin(θ)C
SU(3)
2 ij + cos(θ)C

SU(2)
2 ij . (5.2)

Here, we again discarded the term proportional to 11, and normalized the inter-
action strength so that only one parameter remains. The energy is measured in
units for which the squared sum of the prefactors before the two terms gives unity.
As a consequence of the permutation symmetry, this interaction yields a global

1Here, by SU(2) symmetric we mean that the interaction Hamiltonian is invariant to the
tensor product of two spin-1 representations of SU(2). Accordingly, the two-particle Casimir
operator, CSU(2)

2 , also corresponds to this representation.
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Hamiltonian containing the N -site representations of these Casimir operators,

H =
∑
i<j

Hij = sin(θ)C
SU(3)
N + cos(θ)C

SU(2)
N . (5.3)

The competition between the SU(2) and SU(3) symmetric terms makes the in-
vestigation of this Hamiltonian far from trivial, and interesting from a theoretical
perspective.

The same general SU(2) symmetric two particle interaction have been stud-
ied for a long time by solid state physicists; although, with different choice of
the two SU(2) symmetric operators. It is called the bilinear-biquadratic (BLBQ)
interaction, and its Hamiltonian is traditionally expressed as:

Hij = cos(γ)SiSj + sin(γ)(SiSj)
2. (5.4)

We show the equivalence of this interaction Hamiltonian with Eq. (5.2) in Ap-
pendix C. The conversion between the parameters γ and θ used in the two de-
scriptions is given by

1 + ctg(θ) = ctg(γ). (5.5)

The first golden era of the BLBQ model was in the mid ’80s, after Haldane’s
discovery that spin-1 Heisenberg chains can have a gapped excitation spectrum
in contrary to spin-1/2 systems, where the spectrum is always gapless [121, 122].
This remarkable difference initiated an intensive study of the BLBQ chain, and
its phase diagram, shown in Fig. 5.1, is mostly understood by now. Exact Bethe
ansatz solutions exist for γ = −π/4 [123–125] and γ = π/4 [107, 126, 127]. When
γ = arctan(1/3), Eq. (5.4) is just the parent Hamiltonian of the AKLT state [21,
22]. The AKLT state corresponds to a specific point inside the gapped Haldane
phase [121, 122], located between −π/4 < γ < π/4, which is an example of
symmetry protected topological phases [128]. The π/4 < γ < π/2 region is an
extended critical phase with strong antiferroquadrupolar correlations. For π/2 <
γ < 5π/4 ferromagnetic correlations dominate the ground state. Finally, if 5π/4 <

γ < 7π/4 the system is in a dimerized regime, which is again a gapped phase.
There is another, conjectured, critical phase between the ferromagnetic and the
dimerized phases, which was proposed by Chubukov [129, 130]. However, there is
a still ongoing debate about its existence [28–30, 131, 132].

We know much less about the phases on two- and higher-dimensional lattices.
Although in d = 2 and higher, especially on bipartite lattices, symmetry-breaking
states start to be more frequent, and mean-field theories are performing better.
On the two-dimensional square lattice, mean-field theory predicts a conventional
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Figure 5.1: The phase diagram of the BLBQ chain.

ferromagnetic state for π/2 < γ < 5π/4, a ferroquadrupolar phase for 5π/4 < γ <

3π/2, an antiferromagnetic (Néel ordered) phase between −π/2 < γ < π/4, and
a semi-ordered phase for π/4 < γ < π/2 [133]. The ferroquadrupolar state is a
symmetry-breaking state with non-vanishing quadrupole moment, however, with
zero magnetization [134]. In the semi-ordered phase, the variational calculation
gives a highly degenerate manifold of differently ordered states. Possibly, the
inclusion of fluctuations selects one of these potential candidates, and in the end,
the ground state becomes an ordered state. In the square lattice, Quantum Monte
Carlo simulation is possible for π < γ < 2π, which confirms the mean-field results
in this parameter range [26].

In spite of the apparent simplicity of the BLBQ model on a complete graph,
the diagonalization of the Hamiltonian is far from trivial. The main tool used is
the representation theory of Lie groups. In Sec. 5.2 we introduce the quantum
numbers that uniquely label the eigenspaces of the Hamiltonian, then in Sec. 5.3
we provide the possible joint values of these quantum numbers. This allows us
to determine the phase diagram and the spectrum of the model in Sec. 5.4 and
Sec. 5.5, respectively. Finally, in Sec. 5.6 we give a brief summary and outlook.

5.2 The eigenspace decomposition of the Hamilto-

nian

Due to the permutation invariance of the Hamiltonian, its eigenspace decomposi-
tion can be obtained entirely through representation theoretic considerations. In
this section, we provide the decomposition of the Hilbert space into the eigenspaces
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of the Hamiltonian. The basic definitions and concepts are summarized in Chap-
ter 3.

Let us first note, that from a representation theoretic point of view, su(3)
contains two non-equivalent classes of su(2) subalgebras. The first one is composed
of those su(2) subalgebras, that are unitarily equivalent to the spin-1 representation
of su(2); while the subalgebras in the second class are unitarily equivalent to
the direct sum of the spin-0 and the spin-1

2
representations. These are the only

combinations of su(2) irreps that yield a 3-dimensional representation. In the rest
of the paper, the su(2) ⊂ su(3) embedding will always refer to the su(2) subalgebra
of the first class, spanned by

S1 =

 0 0 0

0 0 −i
0 i 0

 , S2 =

 0 0 i

0 0 0

−i 0 0

 and S3 =

 0 −i 0

i 0 0

0 0 0

 . (5.6)

On the Hilbert space H = (C3)
⊗N of the N -site model, the relevant represen-

tations of SU(2) and SU(3) are the N -fold direct products of the spin-1 SU(2) and
the defining representation of SU(3), respectively. These N -fold direct products of
representations can be decomposed into direct sums of irreps of the corresponding
groups: (

D
SU(2)
1

)⊗N ∼= ⊕
s

msD
SU(2)
s , (5.7a)(

D
SU(3)
(1,0)

)⊗N ∼= ⊕
λ

mλD
SU(3)
λ . (5.7b)

In this decomposition,ms andmλ denote the multiplicities of theDSU(2)
s andDSU(3)

λ

irreps. We label the SU(2) irreps with their spin value, which in our setup is always
an integer. For the irreps of SU(3) we use the more general, Young diagram based
labeling introduced in Chapter 3.

According to the decomposition of the composite Hilbert space H under per-
mutations, as described in Section 3.4, the SU(3) irreps that appear in Eq. (5.7b)
correspond to all λ `3 N partitions. However, we adjust this labeling by the use of
the equivalence relation between SU(3) diagrams, introduced in Section 3.6, and
label the SU(3) irreps with two-row Young diagrams instead. In this new descrip-
tion, the symbol λ in Eq. (5.7b) labels Young diagrams of at most 2 rows and
N − 3i boxes, where i = 0, 1, . . . , bN/3c.

A different way of conveying Eq. (5.7), is that the Hilbert space has the follow-
ing two decompositions into direct sums of SU(2) and SU(3) irreducible sectors,
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H =
⊕
s

(Ks ⊗Hs) =
⊕
λ

(Kλ ⊗Hλ) , (5.8)

where global SU(2) and SU(3) transformations act irreducibly on Hs and Hλ re-
spectively, and the dimensions of the multiplicity spaces Ks and Kλ are equal to
ms and mλ. The value of ms can be calculated with the usual spin addition, while
mλ is given by the hook length formula, Eq. (3.32).

As SU(2) ⊂ SU(3), each SU(3) irreducible subspace in H is a direct sum of
SU(2) irreducible subspaces:

D
SU(3)
λ

∣∣∣
SU(2)

∼=
⊕
s

m(λ)
s DSU(2)

s , Hλ =
⊕
s

(
K(λ)
s ⊗H(λ)

s

)
. (5.9)

The left-hand side of the first equation denotes the restriction of the DSU(3)
λ ir-

rep to the SU(2) subgroup of SU(3). The corresponding multiplicity spaces and
irreducible subspaces are K(λ)

s and H(λ)
s respectively, and the dimension of K(λ)

s

is m(λ)
s . The compatibility between the two decompositions of the Hilbert space

in Eq. (5.8) implies
∑

λm
(λ)
s = ms. Introducing the notation s ≺ λ, which will

mean that DSU(2)
s appears in the irreducible decomposition of DSU(3)

λ

∣∣∣
SU(2)

, (i.e.

m
(λ)
s 6= 0) the complete N -particle Hilbert space can be written as the following

direct sum of subspaces,

H =
⊕
λ

⊕
s≺λ

Kλ ⊗K(λ)
s ⊗H(λ)

s . (5.10)

The BLBQ Hamiltonian on the complete graph, Eq. (5.3), is a linear combina-
tion of the SU(2) and SU(3) quadratic Casimir operators for N sites. This implies
that the subspace Kλ ⊗ K(λ)

s ⊗ H(λ)
s is an eigenspace of H. Let P (λ)

s denote the
projection to this subspace, i.e., to the spin-s subspace of DSU(3)

λ

∣∣∣
SU(2)

. Now the

Hamiltonian takes the form2

H =
∑
λ

∑
s≺λ

E(λ)
s P (λ)

s , (5.11a)

E(λ)
s =

2

3
sin(θ)(λ21 + λ22 − λ1λ2 + 3λ1) + cos(θ)s(s+ 1), (5.11b)

2The first term in the expression of the E(λ)
s eigenvalue we use here differs by an 1/2 factor

compared to the same eigenvalue in our paper [1]. This is because for the shake of consistency
with the other parts, in this thesis we defined the generators of SU(3) differently from [1], and
this difference results in the operator CSU(3)

N getting the extra 1/2 factor. As a consequence, the
parameter θ in the Hamiltonian of Eq. (5.3) is not the same as parameter of the same name used
in [1]. If we denote by θ′ the parameter used in the paper, than the conversion between the two
parameters is given by tan(θ) = 2 tan(θ′).
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where E(λ)
s is the eigenvalue corresponding to the subspace of P (λ)

s . The first term
is the eigenvalue of the quadratic Casimir of SU(3) in the (λ1, λ2) irrep, Eq. (3.58),
while the second term is the usual total spin squared, i.e., the Casimir of SU(2).

Finding the ground state of H in Eq. (5.11a) means finding the quantum num-
bers λ1, λ2 and s, for which the energy in Eq. (5.11b) is minimal. However, the
value of s cannot be chosen independently from those of λ1 and λ2, because not all
spin-s representations appear in the SU(3) irrep characterized by λ1 and λ2. This
is where the knowledge of m(λ)

s in Eq. (5.9) becomes important: only if mλ and
m

(λ)
s are nonzero, does an eigenspace with quantum numbers λ1, λ2, and s appear

in the decomposition Eq. (5.10), and consequently in Eq. (5.11a).

5.3 Restricting the representation of SU(3) to the

SU(2) subgroup

In this section, we calculate the m(λ)
s multiplicities that appear in Eq. (5.9). Let us

start with the two most straightforward cases: Restricting the trivial representa-
tion of SU(3) to SU(2) simply yields the spin-0 irrep, i.e., m(0,0)

0 = 1. Furthermore,
as per our definition, the defining representation of SU(3) maps directly to the
spin-1 irrep, which gives m(1,0)

1 = 1. For the rest, we start by giving a general rule
for the SU(3) irreps characterized by the Young diagrams with only one row, i.e.,
we decompose DSU(3)

(λ1,0)

∣∣∣
SU(2)

. Then, by recursion, we obtain the rule for the other

irreps.
The SU(3) irrep corresponding to the single-row Young diagram (N, 0) is sup-

ported on the completely symmetric part of the Hilbert space, (C3)
∨N . (C3)

∨N

can be decomposed into a direct sum of SU(2) irreducible subspaces, as shown in
Eq. (5.9); each of these subspaces can in turn be decomposed into eigenspaces of
the z-component of the total spin operator, Sz =

∑
k

Szk . We denote the subspace

corresponding to eigenvalue ` ∈ {−s, . . . , s} of the spin-s irrep by V (s)
` , and the

decomposition reads as

(C3)
∨N

=
⊕
s

(
K(N,0)
s ⊗H(N,0)

s

)
=
⊕
s

(
K(N,0)
s ⊗

s⊕
`=−s

V
(s)
`

)
. (5.12)

Let V` denote the Sz eigenspace with eigenvalue ` in (C3)
∨N . The eigenvalue `

appears in spin-s representations iff s ≥ `, thus

V` =
⊕
s≥|`|

(
K(N,0)
s ⊗ V (s)

`

)
. (5.13)
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Furthermore, since every V (s)
` is one-dimensional, the dimension of V` is equal to

the sum of multiplicities of spin-s irreps with s ≥ |`|:

dim(V`) =
∑
s≥|`|

m(N,0)
s . (5.14)

We continue by figuring out these dimensions.
We use the {|1〉, |0〉, | − 1〉} eigenstates of Sz as our basis vectors on C3. The

` = N eigenvalue can only come from the |1, 1, . . . , 1〉 vector, hence m(N,0)
N = 1.

A basis of the ` = N − 1 eigenspace in (C3)
⊗N can be constructed from the

previous vector by lowering one of the spins to 0. This subspace is N-dimensional,
but its intersection with (C3)

∨N is only 1-dimensional, spanned by the vector
|0, 1, 1, . . . , 1〉+ |1, 0, 1, . . . , 1〉+ · · ·+ |1, 1, 1, . . . , 0〉. It follows that dim(VN−1) = 1

and m(N,0)
N−1 = 0.

We can get a basis of the ` = N − 2 eigenspace of (C3)
⊗N from the |1, 1, . . . , 1〉

vector by either lowering two spins to 0, or by lowering one to -1. Any of the
basis elements with 0 spin on two sites have the same projection to the symmetric
subspace, and similarly only one symmetric vector can be generated from the basis
elements with a single -1 spin. This gives us dim(VN−2) = 2 and m(N,0)

N−2 = 1.
Generalizing this procedure, we can see that for an arbitrary ` we can lower

a spins to 0 and b spins to -1 such that ` = N − (a + 2b). Each different choice
of a and b corresponds to one linearly independent element of V`; therefore, the
number of integer solutions for a, b ≥ 0 of the previous equation is the dimension
of V`, resulting in

dim(V`) = b(N − |`|)/2c+ 1. (5.15)

Here, b.c denotes the floor function, i.e., bxc is the largest integer not bigger than x.
As the dimension of the Sz eigenspace changes by 1 at every second `, we conclude
that only every second spin-s irrep is present in the decomposition Eq. (5.9) of
(C3)

∨N , and with a multiplicity of 1. Therefore,

D
SU(3)
(λ1,0)

∣∣∣
SU(2)

=


⊕bλ1/2c

s=0 D
SU(2)
2s+1 if λ1 is odd,⊕λ1/2

s=0 D
SU(2)
2s if λ1 is even.

(5.16)

In terms of multiplicities this means

m(λ1,0)
s =

1− (s+ λ1) mod 2 if 0 ≤ s ≤ λ1,

0 otherwise,
(5.17)

where n mod 2 is the reminder after the division of n by 2.
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Figure 5.2: Illustration of the calculation of the multiplicities in
the decomposition Eq. (5.20).

Before continuing with the more complicated cases, we reintroduce the irrep
decomposition of the tensor product of an arbitrary SU(3) irrep with the defining
representation. According to the fusion rules of SU(3), as discussed in Section 3.7,
this reads as:

D
SU(3)
(λ1,λ2)

⊗DSU(3)
(1,0) = D

SU(3)
(λ1+1,λ2)

⊕DSU(3)
(λ1,λ2+1) ⊕D

SU(3)
(λ1−1,λ2−1). (5.18)

Let us restrict both sides of the equation to SU(2). The left-hand side decom-
poses into SU(2) irreps according to the usual spin addition rule,

D
SU(2)
j ⊗DSU(2)

1 =

j+1⊕
s=|j−1|

DSU(2)
s . (5.19)

Furthermore, applying Eq. (5.9) gives us,

D
SU(3)
(λ1,λ2)

∣∣∣
SU(2)

⊗DSU(3)
(1,0)

∣∣∣
SU(2)

∼=
∞⊕
s=0

m(λ1,λ2)
s DSU(2)

s ⊗DSU(2)
1

= m
(λ1,λ2)
1 D

SU(2)
0 ⊕

∞⊕
s=1

[
m

(λ1,λ2)
s−1 +m(λ1,λ2)

s +m
(λ1,λ2)
s+1

]
DSU(2)
s . (5.20)

This step is illustrated in Fig. 5.2. After applying Eq. (5.9), the right-hand side of
the restriction of Eq. (5.18) becomes

D
SU(3)
(λ1+1,λ2)

∣∣∣
SU(2)

⊕DSU(3)
(λ1,λ2+1)

∣∣∣
SU(2)

⊕DSU(3)
(λ1−1,λ2−1)

∣∣∣
SU(2)

∼=
∞⊕
s=0

[
m(λ1+1,λ2)
s +m(λ1,λ2+1)

s +m(λ1−1,λ2−1)
s

]
DSU(2)
s . (5.21)
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Combining Eqs. (5.20) and (5.21) gives us a recurrence relation for the m(λ1,λ2)
s

multiplicities,

(1−δs,0)
(
m

(λ1,λ2)
s−1 +m(λ1,λ2)

s

)
+m

(λ1,λ2)
s+1 = m(λ1+1,λ2)

s +m(λ1,λ2+1)
s +mλ1−1,λ2−1

s . (5.22)

This equation can be extended to apply to the empty diagram, (0, 0), of the trivial
representation, by setting m(λ1,−1)

s = 0.
The recurrence relation Eq. (5.22), together with Eq. (5.17) as initial condition,

uniquely determines the multiplicities m(λ1,λ2)
s . One can show by, e.g., by direct

substitution, that the solution is the following:

m(λ1,λ2)
s = Min

{
m

(λ1,λ2)
1,s ,m

(λ1,λ2)
2,s

}
(5.23a)

with

m
(λ1,λ2)
1,s =

⌈
1

4
Min {2s− 1, 2λ1 − (2s− 1)}+(

(s+ 1) mod 2− 1

2

)
((λ1 + 1)(λ2 + 1) mod 2)

⌉ (5.23b)

m
(λ1,λ2)
2,s =

⌈
1

4
(2Min {(λ1 − λ2), λ2} − 1)

⌉
+

((s+ λ1 + 1)(λ1 + Max{λ2, λ1 − λ2}+ 1) mod 2) .

(5.23c)

According to Eq. (5.9), the explicit knowledge of the multiplicities (5.23) means
that we have obtained the direct sum expansion of the su(3) irreps into su(2) irreps.
In the following, we will see how it can be used to diagonalize the Hamiltonian in
Eq. (5.3).

