
University of Pécs
Faculty of Sciences

Doctoral School of Earth Sciences

Creating the foundations of a universal client-side
Web GIS system

Author: Advisor:
Gábor Farkas Dr. Titusz Bugya

Pécs, 2020.

Table of Contents

1 Introduction 4

2 Purpose of the Study 7

3 Literature Review 8
3.1 From Internet mapping to Web GIS 8
3.2 Geospatial visualization on the Web 11

3.2.1 Early days of vector data in web clients 11
3.2.2 Hardware accelerated vector rendering 13
3.2.3 Rasters on the Web . 14

3.3 Web GIS clients . 16
3.3.1 A universal GIS . 17

4 Materials and Methods 20
4.1 Scoring libraries on GIS features . 20
4.2 Static software metrics . 24
4.3 Benchmarking . 28
4.4 Sample data . 31

5 The Ideal Candidate 36
5.1 Competitive analysis . 39
5.2 Metrical results . 43

5.2.1 Approximate learning curve for JavaScript 45
5.3 Selecting a candidate . 48
5.4 The structure of OpenLayers . 49

6 Hardware Accelerated Vector Rendering 53
6.1 Line strings as triangles . 55
6.2 Breaking up polygons . 60
6.3 Drawing other features . 63
6.4 Benchmarking the renderer . 64

7 Implementing Raster Management 72
7.1 Rasters and coverages . 72

7.1.1 Characteristics of the raster model 73

2

7.1.2 Treating rasters as vectors 75
7.2 Traditional raster management . 79

7.2.1 Base classes . 82
7.2.2 The raster renderer . 83

7.3 Handling coverages . 85
7.3.1 Hexagonal pyramids . 87

7.4 Benchmarking the pipelines . 89
7.4.1 Applied optimizations on coverage rendering 90
7.4.2 Rasters versus coverages . 91

8 Evolution and Impact 94
8.1 Changes in supported features . 94

9 Conclusions 97

Acknowledgements 100

References 101

Online References 110

A Appendix 112

3

1. Introduction

Web GIS is a relatively new field in geoinformatics, following the evolution of the
Web. Its main purpose is to combine new technologies originating from the de-
velopment of Internet-based technologies with traditional spatial data visualization
and analysis techniques. Results from this field can be considered as porting GIS
applications to the Web, although the development and research process behind a
Web GIS application is more complex than that. Since the environment behaves
differently, both new problems and opportunities arise in the process. By overcom-
ing those problems, new techniques are getting developed. Some of the techniques
are Web-specific, while others can be generalized to be useful even in desktop ap-
plications.

While the field of Web GIS is still young compared to other, mature fields in
geoinformatics, it has its roots dating back to the early days of the Internet. Web
mapping, the predecessor of Web GIS, made the first attempts to use the Internet
as a medium for propagating spatial information to the masses. The first web
mapping application, the Xerox PARC Map Viewer was released in 1993 (Haklay
et al., 2008), not long after the Internet was released for civil use (Leiner et al.,
1997). Since then, geoinformatics still keeps pace with technological advances of
the Internet.

Like every Internet-based application, a Web GIS has a decentralized, server-
client architecture (Figure 1). There is a server listening to requests, serving files,
executing local programs, and sending responses. Through server-side programs,
the server has access to central resources (e.g. databases, files). Connecting to
the server, there are an arbitrary number of clients. Clients send requests, update
the application’s state according to responses, and run code on client machines.
According to the amount of logic outsourced to the client, there are thin clients
and thick clients. In a thin client architecture most of the logic is running on the
server, while in a thick client architecture, the clients’ computing resources (e.g.
CPU time, memory) are used to save server resources. In a thick client, the amount
of logic outsourced to the client can vary.

In the early days of Internet GIS, choosing between thin and thick client archi-
tecture needed different considerations. Using native thick clients was unfeasible
even after new JavaScript standards made it possible. Companies seeing perspective
in using thick clients had to use plug-ins (e.g. ActiveX, Java, Flash), users needed
to install on their computers (Peng, 1999). Those solutions slowly faded away, since
their environments lost support over time with only Adobe Flash remaining, coming

4

Figure 1: Schematic representation of a basic server-client architecture used by Web applications.
HTTP (Hypertext Transfer Protocol) and HTTPS (Hypertext Transfer Protocol Secure) stan-
dardize the data format sent between clients and servers. SQL (Structured Query Language) is a
language standard for relational databases, while different DSLs (Domain Specific Languages) are
used to communicate with different object databases. TCP/IP (Transmission Control Protocol
over Internet Protocol) standardizes the communication process between computers through a
network.

to the end of its lifetime in 2020 (Adobe Corporate Communications, 2017). On
the other hand, server-side applications did not suffer such casualties. Server-side
solutions developed in thin client architectures persisted, evolved, and now form a
mature basis for spatial servers.

With the advent of Web 2.0 (O’Reilly, 2007), web mapping and Web GIS re-
placed Internet GIS. Starting with Google Maps in 2005 (Farkas, 2015), a new trend
emerged, porting spatial algorithms to the client side using JavaScript. Since Java-
Script is a weakly typed language with an interpreter and just in time (JIT) compiler
built into browsers, JavaScript programs are slower than compiled code, and more
dependent on coding style (Gong et al., 2015). Consequently, it is not always fea-
sible to automatically convert software and libraries written in other languages to
JavaScript. Careful optimization and alternative techniques are often needed to
achieve optimal performance. This made client-side Web GIS development a new
territory with both new problems and opportunities.

Modern web solutions are developed as applications rather than documents, and

5

browsers are considered as complete environments rather than document viewer
tools (Taivalsaari et al., 2011). This trend has created a focus on client-side Web
GIS frameworks and libraries (Ramsey, 2007). Since there is demand for decen-
tralized, web-based spatial solutions, there are several companies offering services
for spatial data visualization, analysis, and distribution (e.g. CARTO, Mapbox,
ArcGIS Online). Albeit most of the services offer a more or less complete GIS
environment, their applications are rather server heavy.

There are also groups of developers working on pure client-side solutions for
several aspects of a GIS system. Since JavaScript is capable of handling binary
data starting from the ECMAScript 2015 specification (Ecma International, 2015),
there are libraries for interacting with various popular data exchange formats (e.g.
Shapefile, Geopackage, GeoTIFF). There are libraries for visualizing arbitrarily
large vector layers with hardware acceleration (e.g. Mapbox GL JS, Tangram, Ke-
pler.gl). There are libraries even for analyzing vector data (e.g. JSTS, Turf). There
is no library, however, being capable of abstracting those diverse technologies, and
giving developers a framework for creating complete client-side Web GIS applica-
tions.

By creating such a basis, truly scalable Web GIS applications can be built
easily. Each application can define the client’s weight conditionally, executing only
expensive calculations on the server. There are many other possibilities with such
freedom. For example, creating serverless Web GIS applications, or having only one
code base to maintain for both data acquisition, and analysis, based on the type of
the device.

Such a system could be best utilized by mobile devices. Evidently, in the past
decade, the number of smart mobile devices increased dramatically. These micro-
computers are now strong enough to support advanced computational tasks, like
3D video games or office applications. Many applications are built on the most
popular operating systems (e.g. Android, iOS), however, those applications must
be maintained for multiple platforms. On the other hand, many applications tar-
get the Web and are provided as services, available through a modern browser on
any device. With such a universal Web GIS application, professionals can be fully
platform-independent, as the web browser is the environment, and it can run on
any device with a functional browser. The same code base could support fieldwork,
analysis, and visualization, offering different capabilities on different devices. Mod-
ular development has the advantage of creating software components, which can be
used conditionally. For example, such a Web GIS in surveying mode should not
load geostatistical modules, saving battery life.

6

2. Purpose of the Study

The purpose of this study is to find a client-side web mapping library capable
enough to be the basis of a Web GIS with some extensions. In order to make
an objective decision, current technologies are compared in a competitive analysis.
With the most capable library chosen, its weaknesses are outlined with a list of
basic GIS features. Those features are chosen based on several pieces of literature.
The outlined weaknesses are then reduced to a set of severe problems, which must
be mitigated before the library can be considered a solid Web GIS foundation. Fi-
nally, solutions are presented to each element of the subset, creating a basic, but
functional Web GIS library.

The steps of this study in a list format are the following:

1. Composing a list of basic GIS features based on literature.

2. Selecting capable candidates from current web mapping technologies.

3. Comparing candidates with a competitive analysis.

4. Choosing the most capable candidate for being a basis for extensions and
fixes.

5. Outlining the most severe shortcomings of the chosen library.

6. Implementing fixes for those flaws, ending up with a functional Web GIS
foundation.

7

3. Literature Review

Standing on the shoulders of giants, as the saying goes. Maintaining the objectivity
of analysis is not a trivial task. This is exceptionally true in the IT segment, where
a developer has some proven stacks of technologies with enough experience to use
in various solutions. Still, objectivity can be increased by careful interpretation
of existing literature. Certainly, there are some areas where subjectivity is not
avoidable, or even feasible due to technical limitations. Such an area is outlining
basic GIS features. For example, the capability of connecting to a database is
considered basic by most experts. However, it is not possible on the client-side
without using a server-side component. This study strives for maintaining the
highest level of objectivity by carefully synthesizing classical and novel literature.
Still, it leaves some space for subjectivity.

For this chapter to make sense, some of the results should be disclosed prema-
turely. The most capable web mapping library from a GIS perspective has been
found out to be OpenLayers. It had two serious flaws preventing it from being a
Web GIS basis out of the box. One of them was a partial hardware accelerated
vector rendering engine, incapable of rendering lines and polygons. The other was
its lack of raster support.

3.1. From Internet mapping to Web GIS

The Internet is a massively scalable network, which interconnects billions of com-
puters (Ericsson, 2017). Such a system is unimaginable without standardizing.
While technically the World Wide Web is only a subset of the Internet, it is its
most significant part with an estimated 4 billion human users (Miniwatts Mar-
keting Group, 2019). The Web could not have achieve such statistics without an
extraordinarily large number of standards, and software (e.g. browsers, server ap-
plications) complying with them. Web standards are maintained by the World
Wide Web Consortium (W3C), an organization developing new standards with the
help of academic institutions, companies, and the public. Both W3C and the Web
started with a single proposal for three fundamental Web technologies: Uniform
Resource Identifier (URI), Hypertext Transfer Protocol (HTTP), and Hypertext
Markup Language (HTML) (Berners-Lee, 1989).

Since adequate standardization is not only essential for maintaining a scal-
able system but also feasible in decentralized, inter-organizational development,
the spatial industry also followed this trend. Two major organizations have risen

8

up to maintain standards and organize projects. The Open Geospatial Consortium
(OGC) has taken on developing and maintaining standards (OGC, 2019), just like
the W3C in case of the Web. The Open Source Geospatial Foundation (OSGeo)
complements this work by incubating and supporting open-source geospatial soft-
ware (OSGeo, 2019). They also organize events helping developers from different
projects to connect and collaborate. Unlike W3C, these two organizations do not
restrict themselves to Web technologies and standards, but both of them are major
contributors to the vision of a fully geo-enabled Web.

Early developers of Internet mapping applications did not adhere to geospatial
standards, as it took some time for these geospatial organizations to take a foothold
in the field of the Internet (Reed et al., 2015). They simply followed early Internet
standards to make their applications work and paved the road for later participants
(Peterson, 1999). A typical Internet map from this era had a thin client drawing
styled maps as images, and a server generating new maps on every user interaction
(Haklay et al., 2008). Thick clients were time-intensive to develop, therefore scarce,
and they often served a special purpose, like interfacing with a locally installed
desktop GIS software (Plewe, 1997).

The first geospatial Web standard, created by OGC’s Web Mapping Special In-
terest Group, was drafted in 1998 (Reed et al., 2015), and released in 2000 (Doyle,
2000). Web Map Server (WMS) has standardized the rendering and communica-
tion pipeline of Internet maps. It differentiates between three client weights (thin,
medium, thick) according to the amount of data styled on the client (Farkas, 2017a).
While in modern software design there are other, more important optimization fac-
tors (e.g. analysis), back then data visualization was a serious bottleneck, resulting
in such a classification. Most of the standard describes the way a WMS-enabled
server and client should communicate. It uses a Representational State Transfer
(REST) approach (Feng et al., 2009), using URIs to describe the state of the re-
quired map. According to URI parameters, the server is able to generate a map
and return it to the client as an image. This architectural style defined later OGC
Web standards, collectively known as OGC Web Services (OWS). It also influenced
many other spatial standards, like OSGeo’s Tile Map Service (TMS) specification
(OSGeo, 2012).

It can be argued where is the border between Internet mapping and web map-
ping. When did we start creating new and trendy web maps instead of old fashioned
Internet maps? The answer is the lack of sharp borders, but a long transition ending
at around the release of Google Maps in 2005 in the Web 2.0 era. While it was one
of the first dynamic web mapping applications which did not have to refresh the
page between successive map states, its significance is due to more technical reasons.
Google used several novel optimization methods in order to provide a satisfactory
user experience.

The most argued optimization in the cartographic community was introducing
a map projection, called Web Mercator, Spherical Mercator, or Google Mercator.
It is a spherical, pseudo-conformal projection, using ellipsoidal (WGS 84) coordi-
nates with a spherical projection (Battersby et al., 2014). It has both technical

9

and cartographic issues (on a global scale), leading to a very late adoption by the
European Petrol Survey Group (EPGS) by public pressure (Nielsen, 2008). While
this controversial projection received several criticisms from professionals, it became
the de facto standard projection of web mapping (Stefanakis, 2017). Its popularity
was initially due to the great performance of spherical calculations compared to
ellipsoidal ones. As using the projection became a well-supported solution by both
clients and servers, it still has not been given up in favor of better projections.

Due to the Mercator projection’s properties, and Web Mercator’s spherical na-
ture, Earth in its full extent is projected to a perfect square. This property was fa-
vorable for the other great optimization novelty of Google: tiling up the map. Since
on demand generation of maps was an expensive task, performance of traditional
WMS services were limited (P. Yang et al., 2007). With tiling, Google mitigated
this problem by cutting out the on demand rendering part from the pipeline.

Tiling is similar to building overview pyramids in case of rasters to increase
rendering performance on smaller scales (C. Yang et al., 2011). In this process,
a discrete number of scales are predefined and called zoom levels. The first zoom
level contains the whole data extent as a single tile (traditionally a 256 × 256 pixels
image). The next zoom level doubles the scale, and partitions that tile into four
new tiles with more cartographic details on them. Upon a static tile generation
process, each tile is stored locally, and served to the client according to a tiling
pattern. As a result, performance is greatly increased on the expense of disk space,
as every zoom level z has 4z tiles to store with a total number of tiles of ∑z

n=1 4n.
Tiling is only useful, when a client knows how to compose a seamless map

from individual tiles. Google Maps had a client-side which knew the tiling pattern,
and could request new tiles according to user interactions (e.g. panning, zooming)
without reloading the page. For this, one of the most significant Web 2.0 features,
Asynchronous JavaScript and XML (AJAX) was used (Paulson, 2005). AJAX made
possible to create rich and dynamic web applications instead of static web pages.
These web mapping clients, capable of calculating positions, and drawing maps
dynamically with on demand requests are called slippy maps (Batty et al., 2010).
Slippy maps quickly became the new standard in web mapping.

Finally, Google Maps was not a simple product of web mapping. It offered an
Application Programming Interface (API) with which developers could make their
own applications based on Google Maps. They could overlay their own layers, and
add custom functionality according to their customers’ requests.

Starting a web mapping revolution, Google Maps influenced many new products
and standards. Open-source APIs emerged (e.g. OpenLayers), and techniques were
standardized. Tiling was such a prominent technique, it was reverse engineered
in a few years (Liu et al., 2007), and got standardized by both OSGeo and OGC.
OSGeo’s WMS Tile Caching (WMS-C) got superseded by both OSGeo’s TMS and
OGC’s Web Map Tile Service (WMTS). WMTS is the most capable one, letting
users thoroughly customize the service, for example allowing them to define other
projections than Web Mercator for their data (Masó et al., 2010). Both of them
have standardized tile layouts (Figure 2), which are either supported out of the box,

10

or can be easily implemented in most web mapping libraries.

Figure 2: Tile layout of TMS (left) and WMTS (right). TMS has a loosely defined origin allowing
for negative tile indices. WMTS indexing always starts with the top-left tile (Farkas, 2015).

In the meantime, two other important OGC specifications were released: Web
Feature Service (WFS), and Web Coverage Service (WCS). WFS (Vretanos, 2002)
standardized sending vector data over a network using a geospatial data exchange
standard, Geographic Markup Language (GML). WCS (Evans, 2002) standardized
sending raw raster data through the Internet. Initially, neither of them made an
impact on web mapping, since client applications favored using images over styling
raw vector data, while client-side raster management was not feasible.

3.2. Geospatial visualization on the Web

In the Web 2.0 era, development focus slowly shifted to client-side applications.
Client computers became stronger and browsers became more capable. First, the
main focus was on rendering spatial data on the client-side. The traditional way
of rendering was injecting Document Object Model (DOM) elements (Wood et al.,
2000) into the web page on user interactions. DOM elements are created by web
clients (e.g. browsers) from HTML elements (Program 1). After loading a web page,
the DOM structure (DOM tree, as it is a tree structure) represents the state of the
page. It can be modified with JavaScript, making the web page more dynamic.
Image overlays and tiles used image elements, while vector data were visualized
with Scalable Vector Graphics (SVG) elements.

3.2.1. Early days of vector data in web clients
SVG allowed for styling raw vector data on the client-side, although performance
was a bottleneck (Jayathilake et al., 2011). Making things worse, downloading and
parsing verbose GML outputs from WFS services put additional overhead on web
maps (Peng & Zhang, 2004). One of the necessary breakthroughs came with a

11

<html>
<head>

<title>An example page</title>
</head>
<body>

<div>
<img src="https://i.pinimg.com/originals/e6/63/12/

e663126a9bf25fcddbe8abdceab2b4ce.jpg">
</div>

</body>
</html>

Program 1: A short HTML example. After parsing, each element is saved into the DOM tree as
a DOM element. Every attribute like visibility, styling, or the element’s place in the hierarchy is
stored in the element’s DOM object.

new, Web-based geospatial data exchange standard. In 2008, the initial release of
GeoJSON (Butler et al., 2016), a spatial extension of the concise JavaScript Object
Notation (JSON) reduced vector data sizes served over the Internet.

While first there were only a handful of web mapping libraries to build upon,
around 2010, their numbers increased. Decentralized, collaborative open-source
development became easier with platforms built around Version Control Systems
(VCS). Some of those platforms (e.g. GitHub, Bitbucket) have supported free
hosting and management for open-source projects. From the numerous projects,
two different designs can be distinguished. There were general data visualization
libraries capable of handling spatial data (e.g. D3, Processing.js, Raphaël), and
web mapping libraries specialized in visualizing spatial data (e.g. OpenLayers 2,
Leaflet). Among these libraries, one project, D3 has been optimized very carefully
(Bostock et al., 2011), still, its DOM-based rendering puts a hard limit on the
maximum number of feasibly displayable features.

The other innovation required for faster vector visualization was provided by the
HTML5 specification (Hickson et al., 2014). Part of the specification was the Canvas
rendering context (Cabanier et al., 2015). The Canvas specification introduced a
drawing API for drawing textures, texts, points, line strings, and polygons on the
web page. By using the API in web mapping libraries, developers could abandon
inserting and manipulating SVG elements in the DOM tree, making the application
more scalable (Figure 3).

First Canvas did not provide better performance than traditional SVG methods,
although its merits coming from the possibility of manipulating rasterized results on
a per-pixel basis were clearly understood (Sauerwein, 2010). Later, as the Canvas
technology matured, its vector rendering performance has overcome SVG rendering.
This was mostly due to the ability of partially hardware accelerating the rendering
pipeline (Curran & George, 2012). By outsourcing some of the rendering tasks to
the GPU, browsers could achieve much greater performance than with traditional

12

Figure 3: DOM and Canvas performance with different line string samples. OpenLayers 2 (left)
with a DOM vector renderer (SVG) is less sensitive to the number of vertices in a single line string,
however, with an increasing number of features, it quickly becomes unresponsive. OpenLayers 3
(right) using a Canvas renderer has better overall scalability, but it is more sensitive to the number
of vertices in a single feature (Farkas, 2019).

DOM elements.

3.2.2. Hardware accelerated vector rendering
The last step in bringing web-based data visualization performance closer to desktop
applications was the introduction of WebGL (Leung & Salga, 2010). This specifica-
tion initially designed by Khronos Group (Marrin, 2011), the organization behind
leading hardware acceleration technologies like OpenGL and Vulkan. WebGL 1.0
is a subset of the OpenGL ES 2.0 API. It allows utilizing the GPU from web ap-
plications directly through different client-side OpenGL Shading Language (GLSL)
scripts complementing the applications’ JavaScript code. While this technology
only allows a narrow subset of OpenGL functionality to be used, developers could
have still achieved proper hardware acceleration, starting a new era of 3D web
applications.

The appearance of WebGL influenced web mapping in several ways. By the
end of the long adaptation process, a new type of web mapping application was
born. Virtual globes are special 3D applications, visualizing spatial data on a
spherical or ellipsoidal surface (Christen et al., 2012). By leveraging the capabilities
of WebGL, web-based virtual globe APIs were developed, offering 3D or 4D spatial
visualizations (Konde & Saran, 2017). While there were other, general 3D modeling
APIs adaptable to geospatial visualization (Resch et al., 2014), virtual globes were
closer to web mapping. They had built-in definitions about geospatial concepts like
geographic coordinates or projections (Gede, 2015).

In the case of 2D web mapping applications, WebGL made faster vector vi-
sualization possible, which allowed a larger number of visible features in a map.
As a result, some web mapping applications (e.g. Google Maps, Mapbox) started
experimenting with vector maps. This approach stopped using precomposed and

13

prerendered image tiles as base maps, every content was raw vector data styled on
the client-side. WebGL, on the other hand, was still not sufficient for visualizing
arbitrary sized layers, therefore further optimizations were required.

