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Abstract 

 

Fully glazed facades have forced up the thermal loads in modern, contemporary office buildings, 

resulting in a considerable amount of cooling and heating demand. Moreover, occupancy time is 

increasing in office spaces, while the improvement of well-being and level of productivity is 

fundamentally based on the indoor comfort environment. This study aims to test a new, climate-

responsive building envelope and related space organization concept. According to the proposed 

`introverted space organization with closed facade` (ISOCF) concept, the windows are 

abandoned completely from the façade and different internal courtyards are simultaneously 

integrated to ensure passive lighting and ventilation. As an effect, the internal space organization 

requires contiguous open spaces, instead of standard cellular office partitions. To evaluate the 

impact of the ISOCF strategy, thermal, and visual comfort, as well as the energy performance of 

various building versions, were analyzed. In a dynamic thermal building simulation framework, 

a reference office building is modeled with three window-wall ratios (WWR) scenarios and three 

completely new ISOCF design variations in moderate climate conditions. The differences 

between energy and comfort performance in all models were analyzed to evaluate the positive 

and negative impacts and interrelations. The results indicated that the ISOCF models provide a 

significant improvement in heating and total energy demand, whereas heating dominates 80% of 

the total energy need. Thermal (PMV) and visual comfort were improved as well, while the 

lighting and cooling energy consumption suffered marginally due to WWR enlargement. The 

study serves as a fundamental basis for the development of a comprehensive future ISOCF 

multistory office building typology and design guidelines. 

 

Keywords: closed facade; passive strategy; thermal and visual comfort; energy performance; 

thermal simulation; multistory office building 
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1. INTRODUCTION 

1.1. Background of research  

The 21st century is characterized by climatic and demographic alterations. More specifically, 

the latest detailed announcement on climate change (Houghton, et al., 1990) announcement 

by the Intergovernmental Panel on Climate Change (IPCC) exposed the historical peak in 

atmospheric concentrations of carbon dioxide, methane, and nitrous oxide (Pachauri, et al., 

2014). 

The predicted climatic changes will have significant implications for building planning in 

the future. The population explosion in comparatively young states will demand extensive 

construction projects, in which the standard European concepts will be insufficient to meet. 

The architecture of the future will need to be based on detailed climatic analysis, taking into 

account the impact of solar radiation, temperature, humidity, and wind on buildings. Only 

close attention to the climate and the local architectural tradition can produce fully adequate 

buildings and optimal energy concepts (Petra, et al., 2012). In the same topic, in Europe, the 

highest energy saving and energy efficiency potential are possible in the building sector, in 

other words, is responsible for the largest share of the total EU final energy consumption 

(42%) and 35% of CO2 emissions are caused by building sector, to tackle this issue 

European Union (EU) and particularly EU directive on the energy performance of buildings 

implemented national regulations in member states construction regulations (Cellura, et al., 

2013). 

According to the state of the art in research, office and commercial buildings is one of the 

highest energy consumers in comparison to the other building types, which represents an 

annual energy use between 100 and 1000 kWh/m2 per annum. This will also depend on the 

depending on the type of office equipment and its geographical location. (Santamouris & 

Dascalaki, 2002). 

Although for offices in the European Region, it is about 306 kWh/m2 per annum. 

Additionally, the mean electric index is 150 kWh/m2 per annum and the mean fuel index 

158 kWh/m2 per annum (Lagoudi, et al., 1996) Koschenz et al. discussed how fully glazed 

facades have forced up the internal and external thermal loads in modern office 
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contemporary buildings. This resulted in a considerable amount of cooling demand for such 

structures (Koschenz & Beat, 2004). 

Researches have also shown that due to the increased amount of people working in the 

informatics technology (IT) tertiary sector in the last decade, cooling loads have become 

more in demand, especially with buildings that have the most amount of solar gain in the 

facade (Jenkins, et al., 2008) (Zoltán, 2014). 

However, the study shows nonresidential building and agriculture are among the fastest-

growing energy demand sectors and is projected to be 26% higher in 2030 than it was in 

2005, compared to only 12% higher for residential buildings. (Capros, et al. 2007) 

 On another hand, it is evident by increasing the time people are spending at the office 

spaces and requirement of standard comfort needed to help to improve the well-being and 

increased levels of productivity of the workers, and we need to meet the shortcomings to 

optimize office buildings and analysis the new possible innovation methods for future office 

buildings.   

 

1.2. Literature Review of Facade Optimization  

1.2.1. Window Properties 

Studies have shown that facade optimization can provide energy efficiency while 

maintaining a suitable internal comfort level. In this context, the study demonstrates how 

building facade window U-values affect indoor thermal comfort. Windows should be 

optimized (double or triple glazing) because these can cause high heating and cooling 

energy consumption (Thalfeldt, et al., 2013). 

In another research, Takeshi et al. also argue that to reduce annual heat demand, windows U 

and V-values must be considered in solar reflectance of a building (Ihara, et al., 2015). 

As mentioned, optimizing building design for thermal comfort can be attained by proper 

treatment of building envelope design.  Besides, both the U-value and Solar Heat Gain 

Coefficient (SHGC) of the glazing should be taken into consideration (Abed, et al., 2019). 
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1.2.2. Window Wall Ratio (WWR)  

In another investigation, the various building facade geometry parameters can affect 

building energy consumption in an office building, thus reducing energy savings. Proper use 

of building and fenestration geometry parameters combined with other fenestration elements 

will prominently minimize building energy use and therefore improve building performance 

(Irina, et al., 2013). 

Additionally, for all the orientations, the locations will determine the optimal WWR value 

that is required for heating and cooling. Focusing on just one of the total energy balance is 

not adequate and may lead to erroneous assumptions (Francesco, 2016). 

Various investigations on the impact of the window to wall ratio have shown that with the 

increase of WWR, the heating and lighting energy consumption reduced, whereas the 

cooling energy consumption is amplified. This is because the exposed window areas 

allowed more daylight that was transmitted inside the building, which resulted in increased 

heating and lighting of the interior space (Amirta & Subhasis, 2018) (Samah, et al., 2017).  

A study by Goia and Francesco argued that warm-dominated climates are an excellent 

choice for those where the WWR value is more critical. To note, the WWR value that 

exceeds the optimal range leads to the highest increase in energy use. Thus, it is critical to 

have the precise WWR in the north-, east- and west-facing facades in a warm climate 

because this can cause a higher increase in the total energy use. Nevertheless, in colder 

climates, the East and west-facing facades are those where a non-optimal transparent 

percentage causes the lowest increase in energy use. Of course, the investigation showed 

that more transparent building envelopes are suggested moving for colder climates 

(Francesco, 2016). Therefore, increasing window size likewise increases energy 

consumption, especially in cold conditions. However, adding fixed shading, especially with 

a high glazing g-value, can compensate for energy loss, although window shape or 

positioning on the wall had a minimal direct effect (Tapio, et al., 2019). 
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1.2.3. Natural Lighting 

As mentioned earlier the potential of energy savings by integrating the daylighting is high 

(Bodart & André, 2002). 

Different studies have indicated that through an improved design use of natural light, energy 

consumption can be kept at a minimum (Gago, et al., 2015). 

The size of the window plays an essential role in the case of thermal comfort and energy 

performance of the buildings as in the same context study demonstrates that large window 

areas can ensure a considerable saving of lighting energy via daylighting. At the same time, 

a large window area also lets in a large amount of unwanted solar radiation. Thus, cooling 

prevailing climates employing several popular energy-efficient designs on the window can 

reduce a large amount of solar heat gain.  

The facade orientation and the climate condition of the building is an important variable to 

consider. Orientation and geography location can have a substantial influence on the thermal 

and daylighting performance of window designs. In cooling dominant climates, all the 

window designs perform better on the east and west orientations while the performance is 

reduced on the north side. Of course in locations where the latitudes are low, the difference 

among orientations is quite evident because as the latitude rises, the difference of these 

temperatures becomes insignificant (Huang, et al., 2014) (Nielsen, et al., 2011). 

In a similar study involving the daylight target without overheating in south-oriented rooms, 

the choice of g-value from the perspective of space heating demand corresponds well with 

the g-value to prevent overheating. The study also pointed out, in north-oriented rooms, high 

g-values are recommended to reduce space heating demand (Vanhoutteghem, et al., 2015). 

Overall, the indoor daylight performance is influenced by several factors like the geographic 

location, climate, light availability, geometry, window properties, window-to-wall ratio, and 

orientations (Ghisi & John, 2005) (Ran, et al., 2009) (Jae-Wook, et al., 2013) (Krüger & 

Adriano, 2008) (Geun, et al., 2012) (Geun, et al., 2012). 
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1.2.4. Faced Louver and shading 

A similar study also showed that, depending on the distance from the facade, the Venetian 

blind position could affect the contribution of daylight in an office by between 10 and 60 

percent. The reduction of energy use and glare has the potential to significantly improve 

thermal comfort (Bessoudo, et al., 2010). 

Another study illustrates the effect of louver shading devices on building energy 

requirements may depend on several factors. For example, the location, louver inclination 

angle, and window area have special significance to improve thermal comfort conditions. In 

south-facing facades, the louver system can be optimized to provide suitable shading in 

summer while allowing solar incidence during the winter period. Parameters like the number 

of louvers, the spacing between louvers, position above the window, and louver area, affect 

thermal comfort (Palmero-, et al., 2010). 

A study by Yao indicates that flexible solar shade not only improves indoor thermal comfort 

in summer but also reduces extremely uncomfortable weather (Yao, 2014). Another study 

by Manzan showed how the impact of shading devices on buildings' energy must be taken 

into consideration, including the electrical energy absorbed by the lighting system since this 

load affects both heating and cooling loads  (Manzan, 2014). 

Further analyses have also shown that shading devices on the south-oriented facades 

contribute to the reduction of the total energy demand in buildings with glazed envelope 

(Krstić-, et al., 2019). In the case of movable shading and during winter, there is a 

possibility to use as much as daylight, which able to decrease the amount of heating while 

we do not have this feature in the case of fixed shading type. The disadvantage of fixed 

shading tools appears mostly in cold climates where heating is the main issue, and it has a 

negative impact in the case of the lighting and heating electrical energy consumption.  

Finally, it was also discovered that the louver’s reflectivity is the crucial influence that 

affects the blind’s general performance. The higher the reflectivity, the better the blind 

performs (Huang, et al., 2014). 
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1.2.5. Double Skin Facade (DSF) 

An alternative possible design solution could be the addition of a double-skin facade. If 

designed correctly, it could not only support the passive heating strategy in the cold period 

of the year while enhancing natural ventilation (NV) in the building (Haase & Amato, 

2009). 

It must be noted that Double Skin Facade (DSF) is a purely stack effect and is effective 

enough to extract solar heat gain inside the facade cavity to retain lower internal surface 

temperature. However, the increase of air change by mechanical fan assists the extraction 

process; nonetheless, the magnitude of energy-saving is negligible due to its installation and 

maintenance cost. The external surface temperature of the double glazed facade is very high 

because of the characteristic of heat absorption glass (Wong, et al., 2005). 

In this framework, using an algorithm based on the energy content of the return air and the 

recuperation of the air returning from the airflow and supply window showed to be the most 

promising strategies to lower the heating demand. In general, having control over airflow, is 

an effective way to decrease the cooling demand for all facade, on the other hand not the 

most effective strategy for heating demand (Saelens, et al., 2008). 

The studies demonstrate that DSF can have variable results due to climate conditions. The 

connection to this study examines the effect of climate facade in a moderate climate. 

However, in the case of closed cavities, the buffer effect is moderate with the overcast sky 

the south orientations the cavity has a risk of overheating even on the coldest days, which 

can be compensated with controllable openings. Besides, the heat loads are so high that 

shading is necessary even on cold, but sunny days (Adrienn & András, 2015). 

Another study demonstrates that DSF can lead to overheating problems due to internal 

heating gains. The results indicate that the main concern is the reduction of the cooling load. 

Consequently, reducing air temperature inside the air gap is a critical aspect that can be 

attained (Alberto, et al., 2017). 