5.4 The phase diagram of the model

In order to obtain the ground-state energy of the Hamiltonian in Eq. (5.3), we
need to find the compatible λ1, λ2 and s quantum numbers that minimize its eigen-
value, Eq. (5.11b). To describe these compatibility conditions, let us first note that
(C3)

⊗N factorizes into SU(3) irreducible subspaces according to Eq. (5.8). Hence,
the possible λ = (λ1, λ2) pairs are the ones that appear with nonzero mλ multi-
plicities in Eq. (5.7b). Furthermore, for each such (λ1, λ2) pair, the compatible s
values are those with m(λ1,λ2)

s 6= 0 in Eq. (5.9). Given the optimal λ = (λ1, λ2) and
s values, the ground-state eigenspace of the Hamiltonian is Kλ⊗K(λ)

s ⊗H(λ)
s from

Eq. (5.10), which is usually degenerate.
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Figure 5.3: The (λ1, λ2) pairs (blue circles) corresponding to the
SU(3) irreps with nonzero multiplicity appearing in the decomposi-

tion Eq. (5.7b) for N = 6.

The solution of the ground-state energy problem is the simplest when the num-
ber of spins is divisible by 6. Thus, we consider this situation first and explain
the N mod 6 6= 0 case later. The reason why divisibility by 6 is important, is that
both the SU(2) and SU(3) singlet subspaces are present in the composite Hilbert
space, iff N is divisible by 6. As explained in Section 5.2, the (λ1, λ2) irreducible
subspaces present in the decomposition of the Hilbert space (C3)

⊗N correspond to
Young diagrams with at most 2 rows and N−3i boxes with i = 0, 1, . . . , N/3. (See
Fig. 5.3, for an illustration of the N = 6 case.) Consequently, the (0, 0) diagram,
or in other words, the SU(3) singlet is present iff N is divisible by 3. Similarly,
it follows directly from the spin addition rules that the total SU(2) singlet sub-
space is present iff N is even. In the corresponding singlet subspace, the energy
contribution of the CSU(2)

N and CSU(3)
N terms in the Hamiltonian is 0, therefore in

the cases when the lowest energy state is in a singlet subspace, some θ dependent
terms are cleared out from the expression of the ground state energy.

The signs of the sine and the cosine prefactors are important in deciding the
nature of the ground state, so we divide the phase diagram into four quarters using
the angle θ, see Fig. 5.4 (a). To minimize the second term of the energy (5.11b)
in the second and third quarters with a given (λ1, λ2), where cos θ < 0, we need to
find the maximum possible s value, while in the first and fourth quarters, where
cos θ > 0, we need to find the smallest allowed s. According to Eq. (5.23),

max{s|mλ1,λ2
s 6= 0} = λ1, (5.24a)

min{s|mλ1,λ2
s 6= 0} =

0 if both λ1 and λ2 are even,

1 otherwise.
(5.24b)
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III
III IV

(a)

SU(3)
symmetric
point

SU(3)
symmetric
point

(b)

Figure 5.4: The ground-state phase diagram of the BLBQ model
on the complete graph. In subfigure (a) the phase diagram is plotted
with the θ parameter used in Eq. (5.2). The quantum numbers are
plotted next to the phase they belong to. In subfigure (b) we used
the mapping Eq. (5.5) to represent the phase diagram with the more
conventional γ parameter of the bilinear-biquadratic interaction.

This means that in the second and third quarters we need to substitute s = λ1

into Eq. (5.11b), then minimize the resulting expression:

E
(λ)
λ1

=

(
2

3
sin θ + cos θ

)
λ21 + (2 sin θ + cos θ)λ1 +

2

3
sin θλ2(λ2 − λ1). (5.25)

On the other hand, in the first and fourth quarters, s = 0 or s = 1 has to be used
according to Eq. (5.24b). We will see shortly, that in the present case of N being
the multiple of 6, both λ1 and λ2 are even in the ground state, so we use s = 0 in
Eq. (5.11b), and finally arrive to the polynomial

E
(λ)
0 =

2

3
sin θ(λ21 + λ22 − λ1λ2 + 3λ1). (5.26)

Let us now describe what happens in each of these quarters one by one.
In the first quarter (0 < θ < π/2), both the sine and the cosine prefactors

are positive in Eq. (5.11b) and s = 0 can be taken. Hence, we need to minimize
Eq. (5.26). Its minimum belongs to the SU(3) singlet (λ1 = 0, λ2 = 0), which
appears since N is divisible by 3. Therefore, the ground state in the whole region
is both an SU(3) and an SU(2) singlet. Obviously, any SU(3) singlet is also an
SU(2) singlet, thus the ground-state subspace is plainly the entire SU(3)-singlet
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subspace. Using the hook length formula, Eq. (3.32), the dimension of the ground-
state subspace is

dim(GS) =
2N !

(N/3 + 2)(N/3 + 1)2(N/3!)3
. (5.27)

In the fourth quarter (3π/2 < θ < 2π), sin(θ) is negative but cos(θ) is positive.
Now Eq. (5.26) is minimized by the irrep (λ1, λ2) = (N, 0). Since N is even,
our earlier assumption that the ground state is in the s = 0 subspace is justified.
The single-row, N-box diagram labels the trivial representation of the permutation
group, which is supported on (C3)

∨N . According to Eq. (5.23), m(N,0)
0 = 1, i.e.,

there is only one SU(2) singlet in the symmetric subspace, implying that the ground
state is non-degenerate, dim(GS) = 1.

In the third quarter (π < θ < 3π/2), both the sine and the cosine are negative,
and Eq. (5.25) has to be minimized. Its minimum is at (λ1, λ2) = (N, 0). The
symmetric subspace naturally contains the maximum spin (s = N) representation,
m

(N,0)
N = 1, which hence spans the ground-state subspace, yielding dim(GS) =

2N + 1.
In the second quarter (π/2 < θ < π), the two terms in Eq. (5.11b) are in

competition with each other with different signs. In this case, the ground state
is polarized according to Eq. (5.24a), i.e., s = λ1. Again, we need to minimize
Eq. (5.25). Interestingly, the quantum numbers characterizing the ground state
in the neighboring quarters extend quite a bit into the second quarter. The λ1 =

λ2 = s = 0 singlet phase is still the ground state for π/2 < θ < θc1, while for
θc2 < θ < π the ground state is in the subspace with λ1 = s = N , λ2 = 0 as in
the third quarter. In other words, the two phase boundaries move from π/2 and π
to θc1 and θc2. The phase boundary θc1 is a complicated function of N . However,
when N approaches infinity, it is approximated by

θc1 = π − arctan(2). (5.28)

The other phase boundary, for any value of N , is given by

θc2 = π − arctan((2N + 1)/(2N + 2)). (5.29)

Between θc1 and θc2, the quantum numbers gradually change between those of
the two neighboring phases. If (λ1, λ2) were allowed to vary continuously, the pair
that minimizes the energy would move on the (x(θ), N − x(θ)) line with

x(θ) =
(2N − 2) tan(θ)− 1

4 tan(θ) + 2
. (5.30)
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Since only integer pairs are allowed, and the value of the energy (5.11a) on the
λ1 + λ2 = N line as a function of λ1 is a positive parabola with its minimum at
x(θ). The value of λ1 in the ground state will be the closest integer value to x(θ),
which is λ∗1(θ) = dx(θ)− 1/2e. This means that the optimal quantum numbers are
(λ1, λ2) = (λ∗1(θ), N − λ∗1(θ)) and s = λ∗1(θ). The dimension of the ground state
subspace is

dim(GS) =
N !(2λ∗1(θ)−N + 1)!

(N − λ∗1(θ))!(λ∗1(θ) + 1)!
(2λ∗1(θ) + 1). (5.31)

In summary, we have found an SU(3) singlet phase, in the region 0 ≤ θ ≤ θc1, a
partially magnetized phase between θc1 ≤ θ ≤ θc2, a ferromagnetic phase between
θc2 ≤ θ ≤ 3π/2, and a symmetric SU(2) singlet phase between 3π/2 ≤ θ ≤ 2π. The
complete phase diagram is illustrated in Fig. 5.4, both in terms of θ, and in terms
of the original parameter γ used in Eq. (5.4). In terms of the γ angle, when N is
asymptotically large, the phase-transition points are at γ = 0, arctan(2), π/2, 5π/4.
It is worth to note that the boundaries of the ferromagnetic phase are at the same
γ angles than for the one-dimensional BLBQ chain.

It is also worth to discuss some special points of the phase diagram. When
θ = π/2, 3π/2 the Hamiltonian is SU(3) invariant. The θ = 3π/2 point is at a phase
boundary separating two phases within the symmetric subspace: the ferromagnetic
and the symmetric singlet phases. At this point there is an even bigger degeneracy
than in the two neighboring phases, all symmetric states are ground states. On the
contrary, the SU(3) symmetry at θ = π/2 does not result in additional degeneracy
of the ground state. This is because the ground state in this case is an SU(3)

singlet, which means it also must be an SU(2) singlet. Consequently, this phase
extends over the θ = π/2 point into the second quarter. The situation is similar
with the θ = 0, π points, where the Hamiltonian, Eq. (5.3), contains only the SU(2)
Casimir operator. On the one hand, θ = 0 separates the two SU(2) singlet phases,
and at this point all SU(2) singlet states are ground states. On the other hand, for
θ = π we have an SU(2) ferromagnetic state with maximal spin, which is always
contained in the symmetric subspace, thus, it does not result in an additional
degeneracy and does not separate phases.

Finally, let us turn to the case when the number of spins is not divisible by 6.
It is then possible that the Hilbert space does not have an SU(3) singlet subspace,
or that the (N, 0) Young diagram has no SU(2) Singlet subspace. In these cases
one cannot separately optimize the CSU(2)

N and CSU(3)
N parts of the Hamiltonian in

the second and the fourth quarters. Instead, there is a competition between two
different ground states with almost optimal SU(3) and SU(2) Quantum numbers.
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Figure 5.5: The energy spectrum of the Hamiltonian (5.3) as a
function of the total spin square. Each subfigure represents one of
the four ground state phases. The spectrum is evaluated for N = 36

sites.

For example, in the first quarter when N mod 3 = 1, the ground state for 0 < θ <

arctan(1/6) has the quantum numbers λ1 = 2, λ2 = 2, s = 0. When arctan(1/6) <

θ < π/2 this is replaced by the state with λ1 = 1, λ2 = 0, s = 1. The difference in
the quantum numbers is of the order of 1, and thus it is unimportant for large N .

5.5 Energy spectrum

Lastly, we discuss the full energy spectrum of our model. Let us first note, that
as a consequence of the infinite range interaction, the energy given by Eq. (5.3)
is not an extensive quantity. In order to make it extensive in the thermodynamic
limit, we normalize our Hamiltonian with an additional 1/(N − 1) factor. Fig. 5.5
illustrates the energy spectrum as a function of s(s+1) for representative values of
the θ parameter for each of the ground-state phases. In Fig. 5.5a, we have chosen
the representative angle θ = π/4 from the SU(3) singlet phase. As expected, the
lowest energy belongs to s = 0, and the next level is very close in energy to the
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Figure 5.6: The difference between the two lowest energy levels
of the Hamiltonian (5.3) for N = 32 sites.

ground state. In Fig. 5.5b, we have chosen θ = 5π/7 representing the partially
magnetized phase. Here, the lowest energy belongs to an intermediate value of
the total spin given by λ∗1(5π/7). Fig. 5.5c with θ = 5π/4 corresponds to the
ferromagnetic phase. The lowest energy is for s = N . The next lowest energy level
is separated by a gap, which does not vanish when N goes to infinity. Finally,
Fig. 5.5d is plotted for θ = 7π/4 representing the symmetric SU(2) singlet phase.
The minimal energy level is at s = 0 and the separation between the two lowest
levels vanishes in the thermodynamic limit.

We further note, that by the transformation θ → θ + π the Hamiltonian (5.3)
changes sign. Therefore, the spectra also get reflected under such a transforma-
tion. A reminiscent behavior is approximately present when comparing Figs. 5.5a
and 5.5c, as well as 5.5b and 5.5d, although the four representative θ angles were
intentionally chosen not to be symmetric on the circle.

Let us take a closer look at the energy gap, i.e., the separation of the two
lowest lying energy levels, see Fig. 5.6. The gap remains finite as N tends to
infinity only in the ferromagnetic region. Both in the SU(3) singlet phase and in
the symmetric SU(2) singlet phase, the gap tends to 0 as O(1/N). The situation
is quite delicate in the partially magnetized phase. For any finite N , there is a
series of ground-state level crossings, the number of which is proportional to N , see
Fig. 5.6b. As N tends to infinity these level-crossings get increasingly dense, and
the phase becomes gapless in the thermodynamic limit even without the 1/(N−1)

normalization of the Hamiltonian.
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5.6 Summary and outlook

We determined the ground-state phase diagram and energy spectrum of the spin-
1 bilinear-biquadratic model on the complete graph. In this simple setting, the
Hamiltonian is a linear combination of the quadratic Casimir operators of the
SU(2) and SU(3) Lie algebras. These two Casimir operators commute, thus the
diagonalization of the Hamiltonian reduces to the representation theoretic problem
of identifying the embedding of SU(2) irreducible representations into SU(3) ones.
Solving this problem is one of the main results of this part of the thesis. By
diagonalizing the Hamiltonian, we found that the model has four phases belonging
to different symmetry sectors. With respect to SU(2) two of the phases are singlets,
there is also a partially magnetized and a ferromagnetic phase. One of the SU(2)-
singlet phases is also SU(3)-singlet, while the other one belongs to the completely
symmetric subspace and is thus characterized by a maximal λ1 = N quantum
number. The ferromagnetic ground state is also symmetric, i.e., s = λ1 = N . The
most interesting part of our phase diagram is the gapless partially magnetized
phase between the ferromagnetic and the SU(3)-singlet phase. The λ1, λ2 and s
quantum numbers change gradually within this phase, while they stay constant
within the other phases. At all phase boundaries the quantum numbers have a
discontinuity proportional to N , except at the boundary between the partially
magnetized and the ferromagnetic phase (θc2).

Spin models on complete graphs are generally believed to mimic the properties
of their counterparts on regular lattices in sufficiently high dimensions. However,
for the BLBQ model, already some aspects of low-dimensional lattice models are
reflected in the complete graph results. A natural example is the case of ferro-
magnetic coupling, for which the ground-state space is the λ1 = s = N maximally
polarized subspace, independently of the underlying geometry. A more interesting
observation is that the symmetric SU(2) singlet, (λ1, λ2) = (N, 0), s = 0, appears
as a limiting ground state also in the one-dimensional BLBQ model at the bound-
ary of the dimerized SU(2)-singlet and the ferromagnetic phase [132]. In contrast,
dimerization and trimerization, which are important features of the BLBQ-model
on bipartite and tripartite lattices, cannot be described on complete graphs. Thus,
a natural generalization of our problem would be to consider the model on k-partite
complete graphs. Already in the bipartite case, one can expect the appearance of
symmetry-breaking antiferromagnetism.

Finally, let us comment about the possible experimental relevance of this model.
In Ref. [46], an experiment with ultracold atoms was proposed for the realization
of the SU(3) symmetric point of the BLBQ Hamiltonian on a complete graph.
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It would be desirable to extend this approach to the entire phase diagram. An
experimental realization would not only mean that one can study these quantum
phases of matter in the lab, but one would also obtain metrologically useful states.
In this respect, particularly the singlet phases can be of interest, as macroscopic
singlet states have been proposed for gradient magnetometry [135, 136].
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Chapter 6

Collective SU(3) spin systems with
bipartite symmetry

6.1 Introduction

In this chapter, we expand upon the theme started in Chapter 5, and investi-
gate another highly permutation symmetric 3-level quantum system. As we have
pointed out in Section 5.1, the most general SU(3) symmetric two-particle interac-
tion is given by a linear combination of two SU(3) symmetric, linearly independent
two-particle operators, e.g.:

H = αC
SU(3)
2 + β11. (6.1)

Nonetheless, it gives more physical intuition to choose an operator different from
C

SU(3)
2 : The swap operator Fij defined with Fij|α〉|β〉 = |β〉|α〉 for any product

vector. This makes it clear that the most general SU(3) symmetric two-particle
interaction is the humble exchange interaction.

In Section 5.1 we argued that this exchange interaction yields a trivial Hamil-
tonian when paired with complete permutation invariance. Chiefly for this reason,
in Chapter 5 we broke the complete SU(3) invariance with an SU(2) symmetric
term in the interaction. In this chapter, we chose a different approach: Instead of
breaking the SU(3) symmetry, we break the complete permutation invariance in a
minimal fashion, keeping large enough subsystems permutation invariant so that
our techniques remain usable. We divide the entire system into two equal-sized
permutation symmetric subsystems; in this way, we introduce a bipartite struc-
ture in a mean-field type model. It is reasonable to expect that this will make
the phase structure more interesting, since it relaxes the extreme frustration of
the complete graph, and makes the model able to admit the bipartite symmetry
breaking ground states normally associated with antiferromagnetism.

We denote the two subsystems by A, B and AB, and set the strength of
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the interaction between two arbitrary spins on the same subsystem to J1, while
on different subsystems to J2. With this, the Hamiltonian describing the entire
system reads as,

H = (J1 − J2)
∑
i,j∈A
i<j

C
SU(3)
2 ij + (J1 − J2)

∑
i,j∈B
i<j

C
SU(3)
2 ij + J2

∑
i,j∈AB
i<j

C
SU(3)
2 ij . (6.2)

We point out that unless J1 or J2 equals 0, our model still has complete con-
nectivity between the spins, we just imposed a bipartite symmetry by changing
the connection strengths. The graph describing the connections becomes bipartite
only when J1 = 0.

Dropping unnecessary indexes, we introduce the quadratic SU(3) Casimir op-
erators of the two subsystems CA, CB, and the entire Hilbert space CAB,

CX =
3∑

α,β=1

(∑
i∈X

Eα,β
i

)(∑
j∈X

Eβα
j

)
=
∑
i,j∈X,
i<j

C
SU(3)
2 ij −

8

3
(|X| − 2) |X|11. (6.3)

From here on, we use X as a placeholder that can mean either A, B or AB, and |X|
denotes the number of sites in X. The second equation is a consequence of applying
Schur’s lemma to the one-site quadratic Casimir operators CSU(3)

2 i =
∑

αβ E
αβ
i Eβα

i .
We define the parameter θ with tan(θ) = J2/(J1−J2) and rescale the Hamiltonian
of Eq. (6.2), in order to measure the energy in units of

√
J2
1 + 2J2

2 − 2J1J2. With
the newly introduced notations, the rescaled Hamiltonian takes a form that is more
easily tacked with representation theoretic techniques:

HCBE = sin(θ)CAB + cos(θ) (CA + CB) . (6.4)

The physical intuition we can gain from this form is that the right parameters
that characterize the system are not the strengths of the interaction within and be-
tween the subsystems, but rather the strength of the “baseline” uniform exchange
interaction on the entire system represented by CAB, and the strength of the ad-
ditional uniform interaction on the subsystems superposed with the former, which
is represented by CA and CB. In a way, we can think about this as adjusting the
zero-point of the coupling constant J1 of the intra-subsystem interactions to match
the baseline J2. With these uniform interactions, the spins on the subsystems and
the entire system act in a mean-field-like collective manner. Thus, throughout the
paper we will call it the spin-1 collective bipartite exchange Hamiltonian, or CBE
Hamiltonian for short.
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Such a system may look quite artificial for the first glance, however, exper-
imental techniques with ultracold atoms and cavity electrodynamics represent a
promising way towards its realization. One may expect, that a dual system of
ultracold ensembles inside lossy optical cavities [137–139] can actually be used to
realize SU(3) symmetric Mott insulators on a bipartite lattice, where the permu-
tation invariant infinite-range interaction is provided by the cavity photons. The
two ensembles can be realized by different electric configurations of the ultracold
atomic gas, e.g., the two 3-component F = 1 hyperfine states on the two sides of
the rubidium D1 transition1.

