UNIVERSITY OF PECS

Faculty of Sciences

Doctoral School of Earth Sciences

Creating the foundations of a universal client side
Web GIS system

Main theses of the PhD dissertation

Author: Advisor:
Géabor Farkas Dr. Titusz Bugya

Pécs, 2020.

Name and address of doctoral
school:

Head of doctoral school:

Name of discipline:

Head of discipline:

Advisor:

University of Pécs

Faculty of Sciences

Doctoral School of Earth Sciences
H-7624 Pécs, Ifjasag street 6.

Prof. Dr. Istvan Geresdi

full professor

Faculty of Sciences

Institute of Geography and Earth Sci-
ences

Department of Geology and Meteo-
rology

Physical geography and land evalua-
tion

Prof. Dr. Dénes Léczy

full professor

Faculty of Sciences

Institute of Geography and Earth Sci-
ences

Department of Physical and Environ-
mental Geography

Dr. Titusz Bugya

assistant professor

Faculty of Sciences

Institute of Geography and Earth Sci-
ences

Department of Cartography and
Geoinformatics

1. INTRODUCTION

Web GIS is a relatively new field in geoinformatics, following the evolution of the
Web. Its main purpose is combining new technologies coming from the develop-
ment of Internet-based technologies with traditional spatial data visualization and
analysis techniques. Results from this field can be considered as porting GIS ap-
plications on the Web, although the development and research process behind a
Web GIS application is more complex than that. Since the environment behaves
differently, both new problems and opportunities arise in the process.

With the advent of Web 2.0 (O’Reilly, 2007), web mapping and Web GIS re-
placed old-fashioned Internet GIS. Starting with Google Maps in 2005 (Farkas,
2015), a new trend emerged, porting spatial algorithms to the client-side using Ja-
vaScript. JavaScript programs are slower than compiled code, and more dependent
on coding style (Gong et al., 2015), therefore, it is not always feasible to auto-
matically convert software and libraries written in other languages to JavaScript.
Careful optimization and alternative techniques are often needed to achieve optimal
performance.

Modern web solutions are developed as applications rather than documents, and
browsers are considered as complete environments rather than document viewer
tools (Taivalsaari et al., 2011). This trend has created a focus on client-side Web
GIS frameworks and libraries (Ramsey, 2007). There are groups of developers
working on pure client-side solutions for several aspects of a GIS system. There are
libraries for interacting with various popular data exchange formats (e.g. Shape-
file, Geopackage, GeoTIFF) and also for visualizing arbitrarily large vector layers
with hardware acceleration (e.g. Mapbox GL JS, Tangram, Kepler.gl). There are
libraries even for analyzing vector data (e.g. JSTS, Turf). There is no library
however capable of abstracting those diverse technologies, and giving developers a
framework for creating complete client-side Web GIS applications.

By creating such a basis, truly scalable Web GIS applications can be built
easily. Each application can define the client’s weight conditionally, executing only
expensive calculations on the server. There are many other possibilities with such
freedom. For example, creating serverless Web GIS applications, or having only one
code base to maintain for both data acquisition, and analysis, based on the type of
the device.

Such a system could be best utilized by mobile devices. Evidently, in the past
decade, the number of smart mobile devices increased dramatically. These micro-
computers are now strong enough to support advanced computational tasks, like

3D video games or office applications. Many applications are built on the most
popular operating systems (e.g. Android, iOS), however, those applications must
be maintained for multiple platforms. On the other hand, many applications tar-
get the Web and are provided as services, available through a modern browser
on any device. With such a universal Web GIS application, professionals can be
fully platform-independent. The same code base could support fieldwork, analysis,
and visualization, offering different capabilities on different devices. Modular de-
velopment has the advantage of creating software components, which can be used
conditionally. For example, such a Web GIS in surveying mode should not load
geostatistical modules, saving battery life.

For defining a universal Web GIS system, one has to go back to Geographic Infor-
mation System definitions. GISs have evolved from multiple other systems. Among
multiple definitions in classic literature, GIS has been defined as the intersection
of four preceding systems: computer cartography, database management (DBMS),
computer-aided design (CAD), and remote sensing (Maguire, 1991). While a basic
GIS can omit remote sensing capabilities, the other three categories are essential
parts for spatial data visualization, geometry manipulation, and attribute data
management.

These non GIS specific features form the inner core of a GIS. From computer
cartography comes the structure of spatial data in a GIS. Irrespective of the given
system’s internal data structure, spatial data are organized on individual layers.
Every layer is part of the visualized locality, representing one coherent characteristic
(Tomlin, 2017). The most determinative feature of computer cartography inherited
by GIS is the representation model. A GIS must be capable of creating different
types of maps from spatial data by applying different visual variables on raw data
(Roth, 2017).

From the DBMS domain, GIS has inherited an internal relational data structure
used for attribute management. Since vector features can hold as many attributes
as they see fit, the relational architecture keeps those values consistent. While in
most cases the end-user only sees an attribute table with a field calculator, this
design ensures a fast bidirectional connection between geometries and attributes.

CAD functionalities form the basics of vector geometry management in GIS.
Those are mostly related to interactions, like geometry selection, affine transfor-
mations (e.g. shift, rotate, scale), or updating attribute data on a per feature
basis. There are also low-level rendering capabilities related to CAD software, like
geometry styling or hardware accelerated vector visualization.

While remote sensing capabilities are not necessarily mandatory features in a
basic universal GIS, there are some features from this domain which can hold inter-
est in such a system. These are image processing algorithms, making basic raster
analysis possible. If some less complex algorithms (e.g. map algebra, reclassifica-
tion, convolution) are implemented, users can execute fairly complex raster analyses
by involving them in a longer workflow, possibly also including some GIS specific
analysis features.