Nevertheless, the study has highlighted the complexity of applying DSF technology to 

buildings because the outcomes necessitate not only precise design details but also the 
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applicable operation of the systems like controlling the opening and closure of windows. 

(Barbosa & Kenneth, 2016). 

Another study recommends that control strategies for the cavities of double skin envelope 

systems must take into account outdoor air temperature to increase energy savings. Natural 

ventilation obtainable from the cavity to the indoor space is at suitable air temperatures 

when the sky ratio is partly cloudy (Yu, et al., 2011). 

In connection to commercial and public buildings, many of the office buildings have no 

atrium or chimney to benefit from any stack ventilation. However, then again, natural 

ventilation can be systematized using only the front windows both by single-sided 

ventilation or by cross-ventilation (Elisabeth, et al., 2004). 

In a similar study, the possibility of using a ventilation shaft capable of enhancing NV could 

be a collective solution together with ventilated windows to decrease the entry of solar heat 

gain into the building, thereby reducing peak cooling load (Haase & Amato, 2009). 

Thus, the amalgamation of natural ventilation in office buildings would cause the lowering 

of construction cost as a result of downsizing heating, ventilation, and air conditioning 

(HVAC) systems (Zheming, et al., 2016). 

Although the DSF is an effective way to improve the energy consumption performance and 

thermal comfort of the buildings, there is a significant impact of multiple factors such as 

climate, building properties, occupancy, and operation profiles on the performance of 

natural ventilation. These strategic natural ventilation designs should contemplate not only 

the climatic conditions but also various issues such as the building's thermal characteristics, 

the ventilation type, and profile and internal gains (Runming, et al., 2009). 

It must be noted that Double skin facades are already a common feature of the architectural 

competitions in Europe, but then again there are still relatively few buildings in which they 

have been recognized (Zöllner, et al., 2002) (Zalewski, et al., 2002) (Elisabeth & André, 

2004). 

Finally, in the context of DSF, it is sometimes challenging to apply the strategy of natural 

daytime ventilation because the extraction through the double skin has been revealed to be 

delicate and is a function of the wind direction of the building. The lower double skin 

https://www.sciencedirect.com/topics/engineering/initial-construction-cost
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opening also has an impact on the direction of airflow and natural cross ventilation is almost 

difficult when the double skin was on the windward side (Elisabeth & André, 2007) 

(Elisabeth, et al., 2004). 

 

1.2.6. Natural Ventilation  

Natural Ventilation has been acknowledged as one of the most promising passive strategies 

to reduce building energy consumption by HVAC systems. It was evident that NV can add 

to the decrease in building energy (Wang & Ali, 2009). 

Furthermore, strategic NV designs should reflect not only the climatic conditions but also 

multiple factors such as the building’s thermal characteristics, the ventilation type, and 

profile internal gains (Runming, et al., 2009). 

Consequently, ambient air quality and size must be taken into consideration when evaluating 

the reality of NV’s total energy savings potential. A study by Tong demonstrates how the 

utilization of natural ventilation creates tremendous energy-saving potential, thus reducing 

the emissions associated with coal-fired power generation, which results in lowering initial 

construction costs as a result of downsizing HVAC systems (Zheming, et al., 2016). 

In the case of office buildings, lots of these structures have no atriums to benefit from any 

stack ventilation. On the other hand, natural ventilation can be structured with only frontage 

windows either by single-sided ventilation or by cross ventilation. When the wind is not 

favorable single-sided ventilation is can be useful. Windows have to be designed to ensure 

sufficient air ventilation rate when the outdoor wind is unfavorable (Elisabeth, et al., 2004). 

Natural ventilation not only helps to improve the energy performance of the buildings but, at 

the same time, is one of the most effective solutions to decrease the level of CO2 

concentration and help to improve the indoor air quality (IAQ). In a similar study, 

ventilation plays a significant role in improving indoor air quality by decreasing the CO2 

concentration levels. The research also illustrates that natural ventilation cannot 

counterbalance a poorly controlled heating system. This leads to unsatisfactorily high indoor 

air temperatures, which can lead to unsatisfactory thermal comfort conditions 

(Papadopoulos & Avgelis, 2003). 
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1.2.7. Building Integrated PV on the facade (BIPV) 

In this context, the replacement of the windows with innovation where both visibility and 

energy conversion efficiency is taken into consideration can be a solution for a better 

energy-efficient envelope, as the study made a parametric investigated on the application of 

the see-through solar cell transmittance on wall window ration (WWR) of office buildings. 

The study by Miyazaki et al. shows that the combination of the solar cell transmittance of 

40% and WWR of 50% achieved the minimum primary energy for all window orientation. 

The result is an energy savings of 54% was achieved compared to the average model 

(Miyazaki, et al., 2005). 

Numerous studies have also proven that the building integrated photovoltaic (BIPV) is valid 

in terms of the overall energy performance of the buildings, particularly at commercial 

buildings. In the same study, the fabricated solar cells onto the window of a typical mid-

sized office building in various climate conditions, and as a result, they demonstrate BIPV 

has advantages to reduce the consumption of annual HVAC system energy in most climate 

conditions (Young, et al., 2014). 

To improve the output of buildings, passive strategies like energy-efficient facades can be 

used. Improving facade elements' energy performance is crucial since they are the interface 

between the indoor and outdoor environments. The global program on reducing fossil fuel 

consumption has resulted in the push for accepting renewable technologies such as solar 

photovoltaic to generate clean energy. Building-integrated photovoltaic (BIPV) windows are 

regarded as one of the emerging glazing technologies for building facade elements (Chow, 

et al., 2010) (AbuBakr, et al., 2008) (Pho & Nalanie, 2014). 

In the same context, the active building envelope is requisite to satisfy multiple (and 

sometimes opposed) requirements such as comply with solar shading in summer to avoid 

overheating, provide solar gains and thermal insulation in winter to reduce heat loads, 

supply daylight utilization to decrease lighting loads, allow the outside view to the 

occupants and give maximum electrical output (Olivieri, et al., 2014). 

https://www.sciencedirect.com/topics/engineering/thermal-insulation
https://www.sciencedirect.com/topics/engineering/thermal-loads
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However, there are still some issues that the architectures should take into account mostly in 

connection to the office buildings and the situation of double skin facades if they aim to use 

the BIPV system for their building envelope. In connection to this, a study demonstrates that 

BIPV, photovoltaic (PV) panels are incorporated within building components, such as 

envelopes, roofs, or shading devices. Double-skin facades, mostly combined with integrated 

PV panels, have become an essential element in the construction of buildings in the last 15 

years (Rafaela & Soteris, 2016). 

In the same context, the study demonstrated that an air gap placed behind PV modules is 

essential to precede the breakdown of them. The gap can restrict the temperature rise of PV 

modules, which can be important mostly in the summer. Another finding of this study 

presents the importance of the position of the outlet from the air gap, which should be 

located in a region of wind-induced negative pressure to the enhancement of the natural 

ventilation within a building with a ventilated PV facade (Geun, et al., 2007). 

The study shows the combination of the solar cell transmittance of 40% and WWR of 50% 

achieved the smallest amount of primary energy consumption in the case of uniform 

transmittance for all window orientation. The energy-saving of 54% was reached compared 

to the standard model (Miyazaki, et al., 2005). 

 

1.3. Literature Review of Vernacular Architecture 

Passive environmental controls like improvements in design, use of proper building 

substance, and inclusion of passive solar features of vernacular architecture can be used in 

the construction of modern buildings to ameliorate indoor thermal comfort conditions 

(Chandel, et al., 2016). 

Using courtyards and atrium in vernacular architecture is inspiring to solve the cooling 

problem, and various studies are proven which this strategy was and is useful to overcome 

the cooling problem.  

There are several types of architectural zones which modifies the outdoor and indoor 

climatic conditions without mechanical control systems. These zones are called transitional 
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spaces that can be closed, such as an atrium or semi-closed like balcony and porch or open 

such as courtyard and patio (Mohammad, et al., 2012). 

In the middle of Iran, where generally cooling down the air is critical, the method to defeat 

the problem, which was utilized for centuries, was a closed cubic form with a courtyard in 

the center of the building had been selected. Planting trees generate shadow and moisture 

softens the air of the building. Moreover, a pool house or fountain aids the cooling of the 

enclosed air through the evaporation of water. Consequently, the building has a free plan 

around the courtyard, and the windows and doors are facing it, thus the general form of the 

building is introverted (Hadi, 2014) (Figure 1). 

 

 

Figure 1 - Central courtyard and introversion architecture in a warm and dry climate (Pirnia, 2005) 

 

The intensity of heat and dampness in the building can be decreased with the help of the 

yard, which functions as a passive system in the center of the building, it can easily make 

better use of the wind flow. It takes advantage of the spaces with opening windows toward 

the yard and also toward the alleys, which can create transverse ventilation in the building 

(Parinaz, et al., 2018) (Figure 2). 

 

https://www.tandfonline.com/doi/full/10.1016/j.hbrcj.2016.08.001#F0010
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Figure 2 - The role of courtyards in making wind drafts and shadows-section from the central 

courtyard-Najafi house (Parinaz, et al., 2018) 

 

The study discovered that the incorporated usage of a courtyard and atrium could save 

energy in all climates if a courtyard strategy is adopted during the hot seasons, and an atrium 

architectural mode is used in winter. Using the passive characteristics of courtyards, atria, 

and, most prominently, their integrated usage influences energy consumption (Tofigh & 

Begum, 2016) (Swasti & Abir, 2014). 

The courtyard is a practical design strategy for a building from the perspective of climatic 

and cost-benefit analyses. These strategies can be applied to single-story or multi-story 

buildings. Nevertheless, the courtyard requires a controlled opening to remain its 

temperature low enough to cool down the indoors through ventilation (Nasser & Khalid, 

2001). 

 

1.3.1. Courtyards  

Different definitions exist for the courtyard. As defined by the Oxford Dictionary, the 

courtyard is “an unroofed area that is completely or partially enclosed by walls or buildings, 

typically one forming part of a castle or large house”. In the past, it was used as a 

conventional element, particularly in designing houses. In recent times, it is considered as 

one of the passive design methods to moderate climatic conditions (Heidari, 2000). 

One of the chief reasons for using the courtyard for more than 5000 years is its ecological 

effects. In different climates, it can be utilized as a source of day-lighting for adjacent rooms 

in in-depth plans. Another advantage of the courtyard in cold seasons is defending the parent 
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building from rough conditions of weather such as winds (Upadhyay, 2008). During winter, 

it can raise direct solar heat gain in the rooms, which have a glazing zone on the courtyard. 

Its achievement during hot seasons is different. If deciduous trees are planted in the yard, it 

can be a solar protector. Besides, natural ventilation during summer occurs through the 

courtyard. During the daytime, the air in the yard is getting warmer and rises that pulls out 

the internal warm air through the openings. Therefore, it makes an air movement inside the 

adjoining building. During nights the procedure is reverse in which the cold ambient air 

sinks into the courtyard and enters into the interior spaces through the low-level openings. 

This creates airflows in the rooms, and the cooled air becomes warm, and then it lifts and 

leaves the rooms through the high-level openings (Kamyar, et al., 2010) (Heidari, 2000) 

(Figure 3). 

 

 

Figure 3 - The courtyard’s effect on ventilation during days and nights (Ahmed, 2013) 

 

1.3.2. Atrium 

The definition of the Oxford dictionary for atrium is “a central hall in a modern building, 

typically rising through several stories and having a glazed roof”. It can also be said that 

covering a courtyard with a glass roof makes an atrium (Swinal, 2011) (Mohammad, et al., 

2012). 
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These days, the atrium is a popular construction style that is used at a high frequency in 

different regions, mainly in high latitudes, since it is an extraordinary building element 

which can be used for multi-purposes as a semi-outdoor space in buildings (Mabb, 2001) 

(Hung, 2003). 

