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Introduction 

Mental fatigue is an everyday feeling that usually results from prolonged cognitive activities 

requiring sustained attention and cognitive control. Given that mental fatigue (hereafter: 

fatigue) has a detrimental effect on a wide range of cognitive functions, for example, selective 

attention or working memory, it has been suggested that fatigue is one of the primary risk factors 

for accidents, injuries and medical errors. In line with this, fatigue has been estimated to be a 

risk factor in approximately 40% of road crashes, which is comparable that of alcohol 

intoxication (Fletcher, McCulloch, Baulk & Dawson, 2005). Among junior doctors, 42% of the 

1366 respondents reported fatigue-related clinical errors (Gander, Purnell, Garden & 

Woodward, 2007), indicating that the presence of fatigue has a substantial negative impact on 

medical professionals’ ability to provide high-quality patient care. In addition, a more recent 

longitudinal study involving almost 16,000 people showed that work-related fatigue caused by 

repeated exposure to high cognitive demands increases the risk of insomnia symptoms 

(Skarpsno, Nilsen, Sand, Hagen & Mork, 2020). 

It is thus clear that fatigue affects many aspects of life; however, in order to successfully 

prevent or at least predict its negative consequences, we need to understand the nature of this 

complex biopsychological phenomenon. Given that both the manifestation of fatigue and the 

underlying biological and psychological mechanisms highly vary between individuals and 

environmental conditions (Ackerman, 2011), the scientific investigation of fatigue requires a 

rather multidisciplinary approach. Consequently, the experiments presented in this paper 

involved the analysis of data obtained by cognitive psychological research methods as well as 

physiological measurements. In addition, we also aimed to utilize machine learning algorithms 

to detect fatigue and predict its severity based on biological signals and other parameters.  
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2. Aims 

2.1. The effects of mental fatigue on the preparation and execution of visually guided pointing 

movements during sustained attention 

Visually guided movements involve two distinct phases: a planning or preparatory phase that 

usually refers to the period between stimulus presentation and movement initiation, and an 

execution phase that refers to the interval from movement onset to the successful reach of the 

target (Elliott, Helsen & Chua, 2001; Woodworth, 1899). The main goal of the first study was 

to assess the effects of fatigue specific to the two phases of movements. Therefore, in three 

experiments, we used a mouse-pointing task with high demands on sustained attention to induce 

fatigue and investigate its effect on movement preparation and execution. Based on previous 

studies, we hypothesized that movement preparation will be sensitive to the detrimental effects 

of fatigue. On the other hand, regarding the movement execution phase, we expected 

participants to execute movements more impulsively (i.e. faster but more erroneously). In 

Experiment 1, the potential locations of the visual targets were variable and required more 

complex movements. In Experiment 2, the number of target locations were reduced and only 

horizontal movements were required to reach the target. In addition, in Experiment 3, auditory 

cues were used to rule out the potential effects of orientation deficits and decreased phasic 

alertness on movement preparation and execution. 

2.2. Time-on-Task-related changes in autonomic nervous system activity reflected by heart rate 

variability during prolonged task performance 

A large body of the literature has explored the association between fatigue and heart-rate 

variability (HRV), a measure of autonomic regulation of cardiac activity (e.g. Tran, 2009; 

Mizuno et al., 2011, 2014; Gergelyfi et al., 2015). Although these studies converge on the 

notion that HRV is a significant biomarker of fatigue, however, because HRV has many 

calculable components that have diverse sources (Billman, 2013), the interpretation of the 

results is inconsistent across studies. As a result, the exact interpretation of the fatigue-HRV 

relationship is still unclear. In addition, most studies lack the comparison of the fatiguing task 

with a non-fatiguing condition, however, such comparisons may shed light on which HRV 

components are sensitive or insensitive to fatigue. Therefore, in the second study, participants 

were assigned into two groups. One of the groups engaged in a fatiguing bimodal working 

memory task for 1.5 hours, while the other group viewed documentaries. Our primary aim was 
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to investigate which HRV components change with increasing time on the fatiguing working 

memory task, while remain unchanged during documentary viewing. 

2.3. The effects of fatigue on cross-modal interference in a selective attention task 

According to the Modality appropriateness hypothesis, the visual modality is more accurate in 

the spatial dimension, while the auditory modality is more accurate in the temporal dimension. 

Thus, when temporal processing is required to successfully perform a task, the auditory 

modality is preferable. In line with this, Lukas et al. (2014) found that performance on a bimodal 

temporal discrimination task was better when the target stimulus was an auditory signal 

compared to when the target was a visual signal. In addition, they found that the interference 

on the visual processing caused by auditory distractors was higher than the interference on 

auditory processing caused by visual distractors. In our third study, participants were asked to 

perform the same bimodal temporal task for 1.5 hours and we hypothesized that performance 

in the visual trials will decrease with increasing time-on-task, while the auditory modality will 

be robust against the effects of time-on-task. We also hypothesized that the interfering effect of 

auditory distractors on visual processing will increase over time. In addition, we aimed to find 

further empirical support for the HRV-related findings in Study 2.  

2.4. Predicting and detecting mental fatigue using machine-learning algorithms trained on HRV 

data 

Previous studies have shown that machine-learning algorithms trained on HRV data can 

effectively (i.e. with an accuracy of 70-80%) detect mental fatigue (Laurent et al., 2013; Huang 

et al., 2018). However, these algorithms were trained on relatively small datasets (n = 13 – 35) 

and for the induction of mental fatigue, only one specific type of cognitive task was used. 

Therefore, the external validity of these results is limited meaning that the performance of the 

algorithms cannot be generalized to the broader population. In order to overcome these 

methodological issues, we combined the datasets (n = 87) of three different fatigue experiments 

with various cognitive tasks and used machine-learning algorithms to detect the presence of 

fatigue based on HRV data.  In addition, we trained regression models as well to predict the 

level of subjective fatigue caused by prolonged task performance based on HRV data and other 

variables.  
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3. The effects of mental fatigue on the preparation and execution of visually guided 

pointing movements during sustained attention 

3.1. Experiment 1 

3.1.1 Methods 

Participants 

Thirty-one students from the University of Pécs took part in the first experiment as volunteers. 

Due to technical issues, the data of five participants were excluded. Thus, the final dataset 

consisted of 26 participants (18 female, aged between 18 and 26 with a mean of 19.77 (SD = 

1.58)). All of them reported to have normal or corrected-to-normal vision and none of them 

reported any health problems. Based on self-report, three of them were left-handed, however, 

they reported to prefer the right-hand use of the mouse. Prior to the experiment, we estimated 

the minimum required sample size by using Gpower 3.1. (Faul, Erdfelder, Land & Buchner, 

2007). Based on the effect sizes (ηp
2 = .27 – .30) reported in previous studies, the lowest sample 

size to achieve a statistical power of 90% with an alpha level of 5% was 18. 

Task and Stimuli 

The visually guided mouse-pointing task was coded and executed by using PsychoPy 3 (version 

3.1.5., Peirce, 2007, 2009). Stimuli were presented on a Tobii TX300 integrated monitor with 

a resolution of 1920 x 1080 pixels, refreshed at 60 Hz. Participants were seated 60 cm from the 

screen. We used a standard computer mouse positioned for right hand use. Standard Windows 

10 mouse sensitivity settings were applied. 

Figure 1. schematizes the sequence of a trial. During the whole course of the task, at the 

centre of the screen, a white fixation cross (25 x 25 pixels) was presented. The target stimulus 

was a white filled circle (20 pixels in diameter) presented at one of the 16 possible locations. 

These locations were arranged along two (invisible) concentric circles around the fixation cross. 

The diameters of the inner circle and the outer circle were 250 and 500 pixels, respectively. On 

each trial, participants were instructed to fixate and to keep the cursor on the fixation cross until 

the target stimulus appeared. If they initiated a mouse movement earlier, the fixation cross 

changed its colour to red and the target presentation was inhibited. The target was presented 

after a random interval ranging between 500 and 7000 ms drawn from a continuous uniform 

distribution. Participants were asked to move the cursor onto the target as quickly and as 

precisely as possible, while time and two-dimensional mouse coordinates were continuously 
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recorded. The trial was successful if the cursor entered the area of the target stimulus and stayed 

there for at least 100 ms. If these criteria were fulfilled, then the colour of the target turned to 

black indicating that the cursor now must be moved back to the fixation cross. Immediately 

after returning to the fixation cross, a 250 Hz tone was presented for 200 ms via standard 

loudspeakers and visual feedback about the time required to reach the target was provided for 

500 ms, located 50 pixels above the fixation cross. The next trial started after the feedback 

disappeared.  