These optimizations targeted vector data exchange formats used on the Web.
One of these approaches was a compressed GeoJSON format, called TopoJSON
(Bostock & Metcalf, 2013). TopoJSON uses a reversible quantization technique to
have integer coordinates, and stores topology to reduce redundancy. It can achieve
an 80% reduction in file size, although both quantizing and calculating geometries
need computing. The other prominent technique was using Protocol Buffers, a
binary format for structured data created and open-sourced by Google (G. Kaur &
Fuad, 2010). While this format was first used by Google to reduce data exchange in
its applications, it could be extended to transfer spatial data efficiently (Steiniger
& Hunter, 2017). Data in Protocol Buffers is very fast to transfer and to parse,
although the format is binary, therefore limited to browsers with ECMAScript 2015
(JavaScript 6) support.

Another important innovation was the concept of vector tiling (Antoniou et al.,
2009). The idea of vector tiling has been utilized by both Google and Mapbox using
their own methods (Ingensand et al., 2016). While Google’s vector tiling was cre-
ated as a closed standard, Mapbox created an open-source standard called Mapbox
Vector Tile (MVT). This specification has slowly become a widely supported way
of using vector tiles (Springmeyer, 2015).

Vector tiling uses the same concept as regular image tiling. Vector data are split
according to a tile layout, the tiles are stored on the server. On the other hand, there
are some significant technical discrepancies between the two techniques. In case of
vector tiling, the same vector layers get clipped to a grid, but usually with different
generalization levels. These generalizations are called Level of Detail (LOD) levels
instead of zoom levels (Gaffuri, 2012). Since vector-only maps can provide smoother
transitions between LODs, vector tile renderers (e.g. Google Maps, Mapbox GL JS)
are using more zoom levels, changing the feeling of vector-based web maps.

A further peculiarity of using this technique is, polygon rendering needs to be
prepared for vector tiles. Since polygons can span over multiple tiles, they often need
to be cut at tile borders. Consequently, if a renderer strives for correct visualization,
it needs to distinguish tile borders from polygon boundaries (Persson, 2004).

Since vector tiles store raw vector data (e.g. geometries and attributes) rather
than pixel color values, they can have various, significantly different formats. Some
of the most popular formats are GeoJSON, TopoJSON, and MVT. From these,
MVT is the most efficient, as it uses Protocol Buffers for encoding spatial data. On
the other hand, it is optimized for rendering (Eugene et al., 2017), therefore MVT
is better for base maps, where individual features are not queried.

Currently there is only one application blending most of these methods together
in order to give a solution to end users: Google Maps (Figure 4). This state of the art
application successfully demonstrates, how the technologies mentioned beforehand
can be utilized to create an efficient 2D/3D web mapping application with a virtual
globe and some GIS capabilities.

14

Figure 4: Screenshot of the current Google Maps application. It uses vector data where it can,
has smooth transitions between traditional zoom levels, and renders sharp features and labels on
every zoom level. It is a WebGL-based 3D application including a virtual globe, but showing
larger scales in 2D by default (Google, 2019).

3.2.3. Rasters on the Web
Raster handling went a different way in web mapping than in desktop GIS due
to various factors. In desktop GIS, raster was an essential data structure, since it
was the only feasible solution for handling spatial data in early architectures (Lim,
2008). The spread of vector visualization and vector processing did not render the
raster model superfluous, only changed its function. Ever since, raster data has
been used for representing continuous phenomena, while vector data has been used
for discrete entities (Bugya & Farkas, 2018).

During the maturation of web mapping, there were already well-established
desktop programs for raster management capable of running on the server-side of
a Web application. GDAL (Warmerdam, 2008) is still the de facto standard for
headless (no Graphical User Interface, GUI) raster processing and conversion in
open-source solutions. It can be used as a low-level library in software, and a
Command Line Interface (CLI) tool in scripted processes. GRASS (Neteler et al.,
2012) is a complete GIS capable of scientific raster analyses in both interactive
and headless mode. There are also other lower-level tools – like GeoTools (Turton,
2008) – built around these technologies which could be used in geospatial server
applications.

With Web 2.0, HTML5, and the start of modern web mapping, server-side
applications were perfectly capable of manipulating rasters and providing image
results to clients. This was feasible, since arbitrary sized raw rasters could not be
handled by browsers. One of the main restrictions was the supported image formats.
Browsers still only support a limited number of formats (e.g. PNG, JPEG, GIF,
BMP), which are appropriate for Web use. TIFFs are not considered appropriate,

15

since it is not a streaming format (i.e. the whole file needs to be downloaded before
displaying), and file sizes can be rather big (Firefox Contributors, 2002).

If TIFFs were supported, browsers still could not handle GeoTIFF files (Ritter
& Ruth, 1997). They do not have a concept about geospatial metadata, could
not apply a representation model on non-color values (e.g. elevation, precipitation,
temperature), and could not use burned-in palettes for categorical data. While
ASCII formats, such as ArcInfo ASCII Grid (Yu & Custer, 2006), could still be
handled by early client-side applications, ASCII file sizes can be very large in case
of rasters. On the contrary, image results received from a geospatial server have
been small, and easy to use.

Consequently, raster became synonymous with image in web mapping applica-
tions (Król, 2018). Until ECMAScript 2015, there were no significant changes in
client-side raster management. After JavaScript was capable of operating on bi-
nary data, virtual globes were the first to take advantage of the new possibilities
by using raster formats. Desktop virtual globes already relied on rasters for terrain
rendering (Cozzi & Ring, 2011). Since web mapping applications already used tiled
data, these formats just needed to be ported to JavaScript. During the evolution
of Web virtual globes, these formats have undergone some optimizations, though.
First, the standard Heightmap format (similar to Digital Elevation Models, DEMs
in GIS) got a TMS service (Di Staso et al., 2016). Later, it has been optimized
to store data relative to the terrain’s complexity, resulting in the quantized mesh
format (Krämer & Gutbell, 2015).

With binary enabled JavaScript, numerous other libraries were created for han-
dling binary data exchange formats. From these, geotiff.js can be used for parsing
raw GeoTIFF files and gather raw raster data from them (Schindler, 2016). There
are still no web mapping libraries utilizing this data abstraction tool for overlaying
client-side rasters out of the box. On the other hand, the NASA Web World Wind
virtual globe has implemented this capability (NASA, 2018), showing that client-
side raster visualization is slowly spreading in the field of Web-based geospatial
visualization.

3.3. Web GIS clients

Web mapping and Web GIS are often interchangeably used terms in Web-based
geospatial application development. There are some identifiable distinctions in the
literature, though. Web mapping is more widely used for client-side applications,
while Web GIS is more often used for complete systems consisting of a server and a
client-side. The use of Web GIS for such an application is understandable. A GIS
separates from a spatial data visualization application by true GIS features (Thrall
& Thrall, 1999), like spatial operations. In a Web GIS, the server-side possesses
GIS capabilities, no matter how thin the client is.

Clients alone are less frequently specified as Web GIS. Clients with GIS function-
ality are more often considered as a part of a whole Web GIS system. Consequently,
Web GIS clients do not have a well-recognized denomination. A popular categoriza-

16

tion differentiates between thin, medium, and thick clients (Doyle, 2000), but only
considers the amount of data rendered in the client. When Web GIS clients did
appear in the literature, some called them GIS clients (Plewe, 1997), some called
them massive clients (Farkas, 2017a). Disputing the term to be used is a cavil,
although it is important to acknowledge this rising client category in Web GIS.

If massive clients are considered as Web GIS clients with GIS functionality,
every modern Web GIS client could fit in, as most of them are capable of at least
some coordinate transformations. To reduce the ambiguity of the category, only
those clients are considered, which have spatial data analysis capabilities. Still, the
variability in massive clients is high, as there are many such GIS features.

The high number of possibilities for creating a massive client is only problematic
when they are compared. In such cases, however, the assessments’ creators should
declare a finite set of features they are interested in. For this study, those are
universal GIS features. That is, the bare minimum GIS functionality with which a
massive client can be called a serverless universal GIS.

3.3.1. A universal GIS
Geographic Information Systems have evolved from multiple other systems. Among
multiple definitions in classic literature, GIS has been defined as the intersection
of four preceding systems: computer cartography, database management (DBMS),
computer-aided design (CAD), and remote sensing (Maguire, 1991). While a basic
GIS can omit remote sensing capabilities, the other three categories are essential
parts for spatial data visualization, geometry manipulation, and attribute data
management.

These non-GIS-specific features form the inner core of a GIS. The structure of
spatial data in a GIS comes from computer cartography. Irrespective of the given
system’s internal data structure, spatial data are organized on individual layers.
Every layer is part of the visualized locality, representing one coherent characteristic
(Tomlin, 2017). The most determinative feature of computer cartography inherited
by GIS is the representation model. A GIS must be capable of creating different
types of maps from spatial data by applying different visual variables on raw data
(Roth, 2017).

From the DBMS domain, GIS has inherited an internal relational data structure
used for attribute management. Since vector features can hold as many attributes
as they see fit, the relational architecture keeps those values consistent. While in
most cases the end-user only sees an attribute table with a field calculator, this
design ensures a fast bidirectional connection between geometries and attributes.
Moreover, by being compatible with relational DBMS (RDBMS) software, GIS
software can be integrated with spatial databases allowing for secure collaborative
work. The GIS software does not have to ensure its data integrity in parallel use,
since RDBMS software already follow the atomicity, consistency, isolation, and
durability (ACID) principles (Haerder & Reuter, 1983).

CAD functionalities form the basics of vector geometry management in GIS.

17

Those are mostly related to interactions, like geometry selection, affine transfor-
mations (e.g. shift, rotate, scale), or updating attribute data on a per feature
basis. There are also low-level rendering capabilities related to CAD software, like
geometry styling or hardware accelerated vector visualization.

While remote sensing capabilities are not necessarily mandatory features in a
basic universal GIS, there are some features from this domain which can hold inter-
est in such a system. These are image processing algorithms, making basic raster
analysis possible. If some less complex algorithms (e.g. map algebra, reclassifica-
tion, convolution) are implemented, users can execute fairly complex raster analyses
by involving them in a longer workflow, possibly also including some GIS-specific
analysis features.

By using up mature techniques from other information systems, the core of a GIS
was already given. This made creating GIS software easier and therefore faster but
enforced some inherent conceptual limitations on them. There were debates about
the long term weaknesses of using a relatively low complexity concept for modeling
geographical phenomena (Chrisman, 1987). There were even proposed solutions for
avoiding such limitations (Goodchild et al., 2007). However, the aforementioned
design principles have remained being the basis of GIS, and new challenges have
been solved by continuously building on them up to date.

Building on these features, there are numerous GIS-specific features of interest
in a universal GIS client. One of the main groups is data abstraction. A universal
GIS must accept spatial data in common formats, and it must be able to produce
exports in them for interoperability. While there are a large number of spatial
data exchange formats, there is no point in handling all of them in a basic GIS.
It should be enough to support the most popular ones, like Shapefile, GeoJSON,
KML, GeoTIFF, and ArcInfo ASCII Grid (Orlik & Orlikova, 2014).

It can be argued if the support of coordinate reference systems (CRS) should
be considered as a non-GIS-specific (computer cartography) or a GIS-specific fea-
ture. Proper projection handling involves on-the-fly transformation of both raster
and vector data to a common projection in modern clients. Since on-the-fly trans-
formation involves reprojecting geometries and warping rasters, CRS handling is
considered a GIS feature in this study.

The last group of features in this category is GIS-specific spatial analysis capa-
bilities. While a basic GIS client does not need to have excessive amounts of analysis
features, it should be able to execute basic analysis on features and rasters. From
a conclusive list of universal GIS features (Albrecht, 1998), a basic client should
be able to make measurements, interpolate, search based on spatial relationships,
and execute basic geoprocesses on vector layers. Those basic geoprocesses include
buffering, dissolving, point-in-polygon (PIP) operations (Thrall & Thrall, 1999),
and spatial set operations in continuous space (i.e. intersection, union, difference,
symmetrical difference on geometries). Furthermore, there should be an option for
converting between vector and raster data types without interpolating (Meaden &
Chi, 1996).

If a client possesses these capabilities, it can firmly be called a universal GIS

18

client. However, a universal Web GIS client must have some Web related capa-
bilities, since it belongs in a special niche. These capabilities are mostly related
to services (e.g. WMS, WFS, WCS). Otherwise, without the ability to commu-
nicate with a standard spatial server, a Web GIS client would be limited. Since
spatial databases can hold a huge amount of data (Agrawal & Gupta, 2014), and
Web clients cannot connect to databases yet, currently this is the only way to use
RDBMSs in a Web GIS client.

By categorizing these features, and extending or refining them where necessary, a
comprehensive list can be created (Figure 5). Since – as in most of such comparisons
– some subjectivity is involved, it is important to note that this is not the only way
to compare massive clients for their universality. This is merely a possibility based
on past literature.

19

Figure 5: Features of a basic universal massive Web GIS client grouped by functionality. Triangles,
crosses, and diamonds denote GIS-specific features, non-GIS-specific features, and web mapping
specific features respectively (Farkas, 2017a).

20

4. Materials and Methods

The study consists of several, methodically different steps, therefore multiple meth-
ods have been involved. The first step was choosing the right basis for a universal
massive client. Since a list of spatial data visualization libraries were to be com-
pared, this step mostly relies on theory. The list of GIS features used by this
study (Figure 5) served as the basis of comparison, that is the list of GIS features
compared amongst the chosen libraries.

While a competitive analysis is useful, it is not enough to cover every character-
istic of the compared libraries. There are some aspects, which are hard to grasp, but
affect developers significantly. Some of them, like the level of documentation, num-
ber of tutorials, or developer activity can be quantified or qualified. However, the
complexity of a piece of software from users’ perspective is very hard to determine.
The standard method for assessing such a characteristic is creating expert surveys
(Roth et al., 2014). On the other hand, there are some static software metrics which
can shed some light on the problem without the long process of surveying.

4.1. Scoring libraries on GIS features

During the competitive analysis, candidate libraries were scored based on their sup-
port of each examined feature. Several features consist of subfeatures, which need
to be supported in order to achieve a perfect score. If a library fully implemented
a feature, it got a full score of 1.

Partial scores were given in two cases. There were cases when a library’s support
were only partial due to the negligence of one or more subfeatures. In other cases,
the library did not implement a feature at all, but there was a third party extension
implementing that feature. In both of those cases, the library were given a partial
score of 0.5.

It worth noting why third party implementations reduced the score of a library.
Plugins are often developed by a small group of developers in need of the given
feature, independent from the core development of a library. Therefore, the devel-
opment process of the two software differ. While core features are maintained with
the evolution of a library, extensions need to be upgraded with every major release
introducing changes in the library’s API. Consequently, by supporting a feature in
an extension, there is no guarantee for a plugin to support the next version. If it
has support, there can be delays between a new release of the core library, and the
upgrade. This reduces reliability with every plugin introduced into the Web GIS

21

Figure 6: A hillshade representation of a DEM blended over a land use layer in QGIS (Farkas,
2017b).

solution. In the worst case, an extension’s development ceases, tying users to a
single release of the core library.

If a library did not support a feature at all, it got a score of 0. There were sev-
eral cases, when this was inevitable (e.g. connecting to spatial databases). Those
features were included with considerations for future development of Web technolo-
gies. This way, if at some point browsers will be able connect to databases, the
evaluation’s frame does not need to be revised.

Final scores were provided by averaging support points, resulting in a 100% cov-
erage in cases when a library offers core support for every examined feature. Since
the final score does not give a complete picture about the strengths and peculiarities
of candidates, subcategories (e.g. rendering, format handling, representation) were
also evaluated.

There were seven examined categories amongst candidate libraries (Figure 5).
Rendering consists of non GIS specific features responsible for drawing entities, and
overlaying map contents efficiently. Rendering geometries, rasters, and images are
trivial, while hardware acceleration is necessary for drawing large number of features
with feasible performance. Blending layers is also included, as it is a typical feature
in computer graphics, and while not supported in every GIS, has cartographic merits
(Figure 6).

22

Format handling was divided into four subcategories. From various vector
formats, ESRI Shapefile as a popular binary format, Keyhole Markup Language
(KML) as a popular ASCII format, and GeoJSON as a popular Web format were
selected. Now the Geopackage format might be a better interest than Shapefile,
however, in the time of the original survey, this trend change was not clear. From
geospatial Web services, WFS, and Transactional WFS (WFS-T) were selected,
since they are one of the best ways to communicate with a server side geospatial
database. With WFS-T, users can not only read from, but also write back changes
to the database.

From raster formats, the most popular binary format of GeoTIFF was chosen,
along with one of the most popular ASCII formats: ArcInfo ASCII Grid. WCS
capabilities were also checked, as it is a standard way to request raster data on
the Web. Images were split between traditional image formats and tile services.
Traditional image formats included WMS, since it usually communicates maps in
JPEG and PNG in a standardized way. Tile services included some of the most
popular standards along with commercial services (WMTS, TMS, OSM’s slippy
map format, Google Maps, ArcGIS REST API, Bing Maps).

Database related features consisted of two subcategories: connection and func-
tionality. In the connection category, the ability of connecting to popular spa-
tial servers (PostGIS, SpatiaLite, MySQL) was assessed. While it is known that
browsers cannot connect to server side databases directly, this subcategory still
servers a purpose as space for further development. For example, since the original
survey, a JavaScript library was released for handling SQLite database files (Zakai,
2019), which form the basis for SpatiaLite files.

Database functionalities do not have to rely on external databases, since Java-
Script is capable of storing data in an SQL-like structure called Indexed Database
(IndexedDB). While it is conceptually similar to RDBMSs, it can store large amounts
of data in an object oriented format. From this group, a simple implementation
would yield a point, while querying capabilities along with a spatial query language
were also examined. These functionalities were checked since an internal database
has a key role in not only querying, but also processing data efficiently (Revesz,
2008).

The data group had a significant amount of features, since most of the GIS
analysis features formed an integral part of it. Preprocessing was mainly considered
as different spatial procedures applied to vector data before visualizing or analyzing.
Proper attribute management (read attributes, build attribute table) were surveyed
as well as geometry related procedures. Geometry management features were low
level functionality, like the support of Z and M (measure) coordinates, geometry
validation, single type vector layers, spatial indexing, generalization, and on the fly
transformation.

Data conversion had three different features. Besides the typical vector to raster,
and raster to vector conversions, interpolation methods were also considered in this
subcategory. Just like the former two, interpolation had to come with successful
type conversion (i.e. vector to raster). Specialized methods with an interpolation

23

aspect (e.g. creating heatmaps) were not considered.
In the subgroup of data manipulation, the most essential features were collected

in order to manage layers, and edit vector layers. From layer management, adding–,
removing–, and changing the order of layers held the most significance for usability,
while typed layers (e.g. vector, raster, image, and subtypes) are also important for
programmability. Apart from that, one should be able to edit vector layers (geome-
tries and attributes). Attribute data should also be updated with bulk processes,
preferably through some kind of field calculator mechanism.

Under data analysis functionalities, it was striven to group some of the lower
level analysis algorithms, on which one can build advanced GIS tools. Basic geopro-
cessing have low level vector analysis techniques, like creating buffer zones, dissolv-
ing geometries, and clipping. Topological analysis is not trivial, as it groups basic
techniques acting on topological relationships, rather than algorithms operating on
topological data structures. This category surveyed the existence of intersecting,
uniting, and calculating the differences between input geometries.

The rest of the subgroup consisted of raster analysis techniques. Besides to the
ability of modifying images and rasters, a basic GIS was considered to also need
classification and raster algebra functionalities. While convolution (moving window
in GRASS GIS, focal statistics in ArcMap) could be considered as nonessential, it
is easy to support, and one can utilize it for different specialized tasks (e.g. terrain
analysis). Finally, writing Web Processing Service (WPS) requests is a service type
functionality. It was deemed important, as it can be used to send requests for
spatial operations on layers to a capable spatial server (Schut, 2007).

Projections support assessed some of the most important projection related ca-
pabilities. Transforming vector layers and warping raster layers are capabilities di-
rectly relying on proper projection support. If a library can do these operations, it
can handle projections. It also matters how many different projections a library can
recognize and use. Under custom projections, the two most popular and essential
projections were assessed: WGS84 Plate Carrée (EPSG:4326), and Web Mercator
(EPSG:3857). There are many more existing projections, which are essential in GIS
workflows. Therefore, the ability to use arbitrary, but well-known projections was
also assessed. If a library can recognize every projection in the EPSG database out
of the box, it was considered as full support.

Interactivity is a core concept in any library capable of spatial visualization.
For this, the most significant interactions were collected in the interaction group. A
library must support modifying its view, which consists of panning, zooming, and
rotating the map. It is beneficial, if it can show mouse coordinates, and measure
distances on the map. The capability of changing time is essential for spatiotemporal
data. Finally, users should be given interactions for convenient geometry editing,
which are drawing, modifying (i.e. at least translating and rotating), selecting,
querying, and snapping.

The representation category consists of two subgroups. First, styling capabilities
were considered. A library should give options to style both vector and raster
data, and build representation models based on user provided definitions. The end

24

product of a workflow is usually some kind of thematic map. This feature examined
the capability to create the two most basic thematic representations: choropleth and
proportional symbol maps.

When a user produces a map from results, it is often a requirement to add
cartographic elements. Regardless if the product is a digital map or an interactive
map, there are some basic cartographic elements which should be supported by
an ideal candidate. Scale bars and legends are the most usual elements, while
graticules and overview maps (or inset maps) are also common. While the necessity
of a north arrow is debatable, there are some cases when it should be provided for
easier orientation. Finally, users should be able to add static text boxes to the map,
which are not bound to the map, but to its container. This feature is convenient
for static, printable products.

4.2. Static software metrics

Static software metrics are properties or indices of a software derived from the
source code. They are used to to make assumptions to software quality, complexity,
or maintainability by looking at the source code from the outside. Some of the most
important, classical metrics are Lines of Code (LOC), cyclomatic complexity, and
Halstead’s software science metrics (Fenton & Neil, 1999).

Since LOC is very crude, there are some more popular alternatives, which can
be acquired just as easily. One of them is Logical LOC (LLOC), which considers
every statement a separate line. This excludes not only line breaks and comments,
but also groups control flow statements spanning over multiple lines for better
readability (Nguyen et al., 2007). Since LLOC is language independent, it can be
used for comparing client libraries.