Building on these features, there are numerous GIS specific features of interest

in a universal GIS client. One of the main groups is data abstraction. A universal
GIS must accept spatial data in common formats, and it must be able to produce
exports in them for interoperability. In a basic GIS, it should be enough to support
the most popular ones, like Shapefile, GeoJSON, KML, GeoTIFF, and Arclnfo
ASCII Grid (Orlik & Orlikova, 2014).

It can be argued if the support of coordinate reference systems (CRS) should
be considered as a non GIS specific (computer cartography) or a GIS specific fea-
ture. Proper projection handling involves on the fly transformation of both raster
and vector data to a common projection in modern clients. Since on the fly trans-
formation involves reprojecting geometries and warping rasters, CRS handling is
considered a GIS feature in this study.

The last group of features in this category is GIS specific spatial analysis capa-
bilities. While a basic GIS client does not need to have excessive amounts of analysis
features, it should be able to execute basic analysis on features and rasters. From
a conclusive list of universal GIS features (Albrecht, 1998), a basic client should
be able to make measurements, interpolate, search based on spatial relationships,
and execute basic geoprocesses on vector layers. Those basic geoprocesses include
buffering, dissolving, point-in-polygon (PIP) operations (Thrall & Thrall, 1999),
and spatial set operations in continuous space (i.e. intersection, union, difference,
symmetrical difference on geometries). Furthermore, there should be an option for
converting between vector and raster data types without interpolating (Meaden &
Chi, 1996).

If a client possesses these capabilities, it can firmly be called a universal GIS
client. However, a universal Web GIS client must have some Web related capa-
bilities, since it belongs in a special niche. These capabilities are mostly related
to services (e.g. WMS, WFS, WCS). Otherwise, without the ability to commu-
nicate with a standard spatial server, a Web GIS client would be limited. Since
spatial databases can hold a huge amount of data (Agrawal & Gupta, 2014), and
Web clients cannot connect to databases yet, currently this is the only way to use
RDBMSs in a Web GIS client.

By categorizing these features, and extending or refining them where necessary,
a comprehensive list can be created. Since — as in most of such comparisons — some
subjectivity is involved, it is important to note that this is not the only way to
compare massive clients for their universality. This is merely a possibility based on
past literature.

2. PURPOSE OF STUDY

The purpose of this study is to find a client-side web mapping library capable
enough to be the basis of a Web GIS with some extensions. In order to make an ob-
jective decision, current technologies are compared in a competitive analysis. With
the most capable library chosen, its weaknesses are outlined with a list of basic
GIS features. Those features are chosen based on several pieces of literature. The
outlined weaknesses are then reduced to a set of severe problems, which must be
mitigated before the library can be considered a solid Web GIS basis. Finally, so-
lutions are presented to each element of the subset, creating a basic, but functional
Web GIS library.

The steps of this study in a list format are the following:

1. Composing a list of basic GIS features based on literature.
2. Selecting capable candidates from current web mapping technologies.
3. Comparing candidates with a competitive analysis.

4. Choosing the most capable candidate for being a basis for extensions and
fixes.

5. Outlining the most severe shortcomings of the chosen library.

6. Implementing fixes for those flaws, ending up with a functional Web GIS basis.

3. MATERIALS AND METHODS

3.1. Competitive analysis and software metrics

The study consists of several, methodically different steps, therefore there are mul-
tiple methods. The first step was choosing the right basis for a universal massive
client. Since a list of spatial data visualization libraries needed to be compared, this
step mostly relies on theory. The list of GIS features used by this study (Figure ?7?)
served as the basis of comparison, that is the list of GIS features compared amongst
the chosen libraries.

While a competitive analysis is useful, it is not enough to cover every character-
istic of the compared libraries. There are some aspects, which are hard to grasp, but
affect developers significantly. Some of them, like the level of documentation, num-
ber of tutorials, or developer activity can be quantified or qualified. However, the
complexity of a piece of software from users’ perspective is very hard to determine.
The standard method for assessing such a characteristic is creating expert surveys
(Roth et al., 2014). On the other hand, there are some static software metrics which
can shed some light on the problem without the long process of surveying.

During the competitive analysis, candidate libraries were scored based on their
support of each examined feature. Several features consist of subfeatures, which
need to be supported in order to achieve a perfect score. If a library fully imple-
mented a feature, it got a full score of 1.

Partial scores were given in two cases. There were cases when a library’s support
were only partial due to the negligence of one or more subfeatures. In other cases,
the library did not implement a feature at all, but there was a third party extension
implementing that feature. In both of those cases, the library were given a partial
score of 0.5.

If a library did not support a feature at all, it got a score of 0. There were sev-
eral cases, when this was inevitable (e.g. connecting to spatial databases). Those
features were included with considerations for future development of Web technolo-
gies. This way, if at some point browsers will be able connect to databases, the
evaluation’s frame does not need to be revised.

Final scores were provided by averaging support points, resulting in a 100% cov-
erage in cases when a library offers core support for every examined feature. Since
the final score does not give a complete picture about the strengths and peculiarities
of candidates, subcategories (e.g. rendering, format handling, representation) were
also evaluated.

Category Documentation score Ratio of answered questions

Poor 0 0-0.25
Decent 0-0.5 0.25 - 0.5
Good 0.5-1 0.5-0.75
Very good 1 - 0.75 -1

Table 1: Rules of applying ordinal values to raw documentation and community support scores.
Apart from the Poor category, the intervals are exclusive of the first value, and inclusive of the
second.

In order to approximate the total complexity of a library, an evasive charac-
teristic was targeted: the learning curve. It can be assumed, if enough aspects of
complexity are covered, a formula from static software metrics can make a crude
approximation. Approximate Learning Curve for JavaScript (ALC;g) was tailored
for JavaScript libraries specifically (Farkas, 2017). The formula (Equation 1) in-
cludes Logical Lines of Code (LLOC), cyclomatic complexity v(G), and the number
of LLOC per exposed functions E'F, as they have great impact on the learning
curve of a project (Fowler et al., 1999).

v(Q) " LLOC) (1)
F EF

There are some other characteristics contributing to the overall usability. Some
of the more important ones are documentation, community, and support (Ramsey,
2007; Steiniger & Hunter, 2013; Poorazizi & Hunter, 2015). Those characteristics are
hard to evaluate, since there are numerous different ways to measure them, and they
are usually evaluated using an ordinal scale. In order to make the measurements
reproducible, a method was designed based on numeric attributes.