 

Figure 1. Schematized layout of the target positions and the sequence of trials in Experiment 1 (A) and Experiment 

2 (B) 

Procedure 

Participants were asked to have an adequate sleep on the night prior to the experiment. In 

addition, they were asked to refrain from consuming alcohol and caffeinated beverages on the 

day of the experiment. Upon arrival to the laboratory, participants were informed about the 

general procedure of the experiment and written consent was obtained. Then, sleep duration 

was estimated by self-report (the mean sleep duration was 7.85h (SD = 1.39)). After that, the 

pointing task was explained to the participants and they performed 20 practice trials. The 

practice was followed by a standard 5-point eye-tracking calibration. A chin rest was used to 

ensure higher accuracy of recording eye movements.  Following the calibration, participants 

were asked to indicate their actual level of subjective fatigue on a 100 mm long visual analogue 

scale (VAS) presented on the centre of screen. “No fatigue at all” was presented on the left side 

of the scale, while “Very severe fatigue” was presented on the right side of the scale. After that, 
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the Time-on-Task phase (ToT-phase) started, which consisted of three blocks of 56 trials. Each 

block lasted approx. 5 minutes, thus the whole duration of the ToT-phase was approx. 15 

minutes. Trials were presented in a pseudorandom order. When the ToT-phase ended, the 

participants indicated again their actual experience with subjective fatigue on the VAS. After 

the experiment, the participants were briefed and asked whether they had difficulties at using 

the mouse and whether they experienced physical discomfort in their hands. None of them 

reported any difficulties or pain suggesting that task performance was not affected by physical 

factors. 

Analyses of performance measures 

In each trial, participants’ data files contained the time stamps and x, y coordinates of the cursor. 

Cursor positions were sampled at 60 Hz. All movement trajectories were aligned to the same 

initial coordinates ([0,0]; following Spivey & Grosjean, 2005). Euclidean distances travelled 

between consecutive cursor displacements and velocity for each movement trajectory were 

extracted. Trajectories of each participant were plotted, and then, visually inspected for unusual 

patterns (e.g. large amounts of up and down movements, unusual movements resulted from 

slips of the hand etc.). Only one such trajectory was identified and excluded from further 

analysis. 

Several temporal and spatial (or accuracy-related) mouse-movement metrics were 

calculated. To assess the movement preparatory phase, initiation time was analysed.  Initiation 

time was defined as the interval between the onset of target presentation and movement 

initiation (i.e. when the cursor left the fixation cross, thus had been moved by 3 mm). 

In order to analyse participants’ movement execution, we selected measures that 

characterize the temporal and spatial profiles of the movement trajectories. For the temporal 

profile, we calculated movement time (MT) and peak velocity (PV). MT was defined as the 

interval between movement initiation and target reach. PV was defined as the highest value of 

velocity during the movement. For the spatial profile, movement error (ME) was selected, 

which is one of the accuracy measures proposed by MacKenzie and colleagues (2001) and 

represents the average absolute deviation of the x-y coordinates from the task axis (i.e. the 

shortest path to the target). In addition, we analysed the ratio of MT and ME (henceforth MT / 

ME ratio) as an index of speed-accuracy adjustments. 
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Analyses of eye movements  

Eye movements during the whole course of the experiment were recorded by a Tobii TX300 

eye tracker with a sampling rate of 120 Hz. The recorded data was exported and processed 

offline. Missing data (i.e. validity codes higher than 1 provided by the eye tracker) due to blinks 

and artefacts were linearly interpolated. Fixations were defined using the default settings of 

Tobii. Trials where participants did not fixate on the fixation cross during stimulus presentation 

were excluded from further analyses of behavioural performance and eye movement metrics. 

For the analysis of saccadic latency, only trials with less than 33% of missing data were 

included. Saccadic latency was defined as the time (in milliseconds) from target onset to the 

initiation of the first valid saccade toward the stimulus. An eye movement was considered a 

valid saccade when velocity exceeded 30°/s, acceleration was higher than 8000°/s2 and distance 

was higher than 0.5° (Stigchel et al., 2011). Only saccadic latencies higher than 80 ms were 

included in the analysis. Finally, fixation instability was computed as the averaged standard 

deviation of the horizontal and vertical eye position during fixation.  

The performance measures and saccadic latency data were subjected to separate 

repeated measures ANOVAs (rANOVA) with Time-on-Task (the three blocks of trials), Target 

distance (near vs. far distance). Follow-up rANOVAs or paired t-tests were used to analyse 

significant interactions and main effects. Pairwise comparisons were adjusted for multiple 

comparisons using Bonferroni correction. 

3.1.2 Results 

Figure 2 depicts the results of the six variables analysed to assess the Time-on-Task related 

changes in mouse-pointing movement. The analysis of subjective fatigue ratings revealed 

significantly higher fatigue after the task than before, suggesting that the continuous 

performance of the mouse pointing task enhanced the participants’ feeling of fatigue (t(25) = -

3.55, p < .01). In line with our first hypothesis, the analysis of initiation time yielded a 

significant Time-on-Task effect (F(2,50) = 12.87, p < .001, ηp
2 = .34): participants initialized 

their pointing movement slower with increasing Time-on-Task indicating fatigue-related 

effects on movement preparation. In contrast to initiation time, the initialization of saccadic 

eye-movements (i.e. saccadic latency) to the direction of the target showed no change over the 

task performance period (F(2,50) = .12, n.s., ηp
2 = .01). The lack of Time-on-Task effect on 

saccadic latencies may imply that the slowing of movement initialization was not 

predominantly related to the sensory processing deficit of the peripheral target.  
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For the execution phase of the pointing movement, two variables were significantly 

affected by Time-on-Task: the movement time (F(2,50) = 5.98, p < .01, ηp
2 = .19) and the 

MT/ME ratio (F(2,50) = 5.28, p < .01, ηp
2 = .17). We found that, as a function of Time-on-Task, 

participants executed the pointing movement faster but not with improving accuracy resulting 

in a decreased MT/ME ratio. This finding was partly in line with our second hypothesis showing 

that fatigued participants tend to execute movements more impulsively. Finally, the analysis of 

fixation instability showed no significant change over time (F(1,25) = 1.21, n.s., ηp
2 = .05). None 

of the Time-on-Task x Target distance interactions reached the level of significance. 

 

Figure 2. Results of the five pointing performance measures (A – E) and saccadic latency (F) in Experiment 1. 

Error bars represent within-subject error (Cousineau, 2005). 
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3.2. Experiment 2 

3.2.1 Methods 

Participants 

Thirty undergraduate students participated for extra course credits. The data of five participants 

were excluded by applying the same exclusion criteria as in Experiment 1. The final dataset 

consisted of twenty-five participants (19 females, 2 left-handed, aged between 18 and 20, M = 

21.44, SD = 3.12). Self-reported sleep duration had a mean of 7.92 h (SD = 0.96). The statistical 

power was adequate to detect significant differences (see a priori power calculation above). 

Task and Stimuli  

The experimental procedure and the task was identical to that of Experiment 1, except that the 

number of target locations was reduced to four (i.e. two positions on each side and each circle; 

see Figure 1B). Importantly, each target was located on the horizontal axis (y = 0), thus only 

horizontal movements were required to reach the target.  

Data analysis 

The data analyses were identical to those described in Experiment 1. 

3.2.2. Results 

Subjective fatigue was significantly increased by the end of the continuous performance of the 

task (t(24) = -4.48, p < .001). In addition, in line with the first hypothesis, and replicating the 

results of Experiment 1, the initialization of pointing movements became significantly slower 

as a function of Time-on-Task (F(2,48) = 6.27, p < .01, ηp
2 = .21). Similar to Experiment 1, 

saccadic latencies showed no significant change with Time-on-Task (F(2,48) = 2.37, n.s., ηp
2 = 

.09). In the movement execution phase, movement error significantly increased (F(2,48) = 3.48, 

p < .05, ηp
2 = .13), and movement time marginally significantly decreased with Time-on-Task 

(F(2,48) = 2.97, p = .06, ηp
2 = .11). In addition, we found a significantly decreasing MT/ME 

ratio as participants spent longer time with the task (F(2,48) = 7.11, p < .01, ηp
2 = .23). That is, 

the results clearly supported the second hypothesis about a more impulse movement execution 

under fatigue. In contrast to Experiment 1, the analysis of fixation instability yielded a 

significant Time-on-Task effect (F(1,24) = 6.90, p < .01, ηp
2 = .22): fixation instability linearly 

increased from the first to the last block of trials. 
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3.3. Experiment 3 

3.3.1 Methods 

Participants 

Twenty-seven undergraduate students participated for extra course credits. Applying the same 

fixation criteria as before, three participants were excluded leaving a total of twenty-four 

participants (18 females, 3 left-handed, aged between 19 and 34, M = 23.92, SD = 4.66). Based 

on self-report, the mean sleep duration was 7.97 h (SD = 1.18).  

Task and Stimuli 

In Experiment 3, the same target positions were used as in Experiment 2 and the procedure of 

the experiment was also identical to those used in the first two experiments. Experiment 3, 

however, was different with respect to the additional trial conditions. Specifically, three 

auditory cue conditions were used: Orientation cue, Central cue and No cue conditions. The 

auditory cue was a 250 Hz tone presented for 200 ms via regular earphones. The cue-target 

interval was 200 ms. In the Orientation cue condition, the cue was presented monaurally to 

either the left or the right ear always on the side of the screen where the actual target was 

presented. Participants were informed that the monaural cues indicate the side of the target 

location. In the Central cue condition, the cue was presented binaurally, while in the No cue 

condition, the cue was omitted. In this experiment, the auditory signal accompanied with the 

visual feedback in the first two experiments was omitted in order to avoid interference with the 

auditory cue. To ensure balance in the number of trials across conditions, in Experiment 3, there 

were 72 trials in each block. Please notice that, Experiment 3 included more number of trials 

than Experiment 1 and 2, therefore this experiment lasted longer, until about 20 minutes. 

