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1. Introduction, aims 

Chrysin (CHR) and quercetin (Q) are common flavonoid aglycones in nature, which 

occur in several plants, fruits, and vegetables. CHR and Q are also found in many dietary 

supplements in extremely high doses. Similarly to other flavonoids, the oral bioavailability 

of CHR and Q is low, due to their poor aqueous solubility and significant presystemic 

elimination. As a result of the biotransformation of CHR, mainly sulfate (chrysin-7-sulfate: 

C7S) and glucuronide (chrysin-7-glucuronide: C7G) conjugates are formed. During the 

metabolism of Q, methyl (isorhamnetin: IR, tamarixetin: TAM), sulfate (quercetin-3’-

sulfate: Q3’S), and glucuronide (quercetin-3-glucuronide: Q3G, isorhamnetin-3-

glucuronide: I3G) conjugates are produced. With a normal diet, the plasma concentrations 

of flavonoids and their conjugates are in the nanomolar range, while after their extremely 

high intake, the total flavonoid (the aglycone and its metabolites) plasma concentrations 

can reach even more μmol/L.  

Human serum albumin (HSA) is the most abundant plasma protein in the circulation. 

Besides its other functions, HSA is responsible for binding and transporting several drugs 

in the circulation, which can affect some of the pharmacokinetic properties of these 

compounds. The cytochrome P450 (CYP) enzymes are a superfamily of enzyme proteins, 

involved in the biotransformation of numerous drugs. Xanthine oxidase (XO) is a 

molybdo-flavoprotein, it catalyses the oxidation of hypoxanthine to xanthine, then 

xanthine to uric acid. Furthermore, the antitumor and immunosuppressant drug, 6-

mercaptopurine (6-MP) is also oxidized by XO into the inactive 6-thiouric acid.  

Based on previous studies, CHR and Q can interact with certain proteins (e.g. HSA, 

biotransformation enzymes, drug transporters) in the human organism. However, only 

limited data are available regarding the pharmacokinetic interactions of the metabolites, 

which typically reach much higher concentrations in circulation, than the parent 

compounds. Therefore, in our experiments we aimed to investigate the interactions of CHR 

and Q conjugates with HSA, CYP enzymes, and XO. 
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2. Methods 

Fluorescence spectroscopic measurements were carried out employing a Hitachi F-4500 

fluorimeter. Experiments were performed in PBS (phosphate-buffered saline; pH 7.4), at 

room temperature. Since the inner filter effects of the test compounds can decrease the 

fluorescence signal of albumin, the fluorescence spectra were corrected based on the 

absorbance of flavonoids. Flavonoid-albumin interactions were characterized using 

fluorescence quenching technique (albumin: 2 µM; flavonoids: 0-5 µM; λex = 295 nm, λem 

= 340 nm), after which the results were evaluated based on the graphical application of the 

Stern-Volmer equation and the Hyperquad2006 software. To investigate the displacing 

ability of flavonoids vs. warfarin (Sudlow’s Site I marker) and naproxen (Sudlow’s Site II 

marker), ultrafiltration experiments were performed in PBS, using centrifugal devices with 

30 kDa molecular weight cut-off value. The concentrations of warfarin and naproxen in 

the filtrate were analysed with HPLC-FLD and HPLC-UV, respectively. In addition, 

changes in the bound fraction of warfarin were also examined employing steady-state 

fluorescence spectroscopy and fluorescence anisotropy measurements. 

The effects of flavonoids and their conjugates on the different CYP enzymes (CYP2C9, 

2C19, 2D6, and 3A4) were tested with in vitro enzyme assays (using CypExpressTM human 

enzyme kits). All assays were performed with the FDA (Food and Drug Administration) 

recommended substrates (CYP2C9: diclofenac, CYP2C19: S-mephenytoin, CYP2D6: 

dextromethorphan, CYP3A4: testosterone) and positive controls (CYP2C9: 

sulfaphenazole, CYP2C19: ticlopidine, CYP2D6: quinidine, CYP3A4: ketoconazole). 

Furthermore, solvent controls (DMSO) were also employed in each experiment. After the 

incubations in a thermomixer, the reactions were stopped with methanol. Then the samples 

were centrifuged, and the concentrations of substrates and metabolites were analysed in 

the supernatants with HPLC-UV. 

In XO assays, the effects of the flavonoids and their conjugates were tested on the XO-

catalysed oxidation of 6-MP, xanthine, and hypoxanthine. All experiments were optimized 

using 5 μM substrate concentrations. Furthermore, in each assay, allopurinol (APU) was 

used as positive control. Nevertheless, the effects of its active metabolite (oxipurinol) were 

also tested. The substrates and the formed metabolites were quantified with HPLC-UV.  