Halstead went forward by calculating distinct and total operators and operands
in the source code. He defined indices (e.g. volume, vocabulary, length, level, effort)
calculated from those inputs with simple equations (K. Kaur et al., 2009). Some
of the software science metrics were quite ambitious relative to the simplicity of
input variables. Consequently, Halstead used some assumptions related to human
efficiency, such as the human brain uses a binary search mechanism, or a human
brain can make 18 elementary discriminations (Stroud number) per second (Shep-
perd & Ince, 1994). Despite the criticism, software science metrics have been useful
in different applications (Jones, 2001). However, since they were evaluated on small
FORTRAN and COBOL programs, and they ignore many important new aspects
of software development (Shepperd & Ince, 1994), they are not that useful in case
of assessing JavaScript libraries.

Cyclomatic complexity is another universal metric with a different approach. It
is graph-theoretic, thus it creates a graph from the source code. In the formula
(Equation 1) it calculates with blocks of code (n vertices), which are delimited
by control flow statements, like if-else clauses and for loops (e edges). Connected
subroutines (p components) are also counted (McCabe, 1976). In the end, it treats
the code as a control flow, assuming the complexity of the code is proportional to

25

the complexity of the generated graph. Cyclomatic complexity alone is hard to
compare between different libraries, due to its direct proportion with the size of
the project (LLOC already accounts for that). However, normalizing it with the
number of functions F can add a useful point to the total complexity of a library.

v(G) = e− n + p (1)
In order to approximate the total complexity of a library, an evasive character-

istic was targeted: the learning curve. It is very hard – if not impossible – to give a
general mathematical function for calculating the learning curve of a piece of soft-
ware, which will apply to every developer. On the other hand, it can be assumed,
if enough aspects of complexity are covered, a formula from static software metrics
can make a crude approximation. If the results are correct by the order of magni-
tude, it can be used as a filter for narrowing down the subjects in an assessment.
Then a more precise, survey-based analysis can be done with a better focus.

The final metric, Approximate Learning Curve for JavaScript (ALCJS) was tai-
lored for JavaScript libraries specifically (Farkas, 2017a). The formula (Equation 2)
includes an additional part, which was not discussed before. Seemingly, the number
of LLOC per exposed functions EF have the greatest impact on the learning curve
of a project (Fowler et al., 1999). Consequently, the number of exposed functions
was also measured.

ALCJS = log10 LLOC × log2(v(G)
F
× LLOC

EF
) (2)

The formula has two equally weighted parts multiplied together. The left gives a
score considering the size of the library. The right side creates a score based on the
library’s complexity, measuring per function size and cyclomatic complexity. Size is
considered as an external property (user’s aspect), while cyclomatic complexity is
considered as an internal property (developer’s aspect). The two logarithmic trans-
formations are used for equalizing weights. The base ten transformation is used for
calculating the order of magnitude of a library’s size. The base two transformation
is an empirical value to counteract the slight imbalance towards the right side of
the equation.

Static software metrics were measured using complexity-report, an open source
tool written for Node.js, and designed for measuring JavaScript code. There was
only one problematic metric which could not been recorded with complexity-report:
the number of exposed functions. Exposed functions were considered as classes and
static functions available for users from a library’s namespace. Contrary to class
based languages, JavaScript uses prototypes, and constructors look like regular
functions. This makes counting exposed functions hard from the outside. Conse-
quently, a small JavaScript routine was created (Program 2), which was able to
easily count functions directly accessible from the namespace.

While static software metrics are useful for giving an initial picture about the
complexity of a library, there are some other characteristics contributing to the
overall usability. Some of the more important ones are documentation, community,

26

function measure(obj, visited) {
visited = visited || [];
var count = 0;
if (obj !== window) {

visited.push(obj);
for (var i in obj) {

if (visited.indexOf(obj[i]) === -1) {
visited.push(obj[i]);
if (typeof obj[i] === ’object’) {

count += measure(obj[i], visited);
} else if (typeof obj[i] === ’function’) {

count++;
}

}
}

}
return count;

};

Program 2: A JavaScript routine counting accessible functions from a namespace. The result is a
static software metric, as the same measurement can be done from the outside with appropriate
filtering. The routine deliberately skips methods, since they belong to their respective classes from
the perspective of users. Therefore, duplicate methods from class inheritance do not need to be
handled.

27

Category Documentation score Ratio of answered questions
Poor 0 0 – 0.25
Decent 0 – 0.5 0.25 – 0.5
Good 0.5 – 1 0.5 – 0.75
Very good 1 – 0.75 – 1

Table 1: Rules of applying ordinal values to raw documentation and community support scores.
Apart from the Poor category, the intervals are exclusive of the first value, and inclusive of the
second.

and support (Ramsey, 2007; Steiniger & Hunter, 2013; Poorazizi & Hunter, 2015).
Those characteristics are hard to evaluate, since there are numerous different ways
to measure them, and they are usually evaluated using an ordinal scale. In order
to make the measurements reproducible, a method was designed based on numeric
attributes.

A documentation score (Equation 3) was calculated from the number of API
documentation A (basically its existence), the number of tutorials T , and the num-
ber of examples E. Since the API documentation is essential for users, its existence
does not improve the score, but its absence results in a score of 0. The number
of tutorials and examples are both scaled according to their importance. Since
tutorials are more comprehensive, harder to create, and help users accommodate
themselves to the library faster, they receive a larger weight than examples. Exam-
ples are short solutions for specific functionalities or problems, therefore they get a
smaller weight. In the end, the final scores were converted to ordinal values (Table
1).

Score = A× (T/10 + E/100) (3)
Community and support are soft metrics, which are hard to evaluate. However,

as the assessed web mapping libraries are open source products, it is possible to use
public Version Control Systems (VCS) statistics to acquire a decent picture about
the developer community. In this study, two such metrics were collected. The first
one is the number of contributors and major contributors in the project. Major
contributors are considered as developers, who added more than 1000 lines to the
source code. The second one is a release frequency, which can be calculated from
the number of releases n, and the days passed between the first DF R and the last
release DLR (Equation 4).

RF = DLR −DF R

n− 1 (4)

Support data were collected from two sources. Since most of the compared
projects are using GitHub as a VCS, GitHub’s issue system could be leveraged to
collect some information about developer support. In this metric, the number of
open issues were collected in contrast to the number of total issues of a library. For
community support, two popular forums were involved. Stack Overflow and GIS

28

Metric Description
Feature matrix Support of basic GIS features which can act as indicators for

the massiveness of the library.
Size Physical size of the production version of the library.
LLOC Logical lines of code in the production version of the library.
CC/F Cyclomatic complexity of the library normalized with its num-

ber of functions.
Exposed functions Functions which can be directly invoked from the namespace

of the library.
ALCJS Approximate learning curve derived from static metrics.
Documentation Documentation quality derived from the library’s API, tutori-

als, and examples.
Contributors The number of contributors and major contributors of the li-

brary.
Release frequency Average number of days between releases.
Open issues Number of open issues and their ratio to total issues in the

library’s VCS.
Community support Quality of community support derived from number of an-

swered questions on Stack Exchange forums related to the li-
brary.

Table 2: Summary of the metrics used for evaluating candidate libraries, and choosing the best
one for a general massive Web GIS client (Farkas, 2017a).

Stack Exchange are question and answer (Q&A) sites, where users can post prob-
lems encountered with a specific technology. To these questions, both developers
and more experienced users can post solutions. Once a proper solution is found, the
problem is marked as answered. Apart from the possibility of gaining quick sup-
port, these forums offer statistics regarding questions asked and answered, grouped
by technology. The ratio of answered questions was used to assess the quality of
community support on an ordinal scale (Table 1).

These metrics (Table 2) were used to evalutate the libraries of interest two
different times. The first comparison was done in 2016 (Farkas, 2017a), showing
a possible methodology for such an assessment. The second one was created in
2019, after the applied improvements, measuring the impact of the research. This
way, it can be seen, if the selected technology was a good choice. Furthermore, a
second data point is created for monitoring the development process of client side
web mapping technologies.

4.3. Benchmarking

In order to evaluate the performance of extensions written for the chosen library,
they were benchmarked for both performance and memory footprint. Different
methods were used for benchmarking hardware accelerated rendering, and raster

29

management. The common device used by every benchmark was a Dell Inspiron
7567 laptop with a Core i7-7700HQ CPU, 8 GB DDR4 RAM, an NVIDIA GeForce
GTX 1050 Ti dedicated GPU (through the propertiary NVIDIA driver), an Intel
HD Graphics 630 integrated GPU, and a 15.6-inch display with a resolution of
1920×1080 pixels. Since client side applications needed to be measured, a Web
browser was used for all of the benchmarks. It was a 64-bit Chromium with hard-
ware accelerated Canvas, running on a Debian 9 OS.

Since hardware accelerated rendering is a general technique, another, weaker
device was also introduced for those tests. It was a Lenovo A536 smartphone with
a Quad-core 1.3 GHz Cortex-A7 CPU, 1 GB RAM, an ARM Mali-400 MP2 GPU,
and a 5-inch display with a resolution of 480×854 pixels. The browser used on the
smartphone was a 32-bit Chrome running on Android 4.4.2, accessed through re-
mote debugging. From the available browsers, Chrome and Chromium were chosen
due to their similar code bases, and their excellent developer tools.

Hardware accelerated rendering benchmarks were carried out using a specific
application (Farkas, 2018b) written for the measurements. It used the high precision
Performance Timeline API (Grigorik et al., 2016) by measuring several consecutive
redraws and writing the drawing time to the browser’s console. In the end, outliers
were filtered out, and the rest of the data points were averaged for a representative
result. Outliers were common mostly due to initial overhead and unexpected load
from external processes.

Since a web mapping library can cache rendered data to further accelerate draw-
ing speed during animations and user interactions (e.g. pan, zoom), animations
and complete redraws were measured separately. Complete redraws were measured
by repositioning the map back and forth on the X axis automatically (Program 3).
There were 10 successive measurements for each zoom level. Due to the low amount
of measurements – which is a result of low performance with large datasets – if a
measurement produced outliers, it was repeated.

Animation measurement used a similar approach, although it performed a pan-
ning animation on a predefined path instead of moving the map back and forth.
The program measured elapsed time between frames, making the number of data
points a function of frame rate. Since frame rates can be low under heavy load,
the received data points from a single measurement varied between 5 and 100. If a
measurement produced fewer than 10 stable data points, it was repeated, and the
new results were added to previous ones.

Furthermore, using the developer tools of Chromium, detailed performance tests
were conducted (Figure 7). These benchmarks measured the ratio of time spent on
different phases of the rendering pipeline. With this method, possible bottlenecks
could be identified giving insight into approximate performance gain without them.

Due to technical limitations explained later, raster rendering was benchmarked
using only the laptop setup with its dedicated NVIDIA graphics card. In this case,
the difference between animation frames and complete redraws is inherited from
image and polygon rendering. Consequently, only complete redraws were measured
using the performance tool of Chromium’s developer tools. On the other hand,

30

button.addEventListener(’click’, function() {
var last = 0;
var direction = 1;
var observer = new PerformanceObserver(function(list) {

var curr = list.getEntries()[0].duration - time;
console.log(curr - last);
last = curr;

});
observer.observe({entryTypes: [’mark’, ’measure’]});
_this.getMap().on(’postcompose’, function() {

performance.measure(’draw’);
});
c = 1;
var moveFunc = function() {

if (c < 10) {
_this.getMap().once(’postrender’, moveFunc);

}
var center = _this.getMap().getView().getCenter();
var zoomMod = Math.max(10 - _this.getMap().getView().getZoom(),

0.1);
_this.getMap().getView().setCenter([center[0] + 10000 * zoomMod *

direction, center[1]]);
c++;
direction *= -1;

}
performance.mark(’draw’);
var time = performance.now();
moveFunc();

});

Program 3: Part of the OpenLayers control created for measuring complete redraws. Using
OpenLayers’ event mechanism, it waits for a compose task to finish, and calls the moving function
again, until the required number of redraws are reached.

31

Figure 7: A performance benchmark showing the ratio of time spent on different browser tasks,
and the most expensive function calls during the measured time interval.

as raster layers have higher memory demand than vectors, the memory footprint
of different techniques was also measured. For this, a heap snapshot was created
for every case, and the most demanding data structures were identified along with
the total memory usage. Unfortunately, heap snapshots tend to require exponen-
tially more memory than the measured application itself. In cases when loading
heap snapshots crashed the browser, only the application’s total memory usage was
recorded.

4.4. Sample data

In case of every benchmark, a set of sample data had to be used. Three sets of
sample data were used, carefully tailored to the respective benchmark. Two layer
groups have been created for hardware accelerated rendering measurements. One is
a thematic map showing a real world web mapping example, while the second one
is a state of a GIS workflow, representing a typical GIS load.

The thematic map (Figure 8) consists of a choropleth polygon layer, a line layer
with constant styling, and a thematic point layer. The thematics are population
density for country polygons, population for settlement points, and major rivers
represented as simple lines. It also has labels showing capitals. The world map
shows data from the Natural Earth 1:50 000 000 dataset, loaded as GeoJSON, and
styled on the client side. The layers were filtered in a desktop application in order
to avoid lower performance from superfluous client side filtering.

The GIS group has three large, unfiltered layers in the extent of Hungary with
raw styling. In this case, the problem was rather a simple visualization of data

32

Figure 8: Thematic web map used for benchmarking a real world example of a web mapping
application (Farkas, 2019).

produced in a GIS workflow, than a cartographic representation. Two polygon
layers are raw OpenStreetMap (OSM) data, representing administrative areas on a
settlement, and a county level. The third one is a point layer from the GeoNames
Free Gazetteer Data dataset, containing settlements and other points of interests.
The GIS workflow represented with the three layers is the following (Farkas, 2019):

1. Join the attributes of the OSM settlement layer to the GeoNames layer using
the common field.

2. Extract settlements from the GeoNames layer by selecting features where the
common field is not null.

3. Aggregate population of the settlements residing in each zone using the fea-
tures of the OSM county layer as zones.

4. Calculate population density from the aggregated population data and the
areas of county polygons.

Layers in the two groups have a fixed number of features and vertices (Table
3) affecting drawing speed. However, these properties are not guaranteed to be
constant in a web map. Web mapping libraries can generalize vector layers on
small scales. On large scales, they can filter out features outside the extent of the
map by using a spatial index, such as an R-tree variant (Beckmann et al., 1990).
In order to cover the effects of such optimization techniques, measurements were
repeated on different zoom levels (Table 4).

The benchmarking application have only the most necessary functionality for
measuring rendering performance. On the upper left side, there are two custom

33

Type Features Vertices
Thematic group
Countries Polygon 241 99 566
Rivers LineString 460 25 629
Settlements Point 1249 1249
Capitals Label 200 200
Total – 2150 126 644
GIS group
Settlements Polygon 3170 428 803
Counties Polygon 20 61 770
Places Point 9839 9839
Total – 13 029 500 412

Table 3: Feature and vertex counts of benchmarked layers (Farkas, 2019).

Zoom level Scale Center Features Vertices
1 1:295 829 355 0; 0 2150 37 753

T
he

m
at

ic
gr

ou
p2 1:147 914 678 0; 0 2150 57 284

3 1:73 957 339 0; 2 200 000 2118 78 940
4 1:36 978 669 7 300 000; 5 500 000 1210 60 882
5 1:18 489 335 3 400 000; 6 200 000 513 43 820
8 1:2 311 167 2 200 000; 5 970 000 13 029 243 724

G
IS

gr
ou

p

9 1:1 155 583 2 100 000; 5 970 000 10 458 279 139
10 1:577 792 2 050 000; 5 900 000 3541 128 998
11 1:288 896 1 980 000; 5 920 000 1144 55 362
12 1:144 448 1 980 000; 5 920 000 359 22 097

Table 4: Zoom level dependent attributes of benchmarked layer groups. Center coordinates are
in the map’s projection (EPSG:3857). They were empirically defined to have optimal amount of
features and vertices on every zoom level (Farkas, 2019).

34

controls for starting a measurement. Below the zoom controls, the upper button
measures complete redraws, while the lower one measures animation speed. The
output can be seen in the browser’s console, and the web page must be reloaded
between successive benchmarks. On the upper right side, a layer chooser can be
expanded by clicking on the OpenLayers logo. In it, the user can choose between
individual layers and layer groups. A layer group can be enabled by enabling ev-
ery layer in the group. On the lower left side, there are checkboxes for markers
and labels. Since the thematic group has a single layer for both of them, these
checkboxes can be used to toggle them. Finally, the user can choose between the
two rendering engines (Canvas and WebGL). Selecting an engine should be the first
step, as changing it recreates the whole map.

In order to measure raster management techniques efficiently, two different sam-
ple rasters were used (Figure 9). One of them is a small Digital Elevation Model
(DEM) from GRASS GIS’s Spearfish60 example dataset. The other one is a multi-
band raster. It contains a multispectral Landsat 8 imagery of Baranya county using
the red (R), green (G), blue (B), and near-infrared (NIR) spectral channels. The
geographic resolution of RGB and NIR channels differ, therefore the NIR band
with 60 meters resolution was resampled to match the other bands with 30 meters
resolution.

Figure 9: Sample rasters used for visualization and benchmarking. Both of the rasters are repro-
jected on the fly to the Web Mercator (EPSG:3857) projection. The Spearfish60 DEM (left) has
a monochrome greyscale style, while the Baranya imagery (right) has an RGB style created from
three corresponding bands (Farkas, 2020).

Overall, three variations of the two sample rasters were used (Table 5). The
hexagonal variation of the Spearfish60 DEM is not a properly resampled hexagonal
coverage, but original rectangular cells treated as hexagons. This causes geographi-
cally slightly distorted results, however, the visualization capabilities of a hexagonal
raster can still be observed.

35

Width Height Resolution Format Projection
Spearfish60 634 477 30 m × 30 m Arc/Info ASCII Grid EPSG:26713
Spearfish60 (hexagonal) 634 477 17 m HexASCII EPSG:26713
Baranya imagery 3172 2492 30 m × 30 m GeoTIFF EPSG:23700

Table 5: General attributes of benchmarked raster layers (Farkas, 2020). The resolution seems
higher in case of the hexagonal variant, however the HexASCII format defines resolution as the
length of a hexagonal cell’s size.

36

5. The Ideal Candidate

In order to choose the best basis for a universal Web GIS client, numerous data
visualization libraries were selected. From those libraries (Table 6), however, only
a few passed the initial filters, making them subjects of further comparison. Initial
filtering narrowed down possibilities to a group of ideal candidates by sorting out
unsuitable libraries for a universal Web GIS client. Using this filtering system, each
library was classified. The classification represents the strongest reason against a
library (if there are multiple reasons), or its possible candidacy.

The strongest reason against a library was its proprietary nature. While pro-
prietary libraries can be used freely, they have restrictive license conditions, and
their source code are not disclosed. They would act as a black box in the system,
which is unfeasible for several reasons. API changes and their general life cycle is
unpredictable, and their features are fixed, therefore they can be hardly extended
if they do not support an essential feature. These characteristics make those li-
braries unreliable as a basis of a universal Web GIS client. This criterion sorted
out ArcGIS API for JavaScript and Google Maps JavaScript API, two prominent
libraries, which could have been ideal candidates.

The second filter excluded abandoned libraries. Products without active devel-
opment are also unreliable, since they get increasingly outdated as Web technology
evolves. There are two reasons a library got an abandoned classification. Either its
development has been officially ended (e.g. Processing.js), or there has not been
any activity in its VCS repository for more than a year. For this reason, several
popular, and back in the day cutting-edge libraries were excluded, like ka-Map,
Modest Maps, or Polymaps. OpenLayers 2 is a special case, though. Since it was
not abandoned in the time of the original survey (Appendix 2), it is treated as a
candidate despite its currently abandoned status.

Libraries marked as general are data visualization tools capable of creating rich
and interactive plots from raw data (Bostock et al., 2011). All of the listed data
visualization libraries can create maps, although too general ones have only lim-
ited geospatial concepts. While they can be extended with web mapping features,
it would require considerably more work than selecting a library with adequate
geospatial capabilities.

Specific libraries, on the other hand, are proper web mapping libraries, although
they are specifically tailored to a single use case. For example, CARTO.js is designed
to work with CARTO tools, while Mapbox JS and Mapbox GL JS can be used
efficiently in the Mapbox ecosystem. Kepler.js is a great spatial data visualization

37

N
am

e
Ve

rs
io

n
Ty

pe
Li

ce
ns

e
D

ep
en

de
nc

y
La

st
re

le
as

e
La

st
ac

tiv
ity

C
la

ss
ifi

ca
tio

n
A

rc
G

IS
A

PI
fo

r
Ja

va
Sc

rip
t∗

4.
11

W
eb

m
ap

pi
ng

C
om

m
er

ci
al

–
<

6
m

on
th

s
U

nk
no

w
n

Pr
op

rie
ta

ry
Bi

ng
M

ap
s

A
JA

X
C

on
tr

ol
∗

8.
0

W
eb

m
ap

pi
ng

C
om

m
er

ci
al

–
>

Ye
ar

U
nk

no
w

n
Pr

op
rie

ta
ry

C
A

RT
O

.js
4.

1.
11

W
eb

m
ap

pi
ng

BS
D

3-
C

la
us

e
Le

afl
et

<
6

m
on

th
s

<
M

on
th

Sp
ec

ifi
c

C
es

iu
m

1.
57

V
irt

ua
lg

lo
be

A
pa

ch
e

2.
0

–
<

W
ee

k
<

W
ee

k
C

an
di

da
te

D
3

5.
9.

2
D

at
a

vi
su

al
iz

at
io

n
BS

D
3-

C
la

us
e

–
<

6
m

on
th

s
<

W
ee

k
G

en
er

al
de

ck
.g

l
7.

0.
4

W
eb

m
ap

pi
ng

M
IT

–
<

W
ee

k
<

W
ee

k
C

an
di

da
te
∗∗

G
oo

gl
e

M
ap

s
Ja

va
Sc

rip
t

A
PI
∗

3.
36

W
eb

m
ap

pi
ng

C
om

m
er

ci
al

–
<

6
m

on
th

s
U

nk
no

w
n

Pr
op

rie
ta

ry
H

ER
E

M
ap

s
A

PI
fo

r
Ja

va
Sc

rip
t∗

3.
0.