Data analysis 

The data analyses were identical to those described in Experiments 1 and 2 except that, in 

addition to the factors of Time-on-Task and Target-distance, the Cue (three auditory cue 

conditions) was also used as a within-subject factor in the rANOVA. 

3.3.2 Results 

Continuous performance of the task was associated with a significant increment in subjective 

fatigue indicating that the pointing task remains fatiguing for the participants even if it is 

combined with a cueing paradigm (t(23) = -3.42, p < .01). The analysis of initiation time yielded 

a significant main effect of Time-on-Task with a slowing trend (F(2,46) = 4.27, p < .05, ηp
2 = 
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.16), however, the corrected post-hoc analysis did not reach significance level when testing the 

differences between the three blocks of trials. There was a significant main effect of Cue with 

significant differences between all cue conditions (F(2,46) = 575.93, p < .001, ηp
2 = .96). 

Initiation time on trials following an Orientation cue was shorter compared to the other two cue 

conditions suggesting that the Orientation cues successfully directed participant’s attention 

toward the possible location of the target and reduced the time required to initiate the pointing 

movement. The Central cues also turned out to be advantageous: initiation time on trials 

following a Central cue was found to be shorter than on trials without such a cue suggesting 

that after being presented by an auditory cue participants became generally more alert and 

reacted faster.  

 

Figure 3. Results of the five pointing performance measures (A – E) and saccadic latency (F) in Experiment 3. 

Error bars represent within-subject error (Cousineau, 2005). 
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Pertinent in this study was that the Time-on-Task x Cue interaction on initiation time 

was also significant (F(2,46) = 2.84, p < .05, ηp
2 = .11). Follow-up analysis revealed a 

significant main effect of Time-on-Task for the No cue condition (F(2,46) = 5.71, p < .05, ηp
2 = 

0.20) showing shorter initiation times in the first block compared to the third block of trials. In 

contrast, there was no significant Time-on-Task effect on trials preceded by a Central cue 

(F(2,46) = 0.85, n.s., ηp
2 = 0.04) or an Orientation cue (F(2,46) = 2.32, n.s., ηp

2 = .09). The 

significant advantage of Orientation and Central cues over the No cue trials was observed for 

saccadic latencies as well (F(2,46) = 210.03, p < .001, ηp
2 = .90). Post-hoc analyses showed that 

the initialization of saccadic eye movements and the response time were significantly longer 

when no cue preceded the target. The non-significant Block x Cue interaction (F(2,46) = .83, 

n.s., ηp
2 = .04) for saccadic latencies suggest that the advantage of Orientation and Central cues 

over the No cue trials was unaffected by Time-on-Task. These findings suggest that 

participants’ attentional orientation ability was not compromised as they became tired, and they 

remained alert for fast, phasic initiations. In addition, importantly, the results in the No cue 

condition replicated the finding of the first two experiments and supported our first hypothesis 

showing that the initialization of mouse pointing movements in the absence of auditory signals 

slows down with increasing Time-on-Task. 

For the execution phase of the movements, we found a significant Time-on-Task x Cue 

interaction for MT/ME ratio (F(2,46) = 3.22, p < .05, ηp
2 = .12). As the further analysis of this 

interaction showed, the MT/ME decrement over time was significant only for the Central cue 

condition (Main effect of Time-on-Task; No cue: F(2,46) = 1.72, p = .19, ηp
2 = .07; Orientation 

cue: F(2,46) = 2.83, p = .07, ηp
2 = .11; Central cue: F(2,46) = 3.38, p < .05, ηp

2 = .13). This 

disadvantageous effect of the Central cues came mainly from the more erroneous movement 

execution with Time-on-Task. More specifically, the further analysis of the significant Time-

on-Task x Cue interaction for movement errors (F(2,46) = 2.47, p < .05, ηp
2 = .10) revealed 

that, in the third block, participants’ movement execution on Central cue trials became 

significantly more erroneous compared to No cue trials (ME: t(23) = -3.703, p < .01). In sum, 

these findings may suggest an alerting effect of the Central cues: this cue type may have alerted 

and urged participants to perform the movement response, which, however, was resulted in 

more erroneous movements as the participants became more fatigued.  
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3.4. General discussion 

In three experiments, we found evidence that both the preparatory and the execution phases of 

pointing movements are affected by increasing Time-on-Task. More specifically, in line with 

our first hypothesis, the findings of all three experiments converged on the conclusion that the 

participants took longer to initiate their movement as they spend more time on the pointing task. 

In addition, our second hypothesis on movement execution also received support: faster but less 

precise movements were executed with increasing Time-on-Task. The findings imply that 

participants’ tonic alertness declined and compromised the cognitive control in a top-down 

manner resulting in a slow initialisation and an impulsive movement execution. In contrast, our 

findings suggest that alternative explanations such as a fatigue-related decline in phasic 

alertness or deterioration in attentional orientation ability are not plausible. In Experiment 3, 

the comparison of No cue and Central cue conditions provided the opportunity to examine the 

changes in the participants’ phasic alertness, however, the advantage of Central cue trials over 

No cue trials was found in the whole duration of the task, indicating no reduce in phasic 

alertness. Similarly, initiation time and saccadic latencies were faster in Orientation cue trials 

than in Central cue trials, and this difference remained constant over the whole duration of the 

task. This finding implies that allocating attention to the target remained insensitive to the 

detrimental effect of Time-on-Task. In line with this, the analyses of saccadic latencies showed 

no significant change over time in all three experiments, providing further support for the notion 

that participants’ orientation ability remained insensitive to the effects of fatigue. Finally, the 

finding of Experiment 2 suggests that fatigue-related slowing in movement initiation may also 

occur if individuals focus their attention on a relatively small target relevant area, and can 

prepare their movement track more easily because of the simple horizontal positioning of the 

targets. 
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4. Time-on-Task-related changes in autonomic nervous system activity reflected by heart 

rate variability during prolonged task performance 

4.1. Methods 

Participants 

Forty-four participants (under- and post-graduate students), in a medication-free health 

condition, with normal hearing and normal or corrected-to-normal vision participated in the 

study. There were 22 participants in the Gatekeeper task group and 22 participants in the 

Documentary-viewing group. Due to technical failures, the data of three participants were 

excluded from the analyses. Thus, the final dataset contained data from 20 participants (11 

females, mean age: 21.2 with SD of 2.21, range: 19-27) in the Gatekeeper task group and 21 

participants (11 females, mean age: 22.5 with SD of 3.9, range: 18-29) in the Documentary-

viewing group. Participants in the two groups were matched in age (t(39) = - 1.33, p = .19) and 

gender (χ2 = .22, p = .64). All participants provided written consent. The minimum sample size 

was estimated by a piori power calculation. The recommended minimum sample was 28 

participants to achieve a power level of 90% at an alpha < 0.05 (by Gpower 3.1., Faul et al., 

2009), thus , the final dataset of 41 participants had the appropriate statistical power to test our 

hypotheses. 

The Gatekeeper task and Documentary film viewing 

Participants in the Gatekeeper task group performed an adapted version of the Gatekeeper task  

from Heathcote et al. (2014, 2015) which is a dual 2-back task with visual and auditory stimuli. 

The Gatekeeper task has a game-like character: participants need to imagine that they are a 

nightclub doorperson and need to memorize the door and the password used by the guests of 

the club for entry. This game-like feature of the task is an asset because it is expected to enhance 

task engagement, which may lead to less boredom during Time-on-Task. On each trial of the 

Gatekeeper task, an auditory and a visual stimulus were presented simultaneously, and the 

participants were asked to compare the actual stimuli with the stimuli presented two trials earlier 

(i.e. 2-back task). The auditory stimulus was one of three spoken letters (“A”, “E”, or “I) 

presented via loudspeakers for 500 ms. The visual stimulus was an image (5.58° x 7.65°) 

depicting three doors positioned right next to each other and one of the doors was always 

highlighted with red colour. The visual stimulus was presented at the centre of the screen for 

2500 ms or until response. Four different stimulus conditions were prepared. For double target 

condition, both the visual and auditory stimuli were identical to those presented two trials 
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earlier. For the single target conditions, a 2-back match occurred either for the auditory stimulus 

(single auditory target condition) or for the visual stimulus (single visual target condition). For 

the no target condition, both the visual and the auditory stimuli were different to the stimuli 

shown two trials earlier. Participants were needed to indicate by key press whether a 2-back 

match (i.e. the position of the red door and/or the type of the spoken letter had a match with the 

stimulus attributes two trials back) occurred in any of the modalities. Prior to the task, speed 

and accuracy were equally emphasized. No feedback was given about the correctness of the 

response. The intertrial-interval was 2500 ms. 

The participants in the Documentary-viewing group watched three documentary films 

(about 30 minutes each) for 1.5 hours: Planet Earth Episode 7 Great plains (2007); When we 

left Earth – The NASA missions: The Shuttle (2008); and Ocean oasis (2000) (see also a recent 

study by Takács et al., 2019). The films were presented in a counterbalanced order across 

participants. A few emotionally arousing scenes were cut from the documentaries without 

creating strange transitions in the narrative actions.  