Statistical analyses were performed employing one-way ANOVA (with Tukey’s post-

hoc) test using IBM SPSS Statistics software. To determine IC50 values, the metabolite 
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formation was plotted vs. inhibitor concentrations in a logarithmic scale, using sigmoidal 

fitting, then data were evaluated employing GraphPad Prism 8 software. 

 

 

3. Results and discussion 

3.1. Interactions of chrysin and its conjugates with serum albumin 

In concentration-dependent manner, CHR and its conjugates induced a significant 

decrease in the fluorescence emission signal of HSA (λex = 295 nm, λem = 340), which 

indicates the formation of flavonoid-albumin complexes. C7G caused weaker, while C7S 

produced stronger quenching effect on HSA compared to the parent compound. The 

fluorescence signal of HSA is mainly exerted by its tryptophan amino acid (TRP214), 

which is located in Sudlow’s Site I. Therefore, considering the strong quenching effects of 

CHR and its conjugates, it is reasonable to hypothesize that the binding site of flavonoids 

is located close to TRP214 (in the Site I or close to this region). Furthermore, the Stern-

Volmer constants and the binding constants of the flavonoid-albumin complexes showed 

good correlation. C7S formed the most stable complex with HSA, followed by CHR and 

C7G.  

Previous studies suggest that either Site I or Site II can be the possible binding site of 

CHR on HSA, therefore, in our ultrafiltration experiments the displacing ability of 

flavonoids were tested vs. warfarin (Site I marker) and naproxen (Site II marker). Since 

HSA is a macromolecule (66.5 kDa), albumin and albumin-bound compounds cannot pass 

through the filter units with a 30 kDa molecular weight cut-off value. Therefore, the 

increased concentrations of site markers in the filtrate indicates the displacement of 

warfarin/naproxen from HSA. C7S, at both concentrations applied, induced a remarkable 

increase in warfarin concentration in the filtrate, causing significantly higher displacement 

compared to CHR and C7G. Interestingly, the albumin-binding of naproxen was also 

affected by CHR and its conjugates, although their displacing effects were lower compared 

to the displacing ability of C7S vs. warfarin. Based on these findings, the high-affinity 

binding site of C7S is located in Site I. Furthermore, the effect of CHR and its conjugates 

on the albumin-binding of naproxen can be presumably explained by allosteric interaction. 

CHR and its conjugates caused a significant decrease in the emission signal of warfarin-

albumin complex (λex = 317 nm, λem = 379 nm). Since the emission intensity of the 

albumin-bound warfarin is approximately 20-fold higher compared to the free warfarin, 
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our results suggest the displacement of warfarin from HSA. Based on our results, the 

displacing ability of flavonoids shows good correlation with their binding affinity towards 

HSA (C7S > CHR > C7G). In addition, these findings were also supported by the 

fluorescence anisotropy measurements. Considering the above listed observations, C7S 

can strongly displace drugs from Site I region of HSA.  

 

3.2. Interactions of chrysin and quercetin conjugates with CYP enzymes 

C7G did not inhibit the CYP2C9-catalysed 4’-hydroxydiclofenac formation even at 6-

fold higher concentration (30 μM) vs. the substrate. In contrast, CHR (IC50 = 3.2 μM) and 

C7S (IC50 = 2.7 μM) proved to be 2.5- and 2-fold weaker inhibitors than the positive control 

sulfaphenazole (IC50 = 1.3 μM), respectively. Therefore, the sulfate conjugate showed even 

stronger inhibition on CYP2C9 compared to the parent compound. CHR also expressed 

strong inhibitory effect on CYP2C19, however, C7S and C7G proved to be weak 

inhibitors. CHR and its conjugates did not influence the CYP2D6-catalysed formation of 

dextrorphan. Although, CHR was a strong inhibitor of CYP3A4 in previous in vitro 

studies, it showed only weak inhibitory effect in our experiments, and its conjugates 

exerted only minor inhibition on the enzyme. Based on the scientific literature, after the 

oral administration of 400 mg single dose of CHR in healthy human volunteers, the peak 

plasma concentration of C7S (the dominant circulating metabolite of CHR) was 400-800 

nmol/L. However, it is very likely that higher doses of CHR can cause micromolar plasma 

concentrations (similarly to Q). Therefore, it can be hypothesized that high CHR intake 

may affect the CYP2C9 and/or CYP2C19-mediated biotransformation of some drugs. 

The results of the previous studies are often controversial regarding the inhibitory effect 

of Q on different CYP enzymes. In our experiments, Q and its conjugates showed only 

weak inhibition on CYP2C19 and CYP3A4 enzymes. Furthermore, Q and its conjugates 

did not influence CYP2D6. Therefore, it is unlikely that Q can significantly affect the CYP-

mediated biotransformation of drugs. Although, it is important to note that similarly to Q, 

all metabolites tested were significant inhibitors of CYP2C19 and CYP3A4 enzymes. 

Thus, it is possible that the very high intake of Q may slightly affect these enzymes. 