It is widely applicable, and it can be used as entry, lobby, and circulation spaces in 

buildings. Educational and museum buildings are good examples for that, in which atriums 

are shared as a gathering place. Additional application of atrium is for the extension, 

conservation, and refurbishing purposes. It allows architects and conservationists to 

reconstruct historical buildings by making a connection between new and existing buildings, 

and it also ensures natural lighting and protects the historical characteristics of the buildings. 

Besides, occasionally atrium is used as a beautiful and iconic space in particular in offices, 

hotels, and recreational buildings to convey power and prosperity. Also, it can be a city 

connector to empower transition between public and private areas (Swinal, 2011) (Goulding, 

et al., 1993) (Hung, 2003). 

From an environmental point of view, the atrium as a glazed enclosed space can generally 

supply day-lighting and thermal comfort, which diminishes energy consumption of the 

parent building. In huge buildings, it can be an essential resource for natural lighting, which 

replaces artificial lighting. That is why the requisite lighting and cooling energy (to 

eliminate the produced heat from the lights) decreases. Furthermore, compared to the 

windows on exterior walls, a significant area of glazing can be used open to the atrium, for it 

defends the windows from heat loss and severe weather conditions (Goulding, et al., 1993) 

(Nick & Koen, 2005) (John, et al., 1992). 

The achievement of the atrium changes in different climates and seasons. In cold seasons, 

the indoor air temperature is frequently higher than the outdoor temperature due to the solar 

heat gain still in unheated atriums. This raise in temperature depends on the proportion of 

the glazing area to the parent building wall area and thermal transmittance of the walls. 

Moreover, the glazing inclination and orientation influence solar heat increase, and then, 

indoor air temperature. The significant benefits of this temperature rise are reducing heat 

loss throughout the parent building walls and providing pre-heated ventilation. As a result, 

the heating energy demand of the parent building decreases. In summers, to prevent 



 

15 
 

overheating is the major problem that should be solved. Habitually, the indoor air 

temperature in hot seasons is superior to ambient temperature. The first step to prevent the 

indoor air temperature from rising is shading. Different shading tools exist in atriums. They 

can be fixed, which reduces solar radiation during the whole years, or can be moveable to 

get rid of solar radiation only in overheating periods. They also reduce glare inside the 

atrium and the rooms. The second step is ensuring natural ventilation. It can be performed 

by creating a sufficient area of openings in suitable places principally in upper and lower 

levels of the atrium to present cross and displacement ventilation. Besides, using thermal 

mass material on inside surfaces can absorb heating energy during the day and release it at 

night when air temperature decreases. As well, planting and fountains can temperate the 

indoor environment for all year (Figure 4). 

 

  

Figure 4 - Environmental benefits of an atrium (Nick & Koen, 2005) 

 

1.4. Literature Review of Future office building workspaces  

The changes in requirements for office buildings that have arisen in the last two decades are 

the result of innovative conceptions relating to the organization of office work associated 

with the more extensive use of electronic media and data processing. As a consequence of 
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this, new functional solutions modified to new organizational requirements have come up 

(Wacław & Elzbieta, 2007). 

The hierarchical structure of management, which was obligatory till the end of the 1980s, 

had its origin in the theory of rational bureaucratic work drawn up by Max Weber at the turn 

of the 20th century (Grudzewski & Hejduk, 2001).  

The main assumptions confirming this theory are a transparent, multi-level hierarchy and a 

formal procedure of decisions. Based on this theory, offices were characterized by the 

organization of workplaces, facilitating the process of documents in order and clearness of 

hierarchical position, expressing the status and significance of individual positions. The 

significant characteristic of these solutions was a large number of office rooms required for 

low- and medium-level management staff to offer adequate control and supervision of 

clerical workers. During the last three decades of the 20th century, the rational Taylor’s 

model inchoate to provide a way to new trends in the area of company management – total 

quality management (TQM) and business process reengineering (BPM) – which forwarded 

the idea of diminishing the number of management levels. These concepts, mutually with 

new IT technologies, caused a fundamental change in the organization of office work. 

Hierarchical organizational structures began to create rise to new structures based on team 

working (Wacław & Elzbieta, 2007). 

On the other hand, mobile phones, PCs, and wireless networks provided flexible work, and 

the quick appearance of project work in knowledge-based organizations gave new and more 

dynamic ways of working. More powerful computers, the knowledge-intensive and 

multidisciplinary environment of office work, gave many design solutions for open-plan 

offices. After the foreword of alternative offices, several typologies of workplace design 

were elaborated (Franklin, 1999) (Franklin & William, 2001) (Christina & Dannielson, 

2009) (Paul, et al., 1999). 

From the viewpoint of business value creation, the question is how open and flexible 

workspace solutions improve value creation in organizations. An assessment of Telenor’s 

new office building in the Oslo area, based on a study combined with interviews and 

document studies, verifies that a more significant part of the 2,500 employees who 

participated in the survey, perceived that their new open and flexible workplace combined 
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with a new information and communication technology (ICT) platform and a more flexible, 

project and team-based work style, superior knowledge distribution, learning, co-operation 

and modernization (Arge & Kikkan, 2004). 

Nowadays most preferential model of work environment is the activity-based office, where 

fewer individual workspaces are obtainable, but there is more space devoted to interactive 

uses. Space is optimized for all types of teamwork, starting from substantial formal meetings 

to chance interactions, as two people pass in the corridor. New work environments offer not 

just spaces for meeting and interacting with each other but also tranquility and intimacy for 

focused work and research. A basic design is shown in (Zoltán, 2014) (Figure 5). 

 

 

Figure 5 - Activity Based Office (Zoltán, 2014) 
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Modern, future-oriented office design must integrate sustainability besides mobility and 

flexibility. Although the focal point is on work efficiency, there is equal attention to space 

effectiveness. The consequences of these trends eventuate in a workplace where a shared 

work environment is a standard. As an example Figure 6 and Figure 7 show an office 

building built in 1971, bulldozed in 2004. However, the structure and yet the spaces would 

have allowed a modern office conception and design (Zoltán, 2014) (André, et al., 2011). 

 

Figure 6 - Basic floor plan (year of construction 1971- demolished 2004) (Zoltán, 2014) 

 

 

Figure 7 - How an activity-based concept could have worked (Zoltán, 2014) 

 

In the same context, the research pointed out that Open Plan Offices Design (OPOD) has its 

own positive and negative effects. Using the fishbone cause-and-effect method, the study 

came up with the OPOD structures and sub-features affecting the staff's health and well-
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being (Figure 8) organizes. The OPOD features and sub-features are classified into ‘Positive 

Features’ and ‘Negative Features’ (Arezou, et al., 2014). 

 

Figure 8 - Fishbone cause and effect diagram on OPOD features affecting the health and well-being 

status of staff in office buildings - Positive and Negative effective OPOD Features (Arezou, et al., 

2014) 

 

Conclusion of the literature review 

Office buildings are responsible for significant energy demand for the buildings sector by 

considering the time and period of usage. In general, as the studies demonstrated, a climate-

responsive building envelope design should assist the design strategies and try to exploit 

climatic conditions (Haase & Amato, 2009). 

Based on a comprehensive literature and scientific paper research, a wide range of different 

climate-responsive façade optimization strategies is investigated, such as, window and 

opening properties, window wall ratio (WWR), natural lighting (daylighting), shadings, 

double skin façade (DSF), natural ventilation and building integrated PV on façade (BIPV). 

At the same time, it is apparent that all studies deal with only one specific part-system 

of the building, without considering the most fundamental design element, the space 

organization based climate-responsive concept, including innovative corresponding 

envelope strategy. So far, the climate responsible façade and space organization had not 

been studied and analyzed with the help of energy simulation There is only a few research 

has found on trying comprehensive architectural solutions, (i.e. complex space organization 
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strategies and their energy and comfort performance) to reduce the office buildings' energy 

consumption, increasing the optimum usage of space, while maintaining the necessary level 

of comfort. 

Besides, vernacular architecture with courtyards, where the building is totally closed from 

outside and open internally through the courtyards, shows a promising approach for future 

office building optimization as well, working centuries before with high- efficiency rate 

(low tech systems).  

Furthermore, analysis of the most up to date office space design concepts and strategies 

leads to the conclusion that the open space concept plays a key role in future flexibility and 

development of office space optimization.  

Therefore, it is apparent that we need to meet the above-mentioned shortcomings are based 

firstly on the lack of education of architects in the topic of building physics, and secondly, 

engineering research focusses only on part-systems, since they do not become familiar with 

the building as a complex space system. 

 

1.5. Research goals  

To search for solutions for the ‘literature analysis’ shortcomings, a new “Introverted Climate 

Concept with Closed Facade” (ISOCF) for office buildings under a moderate climate is 

proposed. Based on a comprehensive combination of vernacular low tech architectural 

strategies, climate-responsive façade, and space arrangement, as well as the new trend of 

open and more flexible working space, a completely new office building design strategy is 

developed in the following dissertation. The research aims to analyze the potential of 

climate zoning based space organization and to build envelope concepts regarding their 

energy performance, as well as thermal and visual comfort.  

For the investigations and implemented office and laboratory building was chosen as a 

reference, possessing generic net floor space, geometry, structures, and services systems. In 

this way, inductive insights and finings can be concluded for most of the office building 

substance in moderate climate circumstances.      



 

21 
 

The objective of the following research is to tackle the issue of office building energy 

performance with the help of the ISOCF. The study aims to investigate the heuristic 

architecture approach, by analyzing the potential of energy-saving and comfort 

improvement in various versions of solution concepts with a different number of courtyards, 

possessing the same size and settings. The developed test concepts will be compared with 

the original reference cases to demonstrate the change in the level of energy performance, 

thermal and visual comfort, and space efficiency. Space efficiency is representing the 

increasing number of occupants and equipment with a lower demand for energy 

consumption to accommodate a more significant number of users in the building. To 

achieve this goal, the cube ‘A’ of the Szentágothai János Kutatóközpont institute building 

was chosen as an initial reference. (Baranyai & Bachman, 2010) (Figure 9).  

 

 

Figure 9 - Photo of the Szentágothai Research Centre reference office and laboratory building, 

University of Pécs, Hungary (Mohammad, et al., 2018) 
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1.6. Research questions 

- How can an office building facade and space organization be developed and optimized 

to be the most efficient way facade and space organization concept to avoid overheating 

increase energy efficiency at most? 

 

- Is it possible to create a building concept that ultimately shows it is back to the external, 

always attaching summer overheating and winter under heating extreme climate 

conditions and, at the same time, ensuring appropriate natural light and natural 

ventilation through integrated atrium? 

 

- How many and what kind of design concept variations can be developed accruing to the 

above-mentioned concept? 

 

- Is it worst, same, or better visual and thermal comfort of new concept atrium solution in 

comparison to the classic office? Comparison between the new concept of atrium visual 

and thermal comfort delivery and the energy performance between new concept variants 

and the reference today’s conventional modern office building, as a theoretical 

interpretation of future improvement solution.  

 

- How great energy efficiency and what kind of comfort conditions can be ensured with 

the following concept and variations? 

 

- How much energy efficiency and comfort can be achieved by facade and space 

organization on an existing generic modern contemporary office? 

 

- Is it possible to apply this solution generically to further office buildings? 

 

- Is it possible to develop the greater and more useful area in offices by following open 

space and up to date concepts, if yes, how great if the occupation efficiency related to 

net floor space? 

What are the benefits of advantages and this of integration atria in such offices? 
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1.7. Research limitations 

- The framework of the research limited itself to the concept of a closed facade with an 

integrated atrium.  

 

- The research limited its framework to the size of the office part of the building, in other 

words, it is limited itself not for the whole building, but for the cube, ‘A’, as the other 

cubes of the building have almost the same size.  

 

- The research limits itself to the passive architectural questions and their energy and 

comfort effects and particularly energy demand questions without considering further 

questions of HVAC systems that can change the results. Considering 80% of building 

energy can be saved by passive systems, and the remaining 20% should be by 

mechanics, we limited ourselves to passive strategies.  

 

2. RESEARCH METHODOLOGY 

2.1 Thermal dynamic simulation method 

The thermal dynamic simulation method is the primary tool to analyze the main part of the 

research. Particularly the “zonal simulation method’’ using IDA ICE simulation software 

has been used.  