This chapter is structured as the following: In Section 6.2, we formally di-
agonalize the Hamiltonian using representation theoretic tools. In Section 6.4,
we explicitly construct and explore the ground state phase diagram. Finally, in
Section 6.5, we summarize the results and provide an outlook.

6.2 The eigenspace decomposition of the Hamilto-

nian

Thanks to the invariance of the Hamiltonian to the permutations of the subsys-
tems A and B, it’s eigenspace decomposition, similarly to Section 5.2 for the BLBQ
model, can be obtained entirely through representation theoretic considerations.
More precisely, by finding the compatible eigenspaces of the three Casimir opera-
tors in Eq. (6.4). In this section, we give this decomposition.

We set the number of sites in each subsystem to N . The full Hilbert space,
H(AB) ∼= (C3)

⊗2N , decomposes into a direct sum of irreducible subspaces under
global SU(3) transformations. The Hilbert spacesH(A) ∼= H(B) ∼= (C3)

⊗N also have
a similar decomposition under their respective N-fold SU(3) transformations. More
explicitly, according to Eq. (3.27), the irreps that appear in these decompositions
correspond to the λ `3 2N and λ `3 N partitions:

H(AB) ∼= H(A) ⊗H(B) ∼=
⊕
λ`32N

K(AB)
λ ⊗H(AB)

λ
∼=(⊕

λ`3N

K(A)
λ ⊗H

(A)
λ

)
⊗

(⊕
λ`3N

K(B)
λ ⊗H

(B)
λ

)
. (6.5)

Here H(X)
λ are subspaces where the respective N-fold or 2N -fold SU(3) transforma-

tions act irreducibly, and K(X)
λ are subspaces where the same transformations act

1D. A. Steck, “Rubidium 87 D Line Data”, available online at http://steck.us/alkalidata
(revision 2.2.1, 21 November 2019).

http://steck.us/alkalidata
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as identity. The dimensions of these K(X)
λ subspaces are equal to the multiplicities

of the SU(3) irreducible representations, DSU(3)
λ , in the irrep decomposition of the

2N -fold (AB) or N-fold (A,B) tensor product of the defining representation. This
multiplicity can be calculated directly with the hook length formula, Eq. (3.32).
The dimension of H(X)

λ is the dimension of the DSU(3)
λ irrep, which is the number

of semistandard Young tableaux with shape λ and dimension 3, or equivalently,
dim

(
D

SU(3)
λ

)
= (p + 1)(q + 1)(p + q + 2)/2, where p and q are the Dynkin labels

describing the diagram λ = [p, q].
The eigenspaces of CAB, CA and CB are precisely the degenerate subspaces of

the form K(X)
λ ⊗ H(X)

λ in Eq. (6.5); thus, the diagonalization of the CBE Hamil-
tonian (6.4) turns into a representation theoretic problem. Since the Casimir
operators appearing in the CBE Hamiltonian commute with each other, their
eigenspaces must be compatible. This compatibility manifests by the tensor prod-
ucts of CA and CB eigenspaces decomposing into direct sums of CAB eigenspaces,
i.e.: (

K(A)

λ(A) ⊗H
(A)

λ(A)

)
⊗
(
K(B)

λ(B) ⊗H
(B)

λ(B)

)
∼=

K(A)

λ(A) ⊗K
(B)

λ(B) ⊗

 ⊕
λ(AB)∈λ(A)⊗λ(B)

H(AB)

λ(AB)

 .
(6.6)

As a result, we are able to label the eigenspaces of the CBE Hamiltonian by
(λ(A), λ(B), λ(AB)) triples of SU(3) irreps. In this sense, however, not all SU(3)

irreps are compatible with each other. A valid triple of irreps has to fulfill two
conditions:

1. As the direct sum in Eq. (6.6) is over the λ(AB) partitions that appear in the
irrep decomposition of DSU(3)

λ(A) ⊗D
SU(3)

λ(B) , this condition must be true for any
valid triple.

2. The partitions must appear in the irrep decompositions of the N-fold and 2N -
fold tensor products of the defining representation of SU(3), i.e., λ(A), λ(B) `3
N and λ(AB) `3 2N .

6.3 Determining the ground state subspace

Now that we have described how to characterize the eigenspaces the CBE Hamil-
tonian, we move on to determine the triple of SU(3) irreps, (λ(A), λ(B), λ(AB)),
that corresponds to the subspace of the ground states, i.e., the lowest energy
eigenspace. We progress towards this goal through the following steps: We fix
two arbitrary irreps on the subsystems, λ(A) and λ(B), and then determine the
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irrep λ∗(AB)(λ(A), λ(B), θ) which appears in the decomposition of DSU(3)

λ(A) ⊗ D
SU(3)

λ(B)

and minimizes the term proportional to CAB in the CBE Hamiltonian (6.4). De-
pending on the sign of the sine prefactor, this is equivalent to finding the irrep
λ̌(AB)(λ(A), λ(B)) ∼= (λ̌1

(AB)
, λ̌2

(AB)
) that minimizes or the irrep λ̂(AB)(λ(A), λ(B)) ∼=

(λ̂1
(AB)

, λ̂2
(AB)

) that maximizes the eigenvalue of CAB. After λ∗(AB) is known, the
problem of determining the ground state subspace reduces to finding irreps λ(A)

and λ(B) for which the triple (λ(A), λ(B), λ∗(AB)(λ(A), λ(B), θ)) minimizes the eigen-
value of the CBE Hamiltonian.

6.3.1 The dominance order of partitions

In order to be able to derive λ̌(AB)(λ(A), λ(B)) and λ̂(AB)(λ(A), λ(B)), it is necessary to
introduce the dominance order of partitions. Sometimes also called majoriziation
order, dominance order is a partial order on the integer partitions of a positive
integer N .

Definition 2. Suppose λ = (λ1, λ2, . . . , λl), µ = (µ1, µ2, . . . µm) ` N . Then λ

dominates µ, which we denote as λD µ, if

λ1 + λ2 + · · ·+ λi ≥ µ1 + µ2 + · · ·+ µi, (6.7)

for all i ≥ 1. If i > l (i > m) we take λi (µi) as 0.

To give some intuition, if λD µ then one can imagine the Young diagram of λ
as short and fat, while µ as long and skinny. E.g.: (3, 3) D (2, 2, 1, 1), but (3, 3)

and (4, 1, 1) are not related.
In a partially ordered set (poset), comparable elements that are immediate

neighbors are said to have a covering relation. That is, the partition λ ` N covers
µ ` N iff λBµ, where by B we mean a dominance relation with at least one strict
inequality, and there is no partition ν ` N such that λ B ν B µ. The following
condition for a covering relation between partitions is introduced in [140].

Proposition 15. The partition λ ` N covers µ ` N in dominance order iff there
is a pair of indices 1 ≤ i < k ≤ N such that:

1. λi = µi + 1, λk = µk − 1, and λj = µj for all k 6= j, k 6= i.

2. k = i+ 1 or µi = µk.

Thinking in Young diagrams, this means that one can get the diagram λ from
µ, by removing a box from the end of row k, and appending it to the immediately
preceding row, or to row i < k if the rows i through k of the diagrams all have the
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same length, but row i − 1 is different. Using Proposition 15, we can introduce
an alternative, visual definition for dominance order: λB µ iff one can get to the
Young diagram of λ starting from µ, by moving boxes between rows one-by-one
only upwards.

Figure 6.1: The Hasse diagram of the partitions of 6. A Hasse
diagram displays the covering relations between the elements of a

poset.

Now, we are ready to give the reason why dominance order is important for our
effort: The eigenvalues of the quadratic Casimir operator of SU(d) are arranged
in dominance order. That is, if λ B µ then c

SU(d)
2 (λ) > c

SU(d)
2 (µ). This can be

confirmed by using the definition of cSU(d)
2 (λ) in Eq. (3.57). It is enough to check

the case where λ covers µ. Let the indices i and k be such that in Proposition 15.
Then, we have

c
SU(d)
2 (λ)− cSU(d)

2 (µ) = (k − i) + (λ̃i − λ̃k)− 2 = (k − i) + (µi − µk) ≥ 1. (6.8)

Here, we temporally took back our previous convention of labeling SU(d) irreps
with d − 1-row Young diagrams, and used the full d-row diagrams. This way,
the Young diagrams in the irrep decompositions of DSU(d)

λ(A) ⊗D
SU(d)

λ(B) are all integer
partitions of the same number, and therefore form a poset w.r.t. dominance order.
We determine λ̌(AB)(λ(A), λ(B)) and λ̂(AB)(λ(A), λ(B)) by showing that this poset has
both a minimum and maximum, and finding these elements.
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6.3.2 The maximum product diagram

We start with the easier task of finding the maximum diagram in the irrep decom-
position of DSU(d)

λ(A) ⊗D
SU(d)

λ(B) . This means finding the most “short and fat” diagram
in the set constructed by attaching the boxes of λ(B) to λ(A) in the way described
by the Littlewood-Richardson algorithm in Section 3.7.1. According to this algo-
rithm, boxes labeled with the number j, i.e. boxes from the j-th row of λ(B), can
only appear in the j-th row of the constructed tableau or below. In addition to
this, we always create a valid tableau by attaching every box with label j to the
j-th row; therefore, the corresponding diagram is always present in the irrep de-
composition of the product. This diagram dominates all other product diagrams,
as starting from it, we can reach any other product diagram by moving boxes only
downwards. Thus, the maximum diagram is given by,

λ̂
(AB)
i (λ(A), λ(B)) = λ

(A)
i + λ

(B)
i . (6.9)

6.3.3 The minimum product diagram

Finding the minimum diagram in the irrep decomposition of DSU(d)

λ(A) ⊗D
SU(d)

λ(B) with
respect do dominance order is much less straightforward than finding the maxi-
mum. When we searched for the maximum, we had to find the most “top heavy”
distribution for each type of labeled box in the Littlewood-Richardson algorithm.
For each label, this distribution was independent of the distributions of the rest of
the labels. Unfortunately, this is not the case when we search for the minimum,
and the most “bottom heavy” distributions. The most bottom heavy distribution
for the boxes with label j depends heavily on the distributions of boxes with labels
i < j, and the shape of the diagrams λ(A), λ(B). For this reason, although we could
find the maximum diagram independently of the dimension, for the minimum we
restrict ourselves to the original problem of d = 3.

Proposition 16. The minimum diagram w.r.t. dominance order in the irrep de-
composition of DSU(3)

λ(A) ⊗D
SU(3)

λ(B) , is the last diagram that the direct sum in the closed
formula, Eq. (3.53), for the irrep decomposition loops through. That is, the diagram

λ(k2,1, k2,2, k1,1) =

(λ
(A)
1 + λ

(B)
1 − k2,1 − k2,2, λ

(A)
2 + λ

(B)
2 − k1,1 + k2,2, k2,1 + k1,1),

(6.10)

for which all three running indices take their maximum values:
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k2,1 = u(1, 1) = min{µ1 − µ2, λ
(A)
2 }

k2,2 = u(1, 2)|u(1,1) = min{λ(A)
1 − λ(A)

2 , λ
(B)
1 − u(1, 1)},

k1,1 = u(2, 1)|u(1,1),u(1,2) = min{λ(A)
2 +u(1, 2)−u(1, 1), λ

(B)
2 }.

(6.11)

We prove this proposition in Appendix D, where for every diagram in the prod-
uct, labeled by the indices (k′2,1, k

′
2,2, k

′
1,1), we construct a sequence of diagrams

starting from our proposed minimum diagram, and ending with the diagram la-
beled by (k′2,1, k

′
2,2, k

′
1,1), then show that every diagram in the sequence dominates

the previous one.
Substituting Eq. (6.11) into Eq. (6.10), converting the result back to the two-

row notation using the equivalence relation described in Proposition 8, then sepa-
rating and simplifying the different cases created by the three layers of embedded
min functions, gives us an expression for the row lengths of the minimum diagram:

λ̌(AB)(λ(A), λ(B)) =



(X, Y ) if Y > 0 and X > Y

(Y,X) if X > 0 and X ≤ Y

(Y −X,−X) if X ≤ 0 and Y > 0

(X − Y,−Y ) if X > 0 and Y ≤ 0

(−Y,X − Y ) if X ≤ 0 and X > Y

(−X, Y −X) if Y ≤ 0 and X ≤ Y,

(6.12)

where, we define X = λ
(A)
1 − λ

(A)
2 − λ

(B)
2 and Y = λ

(B)
1 − λ

(B)
2 − λ

(A)
2 . Take

note that all the conditions in Eq. (6.12) can be interpreted as the requirement
that the corresponding row lengths should describe a valid integer partition, i.e.:
λ̌
(AB)
1 ≥ λ̌

(AB)
2 ≥ 0. For any choice of λ(A) and λ(B), either only a single case

describes a valid diagram, or all cases that describe a valid diagram are equal.

6.4 The ground-state-phases

In this section, using the results of Section 6.3, we determine the different ground
state phases of our model; there are five of these in total. The model becomes
gapless in two phases and at the phase-boundaries, while it remains gapped within
the other phases. Interestingly, in one of the gapped phases the bipartite sub-lattice
symmetry is broken in a strong sense: namely, for the ground state subspace the
irreps λA and λB corresponding to the two subsystems are non-identical. We are
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mainly concerned with the thermodynamic limit, however, some of our results also
apply to finite system sizes.

In Section 6.3, we diagonalized the CBE Hamiltonian and determined the
optimal product irrep λ∗(AB)(λA, λB, θ). Thus, the identification of the ground
state subspace simplifies to finding the irreps λA and λB for which the triple
(λA, λB, λ

∗(AB)(λA, λB, θ)) has minimal energy. When λA and λB are fixed, λ∗(AB)

depends only on the sign of the prefactor of the Casimir operators CA, CB, and
CAB, i.e., on the sign of sin(θ) and cos(θ). Hence, it is useful to investigate the
ground state separately in the four quarters of the domain of our angle parameter
θ; we number these quarters clockwise, starting with 0 ≤ θ ≤ π/2, as seen in
Fig. 6.2.

III

III IV

II. I.

III. IV.

Figure 6.2: The numbering of the quarters of the parameter region
with the corresponding choice of the irrep λ∗(AB).

It will sometimes be practical to switch from the standard parameters of SU(3)

irreps to a different set that we can treat as continuous variables in the thermo-
dynamic limit, N →∞:

λ1 =
Nv

2
(1 + x), λ2 =

Nv

2
(1− x). (6.13)

Here, Nv describes the number of boxes in the diagram and x expresses how the
boxes are divided up between the two rows, it is defined in such a way that λ1 ≥ λ2

is automatically enforced. Ideally we would like these pseudo-continuous variables
to vary between 0 and 1, but the circumstances add some extra restrictions. Tak-
ing the irrep decomposition of the composite Hilbert space into account, v takes
values between (N mod 3)/N and 1 in steps of 3/N . In the case of x, we have to
consider that the two rows cannot be equal sized when the number of boxes is odd.
Therefore, for every fixed value of v, x takes values between (Nv mod 2)/(Nv) and
1 in steps of 2/Nv.

By substituting Eq. (6.13) into the eigenvalue of the quadratic SU(3) Casimir
operator, Eq. (3.58), one can see that the eigenvalue corresponding to (λ1, λ2) only
contains terms that are either quadratic or linear in N . In the thermodynamic
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limit it is sufficient to consider only the contributions of the quadratic part, given
by

cqu(λ1, λ2) =
2

3
(λ21 + λ22 − λ1λ2). (6.14)

As an unexpected coincidence, for the minimum product diagram, λ̌(AB)(λ(A), λ(B)),
the value of this quadratic part of the Casimir eigenvalue is described by the same
formula in all 6 cases of Eq. (6.12).

cqu(λ̌
(AB)
1 , λ̌

(AB)
2 ) =

cqu(λ
(A)
1 , λ

(A)
2 ) + cqu(λ

(B)
1 , λ

(B)
2 )− (λ

(A)
1 λ

(B)
1 + λ

(A)
2 λ

(B)
1 + λ

(A)
1 λ

(B)
2 − 2λ

(A)
2 λ

(B)
2 ).

(6.15)

This greatly reduces the effort required to map out the phases of the ground state.

6.4.1 First quarter (0 < θ < π/2)

We start with the regions where there is no competition between the two types
of interactions (the terms with CAB and CA/B) and thus, determining the ground
state is the easiest. This means the parameter regions where the signs of the sine
and cosine prefactors in the CBE Hamiltonian (6.4), are the same, i.e., the first
quarter and third quarters. We begin with the former.

In this region of the parameter space, the eigenvalues of all the Casimir oper-
ators have to be minimized. From Eq. (3.58) one can immediately see that this
is done by the singlet representation on all subspaces, (λ

(A)
1 , λ

(A)
2 ) = (λ

(B)
1 , λ

(B)
2 ) =

(λ
(AB)
1 , λ

(AB)
2 ) = (0, 0), whenever it is available. The λ `3 N partition equivalent

to the SU(3) singlet is (N/3, N/3, N/3) which appears in the decomposition of the
Hilbert spaces H(A) and H(B) only when N is divisible by 3. In the other cases, i.e.,
when N mod 3 6= 0, the ground state is labeled by the smallest available values of
the λ1 and λ2 quantum numbers. These depend only on the value of N mod 3 and
otherwise do not scale with N . The difference between the energy of these states
and that of the singlet is also of order O(1); therefore when later we give results
about the thermodynamic limit, we will only consider the N mod 3 = 0 case.

N mod 3 (λ
(A)
1 , λ

(A)
2 ) (λ

(B)
1 , λ

(B)
2 ) (λ

(AB)
1 , λ

(AB)
2 )

0 (0, 0) (0, 0) (0, 0)

1 (1, 0) (1, 0) (1, 1)

2 (1, 1) (1, 1) (1, 0)

Table 6.1: The ground state for (0 < θ < π/2)
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The ground state of an antiferromagnetic Heisenberg model is a global singlet both
on a complete graph connection layout and, according to Marshall’s theorem [8, 9],
on a bipartite lattice with equal sized sublattices. The ground state we have here
also falls in line with this behavior.

6.4.2 Third quarter (π < θ < 3π/2)

The other region in the parameter space with no competition between the two
types of interactions is the third quarter, i.e., 0 < θ < π/2. Here, we need to max-
imize the eigenvalues of all the Casimir operators. Consider the decomposition of
the Hilbert space of the entire system into SU(3) irreps. With no regard to the
restrictions coming from fixing the irreps on the A and B subsytems, the irrep
that maximizes the eigenvalue of CAB is (λ

(AB)
1 , λ

(AB)
2 ) = (2N, 0). The irreps that

maximize the eigenvalues of CA and CB are (λ
(A)
1 , λ

(A)
2 ) = (λ

(B)
1 , λ

(B)
2 ) = (N, 0).