 

3.3. Interactions of chrysin and quercetin conjugates with xanthine oxidase enzyme 

In previous studies, CHR and Q proved to be strong inhibitors of the XO-catalysed 

oxidation of xanthine. However, some studies report the stronger, while others suggest the 
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weaker inhibitory effect of these flavonoids compared to the positive control, APU. In our 

current investigation, CHR, Q, and some Q conjugates (Q3’S, IR, and TAM) exerted 

similarly strong inhibitory effect on xanthine oxidation to that of APU. However, Q3G, 

I3G did not inhibit the enzyme, and C7G also showed only weak inhibition. 

Interestingly, CHR, Q, and some Q conjugates (Q3’S, IR, TAM) inhibited the oxidation 

of 6-MP 1.5- to 10-fold stronger than APU. Although, it is important to note that APU 

inhibited the oxidation of xanthine approximately 5-fold stronger compared to 6-MP 

oxidation, while the IC50 values of CHR, Q, Q3’S, IR, and TAM were similar with both 

substrates. CHR conjugates showed weaker inhibition on xanthine and 6-MP oxidation 

compared to the parent compound. However, Q3’S, IR, and TAM proved to be 

approximately 2- to 7-fold stronger inhibitors of 6-thiouric acid formation, than Q. Among 

the flavonoids tested, C7S was the only compound, which showed remarkably stronger 

inhibition on 6-MP oxidation, than uric acid formation. Furthermore, the metabolite 

formation increased in the presence of higher substrate concentrations, suggesting that 

flavonoids are reversible inhibitors of XO. 

Some authors suggest that flavonoids may be useful in the treatment of hyperuricemia, 

based on their strong in vitro inhibitory effects on XO. However, the results of animal 

experiments are controversial, and in human studies even high Q doses (2000 mg/day) did 

not influence the serum uric acid levels. After oral administration of 400 mg single dose 

of CHR, C7S reached approximately 400-800 nmol/L peak plasma concentrations, while 

after the repeated daily oral administration of Q (1000 mg/day for 12 weeks), the peak 

plasma concentrations of total Q (Q and its conjugates) are in the low micromolar range. 

In contrast, the peak plasma concentrations of APU and oxipurinol are approximately 35-

40 μmol/L together (following a single, 200 mg oral dose of APU). However, larger doses 

can cause even higher concentrations. Thus, the in vitro inhibitory effects of flavonoids 

(and some of their conjugates) on xanthine oxidation are similar to that of APU, while their 

peak plasma concentrations are much lower compared to APU and oxipurinol. These 

findings may explain the weak in vivo effects of flavonoids regarding the treatment of 

hyperuricemia. 

Since APU inhibits the XO-catalysed elimination of 6-MP, the simultaneous 

administration of APU with 6-MP can result in toxic consequences. APU and oxipurinol 

reach much higher concentrations in the circulation (and likely in some tissues as well), 

than flavonoids, however, some Q metabolites (Q3'S, IR, and TAM) exert considerably 

stronger inhibition on 6-MP oxidation, than APU. Based on previous human studies, Q3’S 
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and I3G are the dominant metabolites of Q in the circulation. Furthermore, the high level 

of I3G in the circulation indicates the significant intracellular formation of IR. Considering 

these data, the extremely high intake of Q (one or more grams daily intake via dietary 

supplements) may influence the elimination of 6-MP. 

 

 

4. Summary 

Based on our results, not only the parent compounds, but some of their conjugates can 

also interact with certain proteins. Moreover, the effects of some conjugates even exceed 

that of the parent compounds. Although, additional in vivo experiments should be 

performed to confirm the relevance of the listed results, the simultaneous administration 

of high CHR- and/or Q-containing dietary supplements with drugs (especially drugs with 

narrow therapeutic window) needs to be carefully considered. 
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5. New findings 

1. Not only CHR, but its conjugates can interact with HSA, we determined the binding 

constants of the formed complexes. CHR and its conjugates likely occupy Site I on 

HSA. 

 

2. C7S binds with higher affinity to HSA than CHR, and it also showed stronger 

displacing ability vs. the Site I marker warfarin. 

 

3. C7G did not or only slightly inhibited the CYP enzymes tested, however, C7S 

proved to be a potent inhibitor of CYP2C9. 

 

4. Each Q conjugate tested (Q3’S, IR, Q3G, and I3G) produced similar inhibitory effect 

on CYP2C19 and CYP3A4 enzymes to that of Q. 

 

5. Q3G, I3G, and C7G did not or only weakly inhibited the XO enzyme. Some Q 

conjugates (Q3’S, IR, and TAM) showed even stronger effects compared to the 

parent compound. 

 

6. CHR, Q, Q3’S, IR, and TAM produced similarly strong inhibitory effects on 

xanthine and 6-MP oxidation. APU proved to be a stronger inhibitor of xanthine 

oxidation, while C7S inhibited 6-MP oxidation with higher potency. 
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