Self-reported measures of fatigue and workload 

In each group,  participants completed the NASA Task Load Inventory (NASATLX; Hart and 

Staveland, 1988). The NASATLX is a multidimensional self-reported measure to assess 

individuals’ perceived workload during the task on 6 scales with 21 gradations: mental demand; 

physical demand; temporal demand; overall performance level; effort; and frustration level. 

Participants were also asked to indicate the level of fatigue they experienced on a Visual 

Analogue Scale (see Study 1). 

Heart rate variability measurement 

ECG data were digitized at a sampling rate of 1 kHz at 16-bit resolution with a CED 1401 Micro 

II analogue-digital converter device (CED, Cambridge, UK). The ECG signals were visually 

inspected, and artefacts were corrected, and if necessary removed. Subsequently, participants’ 

R-R intervals, in milliseconds, were extracted using Spike2 software. The time elapsed between 

two successive R-waves (R-R intervals) were analyzed further by Kubios HRV analysis 

package 2.0 (Tarvainen et al., 2014). The artefacts within the R-R intervals were again corrected 

using the low artefact correction option of the Kubios software: detected artefact beats were 

replaced using cubic spline interpolation. Frequency-domain, time-domain, and non-linear 

HRV measures were calculated. 



17 
 

The frequency indices included the absolute high frequency power (0.15 Hz - 0.4 Hz; 

ms2; HF), the log-transformed high frequency power (lnHF), the absolute low frequency power 

(0.04 Hz – 0.15 Hz; ms2; LF), the log-transformed low frequency power (lnLF) and the ratio of 

the power in low-, and high-frequency bands (LF/HF). The time-domain measures included the 

mean heart rate (HR, beats/min), the root mean square of successive differences (RMSSD, ms), 

the natural logarithm of RMSSD (lnRMSSD), and the percent of the number of pairs of adjacent 

RR intervals differing by more than 50 ms (pNN50; %).  The non-linear measures included the 

short-term HRV as a measure of the width of the Poincaré cloud (SD1), and the long term HRV 

as a measure of the length of the Poincaré cloud (SD2).  

We used two different intervals for the calculation of each HRV index: 4-minute 

intervals; and 15-minute intervals. The 4-min intervals were the resting period before the 

experiment, the first 4 minutes of the first experimental block, the last 4 minutes of the fifth 

experimental block, the resting period during the break, and, finally, the first 4 minutes of the 

post-break task block. These short intervals were used in the analysis of the reactivity and 

recovery effects. In addition to the HRV measures, for each trial, post-response cardiac activity 

was also calculated as the average difference in the R-R intervals during the 2.5s-long post-

response period. The larger average difference reflected a slower activity after response.  

Procedure 

Figure 4 schematizes the procedure of the experiment in the two groups. Participants were asked 

to get adequate sleep during the night prior to the experiment and to abstain from alcohol and 

caffeine-containing substances before the experiment. In addition, they were told that they 

should avoid exhausting physical and mental activities (e.g. physical workout, studying for a 

class) before the experiment. Participants’ sleep duration was monitored using an actigraph 

(Gatekeeper task group: 7.46h, SD = 1.64h; Documentary-viewing group: 7.82h, SD = 1.48h) 

and by self-reporting (Gatekeeper task group: 7.67h, SD = 1.61); Documentary-viewing group: 

7.82h, SD = 1.48). Participants in the two experiments did not significantly differ in self-

reported sleep (t(39) = 1.15, p = .26) or in the actigraph data (t(39) = - .70, p = .49).  

 Following the sleep-related questions, the electrocardiographic (ECG) electrodes were 

set up (three chest electrodes, Lead II.). Then, the task was explained to the participants. 

Participants in the Gatekeeper group performed 72 practice trials, while those in the 

Documentary-viewing group had familiarization period by being shown some example scenes 

from the documentaries. After that, participants in both groups indicated their actual experience 
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with fatigue on the VAS and the perceived level of cognitive load on the NASATLX. This was 

followed by a 4 minutes long resting ECG period. Then, the ToT-phase followed. During this 

ToT-phase, participants in the Gatekeeper group performed 5 blocks of 300 trials without rest 

(1500 trials in total, ~ 1.5 hours). In the Documentary-viewing group, the duration of the ToT-

phase was 1.5 hours as well. When the 5 blocks of trials were completed or the documentary 

films ended, participants again filled in the subjective measures and they were asked to estimate 

the time spent with the task (in minutes). In addition, they were also asked to estimate the time 

they spent with the task or the films. Subsequently, participants had a break of 12 minutes. 

During the first 4 minutes of this break period, resting ECG was recorded. After the break, 

participants were asked to indicate their fatigue level again. Then, participants in the Gatekeeper 

group performed an additional block of 300 trials, while the Documentary-viewing group 

watched documentaries for another 18 minutes. At the end of this post-break block, the 

participants had to fill in their fatigue level and perceived load during the last block. 

 
Figure 4. Schematized procedure of the study in the Gatekeeper task group and Documentary-viewing group. R: 

resting ECG recording 

Data analysis 

Following the guidelines of Van Breukelen (2006, 2013), we performed ANCOVAs to test the 

Time-on-Task effect on subjective fatigue and perceived workload: measurement after the ToT-

phase was used as the dependent variable, Group (Gatekeeper vs. Documentary) as a fixed 

factor, and the pre-Time-on-Task measure as a covariate. The same method was used to test the 

effects of the post-break block on subjective measures. Similarly, the effect of the break on 

fatigue was tested with the post-break fatigue level as the dependent variable, Group as a fixed 

factor and post Time-on-Task fatigue as a covariate.  

Similarly, for cardiac parameters, reactivity was tested by an ANCOVA with the first 4 

minutes of the first Time-on-Task block as the dependent variable, Group as a fixed factor and 
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pre-experiment HRV as a covariate. For recovery, the ANCOVAs included HRV measured 

during the break as the dependent variable, Group as a fixed factor, and the last 4 minutes of 

Block 5 as a covariate. The analysis of reactivity after the break compared break-HRV with the 

HRV during the first 4 minutes of the post-break block. For the analysis of Time-on-Task 

related changes in HRV, mixed ANCOVAs were performed with Block (i.e. the first to the fifth 

block) as a within-subject factor, Group as a between-subject factor and pre-experiment resting 

HRV as a covariate. In addition, in the Gatekeeper group, post-error cardiac activity was 

analyzed by a rANOVA with Block and Correctness of response (correct vs. incorrect) as within 

subject factors.  

Finally, to assess the cognitive performance in the Gatekeeper task, accuracy and 

reaction times on correct responses were calculated for each block and target type. The two 

performance measures were then subjected to rANOVAs with Block (5 blocks of trials) and 

Target types as within-subject factors. We calculated reaction time variability (=SD of RT / 

mean of RT) as well and analyzed with a separate rANOVA with Block as a within-subject 

factor. We also analyzed post-error reaction times with Block and Correctness of response 

(correct vs. incorrect) as within-subject factors. In addition, separate rANOVAs were 

performed to analyze the break-related effects (changes from block 5 to the post-break block). 

Significant main effects and interactions were followed-up by simple effects analysis using 

Bonferroni corrections.  

4.2. Results 

The two groups did not significantly differ from each other in terms of subjective fatigue prior 

to the task (t(39) = -1.51; p = 0.14), however, after the ToT-phase, participants in the Gatekeeper 

group indicated significantly higher levels of fatigue (F(1,38) = 11.24, p < .01, ηp
2 = .23). The 

Gatekeeper task was also perceived mentally (F(1,38) = 50.89, p < .001, ηp
2 = .57) and 

physically more demanding (F(1,38) = 31.21, p < .001, ηp
2 = .45), and more frustrating (F(1,38) 

= 12.87, p < .001; ηp
2 = .25). In addition, we found a significant difference between the two 

groups in terms of estimated time spent with the task (t(31.76) = -6.80, p < .001): while 

participants in the Documentary viewing group underestimated the time by 8.81 minutes, 

participants in the Gatekeeper group underestimated it by 50.56 minutes. In the Gatekeeper 

group, reaction time significantly decreased from the first to the third block of trials but 

remained constant after that (F(4,38) = 9.57, p < .001, ηp
2 = .34). On the other hand, RT 

variability significantly and linearly increased with time spent on the task (F(4,76) = 4.51, p < 

.05., ηp
2 = .19), indicating more attentional lapses at the end of the task. The analysis of accuracy 
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yielded a significant Block x Target interaction (F(12.228) = 2.11; p < .05; ηp
2 = .10). Further 

analysis revealed that the accuracy significantly dropped in the Double target condition only. 

After the break, however, accuracy improved significantly regardless of the target condition 

(F(1,19) = 13.09; p < .01; ηp
2 = .41). Finally, the insignificant Block x Correctness of response 

interactions for post-error cardiac activity and post-error reaction times suggested no significant 

change in motivation during the performance of the Gatekeeper task. 

Table 1. Results of mANCOVAs and follow-up simple effects analyses for the changes in Heart Rate and HRV 

in Time-on-Task. 