These representations are compatible with each other. From Eq. (6.9) one can
see that λ̂(AB)((N, 0), (N, 0)) = (2N, 0); therefore, the ground states of the CBE
Hamiltonian in this quarter of the parameter space belong to the subspace la-
beled by the triple (λ(A), λ(B), λ(AB)) = ((N, 0), (N, 0), (2N, 0)). Chapter 3 on the
Schur-Weyl duality gives us a straightforward interpretation of these numbers: the
ground state subspace is the symmetric part of the Hilbert space, spanned by vec-
tors that are invariant to all permutations of sites. Since in this quarter both types
of interactions are ferromagnetic, we expect the ground state to be similar to the
ferromagnetic ground state of SU(2) Heisenberg models. This matches both the
interpretation from the Schur-Weyl duality and the maximal eigenvalues of the
Casimir operators.
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6.4.3 Fourth quarter (3π/2 < θ < 2π)

In this region of the parameter space, the two interactions in the CBE Hamilto-
nian (6.4) are competing with each other. The eigenvalues of the Casimir operators
of the A and B subsystems needs to be minimized, while the Casimir for the entire
Hilbert space needs to be maximized. According to Eq. (6.9), this latter means
that λ∗(AB) = (λ

(A)
1 +λ

(B)
1 , λ

(A)
2 +λ

(B)
2 ). Using the new variables defined in Eq. (6.13)

for the energy of the CBE Hamiltonian, we obtain

E = (cos(θ) + sin(θ)) (cqu(vA, xA) + cqu(vB, xB)) +

sin(θ)N2vAvB

(
1

3
+ xAxB

)
. (6.16)

From this, one can see that the solution simplifies when the coefficients of both
terms are negative, i.e., in the region 3π/2 < θ < 7π/4. Here, the absolute value of
both terms needs to be maximized, and the irreps that maximizes both is labeled
by xA = xB = 1 and vA = vB = 1. In other words, the previously discussed ground
state of the quarter π < θ < 3π/2 extends into this region.

This brings up two other questions: Could this symmetric ground state extend
any further, and is it possible that the singlet ground state of the first quarter
extends similarly into this parameter region? This last case could be feasible for
values of θ for which the interaction CA + CB dominates the term CAB. Since the
energy of the singlet is 0, it can be the ground state only when the energies of all
other irrep combinations are positive. The inequality E(vA, xA, vB, xB) ≥ 0 yields
a condition for θ that has to apply to all possible values of vA, xA, vB and xB:

−ctg(θ) ≥ 1 +
2 + 6xAxB

vA
vB

(1 + 3x2A) + vB
vA

(1 + 3x2B)
. (6.17)

In order to extract the critical value of parameter θ, two observations should be
made: First, when vA = vB, and xA = xB, the right-hand-side of (6.17) is equal
to 2; and second, by utilizing xa + b/x ≥ 2

√
ba and the inequality between the

arithmetic and geometric means, one obtains that the right-hand side of (6.17)
always has to be less or equal to 2. Thus, the singlet subspace is the ground state
subspace in this region iff −ctg(θ) ≥ 2, which means that it extends from θ = 2π

until θ = 2π − arctan(1/2).
Next, we check whether the symmetric ground state extends any further. The

inequality E(1, 1, 1, 1) ≤ E(vA, xA, vB, xB) provides the following condition for θ:

−ctg(θ) ≤ 1 +
2vAvB(1 + 3xAxB)− 8

v2A(1 + 3x2A) + v2B(1 + 3x2B)− 8
. (6.18)
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We follow a reasoning analogous to the one after Eq. (6.17). Using the relation
between the geometric and arithmetic means, it is easy to see that 2 is a strict
lower bound of the right-hand side of Eq. (6.18). Moreover, the right-hand side
reaches this lower bound iff xA = xB and vA = vB. We conclude that the symmetric
ground state extends until θ = 2π − arctan(1/2) and therefore, there is a direct
transition between the symmetric and the singlet ground states at this parameter
value.

6.4.4 Second quarter (π/2 < θ < π)

In the remaining quarter of the parameter space, π/2 < θ < π, the two types of
interactions are again competing. This time, the coefficient of CAB in the CBE
Hamiltonian (6.4) is positive, therefore, we use the irrep corresponding to the
minimal eigenvalue of CAB, λ∗(AB) = λ̌(AB), and substitute Eq. (6.15) into the
energy,

E = (cos(θ) + sin(θ)) (cqu(vA, xA) + cqu(vB, xB))−

sin(θ)
N2

6
v1v2 (1 + 3x1 + 3x2 − 3x1x2) . (6.19)

It is clear that when the coefficients of both terms are negative, that is, when
3π/4 < θ < π, the irreps on the A and B subspaces which minimize this expres-
sion are labeled by vA = vB = xA = xB = 1. However, this ground state subspace
is not an extension of that of the quarter π < θ < 3π/2, even though the x and
v parameters are identical. This is due to the difference in λ∗(AB). In the present
case, we have to choose the SU(3) irrep in the product (N, 0)⊗ (N, 0) that corre-
sponds to the minimal eigenvalue of the CAB Casimir operator, which according
to Eq. (6.12) is λ(AB) = (0, N). This ground state is similar to a Néel-type anti-
ferromagnetic order in the sense that the two sublattices of a bipartite lattice are
ferromagnetically aligned, but the value of the quadratic Casimir operator on the
entire lattice, is minimized. Another detail that complements this correspondence
with the Néel order is that the parameter region where this ground state appears
coincides with the part where the intra-subsystem interaction J1 is ferromagnetic,
while the inter-subsystem one J2 is antiferromagnetic. With SU(2) spins, a regular
Néel ordered ground state would appear under these same circumstances.

In the remaining part of the domain of θ, i.e., π/2 < θ < 3π/4, finding the
ground state becomes somewhat more complicated. Unlike the previous cases, we
cannot immediately tell the value of the vA and vB variables in the ground state.
Instead, we have to find the minima of a polynomial of four variables on the convex
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set describing the domain of these variables. Using a scaling argument, we can
reduce the number of variables to three. First, we remark that for a suitably large
value of N the ground state energy of the CBE Hamiltonian is guaranteed to be
negative in the parameter region we are currently investigating. Indeed, in the
case of N mod 3 = 0, there exists at least one combination of irreps for which
the energy is negative, we select a pair of conjugate representations, (λ1, λ2) and
(λ1, λ1 − λ2) on the A and B subspaces. The product of these contains the SU(3)

singlet (0, 0), thus the contribution of the term proportional to CAB to the energy
is 0 2. Second, we use the fact that the ground state energy is negative to get
rid of one variable in the optimization problem. Assume that in the ground state
vA ≤ vB. Since cqu(vA, xA) contains only terms proportional to N2, the ground
state energy given by Eq. (6.19) scales quadratically when we scale both vA and
vB by the same constant, hence,

E(
vA
vB
, xA, 1, xB) =

1

v2B
E(vA, xA, vB, xB) ≤ E(vA, xA, vB, xB), (6.20)

where the last inequality holds as E is negative and v2B ≤ 1. It follows that when
searching for the ground state we can set vB to 1. In the following we determine the
minimum of the polynomial E(vA, xA, 1, xB) inside the domain of the remaining
three variables. This minimum has different qualities depending on the value of θ.

In the region π/2 < θ < π − arctan 2 the minimum inside the domain of the
variables is a local minimum of the polynomial E(vA, xA, 1, xB). At this local
minimum vA = vB = 1, and xA = xB = x(θ), a smooth function of θ. Up to
this stage of the calculation, we could handle xA and xB as continuous variables.
Yet, when extracting the discrete (p, q) values labeling the ground state, we need
to take into account that in the case of vA = vB = 1 they can only take the
values ((N mod 2) + 2i)/N , with i being an integer between 0 and N/2; That is,
among the two proper values neighboring x(θ), the ground state is the one with
the lower energy. Since the energy Eq. (6.19) as a function of xA = xB = x is a
parabola, we can simply round x(θ) to its closest integer value. After doing this
and using Eq. (6.15) to determine the corresponding irrep, (λ(AB), λ(AB)), on the

2In the cases when N mod 3 6= 0, we can always choose a pair of irreps that are almost conju-
gates of each other and for which the term proportional to CA+CB has an energy contribution of
O(N2). In the irreducible decomposition of the direct product of these two irreps, the irrep with
the lowest CAB eigenvalue is either (1, 1) or (1, 0), both of which have an energy contribution of
O(1). Thus, we can again conclude that the ground state energy has to be negative.
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entire Hilbert space, we arrive at the irreps labeling the ground state 3:

λ
(A)
1 =λ

(B)
1 =

N

2
+

⌈
1

2

(
N

3 + 2ctg(θ)

)⌋
,

λ
(A)
2 =λ

(B)
2 =

N

2
−

⌈
1

2

(
N

3 + 2ctg(θ)

)⌋
,

λ
(AB)
1 =3

⌈
1

2

(
N

3 + 2ctg(θ)

)⌋
− N

2
,

λ
(AB)
2 =3

⌈
1

2

(
N

3 + 2ctg(θ)

)⌋
− N

2
,

(6.21)

where dxc denotes the closest integer value of x.
In the region π − arctan 2 < θ < 3π/4, the polynomial E(vA, xA, 1, xB) has no

local minimum inside the domain of its variables, therefore, the minimum has to be
on the border of the domain. In fact there are two minima occupying two different
extremal points of the domain, they are located at (vA, xA, vB, xB) = (1, 1, 1, 0)

and (vA, xA, vB, xB) = (1, 0, 1, 1). The most peculiar quality of the ground states
associated with these minima is that unlike all previously discussed ground states,
they break the bipartite symmetry of the CBE Hamiltonian. This also explains
why these ground states come as a pair, when the A and B subsystems are swapped
the two minima are transformed into each other. After taking into account the
discrete nature of our variables and rounding the location of the minima appro-
priately, then extracting λ(AB)

1 and λ(AB)
2 from Eq. (6.15), we arrive at the two sets

of SU(3) irreps labeling the ground state. The first one is (λ
(A)
1 , λ

(A)
2 ) = (N, 0),

(λ
(B)
1 , λ

(B)
2 ) = (dN/2e, bN/2c), (λ

(AB)
1 , λ

(AB)
2 ) = (dN/2e, N mod 2), and the second

one is obtained from the former by swapping the A and B subsystems.

6.4.5 Special parameter values

For generic values of the parameter θ, the ground state subspace of the CBE
Hamiltonian (6.4) belongs to a fixed set of quantum numbers, i.e., irrep labels
(λ(A), λ(B), λ(AB)). However, at the borders of the different phases, the ground state
subspace becomes more degenerate incorporating states with different irrep labels,
or in other words, multiple sets of quantum numbers become degenerate in energy.
For example, at the borders of the phases at least two sets of labels correspond to

3For simplicity, we gave here the result for the case when N is even. For the case when N is
odd, the ground state labels are given by almost the same equations, only the floor function has
to be used instead of rounding the terms to the nearest integer in Eq. (6.21), furthermore one
has to add the constant 1/2 to λ(A)

1 and λ(B)
1 , −1/2 to λ(A)

2 and λ(B)
2 , and 3/2 to λ(AB)

2 .
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the ground state energy, but further degeneracies are also possible depending on
the form the energy takes at the given parameter. If this happens we have to keep
in mind that when determining the ground state energies, we have neglected the
parts of the Casimir operators eigenvalue, Eq. (3.58), that are only linear in N . So
far this has been acceptable because we were only interested in the thermodynamic
limit, and the other terms scale with O(N2). However, at the values of θ where the
quantum numbers describing the ground state subspace become degenerate, there
is a possibility that the linear terms break the degeneracy. We should also note that
at the parameter values θ = 0, π/2, π, 3π/2 either the λ(AB) or the λ(A) and λ(B)

ceases being a relevant quantum number which could also lead to degeneracies;
two of these values (θ = π/2, π) are also phase boundaries, but the other two
should be considered separately. In this subsection, we check each of these special
parameter values.

Let us start with the two special points that are not at a phase boundary, i.e.,
θ = 0 and θ = 3π/2. At θ = 0, the irreps λ(A) and λ(B) labeling the ground state
are the same as those inside the singlet phase, listed in Table 6.1. However, since
at this point the CBE Hamiltonian is governed solely by the interaction within
the A and B subsystems, λ(AB) stops being a relevant quantum number and the
ground state subspace extends to the entire λ(A)⊗ λ(B) subspace. In practice, this
means that there is no additional degeneracy when N mod 3 = 0, but in the other
two cases the ground state subspace is slightly enlarged. The situation at θ = 3π/2

is in some sense the dual to the previous case, as the CBE Hamiltonian takes the
form H = −CAB, and the only relevant label is λ(AB). However, since the irrep
λ(AB) = (2N, 0) is compatible only with the irreps λ(A) = λ(B) = (N, 0) on the
subsystems, there is no additional degeneracy of the ground state.

The parameter value θ = π/2 is at the boundary of the singlet and the partially
magnetized phases. Here, the CBE Hamiltonian takes the form H = CAB, thus,
λ(A) and λ(B) are not relevant labels of the energy eigenstates. The irrep λ(AB)

corresponding to the ground state is the one appearing in Table 6.1, and the
ground state is extended to the entire λ(AB) subspace. Compared to the case at
θ = 0, the degeneracy here is a lot more extensive.

At the boundary point of the ferromagnetic and Néel-type antiferromagnetic
phase, θ = π, the CBE Hamiltonian takes the form H = −(CA +CB). Here, since
only λ(A) and λ(B) are relevant labels, the ground state subspace is enlarged to the
entire (N, 0)⊗ (N, 0) subspace.

At the point θ = 2π − arctan(1/2), where the singlet and the ferromagnetic
phases meet, the expression of the energy in the fourth quarter, shown in Eq. (6.16)
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takes the form:

E =

√
5

30
N2
[
(vA − vB)2 + 3(vAxA − vBxB)2

]
. (6.22)

At this point, the ground state subspace encompasses all irreducible subspaces for
which the two subsystems are symmetric to exchange and the energy contribution
of CAB is maximized. In other words, (λ

(A)
1 , λ

(A)
2 ) = (λ

(B)
1 , λ

(B)
2 ) = (λ1, λ2) and

(λ
(AB)
1 , λ

(AB)
2 ) = (2λ1, 2λ2). In this situation however, we must take into account

the previously omitted parts of the energy that are linear in N , since these might
break the degeneracy. By checking the energy contributions of these linear terms
one can make two important conclusions. First, the value of the parameter θ where
the shift between the two types of ground state occurs receives a correction for
finite values of N , θ = 2π− arctan((1 + 3/N)/(2 + 3/N)). Second, the degeneracy
is broken, and the ground state subspace consists only of the two types of ground
states neighboring the critical point: the singlet subspace and the symmetric sub-
space.

The Néel-type antiferromagnetic and the bipartite symmetry breaking phases
border at θ = 3π/4, here the CBE Hamiltonian is proportional to CAB−CA−CB.
At this point, the J1 coupling constant of the interactions within the subsys-
tems vanishes, and the connection layout of the spins becomes bipartite in the
strong sense. The subspace where the ground state energy, Eq. (6.19), is min-
imal is larger than the span of the ground state subspaces of the two adjacent
phases. It encompasses all subspaces with labels of the form (λ

(A)
1 , λ

(A)
2 ) = (N, 0),

(λ
(B)
1 , λ

(B)
2 ) = (N/2(1 + x), N/2(1 − x)) (λ

(AB)
1 , λ

(AB)
2 ) = (N/2(1 + x), Nx) with

x ∈ [0, 1], and those one gets form the former set by swapping the A and B sub-
systems. The energy contribution of the O(N) parts of the Casimir operators is
constant in the entire ground state subspace, therefore this degeneracy remains. A
peculiarity one should take note of here is that the SU(3) singlet subspace has no
intersection with this ground state subspace, which demonstrates how Marshall’s
theorem doesn’t apply to antiferromagnetic bipartite SU(3) systems in general.

The border of the bipartite symmetry breaking and the partially magnetized
phases is at θ = π−arctan 2. At this point, according to the part of the energy that
scales quadratically with N , the ground state subspace is the span of a number of
irreducible subspaces which break the bipartite symmetry. The labels for these take
the form (λ

(A)
1 , λ

(A)
2 ) = (N/2(1+x), N/2(1−x)), (λ

(B)
1 , λ

(B)
2 ) = (N(1−x/2), Nx/2)

and (λ
(AB)
1 , λ

(AB)
2 ) = (N/2(1/2 + |1/2− x|), N/2(1/2− |1/2− x|)), with x ∈ [0, 1].

However, the energy contribution of the linear terms breaks this degeneracy and,
away from the thermodynamic limit, adjusts the critical parameter value where
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the ground state phases change by a correction of magnitude O(1/N). The new
value is θ = π − arctan(2(N + 2)/(N + 6)) and the ground state subspace is the
span of the ground state subspaces of the two adjacent phases.

6.4.6 Energy gaps

From a many-body point of view, it is important to know whether the different
quantum phases of our model are gapped or gapless in the thermodynamic limit.
As a consequence of the infinite range interaction, the eigenvalues of the CBE
Hamiltonian, Eq. (6.4), are not extensive quantities. In order to make the energy
extensive and meaningfully define a gap, we normalize the Hamiltonian by a factor
of 1/N , which is a usual procedure in models on complete graphs [141].

Let us now investigate the energy gaps taking this normalization factor into
account. In the singlet phase, corresponding to the region − arctan((1+3/N)/(2+

3/N)) ≤ θ ≤ π/2, the Casimir eigenvalues of both the ground state subspace, and
the states with the second lowest energy, are constant in N ; (Apart from the mod 3
oscillations.) therefore, the normalized CBE Hamiltonian in this phase is gapless.

The three different phases in the parameter region π − arctan(2(N + 2)/(N +

6)) ≤ θ ≤ 2π − arctan((1 + 3/N)/(2 + 3/N)) have the unifying feature that
the Casimir eigenvalues of the ground state subspace and the second lowest energy
states (which we can obtain from the ground state by a small constant modification
of the appropriate quantum numbers) are of order O(N2), and their difference is of
order O(N). Taking the normalization into account, we obtain that these phases
are gapped.

Finally, in the parameter region π/2 ≤ θ ≤ π− arctan(2(N + 2)/(N + 6)), the
quantum numbers describing the ground state change many times. The behavior
of the gap in this phase is shown in Fig. 6.4. According to Eq. (6.21), there is a
ground state level crossing at each θ where the number N/(6 + 4ctg(θ)) is half-
integer. The state with the second lowest energy is always given by rounding the
number N/(6 + 4ctg(θ)) in Eq. (6.21) to the next closest integer. The density of
these level crossings increases linearly with N . Additionally, the local maximums
of the gap between the level crossings are enveloped by a smooth function which
gives us an upper bound for the value of the gap ∆:

∆ ≤ 1

N
(4 cos(θ) + 6 sin(θ)) . (6.23)

Therefore, the continuous phase is gapless in the thermodynamic limit.
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Figure 6.4: The normalized energy gap ∆ in the parameter region
π/2 ≤ θ ≤ π − arctan(2) for different system sizes.