17
.0

W
eb

m
ap

pi
ng

C
om

m
er

ci
al

–
<

6
m

on
th

s
U

nk
no

w
n

Pr
op

rie
ta

ry
ka

-M
ap

1.
0

W
eb

m
ap

pi
ng

M
IT

–
>

Ye
ar

U
nk

no
w

n
A

ba
nd

on
ed

K
ar

to
gr

ap
h

0.
8.

2
W

eb
m

ap
pi

ng
G

N
U

LG
PL

R
ap

ha
ël

>
Ye

ar
>

Ye
ar

A
ba

nd
on

ed
ke

pl
er

.g
l

1.
0.

0-
2

D
at

a
vi

su
al

iz
at

io
n

M
IT

de
ck

.g
l

<
W

ee
k

<
W

ee
k

Sp
ec

ifi
c

Le
afl

et
1.

4.
0

W
eb

m
ap

pi
ng

BS
D

2-
C

la
us

e
–

<
6

m
on

th
s

<
D

ay
C

an
di

da
te

M
ap

bo
x

JS
∗

3.
2.

0
W

eb
m

ap
pi

ng
BS

D
3-

C
la

us
e

Le
afl

et
<

6
m

on
th

s
<

M
on

th
Sp

ec
ifi

c
M

ap
bo

x
G

L
JS
∗

0.
54

.0
W

eb
m

ap
pi

ng
BS

D
3-

C
la

us
e

–
<

M
on

th
<

D
ay

Sp
ec

ifi
c

M
ap

Q
ue

ry
0.

1
W

eb
m

ap
pi

ng
M

IT
O

pe
nL

ay
er

s
2

>
Ye

ar
>

Ye
ar

A
ba

nd
on

ed
M

ap
Q

ue
st

.js
∗

1.
3.

2
W

eb
m

ap
pi

ng
C

om
m

er
ci

al
Le

afl
et

>
Ye

ar
U

nk
no

w
n

Pr
op

rie
ta

ry
M

ap
Q

ue
st

-G
L.

js∗
0.

4.
0

W
eb

m
ap

pi
ng

C
om

m
er

ci
al

–
>

Ye
ar

U
nk

no
w

n
Pr

op
rie

ta
ry

M
od

es
t

M
ap

s
3.

3.
6

W
eb

m
ap

pi
ng

BS
D

–
>

Ye
ar

>
Ye

ar
A

ba
nd

on
ed

N
A

SA
W

eb
W

or
ld

W
in

d
0.

9.
0

V
irt

ua
lg

lo
be

A
pa

ch
e

2.
0

–
>

Ye
ar

<
M

on
th

C
an

di
da

te
O

pe
nL

ay
er

s
2

2.
13

.1
W

eb
m

ap
pi

ng
BS

D
2-

C
la

us
e

–
>

Ye
ar

>
Ye

ar
A

ba
nd

on
ed

O
pe

nL
ay

er
s

5.
3.

0
W

eb
m

ap
pi

ng
BS

D
2-

C
la

us
e

–
<

6
m

on
th

s
<

W
ee

k
C

an
di

da
te

O
pe

nS
ca

le
s

2.
2

W
eb

m
ap

pi
ng

G
N

U
LG

PL
–

>
Ye

ar
>

Ye
ar

A
ba

nd
on

ed
O

pe
nS

tr
ee

tM
ap

iD
2.

14
.3

W
eb

m
ap

pi
ng

IS
C

D
3

<
6

m
on

th
s

<
D

ay
Sp

ec
ifi

c
O

pe
nW

eb
G

lo
be

U
nk

no
w

n
V

irt
ua

lg
lo

be
M

IT
–

N
o

re
le

as
e

>
Ye

ar
A

ba
nd

on
ed

Po
ly

m
ap

s
2.

5.
1

W
eb

m
ap

pi
ng

BS
D

3-
C

la
us

e
–

>
Ye

ar
>

Ye
ar

A
ba

nd
on

ed
Pr

oc
es

sin
g.

js
1.

6.
6

D
at

a
vi

su
al

iz
at

io
n

M
IT

–
>

Ye
ar

<
6

m
on

th
s

A
ba

nd
on

ed
R

ap
ha

ël
2.

2.
8

D
at

a
vi

su
al

iz
at

io
n

M
IT

–
<

6
m

on
th

s
<

6
m

on
th

s
G

en
er

al
Ta

ng
ra

m
0.

18
.1

W
eb

m
ap

pi
ng

M
IT

Le
afl

et
<

M
on

th
<

D
ay

Ex
te

ns
io

n
W

eb
G

L
Ea

rt
h

2.
4.

2
V

irt
ua

lg
lo

be
G

N
U

G
PL

v3
C

es
iu

m
>

Ye
ar

<
6

m
on

th
s

Ex
te

ns
io

n
∗ R

eq
ui

re
s

an
A

PI
ke

y.
∗∗

C
ou

ld
ha

ve
be

en
a

ca
nd

id
at

e.

Ta
bl

e
6:

Li
st

of
co

ns
id

er
ed

Ja
va

Sc
rip

t
lib

ra
rie

s
ca

pa
bl

e
of

sp
at

ia
ld

at
a

vi
su

al
iz

at
io

n.
Ex

te
nd

ed
ve

rs
io

n
of

th
e

or
ig

in
al

lis
t

(F
ar

ka
s,

20
17

a)
.

R
el

at
iv

e
tim

es
ar

e
co

m
pa

re
d

to
th

e
da

te
of

re
vi

sio
n:

4t
h

M
ay

,2
01

9.

38

Name Change Old value
CARTO.js Name CartoDB.js
deck.gl New library –
kepler.gl New library –
MapQuest.js Name MapQuest JavaScript Maps API
MapQuest-GL.js New library –
OpenLayers 2 Classification Candidate
OpenLayers Name OpenLayers 3
Processing.js Classification General
Tangram New library –

Table 7: Important changes in libraries between the two surveys taken in 2016 and 2019. The
column ”Change” represents the column in the two tables (Table 6 and Appendix 2), where the
change happened. For MapQuest.js, the whole line changed, since MapQuest discontinued its old
service, and replaced it with a new one.

tool, although it is designed for visualizing millions of points in multiple ways for
exploratory data analysis (Behrens, 1997).

Finally, libraries marked as extensions were filtered out. These libraries can be
considered as plugins rather than standalone libraries, extending the capabilities of
their main dependency. Tangram is a 3D rendering engine build for Leaflet, and
therefore a Web GIS client using Tangram must be built using Leaflet’s core classes
and methods. WebGL Earth is a facade (Shalloway & Trott, 2002) for Cesium,
making it easier to use for simple virtual globes. Unfortunately, it does not expose
core Cesium functionalities, limiting the number of usable features.

The candidates according to the revised survey are Cesium, deck.gl, Leaflet,
NASA Web World Wind, and OpenLayers. However, the original list (Appendix 2)
did not take deck.gl into account. Furthermore, OpenLayers 2 was not abandoned
back then (Table 7). Since this part of the study established the choice of a basis for
a universal Web GIS client, and that choice was made in 2016, instead of deck.gl,
OpenLayers 2 is listed as a candidate. This makes the final list of candidates
Cesium, Leaflet, NASA Web World Wind, OpenLayers 2, and OpenLayers.

It is important to note, that two of the candidates are virtual globes. However,
both Cesium and NASA Web World Wind have strong geospatial foundations,
capable of rendering 2D maps, and have numerous GIS features required for a
Web GIS client. OpenLayers, the successor of OpenLayers 2, is a mature, robust,
and feature-rich library, which makes it an excellent candidate. While OpenLayers
2 has became abandoned, it reached a complete status, making it an appropriate
reference for the current status of OpenLayers. Finally, while Leaflet is a lightweight
web mapping library, its superior extensibility has given space for a vast number of
third party plugins. By considering those extensions, Leaflet can be an ideal basis
for a Web GIS client.

39

Feature group Cesium Leaflet NASA WWW OpenLayers 2 OpenLayers
Rendering 80% 40% 60% 40% 60%
Formats 65% 62% 53% 82% 76%
Database 0% 8% 0% 17% 0%
Data 32% 30% 18% 34% 44%
Projection 63% 50% 75% 63% 88%
Interaction 33% 50% 33% 83% 72%
Representation 22% 44% 33% 56% 56%
Average 41% 41% 34% 54% 56%

Table 8: GIS feature coverage of candidate libraries (Farkas, 2017a). Detailed results can be seen
in Appendix 1.

5.1. Competitive analysis

The overall results of the competitive analysis (Table 8) did not show extraordinary
differences between supported features in candidate libraries. Both OpenLayers
2 and OpenLayers outperformed the rest of the candidates, which is mainly due
to their development philosophy. OpenLayers libraries have always been created
with GIS considerations in mind. Their internal structure resembles desktop GIS
software’, allowing users to create rich web maps with GIS capabilities.

Leaflet and Cesium both achieved second place, not far behind OpenLayers
libraries. Leaflet scored lower due to its lightweight nature. The core library only
supports a handful of features, while the rest of the GIS functionalities are provided
by third-party extensions. This characteristic makes Leaflet easy to learn, but also a
capable basis, when mastered. Some dangers are originating from this phenomenon,
targeting reliability, though. As mentioned before, plugins are often maintained by
a small number of developers independent of core development. Therefore, there is
no guarantee for a plugin to be available for the next release of the core library, and
there can be delays between the release of a new Leaflet version, and the release of
updated extensions.

Cesium scoring as high as Leaflet was outstanding for a virtual globe. As it
can be seen in the category scores, it lacks web mapping libraries’ superior 2D
interactivity and cartographic representation capabilities, but it makes up for them
with its powerful rendering engine, capable of both 2D and 3D spatial visualizations.

While NASA Web World Wind had the least implemented features, its total
coverage was still promising. The library was in an initial, rudimentary state,
but still had decent support in most of the categories. It could be sorted out
at this point compared to other examined technologies, nevertheless, its evolution
should be monitored in the future. As it is a Web port of the mature and popular
desktop virtual globe NASA World Wind, it will likely catch up to other candidates
eventually.

In the rendering category, Cesium outperformed every other candidate due to its
capable rendering engine. It could do anything besides raster visualization, which

40

Format Cesium Leaflet NASA WWW OpenLayers 2 OpenLayers
Vector 50% 60% 50% 90% 90%
Raster 17% 17% 17% 17% 17%
Image 100% 100% 100% 100% 100%
Tile service 67% 32% 50% 100% 83%
Average 65% 62% 53% 82% 76%

Table 9: Data exchange format support of candidate libraries (Farkas, 2017a). Detailed results
can be seen in Appendix 1.

is a feature lacking from every library. NASA Web World Wind and OpenLayers
also scored high, although for different reasons. NASA Web World Wind has a
fully implemented WebGL renderer, capable of hardware accelerating 2D vector
visualization. OpenLayers, on the other hand, had partial WebGL support (it
could render images and vector points), and partial support for blending different
layers. That is, blending WebGL layers could be achieved with some programming,
not directly supported by the API. On the other hand, its less performant HTML5
Canvas engine supported blending layers from the API.

Considering format handling (Table 9), OpenLayers 2 had the most implemented
features, although all of the libraries showed decent coverage. Image format han-
dling showed the greatest coverage, since candidates did not only supported popular
image formats (PNG, JPEG), but all of them could use WMS outputs of spatial
servers. Specific tile formats, on the other hand, showed more variable support.
Some of the popular services like WMTS, OpenStreetMap’s slippy map format,
Bing Maps, and TMS could be used with most of the libraries. Others, like ArcGIS
REST API, or Google Maps had lower coverage. While the low support of Google
Maps is controversial, since it is one of the most widely used base maps, it is due
to its license conditions, forcing libraries to abandon core support. Where it is
supported, it is either a legacy version, or a third party plugin not strictly obeying
to license conditions.

In the case of vector formats, GeoJSON and KML had the greatest support. It is
worth noting, that the binary ESRI Shapefile format was supported by NASA Web
World Wind out of the box. Since there are universal libraries for parsing Shapefiles,
other libraries could still make a use of it. Communication with WFS servers was
only supported by web mapping libraries. It is unfortunate, as using WFS-T is one
of the few ways of saving spatial data from a Web client into a database. Other
ways include using proprietary services and creating custom server-side logic.

Raster format support was uniform amongst the candidates. Since they do not
have any form of raster management, they neither could parse raster files. The only
exception was GeoTIFF. Similarly to ESRI Shapefile, there is a universal library
for parsing raw GeoTIFF data and converting it to a binary array. This way, every
library could be able to overlay images coming from GeoTIFF files with some work.

All of the libraries performed poorly in regards database-related functionality
(Table 10). The connection subcategory is understandable, since browsers still

41

Database Cesium Leaflet NASA WWW OpenLayers 2 OpenLayers
Connection 0% 0% 0% 0% 0%
Functionality 0% 17% 0% 33% 0%
Average 0% 8% 0% 17% 0%

Table 10: Database realted feature support of the candidate libraries (Farkas, 2017a). Detailed
results can be seen in Appendix 1.

Data Cesium Leaflet NASA WWW OpenLayers 2 OpenLayers
Pre-process 50% 25% 25% 19% 63%
Conversion 0% 0% 0% 0% 0%
Manipulation 50% 67% 25% 83% 67%
Analysis 13% 19% 13% 25% 25%
Average 34% 32% 20% 34% 46%

Table 11: Data management feature support of candidate libraries (Farkas, 2017a). Detailed
results can be seen in Appendix 1.

cannot connect to databases directly. In order to establish such a connection, a
server-side component must be present mediating between clients and the database.
Such a component can be a WFS service (WFS-T for writing back data), which is
DBMS independent by design, and was already checked with data exchange formats.

The database related functionality could be able to score a few points for some
of the libraries, though. These functionalities are not dependent on DBMS compo-
nents but implemented locally. By using the IndexedDB API (Mehta et al., 2015),
libraries could have implemented a data storing and retrieval mechanism for reduc-
ing memory footprint. By not having such DBMS functionality, along with a query
language for users to interact, candidates could be only given scores based on other
means of querying and filtering vector data. Since Leaflet had a way to filter fea-
tures for display, it partially fulfilled this requirement. Furthermore, OpenLayers 2
had both querying and filtering capabilities.

Features related to data management (Table 11) had similar average coverages,
but diverse subcategory coverages. In preprocessing data, OpenLayers and Cesium
excelled with their numerous optimization techniques. These techniques are mostly
related to vector data, like geometry simplification according to scale, or handling
per-vertex Z and M (measurement) coordinates. They could also transform vec-
tor layers to the map’s projection, although in OpenLayers, these transformations
were permanent rather than on the fly. On the other hand, OpenLayers used a
spatial index on vector data, which was unique amongst candidate libraries. Un-
fortunately, geometry validation and automatic attribute table generation were not
implemented in any of the libraries. NASA Web World Wind was especially weak
in this subcategory, since it discarded feature attributes, whose support is essential
in GIS applications.

Data conversion had a uniform, 0% coverage amongst libraries. The lack of
raster to vector conversion support is understandable, since raster management was

42

not supported either by any of them. On the other hand, traces were found of other
functionalities in some libraries. For example, web mapping libraries could generate
heat maps from point data, which touches both interpolation and vector to raster
conversion. Furthermore, OpenLayers was able to generate and cache textures
created from vector data for better performance. However, these functionality were
not considered even for a partial fulfillment, since those are specialized functionality
related to data visualization.

In terms of data manipulation techniques, candidates performed much better.
Layer management capabilities (i.e. adding and removing layers, changing layer
order) were mostly supported. Updating feature attributes and geometries – which
are also essential for analysis – were mostly implemented, although virtual globes
did not allow to modify geometries in place. Similarly to attribute tables, a field
calculator tool was neither included in any of the libraries.

Storing the type of layers was only done by OpenLayers 2. This is an interesting
feature, since one could argue, every layer object has an inherent type, as they are
instantiated from their constructors. However, in JavaScript, the typeof operator
returns object for every class. Consequently, if layers do not store their types,
users must do instanceof comparisons with every possible layer type in the li-
brary. Alternatively, users can access the Function.name attribute of constructors,
which is not necessarily returning correct values due to minifying processes used for
compressing libraries (Vasilescu et al., 2017).

From data analysis features, no significant support could be observed. Basic
geoprocessing and topological analysis could be implemented in every candidate
using general libraries, such as JavaScript Topology Suite (JSTS) and Turf (Sch-
ernthanner et al., 2017; Kulawiak et al., 2019). From the other features, OpenLayers
had support for modifying image layers on the fly according to a user-defined func-
tion working on a per-pixel or per-image basis. This technique could be used for
applying a convolution matrix, however, the matrix’s logic must have been pro-
grammed by the user, and the result would not have been permanent. A more
important feature, writing WPS requests, was supported by all of the web map-
ping libraries. With this functionality, a wide variety of spatial analyses can be
conducted using a spatial server with WPS capabilities.

Considering projection support, all of the libraries performed well. They could
transform vector layers between at least WGS84 and Web Mercator. Virtual globes
could additionally warp image layers. Additionally, OpenLayers could also do this,
making it unique amongst web mapping libraries. Other projections could also be
handled by the candidates. While virtual globes were restricted to a set of hard-
coded projections, web mapping libraries could use any with the JavaScript port of
PROJ.4.

The number of supported interactions strongly differed between web mapping
libraries and virtual globes. Web mapping libraries supported interactive vector
manipulation (e.g. drawing, modifying, snapping features), while virtual globes
resorted to visualizing features. Interactive tools for querying and selecting fea-
tures were also dominantly present in web mapping libraries, just like interactive

43

Representation Cesium Leaflet NASA WWW OpenLayers 2 OpenLayers
Styling 67% 67% 67% 67% 83%
Cartographic elements 0% 33% 17% 50% 42%
Average 22% 44% 33% 56% 56%

Table 12: Representation feature support of candidate libraries (Farkas, 2017a). Detailed results
can be seen in Appendix 1.

Library Size (KB) LLOC CC/F EF ALCJS
Cesium 11 420 292 500 2.08 911 51.27
Leaflet 162 3639 2.00 200 18.47
NASA Web World Wind 1452 13 037 2.50 187 30.64
OpenLayers 2 872 23 702 2.82 207 36.46
OpenLayers 499 21 451 2.36 223 33.90

Table 13: Static software metrics of candidate libraries (Farkas, 2017a). CC/F stands for per
function cyclomatic complexity.

measurements.
Regarding the map state, most of the libraries supported the basic interactions

of panning, zooming, and rotating the view. Leaflet and OpenLayers 2 were the
only exceptions, not having rotating capabilities. From the compared libraries, only
Cesium had core support for changing the temporal dimension, allowing users to
visualize spatiotemporal datasets out of the box. On the other hand, OpenLayers
2 and Leaflet both had third party extensions for the same purpose.

The representation capabilities of candidates (Table 12) showed expected re-
sults. Styling vector layers and creating thematic maps were supported by all of
the libraries. Styling raster, on the other hand, was only partially supported by
OpenLayers, as it could manipulate image layers on the fly. Cartographic elements
were mostly supported by web mapping libraries. Creating scale bars, graticules,
and overview maps were achievable with all of the web mapping libraries, while leg-
ends and arbitrary text boxes were not supported by any of the candidates. As an
interesting fact, NASA Web World Wind offered a built-in north arrow, inherited
from its desktop version’s user interface (UI) design.

5.2. Metrical results

Upon investigating further using static software metrics (Table 13), no surprising
results could be found. Sizes were not related directly to LLOC values, due to
the different compression tools used by different developer teams, and the number
of assets included. Such assets were typically Cascading Stylesheet (CSS) files
and images bundled with production versions of the libraries. LLOC values, per
function cyclomatic complexity, and the number of exposed functions were able to
describe several aspects of candidate libraries. Furthermore, ALCJS values matched
experienced difficulties with the candidates.

44

Property Cesium Leaflet NASA WWW OpenLayers 2 OpenLayers
Documentation Good Good Decent Very good Very good
Community Good Very good Poor Good Good
Contributors 89 (29) 236 (8) 12 (5) 98 (16) 154 (27)
Open issues 409 (25%) 225 (7%) 40 (56%) 383 (64%) 414 (21%)
RF 28 68 N/A 32 24

Table 14: Non-code metrics of candidate libraries (Farkas, 2017a). RF stands for release frequency,
and shows the average number of days between two successive release.

Leaflet is the smallest library, although it has as many exposed functions as other
web mapping libraries. Its complexity is low, making it easy to learn and develop.
Its slight learning curve makes it very popular for beginners and developers not
familiar with GIS. NASA Web World Wind is the smallest amongst the two virtual
globes. Its learning curve is significantly steeper, since it is a virtual globe, having
more complex dynamics. It is still easy to use for visualizing 3D phenomena. Its
low number of exposed functions represents its maturity, as it was in an early
development stage when the survey was conducted.

OpenLayers libraries and Cesium could be called the big players in the group.
They are harder to learn into, even harder to master and develop. They are mature,
big, robust libraries, with a wide variety of functionality to offer. Cesium is the
largest project, having a codebase comparable to mature desktop solutions. On the
other hand, it has a very low per function complexity, showing that developers put
a lot of effort into creating clean, transparent code. Its steep learning curve is in
ratio with the complexity of a virtual globe capable of visualizing spatiotemporal
3D phenomena.

Other, non-code metrics (Table 14) shed some light on the development difficulty
with candidates. In the table, major contributors are shown between parenthesis
next to the total number of contributors in a project. Next to the number of open
issues, their ratio to the total number of issues is shown in a similar fashion.

Most of the candidates had sufficient documentation, with which users can start
to build applications quickly. While Cesium, OpenLayers 2, and OpenLayers ex-
celled in examples, Leaflet had very thorough tutorials for basic use cases. Open-
Layers 2 had an outstanding number of examples (210), while OpenLayers had the
most tutorials (23). As an exception, NASA Web World Wind only had a very few
of both tutorials and examples, making it harder to learn into.

Community metrics showed a similar picture. In this category, Leaflet excelled
with not only the highest ratio of answered questions (80%), but also with the
highest total number of questions on StackExchange forums (5447). Unfortunately,
NASA Web World Wind did not have a measurable community, probably due to
being young and unadvertised. The raw numbers behind ordinal values look promis-
ing, although they should be taken with care. By putting them in contrast with
the popular open-source and community-developed data visualization library D3,
all of them seem very low (Figure 10).

45

Figure 10: The number of tutorials, examples, and answered questions on StackExchange forums
of the five candidates. All of the numbers are normalized with D3’s statistics, and represented in
percentage values.