A documentation score (Equation 2) was calculated from the number of API
documentation A (basically its existence), the number of tutorials 7', and the num-
ber of examples E. Since the API documentation is essential for users, its existence
does not improve the score, but its absence results in a score of 0. As tutorials are
more comprehensive, harder to create, and help users accommodate themselves to
the library faster, they receive a larger weight than examples. In the end, the final
scores were converted to ordinal values (Table 1).

ALCjg = log;y LLOC x log,(

Score = A x (T/10 + E/100) (2)

Community and support are soft metrics, which are hard to evaluate. In this
study, two such metrics were collected. The first one is the number of contributors
and major contributors in the project. Major contributors are considered as devel-
opers, who added more than 1000 lines to the source code. The second one is a
release frequency, which can be calculated from the number of releases n, and the
days passed between the first Dpg and the last release Dy (Equation 3).

:DLR_DFR
n—1

RF (3)

8

Support data were collected from two sources. Since most of the compared
projects are using GitHub as a Version Control System, GitHub’s issue system
could be leveraged to collect some information about developer support. In this
metric, the number of open issues were collected in contrast to the number of total
issues of a library. For community support, two popular forums (Stack Overflow
and GIS Stack Exchange) were involved. The ratio of answered questions was used
to assess the quality of community support on an ordinal scale (Table 1).

3.2. Benchmarking

In order to evaluate the performance of extensions written for the chosen library,
they were benchmarked for both performance and memory footprint. Different
methods were used for benchmarking hardware accelerated rendering, and raster
management. The common device used by every benchmark was a Dell Inspiron
7567 laptop and a 64-bit Chromium with hardware accelerated Canvas, running on
a Debian 9 OS. For some of the hardware accelerated rendering tests a a Lenovo
A536 smartphone was also introduced with a 32-bit Chrome running on Android
4.4.2, accessed through remote debugging.

Hardware accelerated rendering benchmarks were carried out using a specific
application written for the measurements. It used the high precision Performance
Timeline API (Grigorik et al., 2016) by measuring several consecutive redraws and
writing the drawing time to the browser’s console. In the end, outliers were filtered
out, and the rest of the data points were averaged for a representative result.

Since a web mapping library can cache rendered data to further accelerate draw-
ing speed during animations and user interactions (e.g. pan, zoom), animations and
complete redraws were measured separately. Complete redraws were measured by
repositioning the map back and forth on the X axis automatically. There were 10
successive measurements for each zoom level. Due to the low amount of measure-
ments — which is a result of low performance with large datasets — if a measurement
produced outliers, it was repeated.

Animation measurement used a similar approach, although it performed a pan-
ning animation on a predefined path instead of moving the map back and forth.
The program measured elapsed time between frames, making the number of data
points a function of frame rate. Since frame rates can be low under heavy load,
the received data points from a single measurement varied between 5 and 100. If a
measurement produced fewer than 10 stable data points, it was repeated, and the
new results were added to previous ones.

Furthermore, using the developer tools of Chromium, detailed performance tests
were conducted. These benchmarks measured the ratio of time spent on different
phases of the rendering pipeline. With this method, possible bottlenecks could be
identified giving insight into approximate performance gain without them.

In case of every benchmark, a set of sample data had to be used. Three sets of
sample data were used, carefully tailored to the respective benchmark. Two layer
groups have been created for hardware accelerated rendering measurements. One

is a thematic map showing a real world web mapping example (Figure 1), while the
second one is a state of a GIS workflow, representing a typical GIS load.

-
B

O
=
r

Thematic map
(v Populated places

¥ Major rivers
@ World population
GIS workflow
() Populated places
) Settlements
() Counties

~

Hamjiton

‘WebGL
Point layer:
¥ Marker
¥ Label

Vicgoria
aam N

Q Countries © Natural Earth Rivers © Natural Earth Populated places © Natural Earth u
4. O e uktamml . A

Figure 1: Thematic web map used for benchmarking a real world example of a web mapping
application (Farkas, 2019).

In order to measure raster management techniques efficiently, two different sam-
ple rasters were used (Figure 2). One of them is a small Digital Elevation Model
(DEM) from GRASS GIS’s Spearfish60 example dataset. The other one is a multi-
band raster. It contains a multispectral Landsat 8 imagery of Baranya county using
the red (R), green (G), blue (B), and near-infrared (NIR) spectral channels.

Figure 2: Sample rasters used for visualization and benchmarking. Both of the rasters are repro-
jected on the fly to the Web Mercator (EPSG:3857) projection. The Spearfish60 DEM (left) has
a monochrome greyscale style, while the Baranya imagery (right) has an RGB style created from
three corresponding bands (Farkas, 2020).

10

4. RESULTS

4.1. Choosing a candidate

In order to choose the best basis for a universal Web GIS client, numerous data vi-
sualization libraries were selected. From those libraries, however, only a few passed
the initial filters, making them subjects of further comparison. Initial filtering nar-
rowed down possibilities to a group of ideal candidates, namely Cesium, Leaflet,
NASA Web World Wind, OpenLayers 2, and OpenLayers. It is important to note,
that two of the candidates are virtual globes. However, both Cesium and NASA
Web World Wind have strong geospatial foundations, capable of rendering 2D maps,
and have numerous GIS features required for a Web GIS client.