 

 

 

 

 

 

 

 

 

 

 

 
Note. *p < .05, **p < .01, ***p < .001, m: p = 0.05 – 0.06 

Figure 5. depicts the results for heart rate and HRV indices. Table 1. summarizes the 

results of the Time-on-Task analyses. Importantly, and in line with our expectations, the further 

analyses of the significant Block x Group interactions indicated that only the vagally-mediated 

HRV indices (i.e. RMSSD, lnRMSSD, HF and pNN50) increased in the Gatekeeper group with 

increasing Time-on-Task, while remained unchanged in the Documentary-viewing group. 

During the reactivity periods, two cardiac parameters, heart rate and lnRMSSD, showed a 

significant and consistent change: heart rate significantly increased (reactivity: F(1,38) = 39.93; 

p < .001; ηp
2 = .51; reactivity after the break: F(1,38) = 22.99; p < .001; ηp

2 = .38), while 

lnRMSSD significantly decreased (reactivity: F(1,38) = 5.54; p < .05; ηp
2 = .13;  reactivity after 

the break: F(1,38) = 4.32; p < .05; ηp
2 = .10), when participants started performing the 

Variables Analysis 

 mANCOVAs Simple effects analyses 

 Block effect Block x Group Block effect 

(fatigue group) 

Block effect 

(control group) 

 F(4,152) ηp
2 F(4,152) ηp

2 F(4,35) ηp
2 F(4,35) ηp

2 

HR 4.75** .11 16.83*** .31 25.92*** .75 2.04 .19 

RMSSD 4.01* .10 3.57* .09 8.96*** .51 1.69 .16 

lnRMSSD 10.75*** .22 6.34** .14 13.16*** .60 2.52m .22 

pNN50 6.61** .15 3.56* .09 6.70*** .43 1.52 .15 

HF 2.572m .06 2.97* .07 4.20** .32 .45 .05 

lnHF 11.09*** .23 5.35** .12 11.14*** .56 2.72* .24 

LF 12.14*** .24 2.89* .07 6.97*** .44 4.98** .36 

lnLF 5.61** .13 3.75* .09 20.92*** .71 6.85*** .44 

LF/HF .93 .02 .20 .01 .52 .06 2.00 .19 

SD2 9.81*** .21 5.09** .12 15.04*** .63 6.96*** .44 
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Gatekeeper task. For recovery, in the Gatekeeper group, the analyses showed a significant 

decrease in heart rate (F(1,38) = 16.40; p < .001; ηp
2 = .30) and in the LF/HF ratio (F(1,38) = 

6.59; p < .05; ηp
2 = .15), and a significant increase in four vagus-mediated HRV indices 

(RMSSD, lnRMSSD, lnHF and pNN50; all Fs > 5.7, p = .001 – .020).  

 

Figure 5. Results of the analyses of heart rate (A) and five HRV measures (B-F) in the Gatekeeper group (circle) 

and the Documentary-viewing group (square). Error bars represent the standard error of the mean. 
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4.3. Discussion 

In the second study, we hypothesized that the vagus-mediated HRV measures show a 

differential trend over time in cognitively demanding and less demanding tasks. In line with our 

hypothesis, we found that only the vagus-mediated indices increased over time in the group that 

performed a bimodal working memory task, while remained unchanged in the group that 

watched documentary films. This finding suggest that fatigue is associated with the increased 

activation of the parasympathetic branch of the autonomic nervous system that serves as a 

relaxing system. Based on participants’ post-error activity and post-error slowing, the increases 

in subjective fatigue and in the parasympathetic activation were not associated with 

motivational deficits. More specifically, participants’ heart rate decelerated, and their responses 

slowed down after making erroneous responses suggesting that they were motivated to perfom 

well on the task despite the rising feeling of fatigue. Importantly, the results also indicated that 

many HRV indices tend to increase even during the course of a cognitively less demanding task 

and that some indices seem to be unaffected by the time spent on the task. These results point 

out the relevance of a control group or control condition in fatigue experiments investigating 

the HRV-fatigue associations. Furthermore, in line with the previous studies (e.g.: Helton & 

Russel, 2015, 2017; Lim & Kwok, 2015), we found that the cognitive performance improved 

after a 12 minutes long break suggesting that short breaks are sufficient for effective restoration 

of attentional capacities even when the cognitive task is bimodal and highly demanding.   
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5. The effects of fatigue on cross-modal interference in a selective attention task 

5.1. Methods 

Participants 

Twenty-five healthy university students were enrolled in the study, however, the data of two 

had to be excluded due to technical issues. Thus, the final dataset of Study 3 consisted of data 

from 23 participants (15 female, 8 male, mean age = 21.43, SD = 1.73). Based on self-report, 

none of them had a history of neurological or psychiatric diseases and had normal or corrected-

to-normal vision. Written consent was obtained from each of them prior to participation. 

Similarly to the previous two studies, a priori power analyses were conducted by Gpower 3.1. 

(Faul et al., 2007) to estimate the minimum sample size required to detect the effects we aimed 

to examine. According to these calculations, the minimum sample size to achieve a power level 

of 90% for alpha equal to 5% was 19. Thus, our sample size of 23 was certainly adequate for 

the analyses conducted. 

Task and stimuli 

In Study 3, we applied the modified version of the time discrimination task proposed by Lukas 

et al. (2014). Figure 6. depicts the schematized sequence of a trial. The task required participants 

to make temporal judgements about either the auditory or the visual stimulus. Prior to the 

simultaneous presentation of the two stimuli, the relevant modality for the actual trial was 

indicated by either an auditory (a 600 Hz tone presented via standard loudspeakers with a 

volume of 45 dB) or a visual cue (a 1.5 x 1.5 cm white cross with a visual angle of 1.25° 

presented at the center of the screen). The participants had to decide whether the stimulus in the 

cued modality was presented for a short (100 ms) or long (300 ms) duration, while they had to 

ignore the stimulus of the irrelevant modality. The auditory stimulus was a 400 Hz tone with a 

volume of 45 dB and the visual stimulus was a centrally presented white diamond (1.5 x 1.5 

cm) with a visual angle of 1.25°. A response was required within a time-window of 2500ms 

after stimulus presentation. The response-cue interval was 1500 ms. On congruent trials, the 

duration of the visual stimulus was identical to the auditory stimulus, while, on incongruent 

trials, they differed (e.g. short visual vs. long auditory stimulus). The trials were also 

categorized into modality-repetition and modality-switch trials. On modality-repetition trials, 

the cued modality in the actual trial was the same as the cued modality in the previous trial, 

while, on modality-switch trials, they were not the same (i.e. auditory trial followed by a visual 

trial or visual trial followed by an auditory trial). The number of consecutive repetition trials 
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varied between 2 and 5. Prior to the task, the importance of both the accuracy and speed were 

equally emphasized.  

 

Figure 6. Schematic representation of the time discrimination task 

Subjective measures 

To assess participants’ experience with subjective fatigue and the perceived cognitive load, the 

same methods were used as in Study 2 (i.e. the VAS and NASATLX measures, respectively). In 

addition, we asked participants to rate how motivated they feel to do the task on a 7-points 

Likert-scale (1 referred to “Not motivated at all”, and 7 referred to “Very highly motivated”). 

Heart rate variability 

The procedure of physiological recording and the preprocessing and analysis of ECG signals 

were identical to that of Study 2. The pre-task resting period lasted 5 minutes. After the ToT-

phase (see below), the 12 minutes long break was divided into two 5 minutes sessions, and the 

first 5 minutes of the break and the last 5 minutes of the break were analyzed separately. 

Statistical analyses were only conducted with those vagus-mediated HRV measures that were 

found most adequate (i.e. the ones that showed the highest effect sizes in the Gatekeeper group) 

in Study 2. Thus, the two indices included in the statistical analyses were lnRMSSD and lnHF.  

Procedure 

The general procedure was largely similar to that of Study 2. During the night prior to the 

experiment, participants wore actiwatches. Based on the actigraph measurement, the average 

sleep duration was 7.92 hours (SD = 1.57), while it was 7.89 hours (SD = 1.31) according to 
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self-report. The experimental sessions started either at 10:00 or at 14:00. To determine the 

chronotype of the participants, the Hungarian version of the Morningness-Eveningness 

Questionnaire (Self-Assessment version, Terman, 2005) was administered. To avoid a large 

mismatch between participants’ general daytime activity and the time of the experiment, 

participants who scored 41 or less (i.e. evening types) were only tested in the afternoon session. 

 After the task was explained, participants practiced the temporal discrimination task. 

This practice session consisted of single auditory, single visual and bimodal sessions as well. 

Then, the NASATLX was administered and they were asked to indicate their actual level of 

subjective fatigue on the VAS.  This was followed by the 5 minutes long resting ECG period.  

 At the beginning of the ToT-phase, participants were asked to answer the motivation-

related question. The median rating was 6 (mean = 5.52, range = 3) indicating high levels of 

task-related motivation. During the ToT-phase, participants performed 5 blocks of 400 trials 

without break (i.e. 2000 trials in total). Within each block, the number of trials per condition 

was balanced (50 trials each). Stimuli were presented in pseudo-random order. The whole 

duration of the ToT-phase depended on reaction time as well, and thus, varied between the 

participants (mean = 1.55 hours, SD = 0.1). At the end of the task, participants completed the 

NASATLX and the VAS for the third time. In addition, they were asked to estimate the time 

spent with the task.  