Developer statistics showed that while Leaflet had the most contributors, it also
had the smaller core developer group. In this category, Cesium and OpenLayers
excelled with a high number of major contributors, implying their long term sta-
bility. Seemingly, the number of core developers was slightly related to the size of
the project. The number of open issues also favored the aforementioned libraries,
since they had low ratios to the total number of issues. On the other hand, Leaflet
highly outperformed all the other candidates in terms of open issues. The candi-
dates’ release frequency were also showing stability, except for NASA Web World
Wind, whose releases could not be tracked, since it was using a private development
system.

5.2.1. Approximate learning curve for JavaScript
A metric is only useful when it shows meaningful results, properly approximating
the truth. This is especially true for complex metrics, making regressions between
statistical values and soft phenomena. The perceived learning curve of a library
is a very soft phenomenon, since it varies between individuals, and other, hardly
enumerable characteristics of the given technology. When such an empirical phe-
nomenon is tried to be approximated numerically, statistics allows for manipulating
input values to give correct results for a sample. In order to avoid such a pitfall,
ALCJS was validated against a larger sample with known learning difficulties.

First, four new JavaScript libraries and a basic function (Program 4) were intro-
duced, and ranked by their difficulties to use according to the author’s experience

46

Library Rank Label
Cesium 1 Very Hard
OpenLayers 2 2 Hard
OpenLayers 3 Hard
Google Maps API 4 Hard
NASA Web World Wind 5 Moderate
D3 6 Moderate
Leaflet 7 Easy
jQuery 8 Easy
GeoJSON Lite 9 Easy
addNums 10 Basic

Table 15: Ranking of libraries used for validation according to their experienced learning curves.
Libraries were also grouped in ordinal categories. Members of a single category did not have
significant differences in difficulty to use.

(Table 15). Some of the libraries, like Google Maps API and D3 were chosen for
a later validation phase. Others, like jQuery and GeoJSON Lite, were included
to sufficiently represent the lower spectrum of learning curves, since web mapping
libraries and virtual globes are usually harder to use.

var addNums = function(a, b) {
return a + b;

};

Program 4: A simple JavaScript function treated as a library for validating ALCJS.

From the newly introduced and previously unmentioned technologies, Google
Maps API is a closed source JavaScript library for creating web mapping applica-
tions on top of the publicly available Google Maps application. Due to its popular-
ity, tutorials, and examples, it is very easy to get started. However, its capabilities
extend far beyond the surface, making it hard to sufficiently understand for creating
rich applications.

The jQuery library is a popular framework, well-known for its steep learning
curve and user-friendliness (Lindley, 2009). Its main purpose is to facade some of the
more advanced functionalities of JavaScript, making it easier to use for beginners.
It is also popular amongst professionals, since it makes developing web pages faster
when the overhead is acceptable. While the library primarily targets general use
cases, like sending AJAX requests, selecting DOM elements, or animating content,
there are many specialized use cases. Even simple web maps can be created with
it (Król & Szomorowa, 2015).

GeoJSON Lite is a very simple library written for parsing, serializing, and vali-
dating GeoJSON data. It has an internal feature and geometry class system, which
is used by its random feature generator. It can create random points, lines, and
polygons, fill them up with random attributes and output the resulting GeoJSON

47

Figure 11: ALCJS values of libraries used for validation ordered by their empirical ranking. Colors
indicate different ordinal difficulty categories.

for later use. While the functionalities or the library are limited, users still need to
understand how parametrization and different methods work.

By correlating ALCJS with the empirical ranking of libraries (Figure 11), the
metric follows experienced difficulty feasibly. The addNums function got a score of
0.3, little above 0, which cannot be reached due to its logarithmic components’
asymptotic nature (Equation 2). The only difference between ALCJS scores and
ranks was between OpenLayers and Google Maps API, where the difference was
substantial. Ordinal categories matched ALCJS scores even better. Basic, easy,
hard, and very hard categories were very easy to differentiate by their scores. Li-
braries with moderate difficulty showed a smooth transition between easy and hard
ones.

In order to incorporate an expert survey, a study was used, which recorded the
development process of a web mapping application with OpenLayers 2, Leaflet,
D3, and Google Maps API (Roth et al., 2014). That study recorded developer
moods during four independent development processes aiming towards the same
goal. Moods were categorized as positive, neutral, and negative, and summarized
in the end.

When comparing ALCJS scores with experienced moods, positive and negative
trends mostly follow the libraries’ score. The only difference is with Google Maps
API and D3. This exception can be considered a phenomenon rather than an
error, though. Since D3 is a general data visualization library, while the rest of the
technologies are web mapping libraries, D3 requires more work in order to create
a web mapping application. Furthermore, most of its examples cover different
intuitive charting solutions, making it harder to find existing solutions for web

48

Figure 12: Categorized and summarized moods from the diary study created by Roth et al. (2014)
along with the libraries’ ALCJS scores. ALCJS scores do not match the percentage scale of moods,
therefore values should not be directly compared. Only trends should be observed.

mapping problems.
While the validation is not conclusive, it shows that ALCJS has merits, and can

be used for approximating learning difficulties. ALCJS scores should be interpreted
along with other, non-code metrics, and should be used only to exclude outliers.
That is, libraries which could not be learned easily. Furthermore, the metric could
be refined with other object-oriented metrics, or generalized for other languages.
It is certain, ALCJS should be validated more thoroughly with an expert survey
including more libraries. Before then, it should not be used alone for making any
decisions.

5.3. Selecting a candidate

According to candidates’ feature coverage and metrical results, they could be nar-
rowed down to two technologies: Cesium and OpenLayers. While OpenLayers has a
slighter learning curve, it held little importance, since the author was familiar with
both of the libraries. On the other hand, the larger community behind OpenLayers
had a minor influence on the decision.

Since the two libraries were in more or less a tie, the supported features were
reinvestigated, and crucial features were identified. Those features were considered
crucial, which were absolutely necessary for a general Web GIS application to work.
Three such deficiencies were identified in the libraries; the lack of general projection
support in Cesium, the lack of full hardware acceleration in OpenLayers, and the
lack of raster management in both of them.

49

Estimations were made for implementing the two unique lack of features. In
Cesium, there was a skeleton (an empty class) for custom projections in the API.
However, it seemed like projections were tightly coupled to the rendering engine.
Cesium offered a fixed number of hard-coded projections and could change the map
view between a 3D representation, and a 2D representation in the given projection
with a smooth transition. The projection classes seemed to be quite different, mak-
ing it hard to generalize. While such an implementation was considered possible,
the required time could not be estimated due to possible pitfalls.

OpenLayers already had a WebGL engine for drawing hardware accelerated
point and image layers. Since the basic structure of the engine was given, it seemed
an easier way to implement line, polygon, circle, and text rendering. It was consid-
ered, that some essential modifications will be needed in core classes due to possible
pitfalls, still, a rough estimation could be created for implementing the missing ren-
dering mechanisms in a year. Mainly for this reason, OpenLayers was chosen as the
basis for a universal Web GIS.

This way, the next chapters of the thesis concentrate on the implementation of
crucial features in OpenLayers. First, hardware accelerated rendering methodolo-
gies are presented, then some raster management techniques. These implementa-
tions aimed to provide basic mechanisms for a Web GIS application, therefore they
can be further optimized.

5.4. The structure of OpenLayers

In order for this thesis to make complete sense, the basic structure of OpenLayers
needs to be presented. The library strives for a GIS-like structure, still it includes
the typical web mapping components. Just like in any other web mapping libraries,
there is a basic set of classes responsible for creating a map. The central class of the
library is ol.Map, and the rest of the basic classes can connect to it with a 1:1 or a
1:N relationship. OpenLayers’ base object structure is peculiar, as every important
class is the child of the ol.Object class, which inherits from the ol.Observable
class (Figure 13). As the name suggests, this internal base class – carefully hidden
from the everyday user – takes care of event handling. This is a very strong point of
OpenLayers, as it successfully implements a DOM style event mechanism, providing
an easy to use interface for asynchronous coding.

While the map object is responsible for holding the whole application together,
OpenLayers is fully modular. Its different components are provided as parameters
and can be changed at will. For example, the map takes an ol.View instance,
which is responsible for storing the current state of the view (e.g. center, zoom
level, projection). If changed, the map continues to run with the new view object.

A very important group of classes in OpenLayers are layers. Their structure is
twofold. Layer classes only define how their content gets handled internally. There
is a different class for image layers, tile layers, and vector layers, as they need
different internal logic. A tile layer, for example, needs to know about tile layouts,
needs the capability to cache tiles, and needs to be able to provide appropriate

50

Figure 13: UML diagram of base constructors in the OpenLayers library. Every class inherits
from the ol.Observable class, which provides the same event mechanism for every OpenLayers
object. This means, events are used consistently by different classes of the library (Farkas, 2016).

tiles to the renderer. Data management is outsourced to another group of classes:
the sources. Source objects are provided to layers as parameters, and take care of
downloading, parsing, and abstracting different data sources. These source classes
are specialized for every different format OpenLayers can handle. There is a source
for OpenStreetMap, for ArcGIS REST API servers, for WMS servers, for vector
datasets, and many other types of input.

Styles form another group of classes in OpenLayers. Style objects can define
vector styling rules. There are different style classes for polygon fills, polygon and
line string strokes, point symbolizers, and labels. These styles are provided only for
vector layers, which provides them to the renderer on demand.

For an efficient raster management implementation, not only raster related base
classes are essential. While they must be present to hold matrix data, and make
different operations, they are insufficient by themselves. For displaying rasters, a
raster layer class, raster source classes (e.g. for GeoTIFF and ArcInfo ASCII Grid),
and raster styles are also necessary. At least three styles are essential; a monochrome
for 8-bit styling, a pseudocolor for categorized and graduated smybology and an
RGB for composites.

Another important aspect of OpenLayers from the perspective of this thesis is
rendering. There are two rendering engines in the library, one for HTML5 Can-
vas rendering, and one for hardware accelerated WebGL rendering. Both of the

51

renderers are created with the same structure, although they are not interoperable
(at least before version 6.0). The user must choose to use one of them exclusively.
From a developer standpoint, they are easier to develop, validate, and compare,
since they use the same mechanisms (Figure 14).

Figure 14: UML diagram of the internal mechanism of OpenLayers’ HTML5 Canvas rendering
engine. Similar classes build up the WebGL renderer. There are some minor, technical differences,
although the same principles apply (Farkas, 2019). A larger image can be found in Appendix 3.

Layers and renderers are connected in the map object. On instantiation, the map
creates high-level renderer objects, responsible for creating an initial view. Then it
assigns renderer classes to layer types. Every different layer type has a renderer,
which is responsible for drawing entities on the map. Entities can be images, tiles,
or individual vector features.

There are two rendering modes in both of the engines. The immediate mode
draws every layer synchronously and immediately on the map canvas. Since it
cannot cache and does not have any other optimization possibilities, it is only used
on rare occasions. The other mode is called replay. In replaying mode, the renderer
collects styled entities, sorts them based on their Z level values, creates different
caches, and draws with a better performance. Similarly to CSS, Z level can be used
to override the default drawing order of different elements.

Caching is one of the most significant differences in the two rendering engines.
The HTML5 Canvas technology is based on instructions. There are different draw-
ing methods offered by the built-in API for different drawing tasks, similarly to the

52

Logo language. For example, there is an instruction to start a line, to add vertices,
to generate a stroke, and to fill a closed shape. Images can also be inserted with
other instructions. Consequently, the Canvas renderer can only cache these instruc-
tions, providing a slightly better performance, when it only has to replay previous
instructions. On the other hand, the WebGL renderer uses buffers, sent to the
GPU, and processed by it according to GLSL programs. When buffers are cached,
the replay mechanism can provide a significant performance boost over regenerating
them.

The two phases accomplishing different tasks in OpenLayers are preparing–,
and composing a frame. In the prepare phase, the required preprocessing steps are
done, including caching. In the compose phase, the prepared data are drawn on
the map canvas. During a complete redraw, both of the phases are executed once,
while during animation or interaction, only composing is called repeatedly. It is
very important to distinguish between these two cases, since an animation frame
is created faster, but cannot introduce new vector features, which were previously
outside of the view’s extent.

In order to implement a complete WebGL engine, several gaps need to be filled.
The WebGL rendering engine of OpenLayers only supported image, tile, and point
rendering. Since point rendering is done by the same class as image rendering,
there were only two classes implemented. On the top of the existing structure, a
line string replay, a polygon replay, and a text replay needed to be included. Also,
a circle replay turned out to be another requirement, as in WebGL circles should
not be treated as special polygons.

In addition, for raster rendering, raster related renderer classes were also needed.
These classes are responsible for applying styles on raw raster data (i.e. matrices),
and either creating textures from styled rasters, or rendering cells as polygons.
They were also used for caching, which included pyramid building, loading cells
into R-trees, and caching buffers.

53

6. Hardware Accelerated Vector Rendering

In order to implement the first big requirement for a general Web GIS client, current
support needed to be analyzed, and the inner workings of hardware acceleration
was to be understood. Before this modification, OpenLayers supported image and
point rendering via WebGL. This support manifested as an image renderer, since
points were first rendered through the Canvas API, cached, and overlaid on the
map canvas as textures. That is, OpenLayers was able to render textures with its
hardware accelerated renderer.

For rendering other types of cartographic elements, line strings, polygons, and
labels needed to be supported. Since the implementation was targeting basic sup-
port, only the most necessary rendering techniques were covered. On the other
hand, feasible representation (e.g. smooth rendering, no visual artifacts, ability to
style features) was a criterion. Consequently, both line string rendering and polygon
rendering needed their respective best practices, well outlined in computer graphics
literature. For drawing labels, the existing texture renderer could be exploited.

WebGL – just like OpenGL – cannot render complex geometries natively. It
offers a low-level API, which can be programmed to bring a 2D or a 3D scene to
life. It has a limited number of entities, called primitives, which are handled auto-
matically. There is a primitive for points (gl.POINTS), capable of drawing squares
representing points of arbitrary radii. Line primitives (gl.LINES, gl.LINE LOOP,
gl.LINE STRIP) are slightly different methods for drawing segments. While
gl.LINES can be used with segments of arbitrary width, it does not support seg-
ment connections. The others can draw line strings, although with a fixed width of
1 pixel. Finally, there are triangle primitives (gl.TRIANGLES, gl.TRIANGLE STRIP,
gl.TRIANGLE FAN) capable of drawing triangles on the screen. These fixed and lim-
ited primitives act as building blocks for any computer graphics application powered
by WebGL.

By using one of these primitive types, developers can provide an array of coor-
dinates (amongst other numeric parameters) for the API to draw. WebGL utilizes
the GPU for rendering, therefore input data need to go through a pipeline in-
cluding different components. While WebGL is based on OpenGL for Embedded
Systems (OpenGL ES), its rendering pipeline is still complex. There are many
phases (Ganovelli et al., 2014) from which two are of special interest, since they
define what happens with input data, and are programmable. These are the vertex
shader and the fragment shader.

Shaders are GLSL programs telling the GPU how it should handle input coor-

54

dinates and parameters. In the vertex shader, every vertex is handled separately.
They must be transformed to Normalized Device Coordinates (NDC), a coordinate
system used by this phase. NDC spans from -1 and 1 in every axis, independently
from the size of the canvas. The fragment shader is after the rasterization phase
and is run for every pixel in the resulting layer. In this shader, the program must
assign a color to each pixel based on the developer’s rules. In each pass, the exact
row and column of the processed pixel is known, therefore this phase uses screen
coordinates. The two shader programs can communicate through special variables
(in case of triangles), which need to be defined for every vertex, and are interpolated
between vertices for every pixel.

In the case of textures, the pipeline is similar to vector rendering. Since the
fragment shader defines each pixel’s color, drawing texture is also done there. Tex-
tures need a vector bounding box, where they will be displayed. This rectangle
(also known as a quad) consists of two triangles and created in the vertex shader.
In the JavaScript program, a texture is bound to each quad, and only then, the
fragment shader can apply the bound texture to each pixel of the quad.

With some of the most important aspects of WebGL summarized, there are few
slightly more advanced techniques to mention. OpenGL based rendering engines
use at least two different coordinate reference systems (CRSs). One of them is the
internal CRS of the application. In the case of a cartographic or GIS application,
it is defined by the map’s projection. The other is the NDC, to which every vertex
needs to be transformed. In more complex cases, there can be other CRSs as well,
like screen coordinates or sheet coordinates. Coordinate transformations are usu-
ally done by multiplying an affine 3D transformation matrix with each coordinate
represented as a vector. The matrix needs to be provided only once per scene, and
the GPU can calculate primitives from raw inputs with great performance.

The other technique is avoiding rare problems occurring from floating-point
rounding. Since most of the GPUs can only handle 32-bit floating-point numbers,
there are some cases when 64-bit input values are rounded. In cartographic ap-
plications using different map projections, this is not even such a rare occasion.
Several global projections use meters as units, limiting the maximum precision of
coordinates in a 32-bit representation. The rounding error is in the order of cen-
timeters, which is negligible on a global scale. However, since users can zoom into
maps, these applications can be used on scales where these errors become signifi-
cant. Apart from the professional significance of such errors, if not handled properly,
these unwanted roundings generate serious visual artifacts (Cozzi & Ring, 2011).
On larger zoom levels, a phenomenon called jittering can be observed, where during
zooming, geometries start to visibly shake.

There are two different techniques for avoiding such errors. One of them is
coordinate packing (Cozzi & Ring, 2011), which is more popular in modern hardware
accelerated web mapping applications. This method packs a single 64-bit floating-
point value in two 32-bit values and passes them to the GPU. Then the GPU can
operate on those values, avoiding rounding errors. The other method is called
relative to eye (RTE) rendering. This floating origin method (Thorne, 2005) is an

55

Figure 15: Part of the river Tisza rendered with gl.LINES. While the line could be styled with a
color and a width, individual line segments are not connected properly, resulting in visual artifacts.

older solution for such problems, where every input coordinate is transformed to
represent relative distances from the center of the view. This way, on scales where
jittering start to cause problems, coordinate values become smaller, making more
place for precision digits. Since OpenLayers already used RTE to avoid jittering
effects, the implementation maintained that choice, and was built on it.

Finally, antialiasing is a technique for smoothing out jagged edges produced
by slant geometries. To visualize this, a black 1-pixel line should be imagined
on a white background. Since displays have square pixels, only straight (axis-
oriented) geometries can be displayed as straight edges. When the geometry is
skewed, diagonal pixels need to be colored black. This makes the edges look jagged,
which can be smoothed out by gradually blending such an edge into the background.
By increasing the alpha value on the edges, or mixing them with the background
color, a smooth transition is produced. This technique is called antialiasing. While
most web mapping applications use their antialiasing algorithms, for the sake of
simplicity, this implementation relied on browsers’ built-in multisample antialiasing
(MSAA) technique (Liktor & Dachsbacher, 2013).

6.1. Line strings as triangles

Drawing lines is hard (DesLauriers, 2015). It could be easy if one could rely on
built-in line rendering functionality. However, since web mapping applications need
line string layers to be styled properly, neither of those functionalities are feasible.
The gl.LINES mode has the best approximation for the requirements of line string
layers, although line connections and line endings cannot be handled with it (Figure
15).

This shortcoming raises the demand for a more convoluted drawing methodol-
ogy. For a correct representation of geospatial line string data, segments must be
triangulated, in which way, both line endings and line connections can be main-
tained. Furthermore, both line endings and connections can be customized in a

56

Figure 16: Relationship of base lines (black) with their respective line caps (top row) and line
joins (bottom row). Line caps can be square (left), butt (center), and round (right). Line joins
can be miter (left), bevel (center), and round (right).

capable application (Hearn & Baker, 2004). Typical line endings (caps) can be
square, butt, and round, while typical line joins can be miter, bevel, and round
(Figure 16). In order to handle all of these cases, line strings must be triangulated
beforehand.

Line string triangulation has several methods, although most of them root back
to the same set of calculations. Every segment needs to be cut into at least two
triangles. If there are caps, they need to be added to the end of the line string as two
additional triangles. All of the necessary points for these steps can be calculated
by offsetting the endpoints of segments. A slightly more complicated calculation is
the join point (both upper and lower) of two segments. Every join needs a lower
point, while a miter join also needs an upper point. These join points must take the
orientations of the two meeting segments into account. If every point is calculated,
a two-segment line (V1, V2, V3) can be triangulated with 8 points (Figure 17).

The triangulation can be done in the CPU with relative ease. By transforming
offset distances to CRS units, every vertex of every line triangle can be given to the
GPU for rendering. On the other hand, this method would slow down the engine,
since a huge amount of calculations need to be done for every redraw. Consequently,
vertex position calculations needed to be ported to the GPU. This way, the GPU
can calculate every vertex position in parallel, providing decent performance. In
order to achieve this, a universal vertex shader program was created, which could
calculate all of the required offsets.

The problem with such an approach is only one vertex shader operates on every
input coordinate. That is, there is a simple program, which needs to be able to
decide whether it has to create a simple perpendicular offset with half of the line’s
width, or it has to create a miter. It needs to be able to decide the direction of the
given offset. It also needs to be able to apply rounding, if required. All of those
requirements need to be fulfilled before the GPU can process every vertex in a line
segment asynchronously.

Such a program needs at least 6 parameters to work. First, it needs the co-
ordinates of the current point in the line string. It also needs the coordinates of
the previous, and next points, or it will not be able to calculate line joins. When

57

Figure 17: Triangulation scheme of two connected line segments V1, V2, V3 with a miter line join and
no line caps. Arrows show the magnitudes and directions of offsets needed to require triangulation
points T (V)n. Dashed lines represent triangles resulting from connecting triangulation points in
the right order.

processing a starting or ending point, it still needs the location of the neighbor-
ing vertex. It also needs an instruction (e.g. offset, miter, square cap) to apply
the correct offsetting procedure. Finally, it needs a direction, and if rounding is a
requirement. As the application uses WebGL 1.0, which is only capable of receiv-
ing 32-bit floating points from the CPU, using so many variables for such simple
parameters would have been a waste of resources. In order to optimize commu-
nication between the CPU and the GPU, a basic encoding was used to compress
an instruction i, a direction d, and a rounding factor r into a single parameter
p = i × d × r. For assuring lossless decoding, instructions were prime numbers,
direction was either 1 or −1, and rounding was 2 if required, and 1 if not.