The overall results of the competitive analysis (Table 2) did not show extraordi-
nary differences between supported features in candidate libraries. Both OpenLay-
ers 2 and OpenLayers outperformed the rest of the candidates, which is mainly due
to their development philosophy. OpenLayers libraries have always been created
with GIS considerations in mind. Their internal structure resembles desktop GIS
software’; allowing users to create rich web maps with GIS capabilities.

Upon investigating further using static software metrics (Table 3), no surprising
results could be found. LLOC values, per function cyclomatic complexity, and the
number of exposed functions were able to describe several aspects of candidate
libraries. Furthermore, ALC;s values matched experienced difficulties with the
candidates.

Leaflet is the smallest library, although it has as many exposed functions as
other web mapping libraries. Its complexity is low, making it easy to learn and

Feature group Cesium Leaflet NASA WWW OpenLayers 2 OpenLayers

Rendering 80% 40% 60% 40% 60%
Formats 65% 62% 53% 82% 76%
Database 0% 8% 0% 17% 0%
Data 32% 30% 18% 34% 44%
Projection 63% 50% 75% 63% 88%
Interaction 33% 50% 33% 83% 72%
Representation 22% 44% 33% 56% 56%
Average 41% 41% 34% 54% 56%

Table 2: GIS feature coverage of candidate libraries (Farkas, 2017).

11

Library Size (KB) LLOC CC/F EF ALCyg

Cesium 11420 292500 2.08 911 51.27
Leaflet 162 3639 2.00 200 18.47
NASA Web World Wind 1452 13037 250 187 30.64
OpenLayers 2 872 23702 282 207 36.46
OpenLayers 499 21451 236 223 33.90

Table 3: Static software metrics of candidate libraries (Farkas, 2017). CC/F stands for per
function cyclomatic complexity.

Property Cesium Leaflet NASA WWW OpenLayers 2 OpenLayers
Documentation Good Good Decent Very good Very good
Community Good Very good Poor Good Good
Contributors 89 (29) 236 (8) 12 (5) 98 (16) 154 (27)
Open issues 409 (25%) 225 (7%) 40 (56%) 383 (64%) 414 (21%)
RF 28 68 N/A 32 24

Table 4: Non-code metrics of candidate libraries (Farkas, 2017). RF stands for release frequency,
and shows the average number of days between two successive release.

develop. NASA Web World Wind is the smallest amongst the two virtual globes.
Its learning curve is significantly steeper, since it is a virtual globe, having more
complex dynamics. OpenLayers libraries and Cesium could be called the big players
in the group. They are harder to learn into, even harder to master and develop.
They are mature, big, robust libraries, with a wide variety of functionality to offer.
Cesium is the largest project, having a codebase comparable to mature desktop
solutions. Its steep learning curve is in ratio with the complexity of a virtual globe
capable of visualizing spatiotemporal 3D phenomena.

Other, non-code metrics (Table 4) shed some light on the development difficulty
with candidates. In the table, major contributors are shown between parenthesis
next to the total number of contributors in a project. Next to the number of open
issues, their ratio to the total number of issues is shown in a similar fashion.

Most of the candidates had sufficient documentation, with which users can start
to build applications quickly. While Cesium, OpenLayers 2, and OpenLayers ex-
celled in examples, Leaflet had very thorough tutorials for basic use cases. Open-
Layers 2 had an outstanding number of examples (210), while OpenLayers had the
most tutorials (23). As an exception, NASA Web World Wind only had a very few
of both tutorials and examples, making it harder to learn into.

Community metrics showed a similar picture. In this category, Leaflet excelled
with not only the highest ratio of answered questions (80%), but also with the
highest total number of questions on StackExchange forums (5447). Unfortunately,
NASA Web World Wind did not have a measurable community, probably due to
being young and unadvertised.

Developer statistics showed that while Leaflet had the most contributors, it also
had the smaller core developer group. In this category, Cesium and OpenLayers

12

excelled with a high number of major contributors, implying their long term stabil-
ity. The number of open issues also favored the aforementioned libraries, since they
had low ratios to the total number of issues. On the other hand, Leaflet highly out-
performed all the other candidates in terms of open issues. The candidates’ release
frequency were also showing stability, except for NASA Web World Wind, whose
releases could not be tracked, since it was using a private development system.

According to candidates’ feature coverage and metrical results, they could be
narrowed down to two technologies: Cesium and OpenLayers. Since the two li-
braries were in more or less a tie, the supported features were reinvestigated, and
crucial features were identified. Three such deficiencies were identified in the li-
braries; the lack of general projection support in Cesium, the lack of full hardware
acceleration in OpenLayers, and the lack of raster management in both of them.

Estimations were made for implementing the two unique lack of features. In
Cesium, there was a skeleton (an empty class) for custom projections in the API.
However, it seemed like projections were tightly coupled to the rendering engine.
OpenLayers already had a WebGL engine for drawing hardware accelerated point
and image layers. Since the basic structure of the engine was given, it seemed an
easier way to implement line, polygon, circle, and text rendering. It was considered,
that some essential modifications will be needed in core classes due to possible
pitfalls, still, a rough estimation could be created for implementing the missing
rendering mechanisms in a year. Mainly for this reason, OpenLayers was chosen as
the basis for a universal Web GIS.

4.2. Hardware accelerated vector rendering

Before this modification, OpenLayers supported image and point rendering via
WebGL. This support manifested as an image renderer, since points were first ren-
dered through the Canvas API, cached, and overlaid on the map canvas as textures.
That is, OpenLayers was able to render textures with its hardware accelerated ren-
derer. For rendering other types of cartographic elements, line strings, polygons,
and labels needed to be supported. For drawing labels, the existing texture renderer
could be exploited.

WebGL — just like OpenGL — cannot render complex geometries natively. It
offers a low-level API, which can be programmed to bring a 2D or a 3D scene to
life. It has a limited number of entities, called primitives, which are handled auto-
matically. Line primitives (gl.LINES, gl .LINE LOOP, g1.LINE STRIP) are slightly
different methods for drawing segments. While gl .LINES can be used with seg-
ments of arbitrary width, it does not support segment connections. The others can
draw line strings, although with a fixed width of 1 pixel.