6.5 Summary and outlook

Studying spin systems on complete graphs has a long history in many-body physics.
Such models have been considered in the past mainly as infinite-dimensional mean-
field versions of their finite-dimensional lattice counter-parts, examples include
the Curie-Weiss-model [141] and the Sherrington-Kirkpatrick version of spin-glass
models [102]. With the advent of cold atomic systems, long-range interactions,
including complete-graph interactions could also be realized in the lab [46]. In this
chapter, we have considered a slight modification of this approach by studying a
quantum spin model on a bipartite complete graph, which could be regarded as
a mean-field approach that captures also the effects that stems from the biparti-
tion of a lattice. Moreover, such a bipartite model might also be realized using
experimental techniques with ultracold atoms and cavity electrodynamics.

We have identified five quantum phases of this model, as shown in Fig. 6.3.
There are two gapless phases, the antiferromagnetic singlet phase and the partially
magnetized critical phase; and three gapped phases, the ferromagnetic phase, the
Néel-type of antiferromagnetic phase with ferromagnetically aligned subsystems,
and a bipartite-symmetry-breaking phase. Concerning this last phase, it is inter-
esting to note, that already such a simple bipartite long-range model provides a
phase that is absent in the literature on short-ranged bipartite models. In this
phase, although the two subsystems transform under the same representation of
SU(3), the ground state of this phase restricted to the subsystems belongs to
different representations. Our results for the partially magnetized, and bipartite
symmetry breaking phases only apply in the thermodynamic limit, however, the
rest is also relevant for finite system sizes.
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There are a number of ways how one can extend the present study. A straight-
forward modification would be to consider subsystems with different sizes, in par-
ticular, one could study the limiting case of a central spin (or spin-star) model,
where one subsystem is simply a single spin-1 particle. The topology of the cou-
plings could also be changed more drastically, for example by extending the bi-
partite system discussed here into a multipartite mean-field model by considering
k subsystems with collective spin-spin interactions within and across the subsys-
tems. Furthermore, one could also relax the complete connectivity, and study
similar models with decaying long-range interactions. Symmetric collective spin
states have been studied, due to their experimental feasibility, also from a quantum
metrology point of view [135, 142], it would be interesting to study also bipartite
models especially in the light of the experiment reported in [143]. A further direc-
tion would be to investigate not only static properties, but time-evolutions, e.g.,
different quench protocols. Such quench studies would also be of great interest if
one would be able to experimentally realize such collective models, as discussed
earlier, and then observe the quench dynamics in the lab.
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Chapter 7

The shareability of Werner and
isotropic states

7.1 Introduction

In this chapter, we undertake the problem of shareability for Werner and isotropic
states, as it was outlined in Chapter 4. Our goal is to obtain the lowest param-
eter value, αnL,nR

, that corresponds to an nL-nR shareable Werner state in the
parametrization Eq. (4.12), and the highest parameter value, βnL,nR

, that corre-
sponds to an nL-nR shareable isotropic state in the parametrization Eq. (4.19).
The results we present are an extension of the partial results of Johnson and Vi-
ola, who in their work [78], identified these parameter values for the case of 1-n
shareability as,

α1,n = −d− 1

n
, β1,n = 1 +

d− 1

n
. (7.1)

We solve the general shareability problem for both families of states.
The reason why this topic is connected to the rest of the thesis is the bipartite

permutation symmetry inherent to the structure of the shareability problem. For
a valid sharing state, all bipartite reduced states between the two subsystems
must be identical. The mixture of this bipartite permutation invariance, and
the global unitary invariance of Werner states crates a structure of symmetries
that generalizes that of the spin system we investigated in Chapter 6 to arbitrary
dimensions. Indeed, as it will turn out, in order to obtain the shareability of
Werner states, we need to solve an eigenproblem of a linear operator very similar
to the CBE Hamiltonian in Eq. (6.4); thus we can apply the set of tools that we
used in Chapter 6, generalized to higher dimensions. Our method can be adapted
also for isotropic states with minor modifications.

This chapter is structured as follows: In Section 7.2, we map the shareability
problem into an eigenproblem of a linear operator that we express with various
representations of the quadratic Casimir operator of SU(d). In Section 7.3, we give
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a solution to the combinatorial problem of finding the smallest (w.r.t. dominance
order) Young diagram in the Littlewood-Richardson product of two arbitrary di-
agrams. This is the generalization of the problem that we solved in Section 6.3.3
for arbitrary dimensions, and it allows us to take the same approach for solving
the eigenproblem that we used for the CBE Hamiltonian. Finally, in Sections 7.4
and 7.5, we give our solution of the shareability problem for Werner and isotropic
states respectively.

7.2 Mapping the problem of shareability into an

eigenproblem

As the first step, we show that the problem of finding the most entangled, nL-nR

shareable Werner or isotropic state is equivalent to finding extremal eigenvalues
of certain linear operators; for Werner states, we retrace the calculation in [78].
If a sharing state, ρ̂W(α), for the Werner state ρW(α) exists, there must also
be a sharing state that is symmetric to both global unitary transformations and
bipartite permutations from SnL

× SnR
. As a matter of fact, the twirled state,

∑
π∈SnL×SnR

∫
U(d)

dU(U †)
⊗(nL+nR)

D
(SnL+nR

)
nL+nR

(π−1)ρ̂W(α)D
(SnL+nR

)
nL+nR

(π)U⊗(nL+nR),

(7.2)
shares the sameWerner state as ρ̂W(α). Conversely, all states with such symmetries
share some Werner state. We construct sharing states with these symmetries by
using the flip operator that has a distinguished role in our parametrization of
Werner states. Consider the operator,

HW =
1

nLnR

∑
i∈L,j∈R

Fij. (7.3)

Since Fij is invariant to U ⊗U transformations and HW has bipartite permutation
symmetry, the eigenprojectors of HW nL-nR share Werner states. Moreover, for
any state ρ̂W(α) that nL-nR shares the Werner state ρW(α),

Tr
(
ρ̂W(α)HW

)
= α. (7.4)

Consequently, the smallest eigenvalue of HW must be the parameter of the most
entangled nL-nR shareable Werner state, αnL,nR

. Indeed, the existence of an nL-nR

sharing state for some α < min Spect(HW) would make Eq. (7.4) lead to a contra-
diction.
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We can construct an operator analogous to HW also for isotropic states. In this
case, the entanglement of ρI(β) increases with the parameter β, and the partial
transpose of the flip operator serves the same function as the flip operator does
for Werner states. By the same argument we used for Werner states, the largest
eigenvalue of

H I =
1

nLnR

∑
i∈L,j∈R

F tR
ij , (7.5)

is the parameter of the most entangled nL-nR shareable isotropic state βnL,nR
.

In order to apply a representation theoretic treatment similar to what we used
in chapters 5 and 6 to the problem, we must express HW and H I in terms of
Casimir operators. As an SU(d) invariant two-site operator, we can express Fij
with the two-site quadratic Casimir operator,

Fij =
1

2
C
SU(d)
ij +

(
2

d
− d
)

11. (7.6)

In addition to this, we use the relationship between the two-site and N-site repre-
sentations of the Casimir,

C
SU(d)
N =

∑
i<j

C
SU(d)
ij −N(N − 2)

(
d− 1

d

)
11, (7.7)

to express HW with the Casimir represented on the left (L), right (R) and entire
composite Hilbert space (LR),

HW =
1

2nLnR

(
C
SU(d)
LR − CSU(d)

L − CSU(d)
R

)
+

11

d
. (7.8)

In the isotropic case, the partial transposition in F tR
ij translates to one of the

generators being transposed compared to Eq (7.6).

H I =
1

nLnR

∑
i∈L

∑
j∈R

Eαβ
i Eαβ

j +
1

d
11. (7.9)

Since the generators of SU(d) are antihermitian1, we can relate these transposed
generators to the complex conjugate, i.e dual of the defining representation: The
generators of the dual representation are {−(Et)

αβ}
d

α,β=1. We deal with theEαβ
i Eαβ

j

1As a matter of fact, the generators we defined in Eq. (3.54) are not antihermitian. This
is because we use the generators of the det 1 subgroup of GL(d) in place of the genuine, an-
tihermitian SU(d) generators. However, the Casimir operators expressed using the generators
−(Et)

αβ , can only differ from the ones expressed with the antihermitian generators by a constant
multiplication factor.
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term in Eq. (7.9) by introducing the quadratic Casimir operator C̃LR in the repre-

sentation (D
SU(d)
(1) )

⊗nL ⊗ (D
SU(d)

(1) )
⊗nR

:

C̃LR =

(∑
k∈L

Eαβ
k −

∑
l∈R

Eβα

)(∑
k∈L

Eβα
k −

∑
l∈R

Eαβ
l

)
=

−2
∑
k∈L

∑
l∈R

Eαβ
k Eαβ

l + CL + CR.

(7.10)

This way, we are able to re-express H I with SU(d) Casimir operators,

H I =
1

2nLnR

(
C

SU(d)
L + C

(SU(d))
R − C̃SU(d)

LR

)
+

11

d
. (7.11)

Thus, we were able to convert the problem of shareability into the ground state
problem of “Hamiltonians” that are eerily similar to the Hamiltonian of the bi-
partite spin system that we investigated in Chapter 6. In fact, for d = 3 and
nL = nR = n, HW is equivalent to the CBE Hamiltonian at the parameter
θ = 3π/4, which belongs to one of the phase boundaries of the model. By substitut-
ing the ground state energy, we can immediately tell that for d = 3, αn,n = −1/n.

7.3 The minimum product diagram

We will search for the optimal eigenvalues of HW and H I using the same approach
as we did with the CBE Hamiltonian of Chapter 6; i.e., we first optimize the con-
tribution of the CSU(d)

LR and C̃SU(d)
LR terms constrained to fixed CSU(d)

L and CSU(d)
R are

eigenspaces. In order to be able to do this, we first have to find a general solution
to a problem we already solved in the case of d = 3 in Section 6.3.3: Identifying the
diagram in the irrep decomposition of the tensor product of two arbitrary SU(d)

irreps that is the minimum w.r.t. dominance order. The solution we present in
this section is based on the works of T. Y. Lam [144] and O. Azenhas [145].

7.3.1 Conjugate and difference partitions

First, we must introduce some new concepts related to partitions. The row lengths
of a skew diagram do not, in general, describe an integer partition. We call the
“partitionification” of a skew diagram a difference partition: The difference parti-
tion, λ− µ, of the skew diagram λ/µ is the integer partition created by arranging
the numbers λi − µi in decreasing order, i.e,

λ− µ = sort{λi − µi}di=1. (7.12)
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The conjugate, λ∗, of the Young diagram λ, is the transposition of λ as a
diagram. Described with the row lengths, this translates to

λ∗i = #{λj : λj ≥ i}. (7.13)

For skew diagrams, conjugation is defined with (λ/µ)∗ = λ∗/µ∗, which coincides
with visual transposition.

Conjugating two dominance ordered partitions reverses their order, i.e.,

λD µ⇔ µ∗ D λ∗. (7.14)

This is in accordance with the visual aid, that one can imagine λ as tall and skinny
while µ as short and fat; we leave the proper reasoning to the reader.

We define the vertical strips, vi(λ/µ), of the skew diagram λ/µ analogously
to the horizontal strips introduced in Proposition 9: vi(λ/µ) is the skew diagram
composed of the i-th cell in each row of λ/µ counted from right to left. While for
the length of the strips, we have |hi(λ/µ)| = |vi(λ∗/µ∗)|, the strips hi(λ/µ) and
vi(λ

∗/µ∗) are, in general, not conjugates of each other.
Using conjugation and strip sequences, we have a visual method for determining

a difference partition from the corresponding skew diagram without resorting to
the explicit sorting of the rows:

(λ− µ)∗i = #{(λ− µ)j : (λ− µ)j ≥ i} =

#{(λ/µ)j : (λ/µ)j ≥ i} = |vi(λ/µ)|, (7.15)

i.e, in order to obtain λ− µ, one simply has to “straighten” the i-th vertical strips
of λ/µ into the i-th column, as in the following example where we label the boxes
of vi with i,

λ/µ =

2 1
1

3 2 1
1

, λ− µ =

1 2 3
1 2
1
1

. (7.16)

Applying the same method to the conjugate diagrams, we get (λ∗ − µ∗)∗i = |vi(λ∗/µ∗)| =
|hi(λ/µ)|. We must emphasize that in general, (λ∗ − µ∗)∗ 6= (λ − µ) due to the
shuffling of rows in the definition of the difference partition. As a matter of fact,
we can say more than this about the relation of the two partitions:

Proposition 17.
(λ− µ) E (λ∗ − µ∗)∗. (7.17)
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Proof. We show that we can transform (λ − µ) into (λ∗ − µ∗)∗ by only moving
boxes upwards or sideways. First, we sort the rows of the skew diagram λ/µ by
their lengths in decreasing order, without changing the horizontal position of any
of the boxes. We call this intermediary diagram (λ/µ)

′
. One can get to (λ − µ)

from (λ/µ)
′
by only moving boxes to the left. Since transforming λ/µ into (λ/µ)

′

does not change the height of any column, the lengths of the horizontal strip
sequences are also invariant to the transformation. In order to transform (λ/µ)

′

into (λ∗ − µ∗)∗ by moving boxes only upwards or sideways, move the boxes of
hi((λ/µ)

′
) to the i-th row, e.g.,

λ/µ = , (λ/µ)
′
=

1 1 1
2 1
3

2

, (λ∗ − µ∗)∗ =
1 1 1 1
2 2
3

. (7.18)

7.3.2 The extremal contents of Littlewood-Richardson tab-

leaux

To find the minimum product diagram, one must first look at the problem from a
different angle, by fixing a different pair of diagrams in the Littlewood-Richardson
product. For a given skew shape λ/µ, we define LR(λ, µ) as the set of all partitions
ν, for which a Littlewood-Richardson skew tableau of shape λ/µ and content ν
exists; i.e, λ is an irreducible constituent of µ⊗ν. We can make a statement about
the maximal element of LR(λ, µ).

Proposition 18. For all ν ∈ LR(λ, µ),

ν E (λ∗ − µ∗)∗. (7.19)

Proof. Since the numbers in the columns of a Littlewood-Richardson skew tableau,
read from top to bottom, are strictly increasing, all instances of the number i must
be inside the first i horizontal strips of λ/ν; therefore for all 1 ≤ i ≤ d we have,

i∑
j=1

(λ∗ − µ∗)∗j ≥
i∑

j=1

νi. (7.20)
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Let us take a look at the conjugate of Proposition 18. If a Littlewood-Richardson
skew tableau with shape λ∗/µ∗ and content ν∗ exists, then ν∗E(λ− µ)∗ and there-
fore (λ − µ) E ν. The heart of our argument for obtaining the minimum element
of LR(λ, µ), is Theorem 6 of [145].

Theorem 4. There exists a bijection between the set of Littlewood-Richardson
skew tableaux of shape λ/µ, content ν, and those of shape λ∗/µ∗, content ν∗.

As a consequence of this theorem, for every ν ∈ LR(λ, µ),

λ− µE ν E (λ∗ − µ∗)∗. (7.21)

To finish the argument about the extremal elements of LR(λ, µ), we have to
show two examples of Littlewood-Richardson skew tableaux with shape λ/µ and
contents (λ∗ − µ∗)∗ and λ− µ.

For the first case, consider the tableau obtained by filling the i-th horizontal
strip of λ/µ with the symbol i. This is the single Littlewood-Richardson tableau
with shape λ/µ and content (λ∗ − µ∗)∗, as this is the only way one can place
all instances of the symbol i within the first i horizontal strips while keeping the
columns strictly increasing.

For the second case, the required content can be achieved by filling the i-th
vertical strip of λ/µ with the increasing sequence 1, 2, . . . |vi(λ/µ)|. Some concrete
examples for the two types of fillings are,

1 1
1 2

1 2 3
2

and

1 1
2 2

1 3 3
4

. (7.22)

7.3.3 The dual symmetry of the SU(d) fusion rules

We obtain the minimum diagram with non-zero multiplicity in the productDSU(d)
µ ⊗

D
SU(d)
ν from the minimum of LR(λ, µ), by making use of the dual symmetry of the

fusion rules of SU(d).
Contrarily to conjugating diagrams, taking the duals leaves dominance order

unchanged. If λ, µ `d n and λD µ then,

n−
d∑

i=l+1

µi =
l∑

i=1

µi ≤
l∑

i=1

λi = n−
d∑

i=l+1

λi. (7.23)

Assuming that we take the M-dual of λ and µ for the same M, so as to make sure
that dominance order is well defined between the results, this proves our statement.
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The coefficient mµ,ν
λ of the SU(d) fusion rules in Eq. (3.41) has a symmetry for

exchanging λ with ν, and taking the dual of both partitions. This is evident if we
express mµ,ν

λ with the inner product of characters,

mµ,ν
λ = 〈χµχν , χλ〉 =

∫
duχµ(u)χν(u)χ∗λ(u)

=

∫
duχµ(u)χλ(u)χν(u)∗ = mµ,λ

ν .

(7.24)

We can use this symmetry to derive the minimum product diagram from the
minimum of LR(λ, µ) described in Eq. (7.21),

λ− µ = min{ν : mµ,ν
λ > 0} = min{ν : mµ,λ

ν > 0}. (7.25)

As the dual does not influence dominance order, we can relabel the indices which
yields,

min{λ : mµ,ν
λ } = (ν − µ). (7.26)

At this step, we must make sure that the difference partition ν − µ is well de-
fined, by choosing the dual diagram to be an appropriate M-dual with M ≥
max {µi + νri }

d
i=1. This makes no difference in terms of SU(d) representations.

Substituting the definitions of the dual and difference partitions gives us a more
intuitive picture of the minimum diagram,

(ν − µ) = sort{(νd−i+1 + µi)}di=1 := sort{(νri + µi)}di=1, (7.27)

Essentially, we obtain (ν − µ) by attaching ν upside down to µ and sorting the
rows of the result.