With the required parameters outlined and provided, a simple vertex shader
could be built by following a fairly simple pseudocode (Program 5). With this
method, the input needs to contain three pairs of coordinates, and an encoded
parameter for every vertex in the triangulation. Providing the parameters for every
vertex in the visualized polyline is not enough, as WebGL shaders cannot emit new
vertices. Since there is no geometry shader in WebGL, every triangulation vertex
needs to be provided, increasing the input’s redundancy. For example, a three vertex
line string needs at least two sets of parameters with the first pair of coordinates,
four with the second, and two with the third. However, in the seemingly redundant
parameter sets, the directions and instructions are different.

While the simple approach works most of the time, there are some edge cases
which made the shader more complex. The first edge case is when bevel line joins
are required. This can be handled easily, since miters form a separate triangle
(4T (V)3T (V)4T (V)6 in Figure 17). The superfluous triangle can be discarded by

58

Require: p0, p1, p2, direction, instruction, width
i← instruction
d← direction
w ← width
u← p1 − p0
v ← p2− p1
if i = offset then

// Offset p1 along rotated û or v̂ with half width
p1 ← p1 + w ÷ 2× 〈−ûy, ûx〉 × d

else if i = miter then
// Calculate tangent vector
k ← û + v̂
// Calculate miter length
l← w ÷ 2÷ k̂ · 〈−v̂y, v̂x〉
// Offset p1 along rotated tangent with l

p1 ← p1 + 〈−k̂y, k̂x〉 × l × d
end if

Program 5: Simple pseudocode for calculating offsets required for line string triangulation (Farkas,
2019).

either excluding it from the input array in the CPU or degenerating it in the GPU.
The most convenient GPU approach is making T (V)6 equal to T (V)3 or T (V)4.

A more problematic edge case is when triangles overlap. Such a phenomenon
can occur when a lines string has self-intersections. Visual artifacts can only be
observed from this edge case, when opacity is set lower than 100%. When two
semi-transparent triangles meet, their overlapping parts are less transparent. This
edge case was solved with adequate WebGL parametrization in JavaScript. A depth
test was used for filtering out already colored pixels from the whole layer, therefore
every pixel got colored only once.

Triangles can also overlap when the angle of two line segments is too sharp
compared to the segments’ width. In such a case, a more troubling artifact can oc-
cur. Due to rounding problems, the bottom miter can be displaced, producing sharp
wedges, which cannot be controlled by limiting the maximum length of miters. This
problem had to be solved with additional logic in the vertex shader. Intersections
were searched between the two meeting line edges (T (V)2T (V)5 ∩ T (V)7T (V)8 or
T (V)7T (V)8 ∩ T (V)1T (V)2 in Figure 17). If an intersection point could be found,
the bottom miter was snapped to that point.

Finally, the problem of rounding had to be solved. In order to simplify the prob-
lem, and make the solution as fast as possible, rounding was done in the fragment
shader (Program 6). When rounding is required, top miter is drawn. Then, the
coordinate of the line join is passed to the fragment shader. In the fragment shader,
the join coordinates (V2 in Figure 17) are transformed to screen coordinates. Finally,
the distance between the currently processed pixel, and the line join is measured.

59

If the distance is longer than half of the line’s width, the pixel is discarded.

varying float v_round;
varying vec2 v_roundVertex;
varying float v_halfWidth;

uniform float u_opacity;
uniform vec4 u_color;
uniform vec2 u_size;
uniform float u_pixelRatio;

void main(void) {
if (v_round > 0.0) {

vec2 windowCoords = vec2(
(v_roundVertex.x + 1.0) /2.0 * u_size.x * u_pixelRatio,
(v_roundVertex.y + 1.0) /2.0 * u_size.y * u_pixelRatio);

if (length(windowCoords - gl_FragCoord.xy) > v_halfWidth *
u_pixelRatio) {

discard;
}

}
gl_FragColor = u_color;
float alpha = u_color.a * u_opacity;
if (alpha == 0.0) {

discard;
}
gl_FragColor.a = alpha;

}

Program 6: Fragment shader for rounding miters and square caps. Note that the device pixel ratio
is included in the calculations, otherwise, results would be incorrect for high DPI (e.g. retina)
displays. These displays have such high pixel densities, that they need to form logical pixels from
several physical pixels, while the GPU uses physical pixels only.

By handling these edge cases, most of the visual artifacts in computers with
modern GPUs were mitigated. On the other hand, many more such techniques must
be used to provide a backward-compatible solution, especially for old integrated
video processors.

6.2. Breaking up polygons

Rendering polygons is not as hard as rendering line strings. If they are partitioned
to triangles, the GPU can draw fills right away, while strokes can be rendered
with the line string renderer. The hard part of drawing polygons is breaking them
up to triangles. While simple polygons can be partitioned with low complexity,

60

Figure 18: A simple polygon (left), and three polygons with different deficiencies. From left to
right a self-intersecting polygon, a self-overlapping polygon, and a degenerate polygon.

topological errors (e.g. self-intersections, self-overlaps, collinear segments) are much
harder to properly handle (Figure 18).

Polygon triangulation rarely raises a problem in most computer graphics appli-
cations, due to several mature libraries capable of breaking up polygons robustly,
with great performance. However, those libraries and frameworks (e.g. GLU tessel-
lator, cairo, Qt) are written for desktop applications. In the Web ecosystem, there
are fewer solutions, and some of the direct ports are not optimal due to different
overheads.

The theoretical background of triangulation is thoroughly studied and devel-
oped, and is the same for Web applications and desktop applications. There are
several different techniques for the same goal. Delaunay triangulation (Held, 2001)
creates the best quality decompositions, although it is significantly slower than other
techniques. Delaunay triangulation creates a triangulation T (P) from polygon P ,
where every triangle in T (P) is a Delaunay triangle. Circumcircles of Delaunay
triangles 4PiPjPk cannot contain any other points from P than Pi, Pj, or Pk (Lee
& Schachter, 1980). It is best suited for professional applications other than visu-
alization, like creating triangulated irregular network (TIN) models (Peucker et al.,
1978).

There are two popular algorithms for fast triangulation. One of them is called
trapezoidal decomposition, which partitions the polygon to trapezoids with hor-
izontal sweeping lines going through each vertex, and triangulates the resulting
trapezoids (Seidel, 1991). The other technique is called ear clipping, which simply
connects the vertices of a polygon P . It cuts sequential vertices Pi, Pi+1, Pi+2, if
they form a valid triangle (ear), and continues the process until the polygon is tri-
angulated (Meisters, 1975). Since the rules of clipping ears can significantly affect
the outcome, there are several variants of this technique.

There are two JavaScript libraries capable of fast triangulation. Libtess is a
direct port of GLU, which uses trapezoidal decomposition. It is precise, can handle
polygons with topological errors, but rather slow in its JavaScript form (Table
16). The other one is earcut (Agafonkin, 2015), which uses ear clipping for fast
triangulation. It can be used for real-time triangulation, although it cannot handle
topological errors. It adapts the Fast Industrial-Strength Triangulation (FIST)
algorithm (Held, 2001). Since for OpenLayers both performance and precision were

61

Sample data Vertices earcut libtess
OSM building 15 795 935 50 640
dude shape 94 35 658 10 339
holed dude shape 104 28 319 8883
complex OSM water 2523 543 77.54
huge OSM water 5667 95 29.30

Table 16: Performance of libtess and earcut with various sample data (Agafonkin, 2015). Perfor-
mance is in operations per second, therefore higher values mean better performance.

criteria, another FIST variant was created, which can handle topological errors.
The first rule of ear clipping, is every vertex of polygon P can be categorized

as convex or reflex. Only triangles with convex middle vertices can form ears. A
vertex Pi is convex, when 6 Pi−1PiPi+1 is less than 180°. Otherwise, the vertex is
categorized as reflex. This rule applies to every ear, however there needs to be
more rules for proper triangulation. FIST proposes two sets of rules CE1 and CE2
(Held, 2001). While CE2 is faster to check and easier to implement, it only applies
to simple polygons. CE1, on the other hand, is universal, and can be used for
polygons with topological error. By adapting the two sets of rules (Farkas, 2019),
in the implementation 4Pi−1PiPi+1 forms an ear, iff:

1. P is simple

2. Pi is convex

3. there are no vertices of P in 4Pi−1PiPi+1 (except for Pi−1, Pi, Pi+1)

or

1. Pi is convex

2. Pi−1Pi+1 does not intersect with any segment of P (except in Pi−1, Pi+1)

3. Pi−1Pi+1 is completely inside P

The implementation uses a doubly linked list as its main data structure. The
linked list’s nodes are segments, due to the need of checking intersections. As a
secondary data structure, it uses an R-Tree, indexing every segment for increased
performance. Since simple polygons should be triangulated as fast as possible, it
uses a penalizing approach 7. The more deficiencies the polygon has, more precise
and slower techniques are applied. First, the topology of the polygon is checked.
If the polygon is simple, it uses the first set of rules for fast triangulation. If not,
it starts triangulating using the second set of rules. If a self-intersection is found,
it places a Steiner point in the intersection, and continues clipping ears. When no
ears are remaining, it checks if the polygon became simple. In such a case, the
remaining part can be triangulated, however, the order of points must be changed.

62

If the polygon is still not simple, the algorithm cuts the polygon into two parts, and
starts two new processes with them. The clipped ears are put into an array, which
can be handed to the GPU.

Require: Polygon P with each vertex classified as convex or reflex based
on convexity with respect to neighboring vertices

while |P | > 3
if P is simple

if there are valid ears in P then
T ← Clipped ears using fast rules

else if P can be reclassified then
P ← Reclassified P

else
// P can have touching segments
P ← P with resolved self-intersections

end if
else

if there are valid ears in P then
T ← Clipped ears using precise rules

else if P can be reclassified then
P ← Reclassified P

else if There are self-intersections then
P ← P with resolved self-intersections

else if P is simple again then
P ← P with inverted orientation

else
Split P into two parts and triangulate

end if
end if

end while
T ← T+ last ear in P

Program 7: Pseudocode of the ear clipping algorithm used for triangulating polygons (Farkas,
2019). Since the classification of vertices (convex, reflex) can change with every clipped ear, the
algorithm first tries to reclassify the polygon after it runs out of ears.

Polygons with holes are handled by the de facto standard way of bridging. This
technique creates a single polygon, by merging the holes into the main ring without
changing its orientation (Figure 19). During the process, existing vertices are linked
together to form a single degenerate polygon, hence the name bridging. While the
implementation can triangulate polygons with topological errors reliably, it is not
free from errors. There are degrees of deficiency when the algorithm cannot create
correct triangulations. In such cases, the process does not hang, it still creates
a visualization, although with some triangles misplaced or excluded. However,
according to local tests on various datasets, the implementation creates correct
results with real-life data on machines with modern GPU.

63

Figure 19: A polygon with holes (left). The holes are merged into the main ring in a spatial order
(e.g. left to right), forming a single degenerate polygon without holes (right) as a result.

6.3. Drawing other features

There were two additional functionalities, which needed to be implemented: draw-
ing circles and drawing labels. While in the Canvas engine circles can be handled by
the polygon renderer, in WebGL, they need to be handled separately. Circles can
be drawn as a set of triangles, although the result will be only an approximation of
a circular arc. In order to draw smooth circles, a better solution was implemented.

Just like polygons, circles have fill and stroke styles. The stroke line’s baseline
is sitting on the circle’s edge, therefore the stroke only expands the circle by half
of the stroke’s width. In this approach, the vertex shader draws a square from two
triangles. The corner points of the square are calculated in the vertex shader. They
are placed in a way, that the resulting square completely encloses the styled circle.

Styling is done in the fragment shader, similarly to rounding line joins and line
caps. Based on the distance of every pixel from the circle’s center point, it gets
colored or discarded. If the pixel is within the fill radius, it gets a fill color. If it
is outside of the fill radius, but inside of the stroke radius, it gets a stroke color.
On the border of the fill and stroke radii, colors from the two styles get blended
for a smooth transition. Outside of the stroke radius, pixels get discarded. While
this approach is simple and reliable (Figure 20), it has one significant limitation.
It is hard to extend for dashed lines, which was not implemented by any of the
renderers.

Label rendering was like image rendering for the drawing part. A label texture is
generated first and bound to the WebGL context. In the vertex shader, a rectangle
is drawn in the form of two triangles in the place of the label. Finally, the label
texture is placed in the rectangle. While drawing labels is simple, creating label
textures required some considerations.

Similarly to the image renderer, labels are generated and cached with the HTML5
Canvas API, on internal canvas elements. By avoiding this dependency on the Can-
vas API, one could make faster and memory-efficient solutions, however, every font
would need to be served. In order to keep the ability to use any browser-supported
font, this dependency was deemed necessary by the implementation. In the prepara-
tion phase, not individual labels are cached, since that would be a waste of memory.

64

Figure 20: An opaque circle with a complex stroke style drawn by the WebGL circle renderer.
The stroke has a white line of 10-pixel width under a 5 pixels wide blue line. The red fill has a
20% opacity, while every stroke line has a 50% opacity.

Figure 21: Example of a glyph atlas used by Mapbox (Käfer, 2014).

A glyph atlas (Figure 21) is used to store individual characters with the same styling
in a single cache. Then, when labels are rendered, those characters are put next to
each other, their overall width and height are measured, and the label texture is
put onto the map. A possible improvement would be using signed distance fields
(SDF) for improved rendering quality (Felzenszwalb & Huttenlocher, 2012).

6.4. Benchmarking the renderer

OpenLayers having two similar rendering engines for Canvas and WebGL offers a
great opportunity to assess the new WebGL implementation. By benchmarking
both of the engines with the same datasets using different GPUs, a good picture
can be obtained about strengths, limitations, and room for improvement. Since raw
frames per second (FPS) values are meaningful mostly to the trained eyes, some

65

Zoom level 1 2 3 4 5
NVIDIA GPU
WebGL animating 56.35 56.82 57.53 56.00 54.19
Canvas animating 29.24 23.64 22.45 32.59 46.37
WebGL drawing 14.75 10.92 10.26 12.18 15.37
Canvas drawing 22.94 18.59 14.23 24.33 33.00
Intel GPU
WebGL animating 58.99 55.34 52.59 59.01 59.72
Canvas animating 26.07 20.21 15.17 16.77 22.83
WebGL drawing 10.91 8.37 7.17 7.72 8.03
Canvas drawing 13.57 12.92 10.28 10.71 14.66
ARM Mali GPU
WebGL animating 12.67 12.08 10.66 16.51 21.83
Canvas animating 1.19 1.22 1.87 3.69 5.84
WebGL drawing 1.25 0.94 0.82 1.45 2.27
Canvas drawing 1.13 0.96 1.32 2.51 4.05

Table 17: Rendering performance (FPS) of the thematic layer group. Lags are emphasized by
underlining, and severe lags by framing (Farkas, 2019).

thresholds were also highlighted in the results. Cases were categorized as lagging,
when the FPS went below 16, the threshold value for perceiving subsequent frames
as a continuous animation (Mengeringhausen & Witherell, 1962). Severe lags were
considered under 5 FPS, where the application is hardly usable.

The first set of measurements targeted the thematic layer group (Table 3). Re-
sults (Table 17) indicate that the Canvas renderer can handle a load of a typical,
not optimized vector-based web map on decent GPUs. On the other hand, the
WebGL renderer has a better overall performance. The animating speed of the
WebGL renderer was exceptionally high on both the integrated Intel and the dedi-
cated NVIDIA GPU. Those values perturb around the maximum 60 FPS value of a
display with a refresh rate of 60 Hz. Around 60 FPS, results showed more instabil-
ity. While a 1 FPS difference was significant around the 20 – 30 FPS interval, above
50, a 4 FPS difference could mean only a minor disturbance during a benchmark.

General trends of OpenLayers’ rendering mechanism can be identified by looking
at the Canvas results, and the WebGL drawing results. The first zoom level has the
best generalization. Since fewer vertices need to be drawn (Table 4), both drawing
and animating are faster. Then, as the scale grows, rendering performance lowers.
However, on the 4th zoom level, a leap can be observed. This is when the map’s
canvas cannot hold the whole extent anymore, and spatial indexing starts to limit
the number of visualized features.

Overall user experience is mostly affected by the animating speed. Those FPS
values are observed during user interactions, like zooming, panning, and rotating.
Drawing speed is only observed when the map comes to a standstill. Therefore,
if animating speed is high enough to create continuous animations, and drawing

66

speed stops the rendering pipeline for half a second, it is perceived as better than
if the map lags during interactions.

This is the main reason why a naive, not thoroughly optimized WebGL engine
still has a great impact. By caching buffers (triangulated vertices), it can provide
a significant performance boost during animations. On the contrary, as the Canvas
engine can only cache drawing instructions, the performance boost is not as notable.
On the other hand, by considering animating speed the main contributor to decent
user experience, a typical vector web map can be visualized feasibly on stronger
GPUs with both of the renderers.

The only scenario that resulted in severe lags was using the ARM Mali GPU in a
handheld device. Since it is a weak GPU in an obsolete smartphone, it can represent
low end builds. While the application was lagging using the Canvas renderer, the
WebGL engine could still animate the map with only slight lags. Therefore, using a
WebGL engine has a very important benefit of making an application less dependent
on the age or computing power of the device.

By investigating further (Figure 22), trends of individual components could be
identified. The Intel GPU results were chosen for this, since the NVIDIA GPU
was strong enough to blur some of the more subtle differences, hiding some details.
The most significant components in rendering are polygons. The total FPS follows
polygon rendering performance very closely, while it is affected by other features
less dominantly. This is due to the need for triangulation. Both Canvas and WebGL
engines need to triangulate drawn polygons, although, with the Canvas API, this
step is hidden from users.

There are some additional differences worth noting in the individual profiles
of rendering. From Canvas polygon drawing and WebGL polygon drawing perfor-
mances, the difference of a not thoroughly optimized JavaScript–, and a mature
desktop triangulation process can be observed. Canvas triangulation always results
in correct decomposition and is significantly faster than its WebGL counterpart.
This is not only due to the levels of optimization, additional overhead from the Ja-
vaScript pipeline also contributes. On the other hand, triangulation results created
for the WebGL engine can be cached. The other difference is between animating
and drawing lines with the Canvas engine. For polygons, caching instructions do
not provide a significant boost (due to the need of triangulation). On the other
hand, for lines, caching results in a stable 60 FPS, just like in case of animating
with the WebGL engine.

Since additional trends were sought after, the NVIDIA and Intel GPUs were
put under heavy load in the GIS scenario (Table 18). Due to ARM Mali’s stagger-
ing under a load of a lighter thematic composition, that GPU was excluded from
these measurements. The weight of a GIS workflow (Table 4) was tolling on the
Intel GPU. Even WebGL animating performance has dropped from the optimal 60
FPS range. This was mostly due to the large number of triangles needed to be
drawn in case of real-world polygon data, however, the large number of points also
contributed.

This is such a case when the Canvas renderer becomes infeasible. Since this is a

67

(a) (b)

(c)

Figure 22: Detailed results of the thematic layer group’s rendering tests on the Intel GPU. Canvas
animating performance (a), WebGL drawing performance (b), Canvas drawing performance (c)
(Farkas, 2019).

possible rendering load from a small size analysis, visualizing arbitrary data requires
a WebGL renderer. Canvas animating and drawing performance was low even on
the NVIDIA GPU. Before the R-Tree could exclude some of the geometries, the
application suffered from heavy lags. On the other hand, WebGL drawing perfor-
mance was also bad. While the whole application felt smooth, the few milliseconds
stops could be observed between interactions. For example, after a pan, the map
could not be interacted with instantly. Between two successive interactions, a few
milliseconds have to be passed, resulting in a suboptimal experience.

By looking at the point rendering performance only (Figure 23), the trends
of texture rendering can be seen. Considering points alone, some of the results
exceeded the 60 FPS limit, which is due to the efficiency of rendering points as
textures. Every point needs only two triangles (a quad), and if every point has the

68

Zoom level 8 9 10 11 12
NVIDIA GPU
WebGL animating 59.05 57.28 57.76 57.76 58.69
Canvas animating 3.43 4.03 8.34 15.54 28.00
WebGL drawing 4.1 3.53 7.29 13.01 28.99
Canvas drawing 2.67 2.90 7.18 13.31 23.54
Intel GPU
WebGL animating 17.33 24.83 44.85 51.64 56.30
Canvas animating 2.75 2.41 6.14 11.00 18.85
WebGL drawing 2.97 3.05 5.59 9.91 16.08
Canvas drawing 2.04 2.13 5.29 8.96 14.49

Table 18: Rendering performance (FPS) of the GIS layer group. Lags are emphasized by under-
lining, and severe lags by framing (Farkas, 2019).

same symbology, only one texture is needed. On the other hand, by having many
textures on lower zoom levels (Table 3), both engines produced lower FPS values.
Even the NVIDIA GPU had poor performance during the drawing process of the
Canvas engine. Increased performance on larger zoom levels followed the number
of visible features in the point layer closely (9839; 7878; 2575; 801 and 242 vertices
in zoom levels 8, 9, 10, 11 and 12 respectively).

In order to gain additional, more specific insight into the WebGL engine, both
the thematic and the GIS groups were profiled using the NVIDIA GPU. From
various predefined zoom levels and extents (Table 4), the one with the heaviest
load was chosen. Consequently, the thematic group was profiled on zoom level 3,
while the GIS group on zoom level 8. Profiling was type-specific. Since possible
bottlenecks and optimization possibilities were sought, different geometry renderers
were profiled individually.

From the profiles, several categories collected and aggregated by the browser
are shown. Scripting is the time spent on executing JavaScript routines. Ren-
dering represents the time spent on styling DOM elements. Painting holds image
rendering processes. Other has categories, which could not be categorized into the
previous groups. Time spent on the GPU for example counted into the group of
other processes. Furthermore, as OpenLayers clearly, and rather accurately sep-
arates cacheable and not cacheable parts, the phases of preparation (cacheable)
and composition (non-cacheable) were also measured. Those ratios are of the total
drawing time, not time spent on scripting.