This shortcoming raises the demand for a more convoluted drawing methodol-
ogy. For a correct representation of geospatial line string data, segments must be
triangulated, in which way, both line endings and line connections can be main-
tained. Every segment needs to be cut into at least two triangles. If there are caps,
they need to be added to the end of the line string as two additional triangles. A

13

T(V)s

Figure 3: Triangulation scheme of two connected line segments V7, V5, V3 with a miter line join and
no line caps. Arrows show the magnitudes and directions of offsets needed to require triangulation
points T'(V),,. Dashed lines represent triangles resulting from connecting triangulation points in
the right order.

slightly more complicated calculation is the join point (both upper and lower) of
two segments. Every join needs a lower point, while a miter join also needs an upper
point. These join points must take the orientations of the two meeting segments
into account. If every point is calculated, a two-segment line (V3, V5, V3) can be
triangulated with 8 points (Figure 3).

The final program calculates every point in the GPU. With this method, the
input needs to contain three pairs of coordinates, and an encoded parameter for
every vertex in the triangulation. Providing the parameters for every vertex in
the visualized polyline is not enough, as WebGL shaders cannot emit new vertices.
Since there is no geometry shader in WebGL, every triangulation vertex needs to
be provided, increasing the input’s redundancy. The encoded parameter contains
an instruction i (e.g. offset, miter, square cap), a direction d, and a rounding factor
r compressed into a single number p = ¢ X d X r, which can be decoded in the GPU.

Rendering polygons is not as hard as rendering line strings. If they are parti-
tioned to triangles, the GPU can draw fills right away, while strokes can be rendered
with the line string renderer. The hard part of drawing polygons is breaking them
up to triangles. Polygon triangulation rarely raises a problem in most computer
graphics applications, due to several mature libraries capable of breaking up poly-
gons robustly, with great performance. However, those libraries and frameworks
(e.g. GLU tessellator, cairo, Qt) are written for desktop applications. In the Web
ecosystem, there are fewer solutions, and some of the direct ports are not optimal
due to different overheads.

The implementation uses a doubly linked list as its main data structure. The
linked list’s nodes are segments, due to the need of checking intersections. As a

14

Zoom level 1 2 3 4 5
NVIDIA GPU

WebGL animating 56.35 56.82 57.53 56.00 54.19
Canvas animating 29.24 23.64 22.45 32.59 46.37
WebGL drawing 14.75 10.92 10.26 12.18 15.37
Canvas drawing 22.94 18.59 14.23 24.33 33.00
Intel GPU

WebGL animating 58.99 55.34 52.59 59.01 59.72
Canvas animating 26.07 20.21 15.17 16.77 22.83
WebGL drawing 1091 837 717 7.72 8.03
Canvas drawing 13.57 12.92 10.28 10.71 14.66
ARM Mali GPU

WebGL animating 12.67 12.08 10.66 16.51 21.83
Canvas animating |[1.19] [1.22] [1.87] [3.69] 5.84
WebGL drawing 1.25| 10.94| [0.82| |[1.45| |2.27
Canvas drawing 1.13] [0.96] |1.32| [2.51] |4.05

Table 5: Rendering performance (FPS) of the thematic layer group. Lags are emphasized by
underlining, and severe lags by framing (Farkas, 2019).

secondary data structure, it uses an R-Tree, indexing every segment for increased
performance. Since simple polygons should be triangulated as fast as possible, it
uses a penalizing approach. The more deficiencies the polygon has, more precise
and slower techniques are applied.

Similarly to the image renderer, labels are generated and cached with the HTML5
Canvas API, on internal canvas elements. By avoiding this dependency on the Can-
vas API, one could make faster and memory-efficient solutions, however, every font
would need to be served. In order to keep the ability to use any browser-supported
font, this dependency was deemed necessary by the implementation. In the final
implementation a glyph atlas is used to store individual characters with the same
styling in a single cache. Then, when labels are rendered, those characters are put
next to each other.

The first set of measurements targeted the thematic layer group. Results (Table
5) indicate that the Canvas renderer can handle a load of a typical, not optimized
vector-based web map on decent GPUs. On the other hand, the WebGL renderer
is more optimal. The animating speed of the WebGL renderer was exceptionally
high on both the integrated Intel and the dedicated NVIDIA GPU. Those values
perturb around the maximum 60 FPS value of a display with a refresh rate of 60
Hz. Around 60 FPS, results showed more instability. While a 1 FPS difference
was significant around the 20 — 30 FPS interval, above 50, a 4 FPS difference could
mean only a minor disturbance during a benchmark.

Overall user experience is mostly affected by the animating speed. Those FPS
values are experienced during user interactions, like zooming, panning, and rotating.
Drawing speed is only experienced when the map comes to a standstill. Therefore,

15

Point Polygon
Canvas WebGL Canvas WebGL-c?*
Drawing time (ms) 84.48 36.28 337.79 248.76

Scripting 78.61% 95.78% 28.04% 97.16%
Rendering 0.09% 0.55% 0.05% 0.05%

Painting 0.37% 0.83% 0.15% 0.10%

Other 20.98% 2.78% 71.76% 2.67%

2Cached. In this scenario, triangulation was disabled in the
application.

Table 6: Ratio of different calls when rendering the GIS group (Farkas, 2019).

if animating speed is high enough to create continuous animations, and drawing
speed stops the rendering pipeline for half a second, it is perceived as better than
if the map lags during interactions.

This is the main reason of a naive, not thoroughly optimized WebGL engine
still has a great impact. By caching buffers (triangulated vertices), it can provide
a significant performance boost during animations. On the contrary, as the Canvas
engine can only cache drawing instructions, the speedup is not as notable.