 

2.1.1. Zonal Simulation method 

Zonal models refer to air models that use a three-dimensional grid to separate the complete 

room into a system of control volumes or cells. It is essential to avoid confusing zone with 

zonal, where the previous refers to conventional building zoning, and the last refers to one 

type of room thermal models. As the zonal models are presenting a three-dimensional airflow 

model appropriate for building load and energy simulation, they are deliberated in more 

accurately. It is well evidenced that using zonal pressure models for load and energy 
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calculation programs is probable to use (Brent & Qingyan, 2011) (Baranyai & Kistelegdi, 

2014) (Fariborz, et al., 2001). 

 

Figure 10 - Classification of the simulation models (Brent & Qingyan, 2011) 

2.1.2. Indoor Climate and Energy IDA ICE 

IDA indoor and climate and energy (ICE) is a new tool to assess and simulate thermal 

comfort, indoor air quality, and energy consumption in buildings. The mathematical models 

are defined in terms of equations in a formal language, NMF.  NMF is an independent 

program language for modeling the dynamical system by using differential-algebraic, which 

consists of the translator, solver, and modeler (Mika, 1999) (Per, et al., 2003). 

IDA ICE may use the moat buildings types for the calculation of: 

 The full zone heat balance, including specific contributions from sun, occupants, 

equipment, lights, ventilation, heating and cooling devices, surface transmissions, air 

leakage, cold bridges, and furniture;  

 The solar influx through windows with a full 3D account of the local shading devices 

together with surrounding buildings and other objects; 

 Air and surface temperatures; 
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 The operation temperature at multiple arbitrary occupant locations, e.g., in the proximity 

of hot or cold surfaces. Full non-linear Stephan-Boltzmann radiation with the view 

factors is used to calculate the radiation exchange between surfaces; 

 The directed operating temperature for the estimation of asymmetric comfort conditions;  

 Comfort indices, PPD and PMV, at multiple arbitrary occupant’s locations. 

 Daylight level at an arbitrary room location; 

 The air, CO2, and moisture levels, both which possible to be used to control VAV 

(Variable Air Volume) system airflow; 

 Air temperature stratification in displacement ventilation systems; 

 Wind and buoyancy-driven airflows through leaks and openings via a fully integrated 

airflow network model. This enables the study of, e.g., temporary open windows or 

doors between rooms.  

 The airflow, temperature, moisture, CO2, and pressure at arbitrary locations of the 

handling and distribution systems; 

 Power levels for primary and secondary system components; 

 Total energy costs are based on time-dependent prices (Seven & Gerhard, 2001) (Becky, 

2006) (Mika, 1999). 

2.1.3. Climate model in IDA ICE  

The climate model is an algorithmic model. Naturally, its single input link obtains data from 

a source, which can be a climate file or a synthetic climate generator (SYNTCLIM). Through 

several output links, it provides data to one or more receivers. These, in turn, can be facades, 

connected to windows, leaks, or exterior walls, or they can be components in the primary or 

secondary central system (Axel, et al., 1999). 
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The climate model calculates and delivers the following data:  

Table 1 - Climate model calculates  

DESCRIPTION NAME  UNIT 

AIR TEMPERATURE  Tair °C 

SKY TEMPERATURE  Tsky °C 

GROUND TEMPERATURE  Tground °C 

AIR HUMIDITY RATIO  HumAir kg H20/ kg dry air 

AIR PRESSURE  Pair  Pa 

CO2 _FRACTION  Xair  µg /kg dry air 

DIRECT NORMAL SOLAR 

RADIATION  

IDiffNorm  W/m2 

DIFFUSE HORIZONTAL SOLAR 

RADIATION  

IDffHor W/m2 

WIN DIRECTION  WindDir ° 

WIND VELOCITY  WindVel m/s 

ELEVATION ANGLE OF THE SUN  ElevSun ° 

AZIMUTH ANGLE OF THE SUN  AzimutSun ° 

 

2.1.4. Zone Models 

2.1.4.1. Convective heat transfer coefficient 

The convective heat transfer coefficient is calculated with an external Fortran subroutine 

U_FILM. The coefficient is a function of the temperature difference between the air and the 

surface and the slope of the surface (Brown, 1990). Fig. 11 The X-axis is the temperature 

difference between the air surface. In the floor case, the temperature difference is between 

the surface and air. The model contains NMF extensions to produce analytical Jacobians 

(Axel, et al., 1999). 

. 
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Figure 11 - The convective heat transfer coefficient (BRIS)  

 

2.1.4.2. Heat load from occupants 

The models below used for heat load from occupants were developed by Fanger [ISO 7730 

1984]. The convective heat load from occupants is 

 

where fcl is the ratio of surface area while clothed to the surface area while naked hcl is 

convective heat transfer coefficient between air and clothes, W / m2 K Tcl is the surface 

temperature of clothing, °C Tair is air temperature, °C M is metabolic rate, Met 

 

The convective heat transfer coefficient, hcl, between clothes and air is  

 

 

And the fcl factor  
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The radiative heat load from occupants is  

 

where Tmrt is the mean radiant temperature in the point of the occupant, °C (Axel, et al., 

1999). 

 

2.1.4.3. Moisture loads  

The moisture loads (kg/s) from occupancy is [ISO 7730 1984] 

 

where W is external work, W / m2 Pvap is vapor pressure, Pa (Axel, et al., 1999). 

 

2.1.4.4. CO2 loads  

The Co2 load from occupancy is [IEA 1993] 

Xco2=M/3.6*1.8 

 

2.1.4.5. Local units  

The zones can have local convective units for heating and cooling. Power is calculated by 

the equation  

QloxUnit=CtrLocUnit*QLocMax 

 

where CtrLocUnit is the control signal of the unit, - QLocMax is the maximum power of the 

unit, W. 

The control signal is provided via a link. Typically, the local unit is controlled by a PI-

controller, which takes input from zone air temperature.  

In the case of a cooling unit (QLocMax is less than 0) a fabricated airflow through the unit 

is planned to estimate possible condensation in the unit. Condensation will arise if the coil 
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surface temperature is below the dew point temperature of the air. The coil surface 

temperature is agreed upon as a limitation. 

The electricity needed to produce the actual cooling power is calculated with the equation 

 

where QLocUnit is the power of the unit, W COP is the coefficient of performance (Axel, et 

al., 1999). 

 

2.1.5.  Envelope Models   

 

2.1.5.1.CEWIND: Window model  

 The model analyses radiation and transmission over a window. The effect of internal 

shading devices is comprised; external devices in the plane of the window, i.e. outside 

blinds, are handled as internal. Besides, fixed external devices, such as fins or overhangs, 

are not handled in CEWIND but the WINSHADE model. The process of internal shading 

can be measured by a schedule or by irradiation level. The transmission through the window 

frame is calculated. For detailed modeling of a zone, it is desirable that the solar radiation 

entering through a window can be divided into two parts, directly transmitted radiation and 

radiation first fascinated in the window mixture. The first part is spread as shortwave 

radiation and the second part heats the window and reaches the zone as longwave radiation 

and convection. To aid this determination, the shading properties of the window are 

described by two sets of factors, one regarding total heat load, and one regarding shortwave 

heat load SC shading coefficient for total heat load SSC shortwave shading coefficient for 

directly transmitted radiation. The secondarily transmitted part is calculated from the 

difference between these two factors. The variable shading is accounted for by selecting 

between two different shading numbers in each set, one valid with shading (SC1, SSC1), 

one without shading (SC0, SSC0). The decrease due to the shading device is handled as 

liberated of the decrease due to the particular glazing combination. (Axel, et al., 1999). 

Thus 
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where mSC is multiplier for total heat load due to shading device mSCC is multiplier for 

direct transmission due to shading device. The selected shading coefficients are applied to 

the total solar heat gain for a reference window with unprotected single glazing. This is 

calculated from incident direct and diffuse radiation, reducing the direct radiation by a factor 

which depends on the angle of incidence, while the diffuse radiation is reduced by a 

constant factor, resulting from averaging over the hemisphere seen by the window 

 

 

where FThruDir is a reduction factor for direct radiation, - 

           IDirInc is direct incident radiation, W/m2 

           IDiffInc is diffuse incident radiation, W/m2 

           AGlass is window area, m2. 

 

The angle dependence of FThruDir is handled by using different trigonometric curve fits for 

different angle intervals. 

 

 

The shortwave radiation passing through the window is calculated from the equation 

 

 

 

The shading coefficients describe the load reaching the zone indirectly via absorption in the 

window by the expression 

 

 

 

However, for the heat balance of the window, we are interested in the total radiation 

absorbed in the window, including the part that leaks back out to the ambient. This is given 

by 
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where RBack is the shortwave radiation reaching the window from inside 

 h is the u-factor for the window including interior and exterior resistances. It is selected 

from 

            h1        u-factor for shaded window 

            h0         u-factor for unshaded window. 

 

        In analogy with the handling of shading coefficients, we put 

 

 

 

where mh is the multiplier for u-factor due to shading device. 

 

Heat balances are written also for the furthest glass pane, as well as for the external 

surface of the frame. These balances are considered convective heat transfer, longwave 

radiation from ground and sky, transmission from the internal surface (glass pane or 

frame), and, for the frame, absorption of shortwave radiation. 

Due to the clear management of convection and longwave radiation, both inside and 

outside, the U-factors for glass and frame are extended from internal and external surface 

confrontations. 

The following control features have been implemented: 

-Time control        Shading is ON during prescribed periods. Arbitrary schedules can be 

specified. 

         -Solar control        Shading is ON, if  

                                       time control is ON and  

                                       solar radiation/m2 exceeds the parameter solar_limit and 

                                       incident angle is less than the parameter cont_angle. (Axel, et al., 

1999). 
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2.1.5.2.RCWALL: RC network wall model   

 

The RCWALL model approaches the performance of a wall by an RC network model 

with three capacitances. The regular way to model the thermal performance of a wall is to 

discretize it into several nodes by using some limited alteration method. The number of 

nodes is a cooperation between the accuracy of the results and the implementation time. If 

the number of the nodes is enlarged to achieve improved precision, a longer finishing time 

is required. The same precision can be reached with fewer nodes with an RC-network, if 

the thermal resistances, the heat capacitances, and the construction of the RC-network are 

correctly chosen. The parameters of the RC network are planned by an optimization 

subroutine, which is called once in the PARAMETER_PROCESSING. The process 

relates the model performance to diagnostic answers found for simple harmonic boundary 

conditions and calculates the sum of the squares of the deviations.  

The frequencies chosen for the summation are 1, 3, 6, 12, 24, 48, and 96 hour time periods. 

The values of the capacitances and the confrontations are planned by the subroutine 

RCOPT.NMF. In some cases, typically for light internal walls, the routine will select a two 

capacitance model. Thus, the number of nodes, nNode, is a calculated model parameter 

(role CMP). In the two-node case, R1 and R2 are equal, and either one represents the total 

resistance between Ca and Cb. 

The benefits of the RCWALL model are the reduced calculation time due to fewer nodes 

and the fact that the accuracy is known. A weakness is the lack of physically meaningful 

temperatures inside the wall. Note also that this model should not be used in fast thermal 

process simulations, for example in learning automatic control systems, since the selected 

optimization aims at lower rates. (Axel, et al., 1999). 

 

 

2.1.5.3. Ideal cooler and heater  

An ideal cooler is a room unit that cools the zone when no comprehensive information about 

an actual room unit, such as a fan coil or active chilled beam, is available or this amount of 

detail is unmotivated. It has no given physical location on any room surface and is not 
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connected to the plant of the building. Physically, think of it as a separate air conditioner 

with fixed performance parameters.  

An ideal heater is a room unit that heats the zone when no detailed information about an 

actual room unit, such as a radiator or convector, is available or this amount of detail is 

unmotivated. It has no given physical location on any room surface and is not connected to 

the plant of the building. Physically, think of it as a standalone fuel or electric heater with 

fixed performance parameters and no flue gas emissions. 