In the case of drawing points and line strings (Table 19), most of the time
is spent on scripting. Rendering and painting are negligible compared to other
phases. Other processes take some time, which is probably due to time spent on
the GPU. Since Canvas elements are partially hardware accelerated, the Canvas
renderer is also using the GPU, albeit it is hidden from the library. Preparation
and composition phases are mostly related to the engine. The Canvas renderer can
cache less data, making the composition phase’s ratio larger. The WebGL engine

69

Figure 23: Rendering performance of the GIS point layer under various circumstances (Farkas,
2019).

can cache more data, although the Canvas engine’s line string renderer has similarly
effective caching capabilities.

From the four different branches, there was only one function call with out-
standing self-time. The WebGL engine’s line string renderer spent 13.25% of its
total time on the addVertices function. This function extends the buffer with
new triangulation parameters. Since it operates on a single, large, dynamic array,
that call can be optimized by calculating and allocating the whole buffer before
triangulating a line string layer. Using a typed array would speed up the process
even more, although it would limit the usability of the library to browsers with
ECMAScript 2015 support.

Point Line string
Canvas WebGL Canvas WebGL

Drawing time (ms) 19.1 9.66 46.65 21.2
Scripting 79.01% 89.86% 87.16% 78.49%
Rendering 0.42% 1.14% 0.24% 0.61%
Painting 2.57% 3.31% 0.71% 2.36%
Other 18.22% 5.69% 11.83% 18.49%
Preparation 40.31% 62.01% 66.05% 58.77%
Composition 26.65% 7.76% 17.43% 11.79%

Table 19: Ratio of different calls when rendering points and lines (Farkas, 2019).

70

Label Polygon
Canvas WebGL Canvas WebGL WebGL-ca

Drawing time (ms) 11.47 21.16 37.27 283.84 54.03
Scripting 78.55% 63.52% 59.67% 99.63% 98.04%
Rendering 0.87% 0.8% 0.32% 0.04% 0.22%
Painting 4.01% 3.07% 0.78% 0.1% 0.54%
Other 17% 32.8% 39.31% 0.22% 1.17%
Preparation 46.21% 49.76% 32.28% 95.59% 76.81%
Composition 11.33% 3.59% 23.1% 3.34% 17.53%
aCached. In this scenario, triangulation was disabled in the application.

Table 20: Ratio of different calls when rendering labels and polygons (Farkas, 2019).

Breaking down label and polygon rendering (Table 20), the dominance of Ja-
vaScript routines in the pipeline can be reassured. While both of the renderers
have a large portion of scripting, WebGL’s 99.63% is exceptionally dominant. By
looking at the disproportionate drawing time, it can be seen, that triangulation
takes very much time. It is better optimized in the Canvas polygon renderer, which
has a large portion of other calls. Probably both triangulation and drawing are
aggregated there. By looking at the WebGL polygon renderer with triangulation
turned off, it is still slower than the Canvas engine. On the other hand, the ratios
of different groups are no longer disproportional.

By looking at individual calls, several outliers could be identified in the WebGL
label and polygon renderers. The label renderer spends 16.07% of its total time in
the getTextSize function. This function is responsible for creating internal tem-
porary labels using the Canvas renderer in order to obtain the width and height
of the required label container. Considering that this function is also responsible
for placing new glyphs in the atlas, and caching their widths, it has little space for
further optimization. The polygon renderer on the other hand, spends 80.96% of
its total time on triangulating functions. This could be avoided by storing triangu-
lation data on polygons and only recalculating them when their geometries change.
Furthermore, drawPolygonCoordinates could be observed with a 10.85% portion
of elapsed time. It is worth noting, since the polygon layer had the most vertices,
and raw coordinates need to be transformed due to RTE in OpenLayers. Therefore,
a further possible optimization would be emulating 64-bit calculations on the GPU
rather than using RTE for solving precision problems.

Measuring the GIS group (Table 21) added a few additional insights. This time,
WebGL polygon rendering was measured without triangulation, since involving it
would have not been progressive. According to the results, without triangulation,
the WebGL renderer has a better time complexity than the Canvas polygon ren-
derer. There is a turning point, where even a naive WebGL engine becomes more
efficient, and the GIS group is beyond that point. As an insignificant, but interest-
ing observation, the 71.76% ratio of other processes in the Canvas polygon renderer
corroborates the assumption of the triangulation process is grouped there.

71

Point Polygon
Canvas WebGL Canvas WebGL-ca

Drawing time (ms) 84.48 36.28 337.79 248.76
Scripting 78.61% 95.78% 28.04% 97.16%
Rendering 0.09% 0.55% 0.05% 0.05%
Painting 0.37% 0.83% 0.15% 0.10%
Other 20.98% 2.78% 71.76% 2.67%
Preparation 49.49% 86.99% 14.56% 68.28%
Composition 26.31% 4.82% 12.90% 27.57%
aCached. In this scenario, triangulation was disabled in the
application.

Table 21: Ratio of different calls when rendering the GIS group (Farkas, 2019).

72

7. Implementing Raster Management

For efficient raster management, not only several new classes were created, but the
whole process was reconsidered. Traditional raster data by definition are matrices
mapped to rectangular cells in a grid. Their design can be traced back to old
computer systems, where computing power was limited, and it was necessary to
have a direct mapping to square grids of different displays (e.g. plotter, monitor).
While computers evolved, the definition of the raster model did not change. It is
still useful, since it can visualize spatially continuous phenomena, without the need
for interpretation (Bugya & Farkas, 2018).

With the exponential growth of computing power and the evolution of analysis
techniques, new demands have arisen. Some of those demands could be addressed
by extending the raster model. The necessity of cells being square-shaped has
been lifted, and rectangular cells can be used in modern GIS software. 3D rasters
(voxels) is another case when the traditional model could be extended, and voxel
datasets can be utilized in some of the systems with 3D capabilities (e.g. GRASS
GIS). However, it is still not possible to use different patterns, like triangular or
hexagonal tessellations.

7.1. Rasters and coverages

It is interesting to look into the inner workings of the GIS raster model. By looking
at a typical raster management pipeline, it can be observed, that rasters have a
weakly coupled data and representation model. The data model is the underlying
matrix with numeric values, each value representing a single cell in a spatial grid.
This data structure – with the general rules of displaying cells – ensures the integrity
of the model. No operation can be applied, which creates overlaps or gaps between
cells, the topology of cells is ensured by the common understanding of raster values
are mapped to grids. By using this understanding, it can be stated, that the raster
model’s integrity is provided by the data model.

The other part of the model is the representation model. In this phase, raster
cells are rendered on the map as colored grid cells. Colors are assigned to cells
according to rules and their raw numeric values. Furthermore, if rendering is con-
sidered as part of the representation model, – as common practice dictates – colors
derived from raster values are mapped to a rectangular, axis-oriented grid. Grid
cells can have different sizes on different axes, however, those sizes must be constant
for individual cells in a single layer.

73

Data model
Continuous coverage
Small size, good compressibility

Advantages Simple data structure
Good for parallel computing
Easy to overlay when aligned

Disadvantages Quadratic growth in raster size
Representation model

Easy to create textures
Fast rendering (textures, pyramids)

Advantages Easy to resample and interpolate
Georeferencing is unequivocal
Hard to reproject
Rotation needs resampling

Disadvantages Precision depends on latitude
Sampling bias

Table 22: Characteristics of the raster data model without being exhaustive (Bugya & Farkas,
2018).

7.1.1. Characteristics of the raster model
By collecting raster characteristics based on their level of conceptuality (Bugya &
Farkas, 2018), several advantages and some limitations can be distinguished, and
tied to data and representation models (Table 22). One of the greatest advantages is
continuous spatial coverage, as discussed before. Small size and good compressibility
are also related to the data model, since those are originating from the underlying
matrix data structure. Since rasters do not hold voluminous spatial information
like vectors, most of the data are numeric values of a single type. Rasters only
need a spatial tie point and a transformation matrix for creating discrete grids from
image-like data (Ritter & Ruth, 1997). Consequently, lossless image compression
methods can be applied to raster layers, resulting in small, binary files.

The simple data structure of rasters allows for easy and fast processing. Lo-
cal cell coordinates can be converted to spatial coordinates, making visualization,
subsetting, and extending easy. By breaking up large raster files to smaller tiles,
they can be processed in parallel, solving edge rows and columns after processing
is finished for neighboring tiles. When several raster layers are aligned (have the
same resolution and extent), there is no need for spatial operations to calculate
on multiple layers. Layers below each other can be aggregated with simple matrix
operations, making operations faster than spatially processing each pair of cells.

The only disadvantage of having such a data model is its quadratic growth. For
example, when a cell is added to the bottom of the layer, a whole row needs to
be created. In a worse case, if the resolution of the layer is doubled, every cell
partitions to four new cells. Therefore, the size of the raster quadruples. This

74

can be problematic in the case of real-world analyses. If two raster layers need to
be aggregated, and two have different resolutions (e.g. optical and thermal bands
of satellite imagery), the one with the lower resolution has to be resampled prior
to processing. The size of that band changes polynomially, while its amount of
information stays the same.

The representation model also holds several advantages. Its most significant one
is the easiness to create textures from raster layers. This mostly applies to rasters
with square cells, since they can be directly mapped to image textures with square
pixels. Styled textures then can be cached for fast visualization. While rectangular
cells need to be resampled to squares, it is still faster than drawing cells individually.
Furthermore, textures are perfect candidates for building pyramids. Since squares
can easily be partitioned to four half-sized, congruent squares, multiple pyramids
can be built for even faster visualization on small scales.

Pyramid building (also called mipmapping in computer graphics) is a technique
for creating lower-resolution versions of the same image. In GIS it is mostly used
for accelerating rendering, since drawing large rasters on scales where individual
cells cannot be observed can take unnecessarily large amounts of computing power.
It is also important for feasible visualization because applying filters (e.g. bilinear,
trilinear, cubic) on pyramids can smooth out sharp edges from naive resampling
methods (e.g. nearest neighbor). Similarly to pyramid generation, applying other
raster processing techniques (e.g. slope generation) is convenient on rectangular
grids, as cell relationships are well-defined.

While there are some clear advantages of the traditional raster representation
model, it also has several limitations. Raster layers are typically hard to reproject
(warp), as the reprojected layer needs to have a rectangular grid (Figure 24). It
does not matter if the size of individual cells would ideally change with latitude in
a projection, the warped raster must comply with this constraint by interpolating
cell values. This introduces variable precision among grid cells in some use cases,
since the grid is regular in a projected CRS.

The same principle applies to rotating raster layers. While they can be rotated
with the map for visualization purposes, when the grid is rotated and exported, cells
need to be resampled. This limitation originates from rasters being axis-oriented by
definition. Since they only store a tie point to a CRS (origin), the grid is generated
by the renderer from the origin (lower-left corner), and the spatial dimensions of
cells. While this limitation could have been easily mitigated by storing an additional
rotation parameter in raster files, this feature did not meet high enough demand to
be a common practice.

Sampling bias is one of the most canonical critiques of the raster model. In
many use cases, each cell in a raster grid represents its center. With squares, the
most ideal shapes in the traditional raster model, this introduces a slight bias in
statistical calculations (Birch et al., 2007). In a square-shaped cell, edge distances
from the center vary. Diagonals are approximately 40% farther than vertical or
horizontal lines, resulting in a slight distortion. Samples towards to cell corners
have a weaker relationship to the cell’s center. Therefore, if samples are aggregated

75

Figure 24: A raster warping process example on a Europe dataset with a resolution of 2 degrees.
While some GIS applications (e.g. QGIS) have sophisticated algorithms to create the second
visualization with on-the-fly image reprojection, a warped raster must have identical cells (Farkas,
2020).

Figure 25: An example of sampling individual observations, and aggregating them to a raster grid.
The aggregating method is mode, assigning the value of the majority of observations to each cell.

in cells (Figure 25), raster values will be biased due to the number of observations
outside of the cell’s inscribed circle (Figure 26). This is a typical argument for using
hexagonal grids, since in a hexagon, biased area is only 9.31% compared to 21.46%
in case of squares.

7.1.2. Treating rasters as vectors
It can be observed, most of the raster model’s advantages are coming from its
data model, while most of its limitations are of the representation model (Bugya &
Farkas, 2018). If a new, more permissive representation model could be built, most
of the model’s disadvantages could would be mitigated. Since there are no mature
and standard ways to represent rasters on the Web, an attempt was made to create
such a new model. This model is called the coverage model, owing its name to
OGC’s WCS, which transmits raster data with similar considerations in mind.

76

Figure 26: Sampling bias with a square, and a hexagonal cell. Observations in lighter areas
(inscribed circles) can be aggregated without concerns, since they equally represent the center of
the cell. Observations in darker areas, however, are contributing to the overall bias of sampling.

The coverage model keeps the data model of rasters (i.e. uses matrices), but
is renders that data as vectors. It treats every cell as a single polygon without a
stroke style. Using this technique, the rendering process is slower, but each cell
can be scaled, rotated, and projected easily. Furthermore, it allows for additional
grid patterns. Its only requirement is to have an unequivocal mapping between
matrix elements and coverage cells. The mapping is called a pattern, which allows
translating and rotating successive elements. The pattern is valid if it is circular.
The last transformation must result in the relative orientation and position of the
first cell.

A coverage pattern has two major components. There are two arrays of trans-
formations (offsets and rotations) for rows and columns. Row transformations are
applied to successive cells in a row, while column transformations are applied to
the first cell in each row. There can be an arbitrary number of transformations in
each array, as long as the pattern is circular. Otherwise, the coverage will break its
continuous tessellation eventually. Transformations in an array are applied to cells
according to their position in the data matrix. For example, if there are two row
transformations and five cells in a row, the first cell gets no transform, the second
cell gets the first transform, the third cell gets the second transform, the fourth cell
gets the first transform again, and the fifth cell gets the second transform again.
Transformations are additive, which means, they are always applied to the previous
cell, not the first one. Column transformations are applied to the first cell of the
previous row.

The three regular tessellations: triangular, rectangular, hexagonal (Carr et al.,
1992) form special cases in the coverage model. Since there was a high demand
for creating such sampling grids, these tessellations are supported by major GIS
software in the form of vector tools (Ramakrishna et al., 2013). Just like in those
tools, a pattern can be automatically generated based on some simple parameters.
Rectangular and hexagonal grids, the two most popular tessellations have the least
degrees of freedom (Figure 27). A rectangular pattern has two offsets, a cell width

77

Figure 27: A rectangular and a hexagonal coverage pattern. Resolution (resx, resy) defines cell
offsets in rows and columns, while an additional offset parameter (ox) defines the offset of every
second row in a hexagonal coverage (Bugya & Farkas, 2018).

for rows, and a cell height for columns. A hexagonal pattern needs an additional
offset, since every even or odd row is offset in the pattern. This offset, however, can
be calculated from the resolution of a cell, and therefore, only a sign is needed as a
parameter. The sign decides if the coverage is odd or even (odd rows or even rows
are offset).

Since patterns need to be circular, the hexagonal column pattern needs two
transformations. If going from bottom to top in an even coverage, the first trans-
formation shifts the next cell on the vertical axis by the resy. It also translates the
cell on the horizontal axis by ox, which is resx÷ 2. The next transformation in the
column pattern also shifts the cell on the vertical axis by resy, but it translates it
on the horizontal axis by −ox. While the orientation of cells (flat-topped or point-
topped) could add an additional degree of freedom, one can be transformed into
the other by rotating and offsetting the whole grid.

The third regular tessellation, triangular pattern has the most degrees of free-
dom. As cells must change their orientations repeatedly in the pattern, it has more
than one valid mappings to the underlying matrix (Figure 28). In a single map-
ping, the first triangle can face up or down, and there are also even and odd versions
of the same coverage, similarly to hexagons. Due to the complexity of triangular
patterns, they are less popular than rectangular and hexagonal ones (Birch et al.,
2007), although they are good examples for coverage patterns (Program 8).

The coverage model also permits custom cell shapes. Those cells must be de-
fined in a normalized coordinate system spanning over the bounding box of the
cell (Figure 29). The resolution of the coverage, in this case, represents the width
and height of the bounding box. The centroid of the cell is not the centroid of the
polygon, but the centroid of its bounding box. By defining custom coverages, it is
the user’s responsibility to provide a pattern which results in continuous coverage.

From the examples above, it is obvious, that many patters do not have a well-
defined lower left point, contrary to rectangular coverages. Since storing only an

78

Figure 28: Two possible triangular coverage patterns laying out a 3 × 3 matrix. The first one
needs offsets and rotations in both the row and the column transforms. The second one needs less
parameters, but column transformations are more complex. (Bugya & Farkas, 2018).

{
origin: [46.07, 18.21],
row_pattern: [

{
rotation: 180deg,
offset: [0.5, 1/3]

},
{

rotation: 180deg,
offset: [0.5, -1/3]

}
],
col_pattern: [

{
rotation: 180deg,
offset: [0, 4/3]

},
{

rotation: 180deg,
offset: [0, 2/3]

}
]

}

Program 8: An example of a pattern definition using a JSON style syntax tailored for a triangular
coverage made of regular triangles. Offsets are unitless, and represent ratios to the resolution of
a cell. Horizontal offsets are related to the width of cells, while vertical offsets are related to the
height of cells (Bugya & Farkas, 2018).

79

ID X Y
1 0.9 0.3
2 1 0.4
3 0.9 0.5
4 0.95 0.47
5 0.75 0.75
6 0.45 0.75
7 0.5 0.88
8 0.37 1
9 0.25 0.88
10 0.3 0.75

Figure 29: An arbitrary pattern described with a minimal number of attributes. Coordinates of
the shape are stored in a normalized coordinate system, therefore it can be linearly scaled with
the resolution of the coverage. As this pattern is based on a rectangular coverage, only one offset
is needed for cells in the same row (orx), and one for new rows (ocy) (Bugya & Farkas, 2018).

origin in a raster is beneficial, the coverage model defines the origin as the center
of the lower-left cell’s bounding box. This makes the origin point independent
from both the pattern and the resolution. While this technique was allowed by old
specifications, like the ArcInfo ASCII Grid format (Yu & Custer, 2006), it never
became popular due to the nature of traditional rasters. Furthermore, by using
centroids as reference points, offsets can be applied to centroids, and only rotations
need to consider whole cells. As cells are rotated around their bounding boxes’
centroids, if users provide cell shapes which do not share their centroid with their
bounding boxes’ centroids, they have to correct rotational displacements in the
offsets.

With the coverage model, rasters are treated more naturally, as edge cases of
the vector model. They can be optimized based on the regularity of the pattern
(Table 23). While the pattern is rectangular, it maintains every advantage of the
traditional raster model and is burdened with all of its limitations. Hexagonal
coverages lift some of the disadvantages, while they can be optimized very well to
provide fast processing (Her, 1995). With the regularity of the pattern decreasing,
there are fewer advantages and more limitations, ending up with a limited, but
assuredly continuous vector layer in the end.

7.2. Traditional raster management

The first step in implementing a working raster management pipeline was creating
the basis for both raster and coverage models. Those classes and functions are
mostly related to traditional raster management, since the coverage model only
changes the representation model of rasters. Base classes include containers for

80

Common charactersitics
Easy to reproject

Advantages Easy to rotate
Variable cell size

Disadvantages Slower than textures
Rectangular coverage

Easily convertible to textures
Advantages Easy to interpolate and resample

Georeferencing is unequivocal
Disadvantages Sampling bias

Hexagonal coverage
Easy to interpolate

Advantages Less sampling bias
More neighbors, better coverage
Hard to resample
Slower than rectangular

Disadvantages Hard to create textures
No lower left corner
Custom coverage

Advantages Pattern can be tailored to use case
Performance depends on pattern
Hard to interpolate and resample

Disadvantages Hard to create textures
Georeferencing is not trivial

Table 23: Characteristics of the coverage representation model using different patterns (Bugya &
Farkas, 2018).

81

Figure 30: UML diagram of the most important classes related to the OpenLayers raster manage-
ment implementation (Farkas, 2020). A larger version can be found in Appendix 4.

raster data, methods for styling, layers and sources for integrating rasters into the
OpenLayers ecosystem, and renderers for visualizing the layers (Figure 30).

The utility functions absent from Figure 30 are related to aligning raster bands.
While the current implementation does not deal with raster processing, there are
use cases for aligning in general raster management. RGB images are often created
by composing different bands in a single layer, or from multiple layers. Each raster
layer or band is associated with a single channel, and as a result, an RGB visual-
ization is created. Since there is no guarantee of different components of the RGB
composition share the same extent and resolution, they might need preprocessing
before composition.

Utility functions have the single purpose of aligning bands if they differ. If bands
have a different row or column numbers, they extend smaller layers with new rows
and columns filled with null values. If they have different resolutions, there is a
resampling function, which resamples layers to the most common resolution from
the inputs. Since resampling often needs interpolation, a simple nearest neighbor
technique is implemented. It works on grid centroids and assigns a new value to
every resampled grid centroid from the nearest original grid centroid. Finally, if the
layers still do not share the same extent, there is a sub-cell offset between them. In

82

this case, a function translates every other grid to perfectly match the first one.

7.2.1. Base classes
There are two core classes for raster containers. The first one is the matrix, which
stores raw raster data in a binary form, if possible. In order to maintain backward
compatibility, it is capable to store raw data in a simple array. Since matrices are
represented as arrays, the number of rows and columns also needs to be stored. The
number of columns is stored as the stride of the matrix, from which the number
of rows can be calculated. In JavaScript, binary arrays are represented as array
buffers. They do not have types and such, therefore, they can be read by using a
view. The view gives a type to the resulting typed array with a specified element
size (e.g. 16-bit, 32-bit). Consequently, the numeric data type of the matrix also
needs to be stored.

Since the matrix is a low-level concept, not intended to be used directly by
users, there is a higher-level container, called a band. Bands act as interfaces
storing most of the metadata associated with a single matrix. They know about
the type of the underlying matrix stored in a typeless array buffer. They also
know about the band’s extent, origin, rotation, and can query the stride or raw
matrix values from the underlying matrix class. As additional functionality, bands
calculate some basic descriptive statistics from raw values. This is necessary for
styling, since applying a default style on values with an arbitrary range requires
a minimum and maximum value at a minimum. It also stores variance, sum, and
count values for the underlying matrix.