The only scenario that resulted in severe lags was using the ARM Mali GPU in a
handheld device. Since it is a weak GPU in an obsolete smartphone, it can represent
low end builds. While the application was lagging using the Canvas renderer, the
WebGL engine could still animate the map with only slight lags. Therefore, using a
WebGL engine has a very important benefit of making an application less dependent
on the age or computing power of the device.

Measuring the GIS group (Table 6) added a few additional insights. This time,
WebGL polygon rendering was measured without triangulation, since involving it
would have not been added anything new to the picture. According to the results,
without triangulation, the WebGL renderer has a better time complexity than the
Canvas polygon renderer. It means, there is a turning point, where even a naive
WebGL engine becomes more efficient, and the GIS group is beyond that point.

4.3. Raster management

For efficient raster management, not only several new classes were created, but the
whole process was reconsidered. Traditional raster data by definition are matrices
mapped to rectangular cells in a grid. While computers evolved, the definition of
the raster model did not change. It is still useful, since it can visualize spatially
continuous phenomena, without the need for interpretation (Bugya & Farkas, 2018).
With the exponential growth of computing power and the evolution of analysis
techniques, new demands have arisen. The necessity of cells being square-shaped
has been lifted, and rectangular cells can be used in modern GIS software. 3D rasters
(voxels) is another case when the traditional model could be extended, and voxel
datasets can be utilized in some of the systems with 3D capabilities (e.g. GRASS

16

GIS). However, it is still not possible to use different patterns, like triangular or
hexagonal tessellations.

It can be observed, most of the raster model’s advantages are coming from its
data model, while most of its limitations are of the representation model (Bugya &
Farkas, 2018). If a new, more permissive representation model could be built, most
of the model’s disadvantages could would be mitigated. Since there are no mature
and standard ways to represent rasters on the Web, an attempt was made to create
such a new model. This model is called the coverage model, owing its name to
OGC’s WCS, which transmits raster data with similar considerations in mind.

The coverage model keeps the data model of rasters (i.e. uses matrices), but
is renders that data as vectors. It treats every cell as a single polygon without a
stroke style. Using this technique, the rendering process is slower, but each cell
can be scaled, rotated, and projected easily. Furthermore, it allows for additional
grid patterns. Its only requirement is to have an unequivocal mapping between
matrix elements and coverage cells. The mapping is called a pattern, which allows
translating and rotating successive elements.

With the coverage model, rasters are treated more naturally, as edge cases of
the vector model. They can be optimized based on the regularity of the pattern.
While the pattern is rectangular, it maintains every advantage of the traditional
raster model and is burdened with all of its limitations. Hexagonal coverages lift
some of the disadvantages, while they can be optimized very well to provide fast
processing (Her, 1995). With the regularity of the pattern decreasing, there are
fewer advantages and more limitations, ending up with a limited, but assuredly
continuous vector layer in the end.

The first step in implementing a working raster management pipeline was cre-
ating the basis for both raster and coverage models. Those classes and functions
are mostly related to traditional raster management, since the coverage model only
changes the representation model of rasters. Base classes include containers for
raster data, methods for styling, layers and sources for integrating rasters into the
OpenLayers ecosystem, and renderers for visualizing the layers.

Since an image layer renderer was already present in the source code, and the
traditional raster model uses textures for visualizing rasters, there was no need to
create an additional renderer. The raster layer simply extends the image layer,
therefore they can use the same renderer in OpenLayers. For traditional rasters, a
GeoTIFF and an ArcGrid class was created, inheriting from the coverage source.

The coverage renderer has significantly more custom logic than the raster ren-
derer. It uses the same set of base classes (e.g. layers, sources, styles), however,
it has some peculiarities, only available as coverages. The most interesting one
is a hexagonal coverage format as a source class. HexASCII (de Sousa & Leitao,
2017) is an ArcInfo ASCII Grid adaption for hexagonal rasters (Figure 4). It stores
the matrix in ASCII format and some metadata in a header. The header provides
necessary information for positioning and laying down the grid.

During the rendering process, both pyramids and R-Trees are used in an inter-
connected way. When a coverage layer is loaded, and a renderer is instantiated for

17

K 4

Figure 4: The Spearfish60 DEM rendered as a HexASCII coverage (Farkas, 2020).

it, a spatial index is built for every cell, on every pyramid level. By default, there
are a maximum of 10 levels. In the end, every pyramid level contains an R-Tree
with every cell indexed. From the R-Tree, the renderers can query cells in the map’s
viewport, and do not have to render every cell on larger scales.

Using a spatial index for storing cells had the largest impact on performance,
although it was not planned in the first implementation. The impact of this step
was not thoroughly investigated, since before, both of the engines struggled with
drawing coverages, and after, the WebGL engine became usable (Table 7).

In the WebGL renderer, the first optimization was using vertex attributes for
colors. While uniform attributes do not need as much memory as including a color
for every vertex, the drawing speed becomes very slow with frequent color changing.
With colors as vertex attributes, the memory cost quadrupled, however animating
speed became faster by an order of magnitude. The final optimization was using
pyramids to speed up rendering on smaller scales. This step mostly affected drawing
speed, since during animations, vertex buffers are cached and replayed.

The preparation phase in case of rasters and coverages groups steps related to
creating and caching visualized data, even between complete redraws. Preparation
time is not significant in the case of traditional rasters (Table 8). Rendering is even
faster, and the memory footprint of the cached image is minimal. The two steps
combined, however, is not fast enough for creating continuous animations from large
rasters by restyling the raster at every frame. It can be done with smaller layers,
like the Spearfish60 DEM, though.

In the case of coverages, only the Spearfish60 DEM was measured, both as a
rectangular, and a hexagonal coverage. Unfortunately, there were some memory-
heavy steps in the pipeline, which caused the system to run out of available memory
in case of the Baranya imagery. This indicates the inadequate scalability of the
implementation, and its long way ahead to become more than a mere prototype.