An ideal cooler and heater are inserted by default when a new zone is created (unless it has 

been removed from the zone template). The default capacity of the ideal cooler is given per 

m2 floor area in the zone template and should normally be selected to be large enough to 

safely be able to cool the zone under all conditions. A PI controller will then be used to keep 

the room air (or operative) temperature at the cooling setpoint (as specified in the Setpoint 

collection.). Otherwise, the ideal cooler can be controlled by a proportional controller, or in 

the Expert edition, a custom control macro. (IDA ICE 4.8)  

 

 

 

2.1.6. Input data and boundary conditions for the simulation  

Input climate data  

The zone model calculates the indoor climate. Two different zone models exist in the library: 

the detailed one is proposed for design simulations, and the simplified one is intended for 

energy simulation (Seven & Gerhard, 2001) (Becky, 2006) (Mika, 1999).  

The location should be defined in IDA ICE simulation software with the ensuing data: 

latitude, longitude, height over the sea level, time zone, wind profile, and the calculated 

building can be shaded by adjoining buildings (Seven & Gerhard, 2001) (Becky, 2006) 

(Mika, 1999). 

The climate model is an algorithmic model that calculates and extradites the following data: 

air temperature, sky cloudiness, ground temperature, air humidity ratio, air pressure, CO2-

fraction, direct normal and diffuse horizontal solar radiation, wind direction, wind direction 

and velocity, elevation angle and azimuth angle of the sun.  
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IDA ICE uses two types of climate statistics for the outdoor climate: artificial design day or 

climate file with calculated statistics. The basic of the artificial design day is the daily 

extreme wet and dry bulb temperatures, the wind direction and speed, and the reduction 

factor for the direct and diffuse sunlight. The weather file includes the information about the 

air (dry bulb) temperature, the relative humidity (RH), the wind direction and speed, the 

direct normal radiation and diffuse (sky) radiation on a horizontal surface, all as a function of 

time (regularly in practice as hourly data). IDA ICE contains a separate translator for 

converting some of the stated weather data to file formats (Seven & Gerhard, 2001) (Becky, 

2006) (Mika, 1999).  

 

2.1.7. Thermal Comfort 

According to the American Society of Heating, Refrigerating, and Air-Conditioning 

Engineers (ASHRAE), it is “the condition of the mind in which satisfaction is expressed with 

the thermal environment” (Noël, et al., 2010).  

Table 2 shows six primary factors that must be taken into account when defining conditions 

for thermal comfort. 

Table 2 - Six primary factors must be addressed when defining conditions for thermal comfort 

(ANSI/ASHRAE, 2004) 

1. Metabolic rate 

2. Clothing insulation 

3. Air temperature 

4. Radiant temperature 

5. Airspeed 

6. Humidity 

 

Base on the zonal simulation method examination, the general thermal comfort counting the 

Fanger’s comfort index, operative temperature, and humidity are analyzed (Fariborz, et al., 

2001). 



 

35 
 

Fanger’s model made a combination of the theories of heat balance with the physiology of 

thermoregulation to specify a range of comfort temperatures that occupants of the buildings 

will feel comfortable. The combination of surface and air temperature is operative 

temperature. The most convenient operative temperature is between 23-26 °C in the cooling 

period and a minimum of 20-24 °C in the heating period for the standard residential building 

(Charles, 2003) (Fariborz, et al., 2001). 

The thermal comfort adaptable to the building is classified in line with DIN EN 15251. In the 

table, DIN EN 15251’s four categories are showed. The following study rank to II category 

in Table 3.  

 

 

 

 

Table 3 - Comfort categories according to DIN EN 15251 (Anon, 2007) 

Categories  Description  

I 

High level of expectations: recommended rooms with every sensitive 

people with special requirements, disable people, sick people, small 

children, and elderly people 

II Normal expectations: recommended for new and renovated buildings 

III Acceptable level of expectations: can be used in existing buildings  

IV 
Values not included in any other categories: This category is used for part 

of the year 

Source: DIN EN 15251 

 

To be able to make more comfortable working spaces, there should be a mode to measure the 

comfort level. According to Prof. Ole Fanger, Predicted Mean Vote (PMV) and Predicted the 

Percentage of occupants Dissatisfied (PPD) are proposed for measuring the thermal comfort, 

which has turned into the comfort index in the International Standard Organization (ISO-

7730) (Hiroki, et al., 2011). 
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PMV model includes four physical variables (air temperature, air velocity, mean radiant 

temperature, and relative humidity), and two personal variables (clothing insulation and 

activity level) into a definition that can be used to predict the average thermal satisfaction of 

a large group of people. Fanger’s PD Draught with local draught, from three physical 

variables (air temperature, mean air velocity, and turbulence intensity) (Charles, 2003). 

In this study, the case study office building, as categorized under the II group in DIN EN 

15251, matches the B category of DIN EN ISO 7730. As illustrated below table 4, PMV for 

the normal building is between the -0.5 to 0.5, and the predicted percentage of dissatisfied 

(PPD) should be less than 10% (Anon, 2006) (Anon, 2007) (Table 3 and Figure 11). 

 

Table 4 - Classification according to DIN EN ISO 7730 and DIN EN 15251 

 

The below empirical curve in figure 12 and table 5 show the relationship between PPD and 

PMV. To meet the best condition, at least 5 percent of the population needs to be dissatisfied 

(Charles, 2003) (Leen, et al., 2009). 

 

Figure 12 - Predicted mean vote (note that at least 5% of any population would be dissatisfied even 

under the ‘best’ condition) (Charles, 2003) (Leen, et al., 2009) 
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Table 5 - The ASHRAE thermal sensation scale, which was developed for use in quantifying people’s 

thermal sensation, is defined as follows (ANSI/ASHRAE, 2004) 

+ 3 hot 

+ 2 warm 

+ 1 slightly warm 

0 neutral 

- 1 slightly cool 

- 2 cool 

- 3 cold 

 

The PMV model uses heat balance values to relate the six critical factors for thermal comfort 

listed in section 2.1.6. and table 2, to the average response of people on the above scale. The 

PPD index is coherent to the PMV, as defined in Tables 6 and 7. It is based on the surmise 

that people are voting +2, +3, –2, or –3 on the thermal sensation scale are dissatisfied, and 

the simplification that PPD is symmetric around a neutral PMV (ANSI/ASHRAE, 2004). 

 

 Table 6 - defines the recommended PPD and PMV range for typical applications and Acceptable 

thermal environment for general comfort (ANSI/ASHRAE, 2004) 

 

PPD PMV Range 

< 10 -0.5 < PMV < +0.5 
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Table 7 - Defines examples for the advised design specifications of indoor tortures for the design of 

buildings and HVAC systems (Gunter, 2013) 

 

2.1.8. Visual comfort 

Window glazing plays a vital task in energy performance and has an important effect on the 

overall building energy consumption. Heat flow through a glazed window contributes to the 

heat increase due to incident solar radiation, which finally enhances the cooling load (Ming-

Tsun, et al., 2013). 

 

In trade buildings, decisions correlated to fenestration directly influence the main categories 

of energy consumption. Lighting represents the single most considerable electricity end-use 

(35%), with a significant part of use during daylight hours. Space cooling represents another 

extensive electricity end-use (25%), one-third of which is due to electrical lighting and also 

one-third to solar heat profits through windows (U.S. Department, 2010) (Joe & Ellen, 1999) 

(Kyle, 2013).  
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As a simple means to describe the amount of daylight at a specific point in a room, the term 

daylight factor can be used. A daylight factor (DF) is the ratio of the internal light level to the 

external light level and is defined as follows, see Figure 2. The daylight factor is normally 

given in percent: 

 

 

E indoor is the illuminance due to daylight at a point on a given plane indoors (lux). 

E outdoor is the simultaneous outdoor illuminance on a horizontal plane from an unobstructed 

hemisphere of the overcast sky (lux) (Danish Building, 2013). 

The study aims to ensure the necessary level of indoor visual comfort while keeping the 

energy performance of the working space. Due to Hungarian national standards for working 

spaces, minimum Lux is 300, and the study set points for visual comfort have been set to 

300lux (SZCSM-EüM, 3/2002. (II. 8.)).  

Real daylight illuminances across the workplace exhibit large variations both spatially and 

temporally. For example, daylight illuminances typically diminish rapidly with increasing 

distance from windows. Equally, daylight illuminances at a point can vary greatly from one 

moment to the next due to changing sun position and/or sky conditions. Daylight autonomy 

is a quantity of how often (e.g. percentage of the working year) a minimum work plane 

illuminance threshold of 500-300 lx can be sustained by daylight alone (Nabil & John, 2006). 

 

2.2.  Experiment design  

A comparative analysis will be held for new design proposals under the moderate climate 

zone conditions. To be able to have comparable parameters for the following analysis, the 

simulation tool will be applied. The energy and indoor comfort performance of each model 

under similar boundary conditions will be examined in this matter.    

This study proposes an introverted space organization within a closed façade enclosure, the 

ISOCF strategy, consisting of a closed façade and an open-office interior, directly connected 
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to the courtyards. The study examines the impact of the ISOCF concept on energy 

performance, as well as the thermal and visual comfort of office buildings under a moderate 

climate. The Szentágothai Research Centre office and laboratory building located in Pécs, 

Hungary, is proposed as a reference model (RM), representing a generic and typical office 

building type (Bachamann & Zoltán, 2010). This reference building model is a five-story 

height with a total area of 2455 m2, including a lobby, offices, seminary rooms, university 

classrooms, toilets, and the tea-kitchens. 

 

2.2.1.  Climate conditions 

Comprehensive graphic of climate data factors of the ‘Pecs-Pogany’ climate station form 

IDA ICE 4.8, which are dry-bulb air temperature, the relative humidity of the air, wind 

speed, and sun radiation illustrated in figure 13, figure 14, and figure 15.  

The study was based on Cfb climate, according to 1 km resolution Köppen–Geiger 

classification, the RM is located in temperate oceanic Cfb climate zone, which is classified 

for Ljubljana, Budapest, Munich, and Stockholm. In this climate, the coldest month is an 

average of beyond 0 °C or −3 °C, all months with average temperatures below 22 °C, and at 

least four months be an average of beyond 10 °C (Beck, et al., 2018). 

 

a)                                                                                b) 

Figure 13 - Climate data of Pecs-Pogany climate station from the ‘IDA ICE 4.7.1’ climate databank, 

a) Dry bulb air temperature [°C], (8760 hours), b) Relative humidity of air [%], (8760 hours) 
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a)                                                                          b) 

Figure 14 - Climate data of Pecs-Pogany climate station from the ‘IDA ICE 4.7.1’ climate databank, 

a) Direct normal radiation, [W/m2], (8760 hours), b) Diffuse radiation on a horizontal surface, 

[W/m2], (8760 hours) 

 

 

a)                                                                         b) 

Figure 15 - Climate data of Pecs-Pogany climate station from the ‘IDA ICE 4.7.1’ climate databank, 

a) Wind speed, x-component, [m/s], (8760 hours), b) Wind speed, y-component, [m/s], (8760 hours) 

 

2.2.2. Experiment spaces 

This study proposes an introverted space organization within a closed façade enclosure, the 

ISOCF strategy, consisting of a closed façade and an open-office interior, directly connected 

to the courtyards. The study examines the impact of the ISOCF concept on energy 

performance, as well as the thermal and visual comfort of office buildings under a moderate 

climate. The Szentágothai Research Centre office and laboratory building located in Pécs, 
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Hungary, is proposed as a reference model (RM), representing a generic and typical office 

building type (Baranyai & Bachman, 2010). This reference building model is a five-story 

height with a total area of 2455 m2, including a lobby, offices, seminary rooms, university 

classrooms, toilets, and the tea-kitchens.  

Calculations of thermal and visual comfort as well as energy performance in various test 

cases were carried out than compared to the different RM versions. Three WWR case 

scenarios are proposed, whereas RM 1 is following the existing building`s WWR (48%); 

RM 2 possesses 30% WWR and RM 3 is a version with 90% WWR (Figure 16). 