7.4 The shareability of Werner states

In the following, we use the knowledge of the minimum product diagram, Eq. (7.26),
to derive the optimal eigenvalues of HW and H I, and thus obtain the sets of nL-nR

shareable Werner and isotropic states. We start our discussion with the former.
Being aware of the minimum diagram significantly reduces the number of vari-

ables we have to deal with, as we search for the smallest eigenvalue of the operator
HW from Eq. (7.8). Substituting Eq. (7.27) into the eigenvalue of Eq. (7.8) gives
us the objective function, EW, of our constrained minimization problem,
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EW(µ, ν) =
1

2nLnR

[
c((ν − µ))− c(µ)− c(ν)

]
+

1

d
=

1

nLnR

d∑
i=1

(
µ̃iν̃

r
i + (d− i)

[
sort({µ̃j + ν̃rj }

d

j=1
)
i
− (µ̃i + ν̃i)

])
+

1

d
,

(7.28)

Where according to the definition of the Casimir operator eigenvalues in Eq. (3.57),
µ̃i = µi − nL/d and ν̃i = νi − nR/d. Since both µ̃ and ν̃ sum up to 0, we can drop
all the terms that are proportional to dµ̃i and dν̃i. The constant terms introduced
by .̃ extinguish each other in the remaining terms of EW that are linear in µ̃ and
ν̃. Moreover, we have,

d∑
i=1

µ̃iν̃
r
i =

d∑
i=1

µiν
r
i −

nLnR

d
, (7.29)

and therefore we can drop the .̃ and the 1/d term completely. In summary, EW

simplifies to,

EW(µ, ν) =
1

nLnR

d∑
i=1

[
µiν

r
i − i(sort({µj + νrj }

d

j=1
)
i
− (µi + νi))

]
. (7.30)

It is possible to chose the diagrams µ and ν in such a way that there are no
overlapping rows between µ and νr, and thus the contribution of the first term in
Eq. (7.30) is 0. Since this is the only quadratic term, it is reasonable to expect
that the smallest eigenvalue of H(W ) corresponds to a pair of non-overlapping dia-
grams. Restricting ourselves to such pairs, makes it easier to obtain the diagrams
that minimize the remaining terms, as in this case the only coupling between the
diagrams µ and ν is given by sort({µj + νrj }

d

j=1
) = sort(µ ∪ ν). In the following,

we will show that among the pairs of diagrams that minimize EW, there has to be
at least one with certain special, non-overlapping shapes.

Proposition 19.

min
µ`dnL,ν`dnR

EW(µ, ν) = EW(µ∗(dL), ν∗(dR)) (7.31)
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for at least one of the diagram pairs,

µ∗(dL) =

(⌈
nL

dL

⌉nL mod dL

,

⌊
nL

dL

⌋dL−nL mod dL
)
,

ν∗(dR) =

(⌈
nR

dR

⌉nR mod dR

,

⌊
nR

dR

⌋dR−nR mod dR
)
,

(7.32)

where dL, dR are positive integers such that dL + dR = d.

Proof. We will create a path of diagram pairs starting from any µ `d nL and
ν `d nR, that terminates in one of the pairs described by Eq (7.32), along which
the value of EW is weakly decreasing.

We denote the number of overlapping rows between µ and νr by dLR, and the
numbers of non-overlapping rows of µ and νr by dL and dR respectively. Therefore,
the number of rows of µ is dL + dLR ≤ d and that of ν is dR + dLR ≤ d, where
dL +dR +dLR = d and µiνri 6= 0 iff dL +1 ≤ i ≤ dL +dLR, see Figure 7.1. Moreover,
we denote the number of boxes in the non-overlapping parts by n′L =

∑dL
i=1 µi and

n′R =
∑dR

i=1 νi. We build the path from two different types of steps. In the first
one, we transform the non-overlapping parts of the two diagrams into a certain
standard form. In the second one, we take a pair of diagrams for which the non-
overlapping parts are in the standard form, and move boxes from the overlapping
into the non-overlapping parts.

Consider the transformation that consists of moving a single box downward
within the non-overlapping part of µ, in a way that results in a valid integer
partition. I.e., we transform µ into µ′, where µ′i = µi − 1, µ′j = µj + 1 for some
1 ≤ i < j ≤ dL and all other rows of µ stay unchanged, see Figure 7.1. An
important detail to take note of here, is that we can always choose the order of
rows of sort({µj + νrj }

d

j=1
) in a way to make it invariant to the transformation. If

there is ambiguity in the order, i.e., {µj + νrj }
d

j=1
has multiple elements equal to

µi or µj, we choose µi to be the bottommost, and µj to be the topmost of them.
Let us compute the change in EW after transforming µ to µ′. Since the overlap-

ping part stays unchanged, the quadratic term of Eq. (7.30) has no contribution.
The contribution of the remaining terms depends on the distance between the two
changed rows in µ, and in sort({µj + νrj }

d

j=1
),

EW(µ′, ν)− EW(µ, ν) =
1

nLnR

[j − i−(
first(µj, sort({µj + νrj }

d

j=1
))− last(µi, sort({µj + νrj }

d

j=1
))
)]
≤ 0, (7.33)
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Figure 7.1: An example for a transformation that decreases the
non-overlapping part of µ in dominance order. The distance be-
tween the two affected rows in sort({µj + νrj }

d

j=1
) is always larger

than or equal to that in µ, as the sorting can shuffle in additional
rows between the ones present in µ. These are indicated with a

darker color.

where first(x, y) and last(x, y) denote the first and last positions of x in the se-
quence y. The distance between the last occurrence of µi and the first occurrence
of µj in sort({µj + νrj }

d

j=1
) must be at least j−i, since µi+1, µi+2, . . . , µj−1 all lie be-

tween the two elements. Additionally, since sort({µj + νrj }
d

j=1
) = sort({µrj + νj}dj=1

),
performing the analog of this transformation on ν weakly decreases EW as well.

Repeating the transformation just described on both µ and ν, creates sequences
of diagrams that are strictly decreasing in dominance order. Continuing until there
is no legal way left to move boxes downwards within the non-overlapping parts of
µ and ν, transforms these parts into the minimum elements of {λ `dL n′L} and
{λ `dR n′R} respectively, i.e., the end results of the repeated transformations are,

µ′′ =

(⌈
n′L
dL

⌉n′L mod dL

,

⌊
n′L
dL

⌋dL−n′L mod dL

, µdL+1, µdL+2, . . . µd

)
and

ν ′′ =

(⌈
n′R
dR

⌉n′R mod dR

,

⌊
n′R
dR

⌋dR−n′R mod dR

, νdR+1, νdR+2, . . . , νd

)
.

(7.34)

In this way, we are able to transform any pair of diagrams into this standard form
without increasing EW.

We define a second type of transformation that acts on pairs of diagrams, µ, ν
of the form described in Eq. (7.34); we further assume that dLR > 0. Consider the
transformation that takes a single box from the bottommost overlapping row of µ,
and attaches it to the non-overlapping part in the way that makes the resulting
diagram the smallest w.r.t. dominance order. I.e., we transform µ to µ′ where
µ′dL+dLR

= µdL+dLR
− 1, µ′n′L mod dL+1 = µn′L mod dL+1 + 1, and all other rows stay

unchanged, see Figure 7.2.
Now let us express the change in EW prompted by this transformation. The
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contributions of the terms of Eq. (7.30) proportional to
∑

i µiν
r
i and

∑
i iµi are al-

ways negative, what remains is the term that depends on the diagram sort({µj + νrj }
d

j=1
).

This diagram is composed of four rectangular portions that contain only rows of
lengths dn′L/dLe, bn′L/dLc, dn′R/dRe and bn′R/dRc, which correspond to the non-
overlapping parts of µ and νr. Above, between, and below these rectangular parts,
the sort shuffles in the dLR overlapping rows of µ+ νr in some unknown order, as
shown in the example in Figure 7.2.

Figure 7.2: A transformation of a pair of diagrams of the standard
form described by Eq. (7.34), that moves a box form the bottom
row of µ into the non-overlapping part. In the diagram µ, dLR − 1
overlapping rows are between the original and new positions of the
box, while in sort({µj + νrj }

d

j=1
), these overlapping rows are not

necessarily between the two positions.

When our transformation moves the box downwards in sort({µj + νrj }
d

j=1
), the

contribution of every term in EW(µ′, ν) − EW(µ, ν) is non-positive; therefore, we
need only be concerned with the cases in which the box moves upwards. Without
loss of generality, we can assume that n′L/dL ≤ n′R/dR, thus, we move the box
into the top row of the bottommost rectangular section of sort({µj + νrj }

d

j=1
). In

the case of the contrary, we simply apply the transformation to ν instead of µ.
This means, that the only arrangements in which the box moves upwards, are the
ones where it is taken from one of those rows that are shuffled below all the non-
overlapping rows. Let us assume that we take the box from the x-th row below
the bottommost non-overlapping row, i.e., it moves x + dL − n′L mod dL − 1 rows
upward in sort({µj + νrj }

d

j=1
), and dLR + dL − n′L mod dL − 1 upwards in µ. This

way, the change in EW is,

EW(µ′, ν)− EW(µ, ν) = −νdR+1 + x− dLR ≤ 0. (7.35)

Starting from any pair of diagrams, by first rearranging the non-overlapping
rows into the standard form in Eq. (7.34), then moving the boxes from the over-
lapping rows into the non-overlapping ones with the method just described, we
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eventually reach one of the diagrams in the proposition without increasing the
value of EW.

As a consequence of Proposition 19, in order to obtain the shareability, it is
enough to compare the values of EW for the d − 1 diagram pairs in Eq. (7.32).
Substituting the pair µ∗(dL), ν∗(dR) into Eq. (7.30), we get

EW(µ∗(dL), ν∗(dR)) =−min
{
dL
nL
, dR
nR

}
if

⌊
nL

dL

⌋
6=
⌊
nR

dR

⌋
− 1
nLnR

[
dLdR

⌊
nL

dL

⌋
− (nL mod dL)(nR mod dR)

]
if

⌊
nL

dL

⌋
=
⌊
nR

dR

⌋ .

(7.36)

In the first case of Eq. (7.36), one can obtain sort({µj + νrj }
d

j=1
) by simply

attaching the shorter one of the diagrams µ∗(dL) and ν∗(dR) below the longer one.
Contrarily, in the second case, the rows of the diagrams µ∗(dL) and ν∗(dR) are
reshuffled in sort({µj + νrj }

d

j=1
), which results in the peculiar expression containing

modulos.
The modulos in the second case of Eq. (7.36) make it difficult to tell exactly

which bipartition of d minimizes EW(µ∗(dL), ν∗(d − dL)), but we can reduce the
number of candidates a little bit further. If we temporarily disregard the second
case of Eq. (7.36), the expression is minimized by choosing dL in a way that
dL/nL and (d − dL)/nR are the closest to each other, i.e., dL = bdnL/(nL + nR)e
in the case this value is within the bounds 1 and d − 1, and dL = 1 or dL =

d − 1 otherwise. When we also take the second case of Eq. (7.36) into account,
considering the magnitude of the term containing modulos, we get that the value
of dL that minimizes EW(µ∗(dL), ν∗(1 − dL)) differs from the one just described
by at most 1. In other words, the parameter corresponding to the most entangled
nL-nR shareable Werner states is,

αnL,nR
= min

dL∈A
EW(µ∗(dL), ν∗(d− dL)), where

A =

{⌊
nL

nL + nR

⌉
− 1,

⌊
nL

nL + nR

⌉
,

⌊
nL

nL + nR

⌉
+ 1

}
∩ [1, d− 1] .

(7.37)

We visualize this result in Figure 7.3.

7.5 The shareability of isotropic states

In order to derive the shareability of isotropic states, one has to find the Young dia-
grams µ, ν and λ corresponding the eigenvalues of CL, CR and C̃LR from Eq. (7.11),
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that maximize the eigenvalue ofH I. These diagrams have to fulfill µ `d nL, ν `d nR

and λ must appear in the irrep decomposition of DSU(d)
µ ⊗DSU(d)

ν . Taking the dual
of one of the diagrams in the product is the principal difference compared to the
shareability problem of Werner states; and it makes the solution significantly easier
to derive for isotropic states. The reason for this, is that the dual almost com-
pletely erases the competition between the terms of H I, that are proportional to
C̃LR and CL + CR.

The most striking example is the case of nL = nR = n. As the eigenvalues of the
Casimir operators follow the dominance order of the corresponding partitions, the
contribution of CL+CR to the eigenvalue ofH I is maximized by the same single-line
diagram on both sides, µ = ν = (n, 0d−1). Furthermore, as Proposition 9 states,
the Littlewood-Richardson product of a diagram and its dual always contains the
SU(d) singlet diagram that minimizes the contribution of the C̃LR term of HI .
Substituting this result into the eigenvalue of HI immediately gives us the maximal
value for the parameter β of n-n shareable isotropic states,

βn,n = 1 +
d− 1

n
. (7.38)

In the case of nL 6= nR, we use the result for the minimum product diagram.
According to Eq. (7.26), the diagram that is the minimum in dominance order
among the diagrams that appears in the decomposition of DSU(d)

µ ⊗DSU(d)
ν is λ =

ν ′ − µ. Here, ν ′ denotes a diagram that differs from ν only by columns of height d,
the number of these columns is set by choosing the M-dual appearing in Eq. (7.26)
in a way to make ν ′ − µ well defined. When substituting these diagrams into the
eigenvalues of the Casimir operators in H I, we do not have to worry about the
details related to the dual, as the Casimir operators themselves are invariant to it.
Thus, instead of ν ′ − µ we use the formal integer partition λ = ν − µ, that we get
by extending the definition of the difference partition to allow negative numbers.

After substituting into the eigenvalue of H I, and repeating the same simplifica-
tions that we described after Eq. (7.28), the objective function for our maximiza-
tion problem takes the form,

EI(µ, ν) =
1

2nLnR

(c(µ) + c(ν)− c(ν − µ)) +
1

d
=

1

nLnR

d∑
i=1

[µiνi + i((ν − µ)i − νi − µi)] +
1 + d

nR

.

(7.39)

Observe the interaction of
∑

i i(. . . .), and the sorting of elements implicit in µ−ν.
The index i = 1 is paired with the largest number in {νj − µj}dj=1, i = 2 with
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the second largest, and so on. The value of the expression is the same as if,
instead of sorting, we chose the permutation σ ∈ Sd, that permutes the elements
of {νj − µj}dj=1 in such a way that the value of the sum is minimal. As a result,
we can rewrite EI as follows,

EI(µ, ν) = min
σ∈Sd

EI
σ(µ, ν)

EI
σ(µ, ν) =

1

nLnR

d∑
i=1

[
µiνi + i(νσ(i) − µσ(i) − νi − µi)

]
+

1 + d

nR

.
(7.40)

In the following, we temporarily extend the domains of µ and ν from integer
partitions into real partitions; we denote the resulting convex sets with L = µ `Rd
nL and R = ν `Rd nR. After this modification, it is clear from Eq. (7.40), that as a
pointwise minimum of a set of bilinear functions, EI is biconcave. I.e., if one fixes
the value of either µ or ν, EI is concave as a function of the remaining variable.
We will use this property to show that the maximum of EI is always in an extreme
point of L ×R.

Let us start by expressing the elements of Ext(L×R). It is easiest to do this
by using Dynkin labels, since in this scheme, the only constraint the labels have
to obey is the fixed system size. Thus, with Dynkin labels, the extreme points
of L and R are proportional to unit vectors, and we can index the elements of
Ext(L ×R) with a pair of integers,

Ext(L ×R) =
{

(µ(k), ν(l))
}d
k,l=1

, where

µ(k) = [0k−1, nL/k, 0
d−k], ν(l) = [0l−1, nR/l, 0

d−l].
(7.41)

Thinking in diagrams, µ(k) corresponds to the rectangle with height k and width
nL/k.

As EI
σ is bilinear, and L × R is a product of two convex sets, EI

σ must be
maximal in at least one point in Ext(L×R). However, it does not yet follow that
the same is true for EI. It may be the case, that for any permutation σ, none of
the extreme points where EI

σ is maximal are located within the polytope in which
EI
σ(µ, ν) = EI(µ, ν). We can get a sufficient condition for the maximum being at

a particular extreme point by showing the contrary.
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Lemma 5. If there exists an extreme point, (µ(i), ν(j)) ∈ Ext(L × R), and a
permutation, σ ∈ Sd, for which

EI
σ(µ(i), ν(j)) ≤ EI

σ′(µ
(i), ν(j)) ∀σ′ ∈ Sd and

EI
σ(µ(i), ν(j)) ≥ EI

σ(µ(k), ν(l)) ∀k, l = 1, 2, . . . d, then

max
µ∈L,ν∈R

EI(µ, ν) = EI(µ(i), ν(j)).

(7.42)

Proof. If the two inequalities of Eq. (7.42) hold then,

EI(µ(i), ν(j)) = EI
σ(µ(i), ν(j)) ≥ EI

σ(µ, ν) ≥ EI(µ, ν) ∀(µ, ν) ∈ L ×R. (7.43)

Proposition 20.
max

µ∈L,ν∈R
EI(µ, ν) = EI(µ(1), ν(1)). (7.44)

Proof. We only have to find an appropriate permutation σ that fulfills the condi-
tions of Lemma 5 for i = j = 1. In order to decide whether these conditions hold,
it is enough to evaluate EI at the extreme points. Substituting Eq. (7.41) into
Eq. (7.40) we get,

EI
σ(µ(k), ν(l)) =

1

kl
min{k, l} − 1

knR

k∑
i=1

(σ−1(i) + i)+

1

lnL

l∑
i=1

(σ−1(i)− i) +
1 + d

nR

.

(7.45)

Without loss of generality, we can assume nR ≥ nL. In the case of the contrary,
the commutativity of the tensor product allows us to swap the two subsystems.
With this assumption, the first inequality of Eq. (7.42) is fulfilled iff σ(1) = 1. An
example for such a permutation, that fulfills the second inequality is the identity,
Id = (1, 2, . . . , d) since,

EI
Id(µ(k), ν(l)) =

1

kl
min{k, l}+

d− k
nR

. (7.46)

The extreme point (µ(1), ν(1)) corresponds to a pair of single-line diagrams,
which is in line with the previous result for n-n shareability. Since this extreme
point is always an integer partition, the maximal value of the parameter β for
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nL-nR shareable isotropic states immediately follows from Proposition 20.

βnL,nR
= EI(µ(1), ν(1)) = 1 +

d− 1

max{nL, nR}
. (7.47)

An equivalent way to frame this result, is that the isotropic state with parameter β
is nL-nR shareable for all nL, nR ≤ (d− 1)/(β − 1). This means, that contrarily to
the case of Werner states, every isotropic state has a unique, maximum shareability,
nL = nR = b(d− 1)/(β − 1)c w.r.t. the partial order of nL, nR pairs.

7.6 Summary and Outlook

In this chapter, we have determined the sets nL-nR shareable Werner and isotropic
states for arbitrary values of nL and nR and local dimension d.

In our derivation, we used the set of symmetries inherent to the shareability
problem to translate it into finding the extremal eigenvalues of certain linear op-
erators that exhibit the same symmetries. The eigenvalues of these operators can
be labeled by triples of Young diagram that must be compatible with one another
w.r.t. the Littlewood-Richardson product of diagrams. We relied on the works of
Azenhas [145] and Lam [144] to determine the minimum, in dominance order, dia-
gram in the product of two arbitrary diagrams, which reduced the set of variables
enough for the problem to be exactly solvable.

We obtained the result, that the range of nL-nR shareable Werner states has a
non-trivial tradeoff between nL and nR, that depends of the divisibilities of the two
values. In contrast, the conjugate unitary symmetry of isotropic states makes the
Hamiltonian of the corresponding ground state problem unfrustrated; the result
of this is, that the range of nL-nR shareable isotropic states has no tradeoff for
increasing the smaller value of the nL, nR pair.