By looking at the detailed metrics of different pyramid levels (Table 9), detailed
versions not only need gradually more time to draw but also consume polynomi-
ally more memory. This is problematic, since the measured layer is a small one

18

Redraw Animate
Canvas engine

Time 2202.1 ms 1678.6 ms
Performance 0.5 fps 1.7 fps
Memory 112.5 MiB
WebGL engine (colors as uniforms)
Time 3009.6 ms 410.2 ms
Performance 0.3 fps 2.4 fps
Memory 30.8 MiB
WebGL engine (colors as vertex attributes)
Time 2299.1 ms 48.1 ms
Performance 0.4 fps 20.8 fps
Memory 112.0 MiB

Table 7: Performance and memory metrics of the two coverage renderers rendering the Spearfish60
DEM as a rectangular coverage on zoom level 12. All of the cases are using an R-Tree as a first
optimization step, while the WebGL engine uses different number of vertex attributes as a second
one (Farkas, 2018).

Prepare time Draw time Memory

Raster layer

Spearfish60 37 ms 3 ms 87 KiB
Baranya imagery 343 ms 8 ms 77.5 KiB
Coverage layer

Spearfish60 2579 ms 1-1032 ms 152.9 MiB

Spearfish60 (hexagonal) 3001 ms 1-1747 ms 170.4 MiB

Table 8: Rendering metrics of raster and coverage layers. In case of coverage layers, the draw time
is a function of the pyramid level, and the number of visible cells. The range limits are empirical
best and worst case values (Farkas, 2020).

19

Level

Cells

Time

Memory

Heap memory

1 292220 1032 ms 111.8 MiB 365 (+172) MiB
2 73181 265ms 31.0MiB 193 (+17) MiB
318230 96ms 7.6MiB 176 (+5) MiB
4 4468 16ms 1.9MiB 171 (+6) MiB
5 1026 18ms 4782 KiB 165 (+1) MiB
6 169 5ms 1141 KiB 164 (+0) MiB
7 63 3ms 274 KiB 164 (+0) MiB
8 12 lms 57KiB 164 (+0) MiB
9 2 lms 1.2KiB 164 (+0) MiB

Table 9: Rendering metrics of different pyramid levels in the Spearfish60 rectangular coverage
(Farkas, 2020). Heap memory was recorded, since on higher zoom levels, the browser ran out of
memory during creating exact memory snapshots.

compared to typical real-world data. From the total heap memory of the appli-
cation on different levels, the amount of memory consumed for rendering is put
between parentheses. This is one of the most problematic parts, since that excess
memory consumption comes from OpenLayers’ rendering design, and not from the
implementation’s lack of scalability.

Learning from the lesson, there are many ways of optimizing the second part
of coverage rendering further. First of all, the spatial index should be avoided, if
possible. In the case of rectangular and hexagonal patterns, map coordinates can
be transformed to row and column numbers in the matrix. In the case of custom
coverages, however, there is no easy way to avoid building a spatial index.

As an alternative approach, spatial indexing could be applied with a better
memory footprint. If every entry stores only cells’ center coordinates along with a
color, rectangular coverages could have a decreased memory footprint by 70%. This
is the worst case, thus cells with more vertices would benefit even better. In this
approach, however, the GPU must be able to create cell coordinates from a single
center coordinate.

20

5. CONCLUSIONS

This thesis has explored the possibility of building a universal Web GIS software
using existing components. Since no feasible solution was found for this goal, some
of the most crucial features were implemented in the most appropriate library,
OpenLayers. The features deemed necessary for a universal client, but missing from
OpenLayers were hardware accelerated vector rendering and raster management.
With those features implemented, there is now a feasible stack for creating better
Web GIS clients.

During investigating the best basis for such a client, several approaches were
examined. The analysis remained metrical, there was no expert survey included.
From the results, it seems like a set of static software metrics along with some softer
ones related to documentation, community, and other characteristics can be enough
for assessing different JavaScript libraries. Furthermore, a new metric, Approximate
Learning Curve for JavaScript was created and used. It can roughly approximate
the learning curve of a JavaScript library. It cannot be used for distinguishing
between similarly complex libraries, although it seems appropriate for detecting
outliers (e.g. too complex, too simple).

Creating a hardware accelerated rendering engine is not a trivial task. There
are many pitfalls, if the solution needs to be both fast and general. It is presumed,
that some of the major obstacles were not even encountered. However, a basic
renderer could be created, which can outperform the current one with large, ar-
bitrary datasets. While the WebGL implementation might be not as suitable for
cartographic purposes as the Canvas renderer, it can be used for GIS workflows and
basic spatial visualizations.

The Canvas renderer is suitable with vector tiles when each zoom level can be
sufficiently generalized on the server-side, but the client still has the opportunity to
render and style vector graphics. For small maps in other data exchange formats
(around 2000 features or 60 000 vertices), it is sufficient, the results are smoother,
and there are more styling options than in the current WebGL renderer. In cases
when the Canvas renderer is not feasible anymore (e.g. big data, animated vectors),
the WebGL renderer offers a usable alternative.

Presumably, the most significant part of this thesis is revisiting raster manage-
ment. Desktop solutions rely on mature libraries with a long history, and very
few bugs. These libraries (e.g. GDAL) can do such great work in raster processing,
swapping them for a new component in order to support a modern concept does not
seem feasible. On the other hand, Web technologies are still young, and due to dif-

21

ferent constraints, most traditional problems require new solutions. This makes the
Web a great boilerplate for testing out new concepts. If a technique, an approach,
or an application works out well, it might be of greater interest for implementing
in other environments.