 

 

 

a)                                                     b)                                                      c) 

 

 

Figure 16 - Generic office building as a reference with three WWR scenario: a)RM 1 with 48% 

(existing reference building),b) RM 2 with 30%,c) RM 3 with 90% 
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The following three different ISOCF scenarios are proposed as shown in Figure 17. External 

facades have been closed 100% towards the outside environment, while they are open 

internally throughout the courtyards. Necessarily, the working space has been designed as 

an open working space to achieve flexibility while following the future workspace approach 

and maximizing the penetration of solar radiation into workspaces. 

  

                       a)                                                   b)                                                      c) 

 

Figure 17 - Introverted Space Organization with Close Facade (ISOCF)— Simulation model of 

a)ISOCF 1, b)2 and c)3, main story layout (left), 3D view (right) 

2.2.3. Boundary conditions 

The boundary conditions for all ISOCF models are the same as it is the case in the RM-s. 

Occupants, equipment’s and lights are considered as 1 pcs. / 10 m2. The size of each model is 

25*25*20.95 (height) as the same in the real reference research and office building model. In 

the first scenario (ISOCF 1 model), a single central courtyard with a size of 8m x 8m (64 m2 

floor space) is integrated into the building (Figure 17). To investigate the impact of the number 
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and positioning of the courtyards, the study gradually increases the number of courtyards by 

spreading and doubling them into the floor planes. In this way, the effect of the various 

courtyards on daylighting, thermal comfort end energy efficiency can be assessed. According to 

this idea, in the second scenario (ISOCF 2 model), two parallel courtyards have been 

implemented with the size of 4m x 8m (2 x 32 m2 floor space). Finally, in the third scenario 

(ISOCF 3), four courtyards with a size of 4m x 4m (4 x 16m2 floor space) have been applied.  

The boundary conditions of the simulations are listed in Table 7 as well as the structures and 

materials of the envelope with thermal properties: heat transfer coefficient (U-value), solar heat 

gain coefficient (SHGC), light transmittance coefficient (Tvis), and solar transmittance (Tsol). 

Table 7 Boundary conditions for the simulation (IDA ICE 4.8) 

Boundary conditions Model characteristic 

Location   Pecs, Hungary, Latitude 46.0 N, Longitude 18.23 E 

Simulation Weather 

File                                     

IDA ICE 4.8 Weather Data 

Daylight CIE mixed and clear Sky model, Radiance motor 

Building Type Office Building 

Net Floor Space 2455 m2 

Glazing Type glazing 6+16+3.3 mm, U-value=1.4 W/(m2K). SHBC 0.31, Tsol 0.20, Tvi 0.52. 

Number of floors 5 

External walls 20 cm reinforced concrete, 16 cm mineral wool insulation, 63,5 cm air gap 

+ Alu coating. U-value= 0.22 W/(m2K) 

Internal Walls Gypsum 25mm + Insulation 75mm + Gypsum 25 mm. 

Internal Floor  Linoleum 5mm + Cement 60mm+ Rockwool 40mm + Concrete 24mm + Air 

gap 840mm + Gypsum 12mm. 

Roof suspended gypsum ceiling, 40 cm air gap, 30 cm reinforced concrete, 15 cm 

XPS insulation, 14 cm concrete + 15 cm gravel; U-value 0.0497 W/(m2K) 

External Floor 15 cm reinforced concrete, 5 cm XPS insulation, 14 cm concrete flooring, U-

value 0.41 W/(m2K) 

Basement Wall 

Towards Ground  

Plaster (cement) 10mm + Concrete 200 mm + Gipsum board 160mm + Air 

gap 50mm + Concrete 60mm; U-value 0.22 W/(m2K) 

Internal Gains Occupant: Activity level 1.0 MET Constant clothing 0.85 ±0.25 CLO 

(clothing is automatically adapted between limits to obtain comfort) 

Occupancy time: 

Office Occupants: fully present (1) [8:00-17:00], half present (0.5) [6:00-

8:00,17:00-21:00], 0.0, otherwise, 

Toilets and Tea kitchen’s: fully presented (1) [5min each hour] every working 

day [8:00-18:00], 0.0, otherwise, 

Equipment usage time: 

Office Equipment: full intensity 1 [7:00-8:00, 17:00-22:00], half intensity 0.5 

[15:00-17:00], fully present (1) [8:00-17:00], 0.0, otherwise, Emitted heat per 

person 106 W 

Toilets and Tea kitchen’s: fully presented (1) [5min each hour] every working 
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day [8:00-18:00], 0.0, otherwise, Emitted heat per person 1000 W, Luminous 

efficiency 10 lm/W 

Artificial lighting use: 

Office Occupants: fully present (1) [8:00-17:00], half present (0.5) [6:00-

8:00,17:00-21:00], 0.0, otherwise, 

Toilets and Tea kitchen’s: fully presented (1) [5min each hour] every working 

day [8:00-18:00], 0.0, otherwise, 

 

2.2.4. Set points 

Fig. 18 illustrates the office set points, whereas the min and max temperature has been set to 

20-26 degrees.  Relative humidity also has been set to maintain the level between 20-80% 

and in case of CO2 level, 700-1000 ppm choose for the office zones. In the case of daylight 

at the workplace, 300-500 lux has been used to ensure the necessary level of visual comfort, 

due to standards. 

 

Figure 18 - Workplace zone setpoint collection 

 

Three types of internal gains have been indicated in the thermal zones, which are defined as 

occupants, equipment, and lights. To have the closest building performance compared to a 

real building, a time and usage intensity-dependent schedule has been implemented to each 

zone based on each zone function and size (Fig. 19). 
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Figure 19 - Occupants schedules  

In the case of equipment, the study only considered the main functional needs, whereas PC, 

microwave, and coffee machines have been implemented on each floor to represent the 

minimum necessary equipment. Emitted heat per unit (W) has been set to the closest 

numbers to reality with help of real production descriptions. Fig. 20 also illustrates the 

equipment’s schedule.  

The flight schedule has been set season-dependent whereas in winter, starting from 1st 

January until the 15th of April it is working from 6:00-9:00 in the morning and from 16:00-
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21:00. For summer 16th of April until October 16th the lighting schedule has been also set to 

6:00-7:00 in the morning and 19:00-21:00, considering longer summer and spring days. It is 

also defined that for all weekends and holidays that there is only one hour of light 

consumption considering the real building condition (Fig 20). 

For all comparative analysis and further developments, the same thermal bridge 

characteristics have been implemented. Considering the reference model the poor level of 

thermal bridges has been chosen as shown in fig. 21.  
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Figure 20 - Light schedules, top summer, middle winter and bottom weekends and holidays  
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Figure 21 - Thermal bridges characteristic  

 

 



 

50 
 

3. RESULTS AND DISCUSSION 

3.1. Comfort 

3.1.1. Thermal Comfort 

According to the American Society of Heating, Refrigerating, and Air-Conditioning 

Engineers (ASHRAE), thermal comfort is “the condition of the mind in which satisfaction is 

expressed with the thermal environment” (Noël, et al., 2010).  

In all models, the average annual number of hours performing a PMV category B (or II) is 

calculated by an area-weighted averaging of the annual hours of category B (or II)  for each 

thermal zone, as presented in the equation (Solangi, et al., 2011). 

 

𝑁𝑃𝑀𝑉 =  
∑ 𝑁𝑖 ∙ 𝐴𝑖

𝑖=𝑛
𝑖=1

∑ 𝐴𝑖
𝑖=𝑛
𝑖=1

 

        

Where NPMV means the average annual hours of PMV, category B for the whole model, Ni 

represents the number of annual hours of PMV, category B for thermal zone I, Ai the total 

area of each zone [m2], “n” is the total number of thermal zones of the model (Elhadad, et al., 

2020). For the RM scenarios, the PMV in category B results is presented in Figure 17. The 

calculated thermal sensation results are continuously rising in all ISOCF models. ISOCF 1 

shows a 17% improvement in comparison to ISOCF 3 case (Fig 22) because with 78-25 % 

smaller transparent courtyard façades the successively descending average WWR lets less 

solar load penetration into the interior during summer (from May until the beginning of 

September). Figure 23 presents the difference between ISOCF 3 and ISOCF 1 operative 

temperature performance during the year with characteristic discomfort in summer. Figure 17 

demonstrates a linear correlation between the WWR and number of occupancy hours 

performing operative temperatures of class B of ISOCF models, the more WWR the less 

thermal comfort performance.  
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Figure 22 - The ratio of the year with hourly average PMV category B (II), Wall to window ratio 

(WWR) in the ISOCF models in all zones of the buildings [%] 

 

 

Figure 23- No of occupancy hours performing Top Category B 
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3.1.2. Visual comfort 

Daylight performance intensely depends on the illuminance under direct correspondingly 

diffuse sky conditions (Elhadad, et al., 2020). At the same time window glazing plays a vital 

task in thermal comfort and has an important effect on the overall building energy 

consumption. Heat flow through a glazed window contributes to the heat increase due to 

incident solar radiation, which finally enhances the cooling load (Ming-Tsun, et al., 2013). 

To find an acceptable correlation between the daylight provision vs. cooling demand 

contradiction, this study investigates the daylight factor performance in the scenarios. For 

this purpose, daylight factor (DF) under mixed sky conditions and daylight autonomy (DA) 

under direct illuminance (clear sky conditions) are assessed in the spaces via lighting 

simulations.  

The DF value is a ratio that represents the amount of illuminance available indoors relative to 

the illuminance level present outdoors at the same time, under an overcast sky (Waldram, 

1925). The required value of DF for the investigated location is 1.66, by applying the 

calculation according to EN17037 Daylight in Buildings (Elhadad, et al., 2020).  

Figures 24 and 25 presents the percentage of floor area performing DF above the minimum 

allowed value. In the RM 1 and 2 cases, the adequate DF is provided in approximately half 

of the floor area, while in RM3, due to enlarging the WWR from 30% and 48% to 90%, the 

DF-area improves to 83.5%. In contrast to the ISOCF models performing DF of 14.7 – 

16.6%, the RM scenarios possess a significantly higher ratio of the floor area with adequate 

DF (49.5 – 83.5%) (Fig. 26). All courtyards in the ISOCF models were disabled to provide 

sufficient floor space with a DF over the minimum threshold value (1.7). With increasing the 

number of courtyards, the DF value is descending successively due to decreasing WWR.  

The DA value represents the area ration of the net floor space possessing an illuminance 

level greater than a certain threshold (Nabil & John, 2006). In the case of DA, the average 

value on the 21st day of each month is assessed, at 12:00 o’clock and afterward, an average 

is calculated, considered as a yearly representative value. In this way, the solstice and 

equinox time points are assessed and the remaining 8 months’ simulations complement the 

whole year. Instead of the 500 lx minimum indoor illumination threshold (Light, 2002) in a 

particular study, this value was set to 300 lx, due to the idea that today`s IT dominated 
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workplaces do not require as much light (and hence additional cooling energy can be 

conserved). 

Figure 24 presents the percentage of the floor area performing DA above the (300% lux) set 

threshold value. In the reference models, with growing WWR, there is a gradual increase to 

obtain from approx. 50 to 90% of the floor space in the RM models are well naturally 

lighted. In contrast, the ISOCF models perform significantly weaker, due to the limited solar 

exposure of the transparent facades of the inner courtyards. ISOCF 1 can provide 25.89% of 

the floor space with adequate illuminance and the percentage has been descending to 22.03% 

and 20.48% in the case of ISOCF 2 and ISOCF 3. 