By reason of the similarity between the linear operator we had to minimize
as part of the derivation of our Werner state result, and the CBE Hamiltonian of
Chapter 6, we can also interpret βnL,nR

as the ground state energy of a spin Hamil-
tonian. In the system corresponding to this Hamiltonian, d-level spins interact by
exchange interaction, and the structure of connectivity is described by a bipartite
complete graph with bipartite subsets of sizes nL and nR. In the context of the
CBE Hamiltonian, this translates to the case in which there is no coupling within
the subsystems.

A straightforward direction one could develop this topic further, is the inves-
tigation of multipartite Werner state shareabilities. In this scenario, an n-partite
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Werner state is shared between n composite Hilbert spaces in a permutation sym-
metric way. In a way analogous to Section 7.2, it is possible to map the multipartite
shareability problem into an eigenproblem of a linear operator composed of vari-
ous tensor product representations of the quadratic SU(d) Casimir operator. The
knowledge of these multipartite shareabilities could serve as a way to characterize
the entanglement of multipartite Werner states.
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Figure 7.3: The extreme parameters of nL-nR shareable Werner
states up to 20-20 shareability in the case of d = 5. The colors
temperature of the squares represents the value of αnL,nR . In par-
ticular, squares with black color indicate that all Werner states are
extendible for the corresponding nL and nR. These values are a
consequence of the fact that the Werner state ρW(−1) is a partial
trace of the completely antisymmetric pure state on H⊗d, thus, all
Werner states must be extendible for nL+nR ≤ d. The various lines
denote the border between the regions of (nL, nR)-pairs for which
the Werner state with the corresponding α parameter is and is not

extendible.
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Chapter 8

Összefoglaló (Summary in
Hungarian)

A disszertációban három különböző kérdéskört vizsgáltam. A közös motívum ami
ezek mindegyikében megjelenik, a permutáció és SU(d) szimmetriák összjátéka. Az
első két projektben erősen szimmetrikus mágneses rendszerek alapállapoti problé-
máit vizsgáltam, a harmadikban pedig megoldottam a kvantumos megoszthatóság
problémáját két különböző kétrészű kvantumállapot család esetére.

Az 5. fejezetben egy három-szintű, SU(2)-szimmetrikus kéttest kölcsönhatással
ellátott, permutáció-szimmetrikus spinrendszer alapállapotait tanulmányoztam.
Ez a Heisenberg-modell egyik lehetséges három-szintű általánosítása. A kéttest
Hilbert-tér SU(2) transzformációk alatt felbomlik a 0, 1 és 2-es spinek által cím-
kézett irreduciblis alterekre. Ennek megfelelően, a legáltalánosabb, előírt szim-
metriákkal rendelkező kölcsönhatás előállítható az identitás, és két másik SU(2)

invariáns, lineárisan független kéttest operátor lineáris kombinációjaként. Ezt a
két operátort az SU(2) és SU(3) csoportok kvadratikus Casimir-operátorainak vá-
lasztom a kétrészecske reprezentációban. Az így eredményül kapott kölcsönhatás
normálás után egyedül a θ szabad paramétert tartalmazza.

Hij = sin(θ)C
SU(3)
ij + cos(θ)C

SU(2)
ij . (8.1)

Ez a kétrészecske kölcsönhatás régóta ismert a szilárdtest fizikában bilineáris-
bikvadratikus (BLBQ) kölcsönhatás néven. A hagyományos alakjában Casimir-
operátorok helyett két másik SU(2)-szimmetrikus operátorral fejezik ki,

Hij = cos(γ)SiSj + sin(γ)(SiSj)
2. (8.2)

A teljes permutáció szimmetria egy kéttest-kölcsönható spin modell esetében
azt jelenti, hogy a spinek kapcsolatát egy rács helyett a teljes gráf írja le. A teljes
gráfon értelmezett klasszikus spin modellek, például a Sherrington–Kirkpatrick [102],
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vagy a Curie–Weiss modell, fontos szerepet játszanak a statisztikus mechanikában.
Ennek az oka, hogy az ilyen permutáció-szimmetrikus modellek könnyen kezelhe-
tőek, ugyanakkor mégis jó becsléseket adnak a megfelelő kölcsönhatások tulaj-
donságaira magas-dimenziós rácsok esetén. Az átlagtér elméletként való haszno-
síthatóság mellett, az ultrahideg atomokkal végzett kísérletek lehetőséget adnak
a teljes gráfon értelmezett SU(d)-szimmetrikus modellek kísérleti megvalósítására
is, például abban a formában amit [46]-ben indítványoznak.

A modell teljes permutáció szimmetriájának következménye, hogy az egész
rendszert leíró Hamilton-operátorban a 8.1. egyenlet két Casimir-operátorátorának
N -részecskés ábrázolásai jelennek meg,

HBLBQ = sin(θ)C
SU(3)
N + cos(θ)C

SU(2)
N . (8.3)

Ennek a Hamilton-operátornak az alapállapotát az SU(2) és SU(3)-szimmetrikus
tagok közötti versengés határozza meg, a sajátérték problémája pedig megoldha-
tó tisztán csoportelméleti módszerekkel. Mivel a 8.3. egyenlet Casimir operátorai
kommutálnak, és a sajátaltereik az N -részecske Hilbert-tér SU(2) és SU(3) irredu-
cibilis alterei, HBLBQ sajátaltereit egy SU(2) és egy SU(3) irreducibilis ábrázolás-
ból (irrepből) álló párokkal tudjuk címkézni. A sajátérték probléma megoldásá-
nak kulcsa annak a meghatározása, hogy mik az egymással kompatibilis SU(2) és
SU(3) irrepek. Az SU(2) csoport 1-es spinű ábrázolásának képe egy részcsoportja
SU(3)-nak. Ebből kifolyólag, amikor megszorítjuk erre a részcsoportra, minden
SU(3) irrep felbomlik valamilyen SU(2) irrepek direkt összegére. Ezt a felbontást
az 5.9. egyenlet írja le formálisan; az egyenletben megjelenő, m(λ)

s multiplicítások
meghatározása, lásd az 5.23. egyenletet, egy fontos eredménye a dolgozatnak. A
kompatibilis, s, λ irrep párok az m(λ)

s ≥ 1 multiplicításoknak felelnek meg; a mul-
tiplicítások pontos értékeivel pedig HBLBQ sajátaltereinek dimenzióit is lehetséges
megadni.

AHBLBQ Hamilton-operátor spektrumának ismeretében feltérképeztem az alap-
állapot fázisait a θ szabad paraméter függvényében, lásd az 5.4 ábrát. A modell-
nek négy, különböző szimmetria szektorokhoz tartozó alapállapoti fázisa van: Két
SU(2) szinglet fázis, egy ferromágneses fázis, és egy részlegesen mágnesezett fázis.
A két SU(2) szinglet fázis egyike egyben SU(3) szinglet is, míg a másik része a
sokrészecske Hilbertert-tér teljesen permutáció-invariáns alterének. A részlegesen
mágnesezett fázist, a többivel ellentétben, nem lehet konkrét λ és s kvantumszá-
mokkal jellemezni, ezek ugyanis a közel folytonosan változnak θ függvényeként.
Ilyen módon, a termodinamikai limeszben, a θ paraméternek minden ehhez a fá-
zishoz tartozó értékénél egy „level crossing” történik, vagyis a fázis gap nélküli. A
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gap a részlegesen mágnesezett fázisban, véges rendszerméretek esetén, az 5.6. áb-
rán látható.

A 6. fejezetben vizsgált spinmodell az 5. fejezet témájának egy új variációja.
Az előző esethez hasonlóan, a Heisenberg-modell egy általánosítását vizsgálom egy
erősen permutáció-szimmetrikus felállításban. A különbség az, hogy a spinek most
egy SU(3)-szimmetrikus kicserélődési kölcsönhatással hatnak kölcsön; és ahelyett
hogy, a korábbi modellhez hasonlóan, megtörném az SU(3) szimmetriát, a per-
mutáció szimmetriát töröm meg részlegesen azzal, hogy a rendszert két, egyenlő
nagyságú alrendszerre bontom, és csupán ezeken belül követelek meg permutáció
szimmetriát. Ez azt jelenti, hogy a rendszert két, különböző csatolási állandójú
kicserélődési kölcsönhatás jellemzi. Egy a részrendszereken belül, egy pedig azok
között hat. Egy ilyen kétrészű struktúra bevezetése egy átlagtér modellbe érde-
kesebbé teszi a fázisstruktúrát, mivel relaxálja a teljes gráfban megjelenő extrém
frusztrációt, és megnyitja a lehetőséget a kétrészű kicserélődési szimmetria meg-
sértésére.

Hasonlóan a teljes gráfon értelmezett bilineáris-bikvadratikus modell esetéhez,
a permutáció szimmetria lehetővé teszi, hogy a teljes rendszer Hamilton-operátorát
Casimir-operátorok lineáris kombinációjaként fejezzük ki. Ebben az esetben SU(3)

kvadratikus Casimir-operátora jelenik meg, a teljes rendszeren (CSU(3)
AB ), és a rész-

rendszereken (CSU(3)
A , CSU(3)

B ) vett szorzatábrázolásokban, a normált Hamilton-
operátor pedig egy szabad paramétert tartalmaz,

HCBE = sin(θ)C
SU(3)
AB + cos(θ)

(
C

SU(3)
A + C

SU(3)
B

)
. (8.4)

A 8.4. egyenletben megjelenő Casimir-operátorok ismét lehetővé teszik az alap-
állapoti probléma egzakt megoldását ábrázoláselmélet segítségével. HCBE sajátér-
tékeit SU(3) irrepek hármasaival lehetséges címkézni. Ezek közül kettő az alrend-
szereknek felel meg, egy pedig a teljes rendszernek. Azt hogy három tetszőleges
irrep kompatibilis-e egymással az SU(3) csoport fúziós szabálya, az úgynevezett
Littlewood–Richardson szabály határozza meg. Ez egy Young-diagramokkal meg-
fogalmazott kombinatorikai algoritmus.

A Littlewood–Richardson algoritmus eredményének, Schlosser által meghatá-
rozott [66], zárt alakú kifejezésének segítségével megadom, hogy két adott, az al-
rendszerekhez tartozó, SU(3) irrep esetén a 8.4. egyenlet Hamilton-operátorá-nak
C

SU(3)
AB -vel arányos tagja milyen irrep esetén adja a legalacsonyabb járulékot, lásd

a 6.9. és a 6.12. egyenleteket. Ez lecsökkenti az alapállapoti probléma változói-
nak számát két, egymástól független SU(2) irrepre. Ez után az egyszerűsítés után
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az alapállapoti probléma analitikusan kezelhetővé válik. A θ kontroll paraméter
függvényében a modellnek öt alapállapoti fázisa van (lásd a 6.3. ábrát): Egy ferro-
mágneses fázis, egy Néel-típusú antiferromágneses fázis ferromágnesesen rendezett
alrendszerekkel, egy SU(3) szinglet fázis, egy gap-nélküli részlegesen mágnesezett
fázis amiben az alapállapotot leíró kvantumszámok folytonosan változnak a θ pa-
raméter függvényeként, valamint egy kétreszű kicserélési szimmetriát sértő fázis,
amiben az alrendszereken különböző SU(3) reprezentációk jelennek meg. Az utóbbi
kapcsán figyelemre méltó, hogy már ebben az egyszerű, hosszútávú kölcsönhatást
tartalmazó modellben megjelenik egy ilyen szimmetriasértő fázis amire, az eddigi
ismereteink alapján, nincs példa rövidtávú kölcsönhatások esetén.

A 7. fejezet a kvantumos megoszthatósági problémával foglalkozik, ennek lé-
nyege a következő: Aliz és Bob kapnak egy-egy, nA illetve nB méretű, kompo-
zit kvantumrendszert, amik ugyanannak a Hilbert-térnek a másolataiból állnak.
Lehetséges-e, hogy a kettőjük összetett rendszere olyan kvantumállapotban legyen,
ami mellett minden kétrészű alrendszer, aminek egyik része Alizé a másik pedig
Bobé, ugyanabban a ρ kvantumállapotban van? Ha egy adott ρ kétrészű kvan-
tumállapotra ez lehetséges, akkor ρ-t nA-nB megoszthatónak nevezzük. Egyrészt a
tiszta, összefonódott állapotok nyilvánvalóan nem, vagyis a terminológiánk szerint
csupán 1-1 megoszthatóak. Másrészt pedig, a szeparábilis állapotok pontosan meg-
egyeznek a tetszőlegesen, vagyis ∞-∞ megosztható állapotokkal. Általában véve
azt lehet elmondani, hogy egy állapot minél jobban összefonódott, annál kevésbé
megosztható.

Abból a célból, hogy a problémát némileg megközelíthetőbbé tegyem, leszű-
kítem a lehetséges ρ kvantumállapotok halmazát két U(d)-szimmetrikus állapot-
családra: A Werner-állapotokra, amik invariánsak a globális unitér transzformá-
ciókra, valamint az izotropikus állapotokra, amik invariánsak az U ⊗ U∗ alakú
transzformációkra, ahol U ∈ U(d), és ∗ a komplex konjugálást jelöli. Mindkét
állapotcsalád fontos szerepet játszik a kvantum-összefonódás megértésében, külö-
nösképp a Werner-állapotok, amiket eredetileg ugyanabban a cikkben definiáltak
mint magát az összefonódást [68]. A megoszthatósági probléma inherens kétrészű
permutációs szimmetriájának, valamint az általam vizsgált állapotok unitér szim-
metriájának köszönhetően, lehetséges a problémát ábrázoláselmélet segítségével
megoldani. Korábban ugyanebből a megközelítésből indult ki Johnson és Vio-
la [78], akiknek sikerült szükséges és elégséges feltételeket megadniuk a Werner- és
izotropikus állapotok 1-nB megoszthatóságára. A munkám során ezt az eredményt
kiterjesztem nA és nB tetszőleges értékeire.

Megmutattam, hogy az nA-nB megosztható Werner- és izotropikus állapotok
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meghatározása ekvivalens bizonyos, a 8.4. egyenlet Hamilton-operátorához haso-
nó, lineáris operátorok extremális sajátértékeinek megtalálásával. A korábbi, két-
részű spinmodell alapállapoti problémájához hasonlóan, ezeknek a lineáris ope-
rátoroknak a sajátértékeit is Young-diagramok hármasaival lehetséges címkézni.
A diagramok kompatibilitáshoz szükséges feltételeket pedig ismét a Littlewood–
Richardson szabály adja. Az extremális sajátértékek megadásához a kétrészű spin-
rendszer alapállapoti problémájának megoldásához használt módszert terjesztem
ki tetszőleges dimenzióra. Ehhez különösen fontosnak bizonyultak Lam [144] és
Azenhas [145] eredményei amik meghatározzák a Littlewood–Richardson algorit-
musban megjelenő Young-diagramok parciális rendezését.

A Werner- és az izotropikus állapotokat is lehetséges egyetlen paraméterrel
leírni, lásd a 4.12. és a 4.18. egyenleteket. Adott nL és nR esetén az nL-nR meg-
osztható állapotok a megfelelő standard paraméterekben egy-egy intervallumnak
felelnek meg amiknek csak az egyik végpontja nem-triviális. Werner-állapotokra
ez az intervallum [φnLnR

, 1], izotropikus állapotokra pedig [0, ψnLnR
]. Az eredmé-

nyem a φnLnR
(a 7.36. illetve 7.37. egyenletek) illetve ψnLbnR

(a 7.47. e-gyenlet)
extremális pontok meghatározása.
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Thesis points

1. Through representation theoretic considerations, I exactly diagonalized the
Hamiltonian of the spin-1 bilinear-biquadratic model on the complete graph
(Eq. (5.3)), and analyzed its ground state as a function of the external con-
trol parameter θ. I have found that the model has four distinct ground state
phases belonging to different symmetry sectors. There is a ferromagnetic
phase, a gapless partially magnetized phase in which the quantum numbers
describing the ground state change gradually with θ, a completely permuta-
tion symmetric SU(2) singlet phase, and a phase in which the ground state
is both an SU(2) and SU(3) singlet. I have a published paper in Journal of
Physics A about this topic [1].

2. I exactly diagonalized the collective bipartite exchange Hamiltonian (Eq.
(6.4)) in the thermodynamic limit, and studied its ground state as a func-
tion of the external control parameter θ. The model has five different ground
state phases: A ferromagnetic phase, a Néel-type antiferromagnetic phase
with ferromagnetically aligned bipartite subsystems, an SU(3) singlet phase,
a gapless partially magnetized phase in which the ground state changes grad-
ually with the control parameter, and a bipartite symmetry breaking phase in
which two subsystems are characterized by different SU(3) representations.
I have published a paper about this topic in Physical Review B [2].

3. I have determined necessary and sufficient conditions for the nA-nB share-
ability of SU(d) Werner and isotropic states, for arbitrary values of nA, nB,
and d. As of the writing of this thesis, I have a preprint available about this
topic [3].
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Appendix A

A faithful representation generates
the representation ring

This appendix is dedicated to Proposition 7 of the main text. The proposition
is essentially a corollary of a Galois correspondence between the representation
subrings, and normal, closed subgroups of a compact group. In order to expand
on this topic, we have to define the ring of representations, or group characters,
and some related concepts. This appendix is entirely optional, we do not refer
to these definitions elsewhere in the thesis. First, we recount the proposition in
question:

Proposition 21. For a compact group G, and a faithful, unitary, finite dimen-
sional representation D, every G-irrep appears in the irreducible decomposition of
D⊗N ⊗D⊗M for some N,M ∈ N.

The irreps of a compact group are in a one-to-one correspondence with their
characters; making use of this, we define the representation ring in terms of char-
acters. We denote the character of the unitary, finite dimensional representation
Dµ as χDµ . Characters have the properties,

χDµ⊕Dν = χDµ + χDν , χDµ = χ∗Dµ and

χDµ⊗Dν = χDµχDν .
(A.1)

Let IG denote the set of characters of irreps, or irreducible characters. A product
of characters decomposes into a sum of irreducible characters according to the
fusion rules of G:

If Dµ ⊗Dν =
⊕
λ

mλ
µ,νDλ then χDµχDν =

∑
χDλ∈IG

mλ
µ,νχDλ . (A.2)

We define the representation ring R(G), as the set of the pointwise Z-linear com-
binations of characters of G, a.k.a. generalized characters, equipped with complex
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conjugation, and the multiplication given by the Z-linear extension of the fusion
rules, Eq. (A.2). In this way, R(G) carries the same information as the fusion
rules.
R(G) has a natural partial order: For any χµ, χν ∈ R(G), χµ ≺ χν iff χν − χµ

is a character of some representation. This makes the set of characters of G the
positive cone, R(G)+, of R(G) w.r.t. this partial order.

The irreducible characters, IG are the minimal elements in R(G)+, and form a
basis of R(G). A subring R ⊆ R(G), is a representation subring if it is spanned
by a set of irreducible characters.

Proposition 21 is a straightforward consequence of the following Galois corre-
spondence. This result is originally from [146], but the form we use here is given
in [147].