 The ToT-phase was followed by a 12 minutes long break. In the first and the last 5 

minutes of the break, resting ECG was recorded. At the end of the break, participants were 

asked again to indicate their actual level of fatigue on the VAS. Then, the motivation-related 

question was asked for the second time. This time, the median rating was 3 (mean = 3.43, range 

= 6) suggesting a drop in the level of motivation compared to its level prior to the ToT-phase. 

After that, participants performed the task for an additional block of 400 trials. This post-break 

block lasted approximately 18 minutes. All task parameters remained the same as before. 

Finally, after the post-break block, participants reported their level of fatigue as well as the 

perceived workload on the VAS and the NASATLX, respectively.  

Data analysis 

To analyze the changes in subjective fatigue, an rANOVA was conducted with Administration 

time (i.e. the 4 administrations of VAS) as within-subject factor. Changes in perceived 

workload were analyzed by an rANOVA with two factors: Administration time (i.e. the 3 

administrations of NASATLX) and Scale (i.e. the six scales of NASATLX). The estimated time 
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spent with the temporal discrimination task during the ToT-phase was analyzed by a paired 

samples t-test comparing the estimated time to the actual time spent with the task. 

 For the cognitive performance, accuracy and reaction time on correct trials were 

calculated for each block and each condition. In addition, we also calculated the linear 

integrated speed accuracy score (LISAS) proposed by Vandierendonck (2017) according to the 

following formula: 

LISAS = RT + SDRT/SDER × ER, 

where RT refers to the mean reaction time, SDRT refers to the standard deviation of reaction 

time, ER is the mean error rate and SDER is the standard deviation of the error rate. The 

performance measures were separately entered into 2x2x2x5 rANOVAs with Modality 

(auditory vs visual), Modality-switching (modality-repetition vs. modality-switch), 

Congruence (congruent vs. incongruent) and Block (5 block of trials in the ToT-phase) as 

within-subject factors. The effects of break on cognitive performance were analyzed by a 

similar rANOVA except that the Block factor had only 2 levels (the fifth block of the Time-on-

Task period vs. the post-break block).  

 The analyses of cardiac parameters were similar to that of Study 2. Reactivity-, and 

recovery-related changes were analyzed by paired samples t-tests. For reactivity, we compared 

the first 5 minutes of the first block to the resting ECG recording prior to the ToT-phase. For 

recovery, we compared the first 5 minutes of the break to the last 5 minutes of the ToT-phase. 

For reactivity after the break, the first 5 minutes of the post-break block was compared to the 

last 5 minutes of the break. Finally, Time-on-Task-related changes in heart rate and HRV were 

analyzed by rANOVA with Block (i.e. the 5 block of trials) as a within-subject factor.  

5.2. Results 

The rANOVA performed on VAS ratings yielded a significant Administration time main effect 

(F(3, 66) = 23.82, p < .001, ηp
2 = .52). The post-hoc analysis indicated that subjective fatigue 

was significantly higher at the end of the ToT-phase than before and that the level of fatigue 

decreased at the end of the break. For the cognitive workload assessed by NASATLX, the 

analyses revealed significant Administration time (F(2, 44) = 21.09, p < .001, ηp
2 = .49) and 

Scale (F(5, 110) = 21.04, p < .001, ηp
2 = .49) main effects, and their interaction was also found 

to be significant (F(10, 220) = 4.97, p < .001, ηp
2 = .18). Further analyses showed that all aspects 

of cognitive workload increased during the ToT-phase, except for temporal demand (p = .25). 
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Similarly to Study 2, participants significantly underestimated the time spent with the task (t(22) 

= -8.45, p < .001). 

Table 2. Results of the analysis of cognitive performance measures in the ToT period 

*p < .05, **p < .01, ***p < .001 

 Results of the analysis of cognitive performance are summarized in Table 2. 

Importantly, in line with our hypothesis, the analysis of LISAS revealed a significant Block x 

Modality two-way interaction and a significant Block x Modality x Congruence three-way 

interaction (see Figure 7.). We found that the performance on visual trials significantly declined 

from the third to the fifth block of trials, while the performance on auditory trials remained 

unchanged. This suggest that the temporal discrimination of visual stimuli was more sensitive 

to the detrimental effects of fatigue. In addition, the further analysis of the Block x Modality x 

Congruence interaction showed that the congruency effect (i.e. the interfering effect of 

Main effects and interactions  Accuracy  Reaction time LISAS 

 df F ηp
2 F ηp

2 F ηp
2 

Block (5 blocks of trials) 4,88 6.05** .22 11.68*** .35 8.79*** .28 

Modality (visual vs. auditory 1,22 26.33*** .54 4.54* .17 .94 .04 

Modality-switch (repetition vs. switch) 1,22 26.39*** .54 92.41*** .81 83.24*** .79 

Congruence (congruent vs. incongruent) 1,22 75.95*** .77 56.30*** .72 6.54*** .73 

Modality x Modality-switch 1,22 .01 .00 36.39 .62 22.92*** .51 

Modality x  Congruence 1,22 27.10*** .55 8.22 .27 12.92** .37 

Modality-switch x  Congruence 1,22 6.84* .24 11.19** .34 34.19*** .61 

Modality x  Modality-switch x Congruence 1,22 .87 .04 1.15 .05 .37 .02 

Block  x  Modality 4,88 .87 .04 5.36** .20 3.18* .13 

Block  x  Modality-switch 4,88 .26 .01 6.34** .22 4.63** .17 

Block  x  Congruence 4,88 1.32 .06 2.68m .11 2.32m .10 

Block  x  Modality x  Modality-switch 4,88 .32 .01 5.44** .20 5.36** .20 

Block  x  Modality x  Congruence 4,88 .34 .01 1.68 .07 3.86* .15 

Block  x  Modality-switch x  Congruence 4,88 2.10 .09 .12 .00 1.04 .04 

Block  x  Modality x  Modality-switch x  

Congruence 
4,88 1.93 .08 .52 .02 .39 .02 
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incongruent irrelevant stimuli) in visual trials increased with Time-on-Task.  More specifically, 

we found a significant Block main effect (F(4, 88) = 5.20, p < .01, ηp
2 = .19) for incongruent 

visual trials and the post-hoc analyses revealed that the performance on these trials increased 

from the first to the third block  (t(22) = 3.66, p < .01), but significantly declined from the third 

to the fifth block (t(22) = −3.99, p < .01). In contrast, there were no significant increases in 

LISAS (i.e. declining performance) for congruent visual trials, congruent auditory trials and 

incongruent auditory trials. After the break, however, the LISAS on congruent auditory trials 

significantly decreased (Block x Modality x Congruence: F(4, 88) = 7.29, p < .05, ηp
2 = .25; 

Block x Congruence on auditory trials: F(1, 22) = 8.46, p < .01, ηp
2 = .28; block 5 vs. post-break 

block: t(22) = 2.40, p < .05), suggesting that the break had positive effects only on the modality 

considered to be preferred in temporal tasks. 

 
Figure 7. Results of LISAS scores for visual and auditory modalities in the two Congruence (A) and Modality-

switch conditions (B). Error bars represent within-subject error (Cousineau, 2005). 

 Heart rate showed a significant linear decrease over time during the ToT-phase (F(4,88) 

= 13.66, p < .001, ηp
2 = .38). In the post-break block, heart rate was significantly lower than in 

the last 5 minutes of the break (t(22) = 2.59, p < .05). The analyses of the two vagally-mediated 

HRV indices in the Time-on-Task period yielded significant Block main effects (F(4,88) = 6.20, 

p < .01, ηp
2 = .22; lnHF: F(4,88) = 3.61, p < .05, ηp

2 = .14). Both measures increased linearly 

with increasing time spent with the task.  
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5.3. Discussion 

Our aim was to investigate the effects of fatigue on the auditory and visual temporal processing, 

as well as cross-modal conflicts. According to the modality appropriateness hypothesis (Welch 

and Warren, 1980), in temporal tasks, the auditory modality dominates the task due to its greater 

temporal resolution. Therefore, we expected that temporal discrimination based on auditory 

stimuli will be robust against the effects of fatigue, while the temporal discrimination of visual 

stimuli will decline over time. Our results confirmed this hypothesis, because we found that 

performance on visual trials indeed decreased after approximately 45 minutes but the 

performance on auditory trials remained constant. In addition, it has been shown that the 

interference of auditory distractors on visual processing increased over time, however, the 

interference of visual distractors on auditory processing did not change with increasing time 

spent with the task. These are in line with the Compensatory Control Model (Hockey, 1997, 

2011) of fatigue suggesting that fatigued individuals make strategic adjustments in order to 

maintain task performance, for example, by allocating more resources to the primary aspect of 

the task (i.e. the dominant auditory stimuli) at the expense of the secondary aspect (i.e. the 

visual stimuli). With other words, as a result of being fatigued, participants disengaged and 

attended less to the visual stimuli and focused more on the auditory stimuli, because the auditory 

modality is more appropriate for temporal discrimination.  