 

 

Figure 24 - Daylight factor above 1.7 and Daylight autonomy above 300 Lux % 

 

 

49.5 51.4

83.5

16.2 14.7 16.6

52.01

62.7

88.86

25.89
22.03 20.48

0

10

20

30

40

50

60

70

80

90

100

RM 1 RM 2 RM 3 ISOCF 1 ISOCF 2 ISOCF 3

DF DA



 

54 
 

 

Figure 25 - RM models daylight factor characteristics, top RM 1, middle RM 2, bottom RM 3 
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Figure 26 - ISOCF models daylight factor characteristics, top RM 1, middle RM 2, bottom RM 3 
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3.2. Energy 

As the final energy intensity of the equipment and mechanical ventilation is constant 

between the cases due to similar settings, heating, cooling, and lighting energy demand are 

the crucial factors to compare. Figure 27 Represents the yearly final energy demand of the 

tested cases. RM 3 performed best in heating and lighting energy demand due to its largest 

WWR resulting in greater solar gains and daylight profit. In cooling demand, RM 3 has the 

highest value, based on larger heat gains. However, in total final energy, RM 1 and RM 3 are 

performing similar because in both models the South oriented fully glazed facades dominate 

the gains and losses balance. RM 2 required 7% higher total final energy demand with its 

lowest WWR (30%).  Vajda, et al. have reported a similar finding of WWR that affects 

essentially the cooling and heating demands in moderate climates. They reported that with 

the increase of WWR, the heating and lighting energy consumption reduced, whereas the 

cooling energy consumption is increasing (Obrecht, et al., 2019). 

Chiesa, et al. report similar results, complemented with the conclusion that the size of the 

window area can ensure a considerable saving of lighting energy as well (Chiesa, et al., 

2019). 

 

The ISOCF scenarios provide a significant improvement in heating and total delivered 

energy due to external window elimination while cooling remained practically the same. At 

the same time, the lower WWR causes in case of lighting higher requirements. Fig. 27 

additionally illustrates that ISOCF1 has performed in the best heating, whereas its 

consumption was 21% less than the ISOCF 2 case and 54% lower in comparison to ISOCF 3. 

This is due to 15-30% lower heat losses through thermal bridges, 41-96% less window 

transmission losses as a result of single courtyard design (Fig 28). However, in the case of 

lighting energy consumption, ISOCF 3 has shown the best performance between all ISOCF 

scenarios and it could save 57% and 4% of lighting energy consumption in comparison to 

ISOCF 1 and ISOCF 2, due to 78% and 33% greater WWR respectively (Fig. 22), as well as 

better daylight distribution as a result of more courtyards distributed in the building. The 

growing number of courtyards (and hence the greater WWR with higher joints) significantly 
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increases the heating and the total final energy demand of the ISOCF models, while lighting 

and cooling energy demand benefits.  

The ISOCF scenarios show considerable savings in terms of heating and total energy demand 

in comparison to the RM scenarios, whereas the best ISOCF 1 scenario compared to the best 

RM 1 scenario decreased energy heating demand to 48% and 22% in yearly total energy 

demand, while in cooling required 32% more cooling demand. In lighting energy demand the 

ISOCF scenarios increase by 163% due to the use of artificial lighting to compensate for the 

visual comfort. However, depending on the models, the share of cooling and lighting is only 

4-7% and 6-11% of the total energy, while heating dominates with a rate of 80-90 % of the 

total energy consumption values. 

 

 

 

Figure 27 - Final energy demand performance [kWh/m2a] in the RM and ISOCF scenarios 
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Figure 28 - Heat balance: transmission heat losses through the opaque envelope, heat losses through 

thermal bridges, heat losses via Fenestration, and solar heat gains through the glazing 

 

Although the energy performance of the ISOCF concept could provide significant 

conservation, the strong drawback in visual comfort performance implies the requirement for 

further improvement of the architectural concept. Since the courtyard is not able to ensure 

appropriate DF and DA performance compared to the RM model’s, further courtyard 

optimization is necessary to achieve the most optimal solution. Two optimization concepts 

were proposed:  

 

 ISOCF 4: Enlargement of the courtyard`s horizontal dimensions in the best performing 

ISOCF model (ISOCF 1) (Figure 29) 

 ISOCF 5: Changing the angle and size of the courtyard`s glazed facades by broadening 

the courtyard`s vertical section towards the top (Figure 29). 
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3.3. Courtyard Modifications 

This section presents the further development of the ISOCF concept to ensure appropriate 

DF and DA performance in comparison to RM models. Ghasemi, et al. listed the six factors 

affecting the daylight distribution within the adjoining spaces of atriums as following:  

 The sunlight availability and sky conditions.  

 The roof shape, fenestration in atria, and glazing.  

 The physical properties of the atrium including its type, geometry, and relative 

proportions. 

 Self-shading effects of the building shape and geometry. 

 The reflectance properties of enclosing atrium surfaces. 

 The design of adjoining space such as types, layouts, surface reflectance, or geometries 

and furniture (Mohsen, et al., 2015). 

 

In a similar study Hossein, et al. investigated atrium size enlargement for three different 

models with the same size and in three height levels. They show that in the highest scenario 

with 3 story height, the atrium size has a significant impact on the daylight level of the 

atrium space and their neighboring spaces (Omrany, et al., 2020).  

These findings motivate this study for further optimization, leading to implement a larger-

sized courtyard and investigate the effects of energy and comfort. In both ISOCF 4 and 

ISOCF 5 scenarios, the impact of doubling the size of the perimeter will be investigated: the 

courtyard is enlarged from 8 x 8 m to 16 x 16 m. For comparison purposes, it was necessary 

to enlarge the courtyard size that required an enlarged net floor area in the comfort zones a 

well. While the net floor space remained the same, the external perimeter size of the building 

is increased from 25 x 24 m to 29 x 24 m (Figure 29), meaning that one side of the building 

layout grew by 14% respectively. Besides, in the case of ISOCF 5, the section shape of the 

courtyard is modified on each floor due to the courtyard walls` inclination of 86° towards the 

sky. The smallest size possesses 8 x 8 m and the largest is 16 x 16 m. This approach 

inevitably enlarges the internal area in ISOCF 5 by 14%, by increasing one of the perimeters 

of the building body by only14%. The rest of the boundary conditions remain the same.  
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                                                                         a) 

 

                                                                           b) 

Figure 29 - Simulation model of ISOCF a)4 and b)5, main story layout (left), 3D view (right) 

 

3.4. Comfort 

3.4.1. Thermal Comfort 

Figure 30 shows, ISOCF 4 and ISOCF 5 were able to perform slightly (12,5%) lower level of 

thermal comfort in comparison to ISCOCF 1, by maintaining 52% of the average annual 



 

61 
 

hours of PMV, category B in the complete building. The reason for slight descending 

summer discomfort directly relates to WWR enlargement and the increasingly transparent 

surface towards direct solar radiation penetration (Fig. 30). Besides, due to the reduction of 

zone depth in the case of ISOCF 4 and 5, summer discomfort harms PMV, mostly on top 

floors. Figure 24 illustrates increasing the WWR, has a direct correlation to the number of 

occupancy hours performing operative temperatures of class B has been decreasing.   

  

 

Figure 30 - The ratio of the year with hourly average PMV category B (II), Wall to window ratio 

(WWR) in the ISOCF models in all zones of the buildings [%] 

3.4.2. Visual Comfort 

Due to larger WWR, ISOCF 4 was able to improve the DF by 230% and DA by 180% in 

comparison to the best-case scenario ISOCF 1 (Fig. 31 and 32), and ISOCF 5 was also able 

to increase the DF by 172% and in the case of DA, it was able to improve by 122%. Figure 

18 shows in the case of ISOCF 4 and 5 that solar penetration is significantly larger than in 

other ISOCF models, and as a result, this increases the illuminance level which at the same 

time negatively will affect glare effects. In a similar topic, Freewan illustrates that the 

modification of courtyard walls geometries can optimize the daylight performance of the 

courtyard, while it may harm glare (Freewan, 2011). The enlarged courtyard geometry 

enables not only increasing WWR but also the significantly greater grade of solar exposure 

of the glazed facades, leading to the DF and DA improvements.  
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Figure 31 - Daylight factor above 1.7 and Daylight autonomy above 300 Lux % Models  

 

 

Figure 32 - Models daylight factor characteristics, top ISOCF 4 and bottom 5 
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3.5. Energy 

Although ISOCF 4 and 5 were able to significantly improve visual comfort, they were unable 

to maintain a good level of energy demand. In comparison to ISOCF's best case scenario 

(ISOCF1), ISOCF 4 and 5 performed with a 30% heating energy demand increase. This is 

due to the 30% higher WWR, as well as higher transmission heat losses of larger transparent 

and opaque envelope surfaces and thermal bridges (Figure 33). In summer, the increased 

solar gains required 42% more cooling demand in ISOCF 4 and 5. However, in the case of 

artificial lighting demand, ISOCF 4 and 5 show 71% improvement, thank larger WWR, 

providing greater daylight penetration and hence lower artificial light need. The modification 

of courtyard size and walls inclination harmed the total energy demand, resulting in 19% 

more consumption in ISOCF 4 and 13% in ISOCF 5. Figure 34 shows that even though the 

further developed cases were able to improve visual comfort, in terms of the energy they 

possess disadvantages. ISOCF 4 and 5 performed almost the same total energy results. Based 

on the results, the next improvement modeling step was necessary to achieve the acceptable 

energy performance of the final energy demand. Compared to ISOCF 5, ISOCF 4 shows 

18% better DF and 20% higher DA performance, therefore ISOCF 4 was selected for further 

modification. On the other hand, due to the ISOCF 5 adjacent walls inclination it was 

inevitable to enlarge the net floor area, which works against the rest of ISOCF models 

boundary conditions. However, the results show ISOCF 5 performed better in the case of 

energy considering kWh/m2 and this can be the subject to further investigation.   
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Figure 33 - Final energy demand performance [kWh/m2a] in the ISOCF scenario 

 

 

Figure 34 - Heat balance: transmission heat losses through the opaque envelope, heat losses through 

thermal bridges, heat losses via Fenestration, and solar heat gains through the glazing 
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3.6. ISOCF 6 – The Atrium Concept 

Yasa et al. illustrate in case of using courtyards, external exposure increases, and 

consequently heat loss increase through wall and windows which are not preferable in this 

climate (considering that heating-dominated the whole energy consumption). The study also 

discussed that atrium makes a transitional space in which its indoor temperature is always 

higher than the outdoor temperature, as an effect of solar gain through the skylight. 

Therefore, heat losses decrease, and the stored heat in the atrium can be transferred to the 

building by conduction and convection through the walls and windows (Yasa & Vildan, 

2014). On the same topic, Leila et al. stated that atrium components and configurations, such 

as opening control, can drastically improve thermal comfort, as well as indoor air quality 

(Leila, et al., 2014). In this study, ISOCF 6 model was created (Fig. 35), whereas the open 

courtyard of ISOCF 4 was transformed into an atrium with a controlled skylight opening. 

With this solution, the courtyard heat losses should decrease. This approach will have control 

over the atrium top opening schedule (natural ventilation) while maintaining the acceptable 

achieved level of visual comfort as shown in table 8.  

 

 Table 8 - Skylight Opening Schedule ISOCF 6 

Date Time Intensity Close/Open 

January 1st _March 13th  Always Close  100%       Close 

March 14th _ April 23rd  12:00-16:00 50%       Close & Open 

April 24th _ September 30th  Always Open 100%       Open  

October 1st_ December 31st  Always Close 100%      Close  
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Figure 35 - Simulation model of ISOCF 6, main story layout (left), 3D view (right) 

 

3.7. Comfort 

3.7.1. Thermal comfort  

Figure 36, Shows, that ISOCF 6 was able to maintain the level of hourly average PMV 

category B at the same level of the ISOCF best case scenario (ISOCF 1). Figure 36 also 

Illustrates that ISOCF delivered better PMV performance by 18% compared to RM 1, 2, and 

5% related to ISOCF 1 and 23% compared to ISOCF 4. Even though the WWR has been 

increased, the transitional atrium space successfully works as a buffer zone, delivering he 

best PMV performance, because the opening control closed the skylight during the 

wintertime (Table 8), and the atrium adjacent wall windows are acting as internal windows 

and the opaque walls as advantageous thermal masses, Heat losses were reduced. 