Theorem 6. Representation subrings R ⊆ R(G) and closed normal subgroups
H ⊆ G are in a one-one correspondence,

HR = {g ∈ G | g ∈ ker(χ),∀χ ∈ R+}, (A.3)

R+
H = {χ ∈ R(G)+ | g ∈ ker(χ), ∀g ∈ H}. (A.4)

Where in the context of characters, the kernel ker(χ) = χ−1(χ(Id)). Con-
sider the representation subring with positive cone R+

ker(χ) for some character
χ ∈ R(G)+. This is the smallest representation subring that contains χ. In-
deed, assume that the representation subring corresponding to R+

ker(χ) contains an
other representation subring. According to Theorem 6, it must then correspond
to a closed normal subgroup H such that ker(χ) ⊂ H ⊆ G. In this case, χ /∈ R+

H

since ker(χ) does not contain H.
Now assume that χ is the character of a faithful representation, i.e., ker(χ) =

{e}. This means R+
ker(χ) = R(G)+, thus the representation subring generated by

ker(χ) is the entire representation ring of G. This proves Proposition 21, as by
definition, the representation subring generated by is spanned by the irreducible
characters that appear in the irrep decomposition of χn(χ∗)m for some n,m ∈ N.
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Appendix B

A quantum de Finetti bound for
shareability

In this appendix, we derive a bound on the trace norm distance between nL-nR

shareable and separable states, as outlined in Section 4.1, by applying the technique
used in finite quantum de Finetti theorems [53–56].

Proposition 22. Let ρ ∈ S(HL⊗HR), where dimHL = dimHR, be nL-nR share-
able. Then there exists a separable state, σ ∈ S(HL ⊗HR) such that

||ρ− σ||1 ≤ 2− 2nLnR

(d+ nL)(d+ nR)
. (B.1)

Proof. Let ρ̂ ∈ S(H∨nL
L ⊗ H∨nR

R ) be a left-right permutation symmetric sharing
state for ρ ∈ S(HL ⊗HR). We start by defining a measurement on H∨nL

L ⊗H∨nR
R

comprised of left-right permutation symmetric pure product states. First, we fix
a normalized element, |φ0〉, on our one-particle Hilbert spaces. The pure states
we measure in are of the form |φ(UL, UR)〉 = (UL|φ0〉)⊗nL ⊗ (UR|φ0〉)⊗nR , where
UL, UR ∈ U(d), and the PVM is constructed by looping over all unitaries UL and
UR. We must confirm that this really defines a PVM, and find an appropriate
normalizing constant. For this reason, consider the integral over the Haar measure
of U(d): ∫

dULdUR

(
UL|φ0〉〈φ0|U †L

)⊗nL

⊗
(
UR|φ0〉〈φ0|U †R

)⊗nR

=

1

a(nL, nR)
Π+(L)
nL
⊗ Π+(R)

nR
,

(B.2)

where Π
+(L)
nL and Π

+(R)
nR denote the projections to the symmetric subspaces H∨nL

L

and H∨nR
R . The equality follows from Schur’s lemma, and the fact that Π

+(L)
nL and

Π
+(R)
nR project to irreducible subspaces of DU(d)

nL and DU(d)
nR respectively. The con-

stant, a(nL, nR) can be determined by taking the trace of both sides of Eq. (B.2),
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a(nL, nR) = dim(H∨nL
L )dim(H∨nR

R ) =

(
d+ nL − 1

nL

)(
d+ nR − 1

nR

)
. (B.3)

We conclude that the measurements,

E(UL, UR) = a(nL, nR)
(
UL|φ0〉〈φ0|U †L

)⊗nL

⊗
(
UR|φ0〉〈φ0|U †R

)⊗nR

, (B.4)

really form a PVM on H∨nL
L ⊗H∨nR

R .
Next, we prepare the uncorrelated state, UL|φ0〉〈φ0|U †L ⊗ UR|φ0〉〈φ0|U †R with

probability Tr(ρ̂E(UL, UR)) for all unitaries UL and UR. This results in the sepa-
rable state:

σ = a(nL, nR)TrLR

∫
dULdUR

[(
UL|φ0〉〈φ0|U †L

)⊗nL+1

⊗
(
UR|φ0〉〈φ0|U †R

)⊗nR+1
]
·

ρ̂⊗ 11(L) ⊗ 11(R) =

a(nL, nR)

a(nL + 1, nR + 1)
TrLR

(
(Π

+(L)
nL+1 ⊗ Π

+(R)
nR+1)(ρ̂⊗ 11(L) ⊗ 11(R))

)
, (B.5)

where TrLR denotes the partial trace over the original nL left and nR right Hilbert
spaces.

We simplify Eq. (B.5), by making use of the permutation symmetry of ρ̂. The
projectors to the symmetric subspaces can be expressed with permutations in
the form Π+

nL
= 1

nL!

∑
π∈SnL

D
SnL
nL (π). Unfortunately, the projectors in Eq. (B.5)

decompose to SnL+1 and SnR+1 permutations, while ρ̂ is only invariant to SnL
and

SnR
permutations. This problem can be dealt with by using the fact that, for

every π ∈ SnL+1, there is a unique decomposition, DSnL+1

nL+1 (π) = D
SnL
nL (π′)Fi,nL+1,

where π′ ∈ SnL
, i ∈ [1, nL + 1] and Fi,nL+1 is the flip operator, that exchanges

the i-th and nL + 1-th elements of the tensor product. Accordingly, Π+
nL+1 =

1
nL+1!

∑
π∈SnL

∑nL+1
i=1 D

SnL
nL (π)Fi,nL+1, and σ becomes,

σ =
a(nL, nR)

a(nL + 1, nR + 1)

1

(nL + 1)(nR + 1)
·

TrLR

((
nL+1∑
i=1

F
(L)
i,nL+1

)
⊗

(
nR+1∑
j=1

F
(R)
j,l+1

)
(ρ̂⊗ 11(L) ⊗ 11(R))

)
. (B.6)

In order to evaluate the product of the flip operators with ρ̂, we have to separate
the sums to different cases. If i = nL +1 or j = nR +1, then the corresponding flip
operator is simply the identity. If either i 6= nL+1, j 6= nR+1, or both, we use that
TrLR

(
Fi,nL+1Fj,nR+1ρ̂⊗ 11(L) ⊗ 11(R)

)
= ρ, and TrLR

(
F

(L)
i,nL+1ρ̂⊗ 11⊗ 11

)
= TrRρ⊗11

(similarly for the F (R)
j,nR+1 case). Both of these identities can be confirmed simply,
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e.g., by expanding everything in the basis of matrix units. After separating the
cases and simplifying the coefficients, σ becomes:

σ =
1

(d+ nL)(d+ nR)
·(

d2
11(L) ⊗ 11(R)

d2
+ dnLTrRρ⊗

11(R)

d
+ dnR

11(L)

d
⊗ TrLρ+ nLnRρ

)
.

(B.7)

From here, the statement follows by applying the triangle inequality to ||ρ− σ||1.
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Appendix C

Expressing the BLBQ Hamiltonian
with Casimir operators

In this section, we show the equivalence of the interaction Hamiltonian,

H12 = sin(θ)C
SU(3)
2 + cos(θ)C

SU(2)
2 , (C.1)

with the traditional form of the bilinear-biquadratic Hamiltonian,

H12 = cos(γ)S1S2 + sin(γ)(S1S2)
2. (C.2)

Instead of the generators Eαβ defined in Eq. (3.54) of Section 3.8, we express the
two-particle Casimir operator CSU(2)

2 , in the more conventional form of with spin
operators Sα corresponding to the spin-1 representation of SU(2):

C
SU(2)
2 =

3∑
µ=1

[Sµ1S
µ
1 + Sµ2S

µ
2 + 2Sµ1S

µ
2 ] = 411 +

3∑
µ=1

2Sµ1S
µ
2 , (C.3)

Here, we take into account, that the one-site Casimir operators are proportional
to 11. The remaining task is expressing CSU(3)

2 with the “bilinear”, S1S2, and the
“biquadratic”, (S1S2)

2, spin terms.
The two-particle Hilbert space, C3 ⊗C3, decomposes into spin 0, 1 and 2 irre-

ducible subspaces under global SU(2) transformations. We denote the orthogonal
projections to these subspaces by Ps, s ∈ {0, 1, 2}. These projections fulfill,

11 = P0 + P1 + P2, and C
su(2)
2 = 2P1 + 6P2. (C.4)
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Furthermore, with the help of Eq. (C.3), we can express the bilinear and bi-
quadratic spin terms with the projections Ps as

3∑
µ=1

Sµ1S
µ
2 = −2P0 − P1 + P2 and

(
3∑

µ=1

Sµ1S
µ
2

)2

= 4P0 + P1 + P2. (C.5)

By inverting these relations, we obtain

P0 = −1

3
11 +

1

3

(
3∑

µ=1

Sµ1S
µ
2

)2

, (C.6a)

P1 = 11− 1

2

3∑
µ=1

Sµ1S
µ
2 −

1

2

(
3∑

µ=1

Sµ1S
µ
2

)2

, (C.6b)

P2 =
1

3
11 +

1

2

3∑
µ=1

Sµ1S
µ
2 +

1

6

(
3∑

µ=1

Sµ1S
µ
2

)2

. (C.6c)

Under global SU(3) transformations, the two-particle Hilbert space decomposes
into irreducible subspaces labeled by (2, 0) and (1, 1); which are respectively the
symmetric and antisymmetric subspaces of C3 ⊗ C3. Since SU(2) ⊂ SU(3), these
irreducible subspaces must decompose into direct sums of the SU(2) irreducible
subspaces. Indeed, according to Eq. (5.16), the symmetric subspace decomposes
as

P(2,0) = P0 + P2, which leaves, P(1,1) = P1. (C.7)

After taking into account the eigenvalues of CSU(3)
2 , that are given in Eq. (3.58),

we can express CSU(3)
2 with the bilinear and biquadratic spin terms:

C
SU(3)
2 =

20

3
P(2,0) +

8

3
P(1,1) =

20

3
P0 +

8

3
P1 +

20

3
P2 =

8

3
11 + 2

3∑
µ=1

Sµ1S
µ
2 + 2(

3∑
µ=1

Sµ1S
µ
2 )

2

.
(C.8)

This concludes the proof. According to the Eqs. (C.8) and (C.3), the conversion
between the angle parameters θ and γ used in Eqs. (C.1) and (C.2) is given by

1 + ctg(θ) = ctg(γ). (C.9)
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Appendix D

The minimum Young diagram in the
SU(3) tensor product

In this appendix, we prove Proposition 16, which we recount here:

Proposition 23. The minimum diagram with respect to dominance order in the
irrep decomposition of DSU(3)

λ(A) ⊗D
SU(3)

λ(B) , is the last diagram that the direct sum in
the closed formula, Eq. (3.53), for the irrep decomposition loops through. That is,
the diagram

λ(k2,1, k2,2, k1,1) =

(λ
(A)
1 + λ

(B)
1 − k2,1 − k2,2, λ

(A)
2 + λ

(B)
2 − k1,1 + k2,2, k2,1 + k1,1),

(D.1)

for which all three running indices take their maximum values:

k2,1 = u(1, 1) = min{µ1 − µ2, λ
(A)
2 }

k2,2 = u(1, 2)|u(1,1) = min{λ(A)
1 − λ(A)

2 , λ
(B)
1 − u(1, 1)},

k1,1 = u(2, 1)|u(1,1),u(1,2) = min{λ(A)
2 +u(1, 2)−u(1, 1), λ

(B)
2 }.

(D.2)

Proof. For every diagram in the product, labeled by the indices (k′2,1, k
′
2,2, k

′
1,1), we

construct a sequence of diagrams starting from our proposed minimum diagram,
and ending with λ(k′2,1, k

′
2,2, k

′
1,1), then show that every diagram in the sequence

dominates the previous one. The sequence in question is:

λ(u(1, 1), u(1, 2), u(2, 1)), λ(u(1, 1)−1, u(1, 2), u(2, 1)),

λ(u(1, 1)−2, u(1, 2), u(2, 1)), . . . , λ(k′2,1, u(1, 2), u(2, 1)),

λ(k′2,1, u(1, 2)−1, u(2, 1)), λ(k′2,1, u(1, 2)−2, u(2, 1)), . . . , λ(k′2,1, k
′
2,2, u(2, 1)),

λ(k′2,1, k
′
2,2, u(2, 1)−1), λ(k′2,1, k

′
2,2, u(2, 1)−2), . . . , λ(k′2,1, k

′
2,2, k

′
1,1).

(D.3)

Although, we used a shortened notation for the shake of convenience, it is implied
that the values of u(j, h) may depend on the values of the other running indices;
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e.g.: λ(k′2,1, k
′
2,2, u(2, 1)) should actually be λ(k′2,1, k

′
2,2, u(2, 1)|k′2,1,k′2,2). Since in

the sequence we change the indices kd−j,h in the order that they appear in the
nested direct sums of Eq. (3.53), all diagrams of the sequence correspond to a
valid product diagram. We also note that the same diagram may appear in the
sequence for multiple sets of the kd−j,h indices.

We divide the sequence in Eq. (D.3) into three subsequences, each of which
consists of elements that differ in only one of the kd−j,h indices. We show that each
subsequence is increasing in dominance order, starting with the most simple case
of the last one. For this, we need to show that λ(k2,1, k2,2, k1,1)Eλ(k2,1, k2,2, k1,1−1)

for all valid distributions of kd−j,h indices. Let us define

∆
(3)
j =

j∑
i=1

[λi(k2,1, k2,2, k1,1 − 1)− λi(k2,1, k2,2, k1,1)] . (D.4)

According to Definition 2, λ(k2,1, k2,2, k1,1) E λ(k2,1, k2,2, k1,1 − 1) iff ∆
(3)
j ≥ 0 for

j = 1, 2, 3. Since we have
∑3

i=1 λi(k2,1, k2,2, k1,1) = 2N for all diagrams in the
product, ∆3 = 0 in all cases. Moreover, simple substitution into Eq. (D.1) gives
us ∆1 = 0 and ∆2 = 1.

We continue with the second subsequence. Similarly to the last case, we need
to show that ∆

(2)
j ≥ 0 for j = 1, 2, 3 and all valid distributions of the kd−j,h indices,

where ∆
(2)
j is defined as:

∆
(2)
j =

j∑
i=1

[
λi(k2,1, k2,2 − 1, u(2, 1)|k2,1,k2,2−1)− λi(k2,1, k2,2, u(2, 1)|k2,1,k2,2)

]
.

(D.5)

Again, we have ∆
(2)
3 = 0, and substitution into Eq. (D.1) gives ∆

(2)
1 = 1. For ∆

(2)
2 ,

the min function in the definition of u(2, 1) gives us multiple cases:

∆2 = min(λ
(A)
2 + k2,2 − k2,1, λ(B)

2 )−min(λ
(A)
2 + k2,2 − k2,1 − 1) =0 if µ2 ≤ λ

(A)
2 + k2,2 − k2,1 − 1

1 if µ2 > λ
(A)
2 + k2,2 − k2,1 − 1

. (D.6)

For the first subsequence we define

∆
(1)
j =

j∑
i=1

[
λi(k2,1 − 1, u(1, 2)|k2,1−1, u(2, 1)|k2,1−1,u(1,2)|k2,1−1

) −

λi(k2,1, u(1, 2)|k2,1 , u(2, 1)|k2,1,u(1,2)|k2,1 )
]
, (D.7)
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and show that independently of the distribution of kd−j,h, ∆
(1)
j ≥ 0 for j = 1, 2, 3.

Similarly to the previous cases, ∆
(1)
3 = 0. Taking only the first row of λ into

account gives us,

∆
(1)
1 = min(λ

(A)
1 − λ(A)

2 , λ
(B)
1 − k2,1)−min(λ

(A)
1 − λ(A)

2 , λ
(B)
1 − k2,1 + 1) + 1 =1 if λ

(A)
1 − λ(A)

2 ≤ λ
(B)
1 − k2,1

0 if λ
(A)
1 − λ(A)

2 > λ
(B)
1 − k2,1

. (D.8)

The contributions of the second row contain min functions embedded into each
other, this gives us a multitude of cases in ∆

(1)
2 ,

∆
(1)
2 = min

(
λ
(A)
2 − k2,1 + min(λ

(A)
1 − λ(A)

2 , λ
(B)
1 − k2,1), λ

(B)
2

)
−

min
(
λ
(A)
2 − k2,1 + min(λ

(A)
1 − λ(A)

2 , λ
(B)
1 − k2,1 + 1) + 1, λ

(B)
2

)
+ 1 =

1 if λ
(A)
1 − λ(A)

2 ≤ λ
(B)
1 − k2,1 and λ

(B)
2 ≤ λ

(A)
1 − k2,1

0 if λ
(A)
1 − λ(A)

2 ≤ λ
(B)
1 − k2,1 and λ

(B)
2 > λ

(A)
1 − k2,1

1 if λ
(A)
1 − λ(A)

2 > λ
(B)
1 − k2,1 and λ

(B)
2 ≤ λ

(A)
2 + λ

(B)
1 − 2k2,1

0 if λ
(A)
1 − λ(A)

2 > λ
(B)
1 − k2,1 and λ

(B)
2 − 1 = λ

(A)
2 + λ

(B)
1 − 2k2,1

−1 if λ
(A)
1 − λ(A)

2 > λ
(B)
1 − k2,1 and λ

(B)
2 − 1 > λ

(A)
2 + λ

(B)
1 − 2k2,1

.

(D.9)

The last case of Eq. (D.9) poses a problem. If a λ(k2,1, k2,2, k1,1) product dia-
gram with a k2,1 index that satisfies the conditions of the last case exists, then the
first subsequence of Eq. (D.3) is not necessarily increasing. Let us take a further
look at these conditions. Since k2,1 ≥ 0 the first condition, λ(A)

1 −λ
(A)
2 > λ

(B)
1 −k2,1,

can possibly be satisfied depending on λ(A) and λ(B). We can still compare
the second condition, λ(B)

2 − 1 > λ
(A)
2 + λ

(B)
1 − 2k2,1, with the upper bound

k2,1 ≤ u(1, 1) = min(λ
(B)
1 − λ

(B)
2 , λ

(A)
2 ). This yields a necessary condition:

λ
(A)
2 + λ

(B)
1 − 2 min(λ

(B)
1 − λ

(B)
2 , λ

(A)
2 ) < λ

(B)
2 − 1 ⇐⇒

(λ
(B)
1 − λ

(B)
2 ≤ λ

(A)
2 and λ(B)

1 − λ
(B)
2 > λ

(A)
2 + 1) or

(λ
(B)
1 − λ

(B)
2 ≥ λ

(A)
2 and λ(B)

1 − λ
(B)
2 < λ

(A)
2 − 1),

(D.10)

which is a contradiction. Thus, we conclude that the sequence in Eq. (D.3) is
increasing in dominance order, and consequently, the product diagram described
by the indices in Eq. (D.2) is the minimum in the irrep decomposition of DSU(3)

λ(A) ⊗
D

SU(3)

λ(B) with respect to dominance order.
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