 Importantly, in line with the results of Study 2, we also found further evidence for an 

enhanced parasympathetic activation under fatigue indicated by decreasing heart rate and 

increasing vagally-mediated HRV. These finding thus provide further support for the notion 

that HRV is a reliable biomarker of fatigue and could potentially be used for the effective 

detection and estimation of fatigue.  
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6. Predicting and detecting mental fatigue using machine-learning algorithms trained on 

HRV data 

6.1. Methods 

Dataset 

For the analysis, we combined the datasets of three mental fatigue experiments. A subset of the 

dataset consisted of the data already presented in the dissertation: data of the Gatekeeper group 

(n = 20) from Study 2 and data of Study 3 (n = 23). To ensure an appropriate sample size, 

additional data were collected for Study 3 (n = 15; i.e.: for 38 participants, fatigue was induced 

by the time discrimination task) and the data of a third fatigue experiment that used a bimodal 

Stroop task to induce fatigue was also included (n = 27). Thus, the final dataset consisted of the 

data of 85 individuals. 

Bimodal Stroop task 

The task used in the third experiment (n = 27) was a bimodal semantic Stroop task with auditory 

and visual stimuli presented simultaneously. Two modality conditions were introduced. In the 

auditory condition, participants had to attend the auditory stimulus and ignore the visual 

stimulus, while in the visual condition, they had to attend the visual stimulus and ignore the 

auditory one. The modality condition changed after every 12 consecutive trials. The auditory 

(presented via loudspeakers at an intensity of approx.. 45 dB) and the visual stimuli (white 

letters on grey background) were spoken and written names of animals (birds and mammals), 

respectively, presented for 700 ms.  Participants were asked to decide whether the attended 

written or spoken name of the animal presented in the actual trial referred to a bird or a mammal. 

Participants responded in a time window of 1500 ms by pressing one key on the response box 

for birds or another key for mammals. The intertrial-interval varied between 500 and 3000 ms. 

This semantic Stroop task consisted of 3 blocks of 432 trials (i.e. a total of 1296 trials) and 

lasted approx. 1.2 hours. During the whole course of the experiment, ECG was recorded with 

the same procedure as described in the previous chapters. The resting ECG periods before and 

after task performance lasted 5 minutes. 

 Similarly to the previous experiments, participants were asked to fill in the NASATLX 

and to indicate their actual experience with fatigue on the VAS prior to task performance and 

after task completion. The analysis of ratings on the VAS revealed that the continuous 

performance of the semantic Stroop task significantly enhanced participants’ feelings of fatigue 

t(26) = 7.81, p < .001). In addition, the analysis of NASATLX showed that all aspects of cognitive 
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workload (except for Time demand) increased significantly after the task (Mental demand: t(26) 

= 8.45, p < .001; Physical demand: t(26) = 6.37, p < .001; Performance: t(26) = 3.28, p < .01; 

Effort: t(26) = 5.68, p < .001; Frustration: t(26) = 4.58, p < .001). In sum, the semantic Stroop 

task successfully evoked the feeling of fatigue and enhanced the perceived level of cognitive 

workload. 

HRV measures 

In each of the three experiments, HRV was calculated for four 4-minutes intervals: for the 

resting ECG intervals prior to the prolonged task performance and after task performance, and 

for the first and last 4 minutes of the task performance. The number of calculated HRV indices 

was remarkably higher than in the previous chapter in order to increase the predictive power of 

the machine-learning models (12 indices from the time domain, 16 indices from the frequency 

domain and 5 indices derived from non-linear analyses). However, in order to avoid overfitting, 

feature selection was performed prior to the training of the models (see details below).  

Classification algorithms (detecting fatigue) 

All programming was implemented in Python using the scikit-learn package (Pedregosa et al., 

2011). The aim of the classification was to develop a set of models that are able to correctly 

distinguish between fatigue and non-fatigue states (i.e. are able to detect the fatigue state). 

Based on the source of data, the following two classification problems were addressed 

separately: the models were either trained on resting HRV data or task-related HRV data. For 

the first classification problem, the pre-task resting ECG interval was labelled as the “Non-

fatigue” state and the post-task resting ECG interval was labelled as the “Fatigue” state. For the 

second classification problem, the first 5 minutes of the task performance was labelled as the 

“Non-fatigue” state, while the last 5 minutes of the task performance was labelled as the 

“Fatigue” state. Fatigue was operationalized as an increase in subjective fatigue (measured by 

VAS). Hence, the data of participants that did not have a higher post-task fatigue score than 

before were excluded. Thus, for the classification problems, the sample size reduced to 82, 

however, for each person, HRV was calculated for two intervals (fatigue and non-fatigue). 

Consequently, the final dataset consisted of 164 datapoints for each variable.  

 To avoid overfitting and to save computational time, feature selection was performed in 

three steps. First, by applying one of the most widely used procedures (Abraham et al., 2014), 

for each feature (or variable), an F-score was computed based on ANOVA. Second, for highly 

correlated features (i.e. a Person’s r-value greater than 0.8), one of them was removed (the one 



32 
 

with the lower F-score). Third, the mean F-score was calculated and features with F-scores 

lower than the mean were removed. Feature selection was performed for the two classification 

problems separately. For the models trained on resting HRV data, the selected features included 

the minimum heart rate, lnVLF, SD2, triangular index and HF. For the models trained on task-

related HRV data, the selected features included the lnVLF, lnLF, minimum heart rate, VLF (%), 

SDHR and approximate entropy.  

 Following feature selection, the dataset was split into a training set (70%) and a test set 

(30%). Four classification algorithms were used to build models and that are able to detect 

fatigue: support vector machine (SVM), K-nearest neighbors (KNN), logistic regression with 

L2 regularization and decision tree. The first three algorithms were selected to allow the 

comparison with previous results obtained from the same algorithms (Laurent et al., 2013; 

Huang et al., 2018). In addition, decision tree was selected to explore the predictive power of 

an algorithm that have not been used to detect fatigue before. Prior to the training, the data were 

standardized by z-transformation (except for the training of decision trees).  Hyperparameters 

for each classifier were optimized through grid search with stratified 5-fold cross-validation. 

The hyperparameter space of the SVMs consisted of linear and radial basis function for kernel, 

the set {100, 101, 102} for C and the set {100, 10-1, 10-2} for γ. For KNN, k values from 1 to 20 

were examined to identify the most optimal one. For the decision tree, the optimized parameter 

was the maximum depth (ranging from 1 to 10) of the tree. Finally, for logistic regression 

models, the strength of the regularization (ranging from 10-4 to 104) was optimized. Both the 

internal validation of the models and the evaluation of the classification performance on the 

testing data set (i.e. fatigue detection on unseen holdout data) were done using the area under 

the receiver operating characteristic curve (area under the curve, AUC). In addition, accuracy 

(i.e. the proportion of correctly classified cases) was also calculated to evaluate the performance 

of the models on the testing data set. 

 To test whether the fatigue detection performances of the models are higher than the 

chance level, permutation tests with 1000 iterations were carried out. On each iteration, a model 

was trained on the training data set with shuffled class labels (i.e. predictors and class labels 

were mismatched) and an AUC score was calculated based on the performance of the model on 

the (unshuffled) testing data set. We thus generated the null-distribution of AUC scores and 

determined whether the actual performance of the models was greater than 95% of the AUC 

scores obtained on shuffled data. 

Regression models (predicting the severity of fatigue) 
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Similarly to the classification problems, regression modelling was carried out in Python with 

the scikit-learn package (Pedregosa et al., 2014). In the regression models, the outcome measure 

was the change in subjective fatigue caused by prolonged performance (i.e. the difference 

between the initial and the post-task rating on the VAS). Prior to training, feature selection was 

performed to find the best predictors. Potential predictor variables included pre-task resting 

HRV measures and other variables such as gender, self-reported sleep duration, initial level of 

subjective fatigue, type of task (i.e. Gatekeeper task, time discrimination task or semantic 

Stroop task) and task duration (in minutes). Due to the high correlation between HRV measures, 

we used the least absolute shrinkage and selection operator (lasso) method to select the most 

important features. The lasso regression method is known to be effective even when 

multicollinearity exist among the variables (Tibshirani, 1996). The following predictors were 

selected for model development (listed in rank-order according to variable importance): SD2 

(.70), initial level of subjective fatigue (.37), RMSSD (.28) and task duration (.22). 

To our knowledge, no previous studies have attempted to predict the change in 

subjective fatigue based on HRV data with machine-learning algorithms. Thus, we applied 

some of the most widely-used methods such as lasso regression, elastic net regression and 

random forest regression (see e.g. Elhai, Yang, Rozgonjuk & Montag, 2020; Christ, Elhai, 

Forbes, Gratz & Tull, 2021). The data set was first split into a training set (80%) and a testing 

set (20%). Hyperparameters were tuned on the training set with 5-fold cross-validation. For the 

lasso and elastic net regression models, the hyperparameter alpha was tuned and for the random 

forest regression, maximum tree depth was tuned. 