An example of such a concept is the coverage model. While the raster model’s
popularity is understandable due to its advantages — especially for working with
spatially continuous data — it has severe limitations. While demands for alternatives
were not strong enough for revisiting such a stable concept, recently, the increasing
popularity of hexagonal rasters spawned efforts for extending on the traditional
raster concept. Since it is now possible to create a new raster concept due to
increased demand, investigating the feasible degree of generalization is the correct
approach. Since then, the extended model will be more stable, and it is less likely
that it will need further revisions in the near future. The coverage model offers
such an investigation by generalizing the raster model to the level of vectors.

Preliminary results showed that while the coverage model is not feasible to use
for real-world data, it can be shaped into a working library. The proof of concept
demonstrated, hexagonal coverages can be handled without using verbose vector
data structures, and maintaining complex topological relationships. Furthermore,
coverages should not replace rasters, as they will never be as fast as textures. The
coverage model should complement the raster model, offering a hybrid solution for
professionals working with more complex coverages. On mobile devices and embed-
ded systems, where processing power and memory is limited, or battery discharge
time is a relevant factor, rasters will be a better solution in the foreseeable future,
than rectangular coverages.

22

REFERENCES

Agrawal, S., & Gupta, R. D. (2014). Development and Comparison of Open
Source Based Web GIS Frameworks on WAMP and Apache Tomcat Web Servers.
The International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, XL(4), 1-5.

Albrecht, J. (1998). Universal analytical GIS operations — a task-oriented systemati-
zation of data structure-independent GIS functionality. Geographic information
research: Transatlantic perspectives, 577-591.

Bugya, T., & Farkas, G. (2018). An Alternative Raster Display Model. In
C. Grueau, R. Laurini, & L. Ragia (Eds.), Proceedings of the 4th international

conference on geographical information systems theory, applications and manage-
ment (gistam 2018) (pp. 262-268).

de Sousa, L. M., & Leitao, J. P. (2017). HexASCII: A file format for cartographical
hexagonal rasters. Transactions in GIS, 22, 217-232.

Farkas, G. (2015). Comparison of Web Mapping Libraries for Building WebGIS
Clients (Unpublished master’s thesis). University of Pécs, Pécs, Hungary.

Farkas, G. (2017). Applicability of open-source web mapping libraries for building
massive Web GIS clients. Journal of Geographical Systems, 19(3), 273-295.

Farkas, G. (2018). Towards visualizing coverage data on the Web. In Az elmélet
és a gyakorlat taldalkozdsa a térinformatikaban ix.: Theory meets practice in gis.
(pp. 107-113).

Farkas, G. (2019). Hardware-Accelerating 2D Web Maps: A Case Study. Carto-
graphica, 54 (4), 245-260.

Farkas, G. (2020). Possibilities of using raster data in client side Web maps.
Transactions in GIS, 24(1), 72-84.

Fowler, M., Beck, K., Brant, J., Opdyke, W., & Roberts, D. (1999). Refactoring:
Improving the Design of Existing Code. Addison-Wesley Professional.

Gong, L., Pradel, M., & Sen, K. (2015). JITProf: pinpointing JIT-unfriendly
JavaScript code. In Proceedings of the 2015 10th joint meeting on foundations of
software engineering (pp. 357-368).

23

Grigorik, 1., Mann, J., & Wang, Z. (2016). Performance timeline level 2 (Candidate
Recommendation). W3C.

Her, I. (1995). Geometric transformations on the hexagonal grid. IEEE Transac-
tions on Image Processing, 4(9), 1213-1222.

Maguire, D. J. (1991). An overview and definition of GIS. Geographical information
systems: Principles and applications, 1, 9-20.

Meaden, G. J., & Chi, T. D. (1996). Geographical information systems Applications
to marine fisheries. Food and Agriculture Organization of the United Nations,
Rome.

O’Reilly, T. (2007). What is Web 2.0: Design patterns and business models for the
next generation of software. Communications & strategies, 65(1), 17-37.

Orlik, A., & Orlikova, L. (2014). Current Trends in Formats and Coordinate
Transformations of Geospatial Data — Based on MyGeoData Converter. Central
FEuropean Journal of Geosciences, 6(3), 354-362.

Poorazizi, M. E., & Hunter, A. J. (2015). Evaluation of Web Processing Service
Frameworks. OSGEO Journal, 14, 29-42.

Ramsey, P. (2007). The State of Open Source GIS (Tech. Rep.). Refractions
Research Inc.

Roth, R. E. (2017). Visual variables. In D. Richardson, N. Castree, M. F. Goodchild,
A. Kobayashi, W. Liu, & R. A. Marston (Eds.), International encyclopedia of
geography: People, the earth, environment and technology (pp. 1-11).

Roth, R. E., Donohue, R., Sack, C., Wallace, T., & Buckingham, T. (2014). A
Process for Keeping Pace with Evolving Web Mapping Technologies. Cartographic
Perspectives, 0(78), 25-52.

Steiniger, S., & Hunter, A. J. (2013). The 2012 free and open source GIS software
map — A guide to facilitate research, development, and adoption. Computers,
Environment and Urban Systems, 39, 136—-150.

Taivalsaari, A., Mikkonen, T., Anttonen, M., & Salminen, A. (2011). The death
of binary software: End user software moves to the web. In Creating, connecting
and collaborating through computing (¢5) (pp. 17-23).

Thrall, S. E., & Thrall, G. I. (1999). Desktop GIS software. In P. A. Longley,
M. F. Goodchild, D. J. Maguire, & D. W. Rhind (Eds.), Geographical Information
Systems Abridged (pp. 331-345). John Wiley & Sons, Inc.

Tomlin, C. D. (2017). Cartographic modeling. In D. Richardson, N. Castree,
M. F. Goodchild, A. Kobayashi, W. Liu, & R. A. Marston (Eds.), International

encyclopedia of geography: People, the earth, environment and technology (pp.
1-6).

24

	Introduction
	Purpose of Study
	Materials and Methods
	Competitive analysis and software metrics
	Benchmarking

	Results
	Choosing a candidate
	Hardware accelerated vector rendering
	Raster management

	Conclusions