 



 

67 
 

 

Figure 36 - The ratio of the year with hourly average PMV category B (II), Wall to window ratio 

(WWR) in the ISOCF models in all zones of the buildings [%] 

 

3.7.2. Visual Comfort  

In the case of DF and DA, Figures 37 and 38 exposed that ISOCF 6 performed slightly at the 

same level as ISOCF 4 and delivered higher visual comfort compare to models RM 1 and 2 

thresholds. In DF ISOCF 6 improves by 8% compared to RM 1 and 2, slightly the same level 

in comparison to ISOCF 4 and it was able to improve ISOCF 1 by 230%. In terms of DA, 

ISOCF was able to deliver better performance, whereas, it was able to perform 32% better 

compared to RM 1,2, a similar level as ISOCF 4 and 172% improvements compare to ISOCF 

1. However, a neglectable amount of decrease compared to ISOCF 4, due to the diffusion 

effect of the top glass opening. 
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Figure 37 - Daylight factor above 1.7 and Daylight autonomy above 300 Lux % Models 

 

 

Figure 38 - ISOCF 6 daylight factor characteristics 

 

3.8. Energy 

ISOCF 6 improves energy demand performance drastically, whereas in heating energy 

demand, (responsible for 80-90% of the total energy consumption) it delivered 140% lower 
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energy demand. It also delivered a 110% improvement in heating and 75% in total annual 

energy demand compared to ISOCF 4.  On the other side, the results also illustrate that 

ISOCF 6 required more cooling and lighting energy, whereas, in comparison to RM1 and 2, 

it required 40% and 80% more cooling and lighting. At the same time, it required 10% more 

cooling and provided 50% better lighting energy demand compared to ISOCF1, and 

compared to ISOCF 4, it required 30% less cooling and 14% more lighting energy demand 

Fig. 39. Due to figure 40, ISOCF 6 was able to maintain a good level of solar gains while 

the thermal bridge and heat losses performed the best. In terms of bridge ISOCF, 6 

performed 200% better in comparison to RM 1 and ISOCF models. 

 

 

Figure 39 - Final energy demand performance [kWh/m2a] in the RM and ISOCF scenario 
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Figure 40- Heat balance: transmission heat losses through the opaque envelope, heat losses through 

thermal bridges, heat losses via Fenestration, and solar heat gains through the glazing 

 

4. The architecture of the ISOCF building type 

Kolozali et al. state that, designers ought to be the first professionals to implement 

sustainable development subjects into their practices. Design decisions for buildings have 

environmental costs and the obligation of responsibility rests heavily on the designers' 

shoulders since the building product is a result of their novelties (Kolozali, 2016). E. Conte 

also demonstrates, besides complex building systems and technologies, architects must be 

more conscious and capable of arranging a wide selection of fields of knowledge to design 

outcomes that suffice as sustainable (Conte, 2018).  

The final result has been evaluated precisely from the scientific point of view and it is 

proven that ISOCF 6 was able to perform more efficiently in terms of comfort and energy.  

The basic architectural criteria such as space functionality, movement circulation, aesthetics, 

and other fundamental design impacts are as important as the energetical performance of the 

building.  

The study proposed a set of architectural drawings (Fig. 41) to demonstrate one of the many 

potential final architectural solutions. There are only two types of floor planes representing 

-8
3

7
3

8
.5

-9
1

9
0

9
.8

-5
5

0
3

5
.5

7
0

1
0

3
.4

-1
3

2
5

5
8

-6
5

0
9

6
.5

-3
9

4
8

5
.3

6
0

4
5

1
.2

-4
5

9
1

5
.3

-1
6

7
6

8
8
.9

-5
5

2
5

5
.5

1
3

6
2

8
3
.7

-5
4

5
0

2
.2

-8
7

5
9

8
.2 -3

8
1

6
5

.5

6
7

7
4

1
.2

-5
6

7
6

3

-1
2

4
0

4
7
.4

-5
2

7
4

1
.4

8
1

3
1

7
.6

-5
4

6
3

7
.2

-1
7

2
2

0
9

-7
4

2
9

4
.7

1
0

0
1

7
9
.9

-6
5

8
8

1
.8

-1
7

3
2

0
1
.1

-5
7

9
4

7
.3

1
8

0
0

0
9
.4

-6
3

8
6

2
.9

-1
1

6
8

6
4
.3

-4
2

7
0

0
.4

7
4

0
1

5
.6

-6
1

8
9

1
.6

-2
3

3
5

7
.5

-1
8

9
7

8
.5

1
5

0
7

8
2
.8

-200000

-150000

-100000

-50000

0

50000

100000

150000

200000

Envelope Opaque transmission

losses Windows Thermal bridges Solar Gain

RM1 RM2

RM3 ISOCF 1

ISOCF 2 ISOCF 3

ISOCF 4 ISOCF 5

ISOCF 6



 

71 
 

the ground and first floor, figure 41 shows the ground floor as a public floor of the building 

is responsible for the main entrance, courtyard connection’s to the building, sitting, dining, 

consultation area, and will provide the space for potential shops. However, in the case of 1st-

floor spaces are performing as open workspaces, whereas space ‘A’ is established as some 

temporary workstations, space ‘B’ represents the group working and consultation area, and 

space ‘C’ is performed as the manager and key roles of offices. 

In ISOCF building type, atria can maintain the comfort level of 18° in at least 6 months of 

the year, however, it is recommended to study further development in case of heating the 

atria zone to be able to have a permanent arrangement in the atria even in the coldest month 

of the years. (Fig. 41 and 42)  

The exterior envelope of the building body has great potential to benefit from, such as PV 

implementation on the surface to observe maximum possible solar radiation as shown in fig. 

43.  
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Figure 41- ISOCF 6 Architectural Floor Planes, top ground floor, middle first floor, and bottom section   
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Figure 42- ISOCF 6  Interior 3D graphics    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 43- ISOCF 6 External appearance, PV Implementation   

 

 



 

76 
 

5. CONCLUSIONS 

Under the moderate climate, the new introverted open space with closed facade (ISOCF) 

strategy has been investigated to meet the necessary level of thermal and visual comfort 

while improving the level of energy demand. The study investigated under conventional 

office building boundary conditions and compared to existing sophisticated multistory office 

building, Szentágothai Research Centre office located in Pecs, Hungary. The following 

statements have been established: 

 

5.2.   Statements 

1. Rethinking and redesign elementary architectural design factors can significantly 

improve today`s characteristic comfort and energy drawbacks in the office building sector. 

These design contents are under moderate climate are as follows:  

 The proposed office building type becomes a completely closed façade surface to 

avoid winter heat losses and summer heat loads.  

 The completely closed facade requires the perforation of the building body to be able 

to deliver missing daylight and passive ventilation provision in form of 

courtyards/atria. Since the passive ventilation possibility and natural lighting 

provision should be ensured through the courtyards, the internal space organization 

should provide accessibility for daylight and ventilation operation all over the interior 

space. This can be achieved by the open office spaces organization that ensures long 

term future functional flexibility. 

2. A new architectural design concept is proposed, including an introverted space 

organization with a closed façade (ISOCF), an integrated courtyard, and an open interior 

workspace organization. In comparison to today’s conventional multistory office building, 

the ISOCF represents a new multistory office building type that can deliver 80% less total 

annual energy demand (heating, cooling, and lighting). The main contributor is the heating 

energy consumption (a share of more than 80% of the total energy consumption), which is 

140% lower in the ISOCF performance. The thermal comfort in the ISOCF office building 

performed a 20% higher number of occupancy hours with PMV-values, class B (II). The 
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daylight performance reaches a 10% improvement in daylight factor (DF1.7) under mixed sky 

conditions and 32% better daylight autonomy (DA300) under global radiation circumstances.  

3. In the ISOCF model development, different numbers and sizes of courtyards were tested 

to analyze the thermal and energy performance. Cases with 1, 2, and 4 courtyards were 

simulated in the experiments. Under the same building dimension boundary conditions, by 

increasing the number of courtyards, their WWR is enlarging as well, lowering the PMV 

performance by 12%, while the total energy intensity becomes 35% larger. The heating 

demand performance here is the greatest ratio as well, representing more than 80% of the 

total energy demand, whereas heating is increased by 54%. 

4. In the ISOCF building concept, 1 courtyard can maintain the appropriate level of DF1.7 

and DA300 distribution, by simultaneously lowering the energy consumption, when the 

dimensions of the courtyard geometry are properly sized. In the framework of the ISOCF 

experiments, the model with 1 courtyard has to be modified to ensure not only thermal 

comfort and energy improvements but also visual comfort, since the daylight qualities in that 

concept were suffering due to undersized courtyard and hence WWR. The courtyard layout 

was gradually increased to double size, while it was necessary to narrow the depth of the 

adjacent office zones by 50% and the external perimeters of the building at one side needed 

enlargement of 16%. It can be stated that 5-storey ISOCF office buildings under a moderate 

climate require a depth ratio of approx. 0,25 between the average depth of the office comfort 

zones and the mean courtyard/atrium depth to deliver the achieved improved level of comfort 

and energy performance results. 

5. Under moderate climate circumstances, typical modern multistory office buildings 

possess significantly greater heating demand, compared to cooling. The open perforation of 

the building body (courtyard) increases transmission and thermal bridges based heat losses in 

winter. Therefore, the closing of the courtyard with a skylight creates significantly lower 

(110%) heating consumption, as well as an external multifunctional space for communicative 

functions (brainstorming, project office) in at least 60% of the year without space 

conditioning. 

6. The particular investigation focused on a 5-story office building with a compact width to 

length ratio. The concluded insight and design rules are accordingly limited to buildings with 

a width to length ratio of around 1 and the mentioned building height. With an increasing 
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number of levels, the daylight provision starts to decrease, while lower buildings with a 

decreasing number of levels show higher daylight qualities. Besides, a lower with to length 

ratio results in a less compact (e.g. elongated or splining) building shape that cannot integrate 

a sufficient sized courtyard.  

7. This research was conducted under moderate climate conditions with its specific solar 

radiation and daylight path properties, therefore the conclusions are limited to this climate 

zone. Further research using various climate profiles can broaden the adaption of the 

developed building type under further climate locations. 

8. The proposed ISOCF office concept represents a fundamental basis for the development 

of a comprehensive future ISOCF multistory office building typology and design guidelines. 

 

5.3. Contributions 

Scientific contribution  

- The prior literature in the multistory façade optimization strategy lacked a 

comprehensive new building type, using radical and elementary passive architectural 

strategies as a completely closed building envelope according to the reorganization of 

the interior spaces. This research contributes to the multistory office and workspaces in 

literature with the innovation and knowledge about the proposed new office building 

type. 

- The following research provides a direction for further investigations on multistory 

office building typology and energy design guidelines.    

 

Social contribution  

- The new building type provides a friendly work atmosphere and due to its open 

workspace, it increases the positive interactions between co-workers and colleagues, 

resulting in more efficient group work.  

- The new multistory office building type has improved the indoor thermal comfort and 

energy performance for the working spaces.  
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Architectural contribution  

- With the integration of an atrium, a kind of multifunctional `transition-space` with 

communicative functions (brainstorming, project office) is created, performing 

acceptable thermal comfort in at least 60% of the year without space conditioning.  

- Using the open workspaces, various required temporary functions can be utilized and the 

new building type is convertible to any other suitable temporary and permanent 

functions.  

 

5.4.Future directions 

- In the future, further investigations about daylight performance will help to improve the 

visual comfort level of the new multistory building type. 

- It will be useful to analyze the atrium aerodynamic conditions using computational fluid 

dynamics (CFD) software. This will complete the new building type to increase hygienic 

comfort (indoor air quality, IAQ) together with lower energy consumption. 

- Since the building envelope is free of external windows, it is suggested to use the 

envelope surface and to investigate the effect of the implementation of PV-technology 

on the façade surface to improve energy efficiency.  

- An energy-positive yearly balance is aimed to be reached by implementing further 

investigations including HVAC-systems, environmental sources utilizing systems, etc. 

- Future studies in terms of interior architectural and temporary visual and acoustical 

separations in the floor plan will provide more efficient space optimization.  
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