Following the optimization of the parameters, the models were used to predict the 

change in subjective fatigue in the previously unseen testing data set. To evaluate the 

performance of the models, several metrics were calculated including the mean squared error 

(MSE), the root mean squared error (RMSE) and the R2. In addition, the Pearson correlation 

coefficients between predictions and true values were calculated. Similarly to the classification 

problems, permutation tests with 1000 iterations were carried out to assess the significance of 

the R2 values. On each iteration, the model was trained on the shuffled training data set (i.e. 

where the predictors and the outcome variable did not match) and the change in subjective 

fatigue was predicted in the (unshuffled) testing set. From the observed R2 values, we generated 

the null-distribution of R2s and determined whether the actual R2 was greater than 95% of the 

R2s trained on shuffled data.  
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6.2. Results 

The performances of the classification models trained on resting or task-related HRV data are 

presented in Table 3. The evaluation metrics presented in the table and in the text refer to the 

models tested in the previously unseen testing sample. The best performance was achieved by 

SVM with radial basis function (C = 100, γ = 10-2) trained on task-related HRV data (see also 

Figure 8.). Permutation tests demonstrated that the classification accuracy of the SVM, KNN 

(k = 18) and decision tree (maximum depth = 2) models significantly differed from the 

permuted null-distribution. On the other hand, the classification models trained on resting HRV 

data showed lower classification accuracies and did not differ significantly from the permuted 

null-distribution. 

Table 3. Performance of the classification models on the test sample (n=50) 

 

  

 

 

 

 

 

 

 

 

 

Note. AUC: area under the curve; KNN: k-nearest neighbors; SVM: support vector machine;  

p: permutation test-based p value (n = 1000) 

 

 

 

Classification models Evaluation metrics 

AUC Accuracy p 

Task-related HRV    

Decision tree .72 70% .04 

KNN (k=18) .73 72% .02 

Logistic regression .71 70% .07 

SVM .75 74% .03 

Resting HRV    

Decision tree .65 62% .14 

KNN (k=18) .68 66% .05 

Logistic regression .65 62% .12 

SVM .68 70% .05 
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Figure 8. Training and testing of SVM algorithms on task-related and resting HRV data. (A) Training of the SVM 

algorithm on task-related HRV data; (B) Testing the model on the previously unseen testing data set (task-related 

HRV); (C) Training of the SVM algorithm on resting HRV data; (D) Testing the model on the previously unseen 

testing data set (resting HRV). 

The results of the regression models are presented in Table 4. The models were 

evaluated based on their performance in the testing sample. Two models, the elastic net 

regression and the lasso regression model, could effectively predict the change in subjective 

fatigue in the testing sample. The best performance was achieved by the elastic net regression 

(alpha = .002). The predictions made by the model and the true values were found to be 

moderately correlated (r = .495). The lasso regression model was also significant according to 

the permutation test and the values predicted by the lasso model and the true values showed a 

moderate correlation (r = .490). On the other hand, the predictive power of the random forest 

regression model did not significantly differ from the permuted null-distribution. 

 

 

 

 



36 
 

Table 4. Performance of the regression models on the test sample 

 

 

 

 

 

Note. MSE: mean squared error; RMSE: root mean square error; p: permutation test-based p value (n = 1000) 

 

6.3. Discussion 

Consistently with previous studies, the supervised machine-learning algorithms were shown to 

effectively detect fatigue based on task-related HRV. However, our study’s methodology offers 

some unique contributions to the literature. First, our sample size was relatively large compared 

to the previous investigations and fatigue was induced by different cognitive tasks that required 

different mental operations. Thus, the external validity of our results is probably higher and 

therefore, the models could potentially perform at a similar level even under different 

conditions. And second, we found that the algorithms perform better if trained on task-related 

HRV data compared to resting HRV. This result has both methodological and practical 

implications. In addition, two of the regression models with predictors such as two resting HRV 

indices (SD2 and RMSSD), the initial level of subjective fatigue and the duration of the task 

could effectively predict the change in subjective fatigue evoked by prolonged task 

performance.  

 

 

 

 

 

 

 

Regression models Evaluation metrics 

 R2 MSE RMSE p 

Elastic net .21 255.90 16.00 .01 

Lasso .19 261.92 16.18 .02 

Random forest .03 256.44 16.01 .34 
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7. Summary of the results of studies included in the thesis 

The aim of the first study was to test the effects of fatigue on the preparatory and execution 

phases of visually-guided pointing movements in a sustained attention task. In accordance with 

our expectations, initiation time, a measure of the preparatory phase, significantly increased 

with Time-on-Task in all three experiments. We suggest that this increasing trend could not be 

explained by a fatigue-related deterioration in attentional orientation ability because empirical 

evidence seems to contradict this claim. First, saccadic latencies were not affected by Time-on-

Task in either of the experiments, indicating that participants had no difficulties with orienting 

their attention toward the target. Second, the results of Experiment 2 showed that the fatigue-

related increase in initiation time may also occur if individuals focus their attention on a 

relatively small target relevant area, and can prepare their movement track more easily because 

of the simple horizontal positioning of the targets. Finally, in Experiment 3, we found that 

initiation time was affected by Time-on-Task in the No cue condition but not in the Central cue 

or the Orientation cue conditions. These findings imply that participants’ phasic alertness and 

orientation ability were both insensitive to the effects of fatigue. In addition, these findings also 

suggest that instead of the reduced level phasic alertness, the fatigue-related increase is 

initiation time could be rather explained by a decreased level of tonic alertness. This explanation 

is supported by previous studies as well showing that the prolonged performance of sustained 

attention tasks is linked to a depressed level of tonic alertness (Oken et al., 2006; Cose & 

Kleinschmidt, 2016). Regarding the execution phase of movements, the results suggest that 

participants became more impulsive over time as indicated by faster by more erroneous 

movements. These results can be explained in the context of the Compensatory Control Model 

of fatigue (Hockey, 1997, 2011). Particularly, in line with the predictions of the model, one 

aspect of the task goal (speed) was probably prioritized over another aspect of the task goal 

(accuracy) as a result of fatigue. Furthermore, in Experiment 3, we found that movement error 

was the highest for the Central cue condition by the end of the ToT-phase suggesting that 

auditory warning cues do not necessarily lead to better performance when the operator is 

fatigued. 

 In the second study, the main focus was on the fatigue-related changes in the activity of 

the autonomic nervous system. In line with our hypothesis, the activation of parasympathetic 

branch of the autonomic nervous system reflected the vagally-mediated HRV indices increased 

over time during a bimodal working memory task, while during documentary viewing, no 

change in the parasympathetic activity was found. These findings point out the importance of 
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control conditions in fatigue experiments and suggest that the vagally-mediated HRV indices 

are reliable biomarkers of fatigue. The increased parasympathetic activity measured under 

fatigue was, however, not associated with motivational deficits because the analysis of post-

error cardiac activity and post-error slowing in reaction time showed that participants adjusted 

their behaviour following errors even when they were experiencing fatigue. In line with the lack 

of motivational deficit, we did not find strong evidence for a decline in cognitive performance. 

In addition, no evidence was found for the notion that fatigue has differential effects on visual 

and auditory working memory processes. On the other hand, the cognitive performance in both 

modalities improved after a 12-minute break suggesting that well-known positive impact of rest 

breaks on cognitive performance can also be observed in tasks that require participants to divide 

their attention between two modalities. 

  In the third study, we hypothesized that duration judgments of visual stimuli compared 

to auditory stimuli will be more sensitive to the effects of fatigue because, according to the 

Modality Appropriateness hypothesis (Welch & Warren, 1980), vision is accorded lower 

priority than audition in temporal discrimination tasks and fatigued individuals tend to focus 

less on the less preferable modality (Hockey, 1997, 2011). This hypothesis has been confirmed. 

Furthermore, in accordance with our expectations regarding cross-modal conflicts, we found 

that the interfering effect of auditory distractors on visual duration judgments increased over 

time but the interfering effect of visual distractors on auditory processing did not increase. 

These results suggest that as participants became fatigued, they focused more on the modality 

that better suited the temporal nature of the task (i.e. the auditory modality) leading to 

diminished performance on the visual trials. This interpretation gained further support from the 

analysis of cardiac measures, because both the decreasing trend of heart rate and the increasing 

trend of vagally-mediated HRV indices suggest that participants did not exert additional effort 

to maintain task performance, which would have manifested in increased heart rate but changed 

their strategy. The findings regarding HRV also provide further evidence for an increased 

parasympathetic activity under fatigue that was found in Study 2 as well. 

 Finally, the aim of the fourth study was to apply machine-learning algorithms trained 

on HRV data for fatigue detection and for the estimation of subjective fatigue following 

prolonged cognitive performance. When trained on task-related HRV data, classification 

models detected fatigue with an accuracy of approximately 75%, which is comparable with the 

performance of the models presented in previous studies (Laurent et al., 2013; Huang et al., 

2018). On the other hand, the algorithms trained on resting HRV data performed worse and 



39 
 

permutation tests indicated that the prediction accuracy of these models did not exceed chance 

level accuracy. For both classification problems (i.e. algorithms trained on task-related or 

resting HRV), the best performance was achieved by the support vector machine algorithm. For 

the estimation of change in subjective fatigue, we applied regularized regression models and 

random forest regression. Two resting HRV indices, RMSSD and SD2, the initial level of 

subjective fatigue and the duration of the task were entered as predictors into the models. The 

lasso regression and the elastic net regression models showed high levels of predictive accuracy 

that was confirmed by permutation tests as well.  
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