Instantiations of the band class are needed to store individual bands in a source
object. In order to reduce the number of required classes, a single source class
was created for both raster and coverage representations. It is an abstract class,
intended to be extended by different practical realizations. For traditional rasters,
a GeoTIFF and an ArcGrid class was created, inheriting from the coverage source.
While the ArcGrid class reads ASCII files, and parses them with a custom parser,
the GeoTIFF class uses geotiff.js for parsing binary GeoTIFF files. Both of the
classes create bands from parsed data.

Like in every layer type in OpenLayers, source objects need to be associated
with layer objects. The raster layer class is a lightweight interface communicating
between the source object and the renderer. It stores the style of the raster layer,
and has a setter method for modifying it on the fly. Additionally, it only acts as a
container for the source object.

Coverage styles were created in the scheme of existing vector styles. There are
three styles for slightly different purposes. The monochrome style is for continuous
greyscale representations. The pseudocolor style is for continuous or categorized
color representations. Finally, the RGB style is for creating color composites from
three different bands. These style classes are very simple, capable of storing pa-
rameters related to styling and applying styles on raw matrices. They also have a
fillMissingValues convenience method, which fills missing parameters based on

83

band statistics.
The monochrome style is the simplest of the three, it only needs a minimum and

a maximum value. Between those limits, it linearly interpolates every matrix value
on a byte range. It clamps values outside of those limits to 0 and 255, represented
with black and white, respectively. The RGB style is not much more complex
than the monochrome. It needs three monochrome styles, one for every channel.
When styling a raw matrix, it uses the same method as the monochrome style, but
with three bands. The only major difference between them is null handling. The
monochrome style sets the cell to fully transparent if it finds a null value. The RGB
style only does this, if all of the channels have null values in a cell. Otherwise, it
sets the null channel’s value to 0.

The pseudocolor style is the most complex of the three, since it has more pa-
rameters and two different modes. In the interpolated mode, it linearly interpolates
between two colors based on matrix values. As a result, a continuous transition is
created between multiple discrete colors. In categorized mode, it assigns a single
color to every cell between interval limits. For both modes, a start and end color
are needed, while additional breakpoints can be inserted for more categories or
transitions. During applying the style, the pseudocolor class creates intervals from
limits, their colors, and breakpoints, and applies colors to matrix elements based
on its mode.

7.2.2. The raster renderer
The last piece required for visualizing rasters is the renderer. Since an image layer
renderer was already present in the source code, and the traditional raster model
uses textures for visualizing rasters, there was no need to create an additional
renderer. The raster layer simply extends the image layer, therefore they can use
the same renderer in OpenLayers.

The image renderer uses the layer object to interface with its source object,
containing data needed to visualize. First, it needs a getImage method on the image
layer’s source, which provides an OpenLayers image object. The image object is a
container for an image with an event mechanism. In order to fulfill this criterion,
the CoverageSource class can return a styled image from its raw raster data. For
the styling, it receives the layer’s style object, every time it gets updated. With the
style object, it can style the raw data, and create an image from that.

Image creation involves three steps. First, an empty canvas is created with
dimensions matching matrix dimensions from raw raster data. Next, the canvas
is filled with pixels according to the cell colors of the styled raster band, received
from the coverage source. In the end, the canvas represents the styled matrix, where
every pixel corresponds to a single cell. Since cells do not have to be squares even in
a traditional raster, the ratio of the raster layer’s width and height are calculated.
If the ratio is other than 1, the third step is executed. A new canvas is created
according to the raster’s width and height ratio, and the original canvas’ content is
stretched on it. This results in a raster texture with rectangular, non-square cells

84

Figure 31: Creating traditional rasters of non-square cells is done by stretching an image with
square cells. The performance of stretching is great, however, as everything – including interpo-
lation – is done by the browser, it might introduce visual artifacts with categorized data (Farkas,
2020).

(Figure 31).
When the renderer gets the image, it caches it until the image gets outdated.

To sign the renderer, that a new image should be queried, OpenLayers’ revision
counter was used. When a change occurs in the raster layer, which needs regener-
ating the texture, the revision counter is incremented. There is a special case in
image rendering, which needed to be incorporated. OpenLayers has an image re-
projection pipeline, which can transform images from a projection to another with
triangulation. In order to support on-the-fly raster reprojection, this pipeline is
used when the projection of the map and the raster layer differ.

To summarize the pipeline, users instantiate a raster layer with a GeoTIFF or
an ArcGrid source. The source parses raw matrix data, and creates one or more
bands from it. General statistical indices are calculated and stored in the bands.
On rendering, the renderer asks the source through the layer to provide a styled
image. The source applies a user-defined or a default style to the bands, creates an
image from the styled raster, and reprojects the image, if necessary. It returns the
image to the renderer, which caches it for better performance. Finally, the renderer
stretches the raster image to its extent, resulting in a rendered raster layer. There
is only one important step in raster management not discussed before. Pyramid
building was not implemented for texture-based rasters, since both of the rendering
engines have mipmapping capabilities.

7.3. Handling coverages

The coverage renderer has significantly more custom logic than the raster renderer.
It uses the same set of base classes (e.g. layers, sources, styles), however, it has some
peculiarities, only available as coverages. The most interesting one is a hexagonal
coverage format as a source class. HexASCII (de Sousa & Leitão, 2017) is an
ArcInfo ASCII Grid adaption for hexagonal rasters (Figure 32). It stores the matrix
in ASCII format and some metadata in a header. The header provides necessary
information for positioning and laying down the grid. These are the number of rows,
the number of columns, the no data value, the center coordinates of the lower-left
cell, and the length of a cell’s side. Since it only allows regular hexagons, these

85

Figure 32: The Spearfish60 DEM rendered as a HexASCII coverage (Farkas, 2020).

parameters are sufficient for creating a hexagonal grid.
Besides the new source, three additional classes were created for the coverage

renderer. A dedicated coverage layer was created, since renderers and layers are
coupled in OpenLayers. It is only a simple container capable of storing the layer’s
style and some other basic properties. Additionally, two renderer classes were built.
One for the Canvas engine, and one for the WebGL engine in order to find out if
the Canvas engine is capable of visualizing rasters as vectors with a dedicated and
optimized renderer.

The two coverage renderers have several shared capabilities. During the render-
ing process, both pyramids and R-Trees are used in an interconnected way. When
a coverage layer is loaded, and a renderer is instantiated for it, a spatial index is
built for every cell, on every pyramid level. By default, there are a maximum of 10
levels. In the end, every pyramid level contains an R-Tree with every cell indexed.
From the R-Tree, the renderers can query cells in the map’s viewport, and do not
have to render every cell on larger scales.

Cells are generated in a utility function called createGrid. The function takes
a styled band and some essential metadata (e.g. pattern, projection) as arguments.
It not only creates a grid based on the coverage pattern, but it also generates an
R-Tree, and places every cell in it. The R-Tree indexes cells with their centroids,
speeding up calculations. There are two supported edge cases: rectangular and
hexagonal. If the coverage is one of those types, the grid is generated automatically
(Program 9). If not, it is treated as a custom coverage (Figure 33), and a cell shape
is needed along with a coverage pattern.

In the R-Tree, color is also stored besides cell coordinates. Since the color has
three 8-bit components, it is compressed to a single 32-bit value. This not only
lowers memory footprint but also makes sorting cells based on colors easy. From
this point, the two renderers behave differently. The canvas renderer sorts cells in
the map’s extent, since then, a single fill and stroke command are enough for a single
color. This optimization affects performance mostly due to the need for cosmetic
strokes. The canvas renderer cannot render adjacent cells seamlessly, when they are

86

Require: Cell shape S, Pattern P, First centroid C0, Resolution R, R-
Tree T

SR ← S scaled by R
ST ← triangulated SR

do
ϕ← current cell’s rotation from P
Si ← translate ST by Ci

Si ← rotate Si around Ci by ϕ
Add Si to T
Ci ← Ci translated by next cell’s offset from P

until there are no cells remaining

Program 9: Pseudocode for generating cells with custom coverages (Bugya & Farkas, 2018).

Figure 33: The Spearfish60 DEM visualized as a custom coverage using Escher geckos as cell
shapes. The coverage uses a pseudocolor style interpolated from blue to red.

87

Figure 34: The same scene before (left) and after (right) applying a 1 pixel wide cosmetic stroke
using the Canvas engine (Farkas, 2018).

slanted, and it can only be solved painlessly with a few pixels stroke (Figure 34).
The WebGL renderer uses a custom GLSL program with a custom replay. It

was created solely to draw coverages, however, there were not much space for opti-
mization. The replay assigns colors to vertices rather than using uniform variables.
This speeds up drawing on the cost of additional memory consumption. The GLSL
program’s only optimization is decoding compressed colors in the GPU.

7.3.1. Hexagonal pyramids
The main problem with supporting hexagonal coverages was with building pyra-
mids. Most of the functionality related to rectangular matrices could be adapted
with relative ease, but hexagonal pyramid building has some peculiarities. While
the method is simple for averaging hexagonal cell values for a next level (Figure
35), the coverage either shrinks or expands in successive levels.

The method extends on different approaches used in discrete global systems.
These partitioning schemes concentrate on apertures, the ratio of cell area between
successive levels (Sahr, 2013). From those schemes (Figure 36), some of them
(e.g. aperture 3, aperture 7) require rotating cells in the next level, changing the
orientation of successive levels. Since those are harder to compute and visually
less aesthetic, they are not appropriate for building pyramids. Aperture 4 has
the required rotational properties, and Sahr’s aperture 4 is similar to the method
used by the implementation. Both of them create new cells from 4 of the previous
level, although the other aperture 4 partitioning uses more cells to construct a new
one. This results in more averaging, and less precision, although the center of the
previous level’s central cell coincides with the centroid of the new cell. This property
is more important for discrete global grids, and because of creating pyramids is for
visualization purposes only, the new aperture 4 method (Figure 35) was used with
visually more precise results.

Unfortunately, all of the aperture 4 solutions suffer from the same problem.

88

Figure 35: Method used for averaging cells for the next level of a hexagonal pyramids. Cells
contributing to new cells in the generalized coverage are highlighted, and their weights are shown
(Farkas, 2020).

(a) (b) (c)

Figure 36: A classical aperture 3 (a), aperture 4 (b), and aperture 7 (c) partitioning scheme. They
are used for discrete global hexagonal grids, for which centroids of two cells in different resolutions
must coincide. This is not true for pyramids.

89

(a) (b)

Figure 37: Example for a shrinking (a), and an expanding (b) hexagonal coverage. Both of the
phenomena can only occur, when the pyramid building algorithm strives to only cut or extend
the previous level (Farkas, 2020).

They are perfect for global grids, where they have a periodicity. On the other hand,
coverage layers have edges, which need to be handled. Rectangular coverages do
not have the same problem, since if they have an odd number of rows or columns,
the pyramid building algorithm only has to decide between shrinking and extension
once. After then, successive pyramid levels will be even. This is not the case
with hexagonal coverages. Since building a new cell involves at least 6 cells from
the previous level, there will always be cells, which cannot form a new hexagon
entirely. Based on the implementation’s choice of approach, successive levels will
either shrink or expand (Figure 37).

No matter which approach is chosen, the resulting pyramids will be problematic.
Independent of the technique, the number of cells will reach a minimum value, if
the number of levels is not constrained. In case of shrinking, this value is defined
by the ratio of rows and columns in a coverage. Expanding has a constant value
of 1. When converging to these values, a pure shrinking approach can cut 60% of
the original layer, while a pure expanding approach can add 50% more area to it.
This is – in theory – geographically problematic, since on lower scales, the layer
will span over significantly different areas, than on higher scales, distorting the
visualized phenomenon. Fortunately, on scales where the shrinking or expanding
causes a problem, the layer the differences in covered areas by successive pyramid
levels can be hardly observed, not alone interpreted.

From the two effects, expanding might seem less severe than shrinking, however,
a shrank layer keeps its numerical precision. Every cell is direct derivatives from
cells in the previous level. This cannot be told about an expanded layer. The
expansion effect is created by an algorithm, which takes cells beyond the original
extent of the layer into account. Those cells can only have one value: null. By
including more and more null cells into the equation, successive levels become less
precise.

There are multiple possibilities to mitigate this problem. One can create an
algorithm, which builds every level from the original grid. Alternatively, the algo-
rithm could calculate if shrinking or expanding is the better approach for an edge

90

column or row in the next pyramid level. If the number of available cells are above
a threshold limit, the algorithm expands the coverage, otherwise, it shrinks it. The
current implementation, however, does not use any of these more sophisticated
methods. It uses a pure shrinking approach for the best precision.

7.4. Benchmarking the pipelines

Some of the benchmarks were done during development to see which set of optimiza-
tions should be used for a feasible user experience. Similarly to vector rendering,
due to OpenLayers’ rendering mechanism, animating speed was more important
than drawing speed. Furthermore, in this case, memory footprint also had signif-
icance. Since most of the optimizations applicable for coverage management in-
creases performance by increasing its memory footprint, it was important to make
some measurements about memory consumption.

7.4.1. Applied optimizations on coverage rendering
Using a spatial index for storing cells had the largest impact on performance, al-
though it was not planned in the first implementation. The impact of this step
was not thoroughly investigated, since before, both of the engines struggled with
drawing coverages, and after, the WebGL engine became usable (Table 24). Ac-
cording to a single measurement, the Canvas engine took a boost of around 24%.
On the other hand, the need for applying cosmetic strokes appeared. Since the
Canvas renderer performed very poorly even with a small coverage, the extra 868.7
ms added to animating time made it completely unfeasible to use. Consequently,
the Canvas engine was excluded from further measurements, and the development
concentrated on hardware accelerated coverage rendering.

In the WebGL renderer, the first optimization was using vertex attributes for
colors. While uniform attributes do not need as much memory as including a color
for every vertex, the drawing speed becomes very slow with frequent color changing.
With colors as vertex attributes, the memory cost quadrupled, however animating
speed became faster by an order of magnitude. This is an acceptable exchange,
since such a performance boost was needed to have a usable WebGL engine. With
around 20 FPS during animations, drawing speed was less of a concern.

The final optimization was using pyramids to speed up rendering on smaller
scales. This step mostly affected drawing speed, since during animations, vertex
buffers are cached and replayed. By using pyramids, drawing speed could depend
on the zoom level when the whole layer is in the map’s extent, not only when only
its portion can be seen. The animating performance was also increased, although
FPS values over 20 were hardly differentiated.

91

Redraw Animate
Canvas engine
Time 2202.1 ms 1678.6 ms
Performance 0.5 fps 1.7 fps
Memory 112.5 MiB
WebGL engine (colors as uniforms)
Time 3009.6 ms 410.2 ms
Performance 0.3 fps 2.4 fps
Memory 30.8 MiB
WebGL engine (colors as vertex attributes)
Time 2299.1 ms 48.1 ms
Performance 0.4 fps 20.8 fps
Memory 112.0 MiB

Table 24: Performance and memory metrics of the two coverage renderers rendering the
Spearfish60 DEM as a rectangular coverage on zoom level 12. All of the cases are using an R-Tree
as a first optimization step, while the WebGL engine uses different number of vertex attributes as
a second one (Farkas, 2018).

Bands Cells Time Memory
Parsing
Spearfish60 1 302 418 376 ms 1.2 MiB
Baranya imagery 4 31 618 496 3435 ms 60.3 MiB
Styling
Spearfish60 1 302 418 27 ms –
Baranya imagery 3 23 713 872 779 ms –

Table 25: Parsing and styling metrics of the two examined raster layers. Hexagonal coverages
have the same metrics as rectangular ones, since the difference between them in these phases is a
single attribute value (Farkas, 2020).

7.4.2. Rasters versus coverages
As discussed before, the whole raster management process have many common
parts. Parsing raster layers, creating abstracted data representations, and applying
styles are all common features of both of the renderers. It is only after styling, when
the two branches (i.e. rasters and coverages) separate, and form their own rendering
pipelines. While common steps are independent from the rendering engine, they
are integral parts of the whole pipeline, therefore they were measured (Table 25).

According to results, those steps are optimized well enough. By using binary
buffers for storing raw matrix data, the memory footprint could be decreased to
a decent level compared to the number of stored cells. Parsing takes only a few
seconds in case of large binary raster files, which is only a one time cost. Styling can
occur multiple times, although it is relatively fast, and less frequent than redraws
or animation frames. The memory footprint of styled rasters were not measured,

92

Prepare time Draw time Memory
Raster layer
Spearfish60 37 ms 3 ms 87 KiB
Baranya imagery 343 ms 8 ms 77.5 KiB
Coverage layer
Spearfish60 2579 ms 1 – 1032 ms 152.9 MiB
Spearfish60 (hexagonal) 3001 ms 1 – 1747 ms 170.4 MiB

Table 26: Rendering metrics of raster and coverage layers. In case of coverage layers, the draw
time is a function of the pyramid level, and the number of visible cells. The range limits are
empirical best and worst case values (Farkas, 2020).

since they are temporary. Once the spatial index is created, the styled raster is
dereferenced and garbage collected.

The next two steps, dependent on the type of the layer are preparing and draw-
ing. Since the Canvas engine was previously excluded from measurements, only
hardware accelerated raster and coverage rendering was assessed (Table 26). It is
worth noting, raster layers can be used with the Canvas renderer effectively. Since
they are texture-based layers, they can be overlaid to the map with the same perfor-
mance as OpenStreetMap tiles. However, measuring the differences between Can-
vas and WebGL raster rendering would have added no additional value, since image
rendering performance was already explored. Furthermore, differences between an-
imation frames and complete redraws would have neither contributed much, since
every case provided smooth animations.

The preparation phase in case of rasters and coverages is not the same as in the
case of rendering. It groups steps related to creating and caching visualized data,
even between complete redraws. Preparation time is not significant in the case of
traditional rasters. Since there are two steps after styling (creating an image and
optionally reprojecting it), and both of them are well optimized, even large rasters
can be prepared quickly. Rendering is even faster, and the memory footprint of the
cached image is minimal. The two steps combined, however, is not fast enough for
creating continuous animations from large rasters by restyling the raster at every
frame. It can be done with smaller layers, like the Spearfish60 DEM, though.

In the case of coverages, only the Spearfish60 DEM was measured, both as a
rectangular, and a hexagonal coverage. Unfortunately, there were some memory-
heavy steps in the pipeline, which caused the system to run out of available memory
in case of the Baranya imagery. This indicates the inadequate scalability of the
implementation, and its long way ahead to become more than a mere prototype.

Much difference could not be observed between rectangular and hexagonal cov-
erages. Preparation times are higher than in the case of traditional rasters, due to
the extensive process of creating pyramids with spatial indexing. Most of the time
is spent on transforming (rotating, offsetting, reprojecting) individual cells. Those
data structures also cause a large memory footprint compared to cached textures.
On the other hand, drawing speeds are in most cases tolerable. The worst-case sce-

93

Level Cells Time Memory Heap memory
1 292 220 1032 ms 111.8 MiB 365 (+172) MiB
2 73 181 265 ms 31.0 MiB 193 (+17) MiB
3 18 230 96 ms 7.6 MiB 176 (+5) MiB
4 4 468 16 ms 1.9 MiB 171 (+6) MiB
5 1 026 18 ms 478.2 KiB 165 (+1) MiB
6 169 5 ms 114.1 KiB 164 (+0) MiB
7 63 3 ms 27.4 KiB 164 (+0) MiB
8 12 1 ms 5.7 KiB 164 (+0) MiB
9 2 1 ms 1.2 KiB 164 (+0) MiB

Table 27: Rendering metrics of different pyramid levels in the Spearfish60 rectangular coverage
(Farkas, 2020). Heap memory was recorded, since on higher zoom levels, the browser ran out of
memory during creating exact memory snapshots.

narios were measured when neither pyramids nor spatial indices could apply their
beneficial effects on the scene.

By looking at the detailed metrics of different pyramid levels (Table 27), detailed
versions not only need gradually more time to draw but also consume polynomially
more memory. This is problematic, since the measured layer is a small one com-
pared to typical real-world data. From the total heap memory of the application
on different levels, the amount of memory consumed for rendering is put between
parentheses. This is one of the most problematic parts, since that excess memory
consumption comes from OpenLayers’ rendering design, and not from the imple-
mentation’s lack of scalability. It can be only reduced by emulating 64-bit floating
operations on the GPU instead of using RTE rendering.

Learning from the lesson, there are many ways of optimizing the second part
of coverage rendering further. First of all, the spatial index should be avoided, if
possible. In the case of rectangular and hexagonal patterns, map coordinates can
be transformed to row and column numbers in the matrix. In the case of custom
coverages, however, there is no easy way to avoid building a spatial index.

As an alternative approach, spatial indexing could be applied with a better
memory footprint. If every entry stores only cells’ center coordinates along with a
color, rectangular coverages could have a decreased memory footprint by 70%. This
is the worst case, thus cells with more vertices would benefit even better. In this
approach, however, the GPU must be able to create cell coordinates from a single
center coordinate, otherwise, performance would significantly suffer. A possible
solution would be creating custom vertex shaders for rectangular and hexagonal
coverages, or as GLSL programs are provided to the WebGL API as strings, they
could be generated according to the pattern.

94

8. Evolution and Impact

On top of the main results, the capabilities of OpenLayers were reassessed. This
final assessment has two purposes; to give the thesis a frame, and to examine the
future adequacy of the candidate library of being a complex and universal Web GIS
basis. For this, the evolution of the library was taken into account over the past
few years, more precisely, from the first assessment.

In the second half of 2019, a new major OpenLayers release went into produc-
tion from beta testing. With OpenLayers 6, many changes were introduced. Some
of them are directly related to this study, since they affect the library’s rendering
mechanism and the possibilities of hardware acceleration. While the new version of-
fers more improvements for developers through API changes, the modified rendering
mechanism alone is a prominent new feature.

From the full assessment methodology from Chapter 4, only GIS capabilities
were reexamined. As other methods are focusing on choosing the right candidate
library, they were not deemed necessary for reevaluation, as the candidate has been
already chosen. The scoring scheme has not been changed, therefore the library got
a score of 1 for a full implementation, a score of 0.5 for a partial implementation,
or third-party plugin support, and a score of 0 for no support. The two implemen-
tations discussed in previous chapters were considered third-party extensions.

8.1. Changes in supported features

In the past years, the GIS capabilities of OpenLayers have risen by 4% to 60%
of the examined features (Table 28). This increase is mostly due to the raster
management implementation, discussed in Chapter 7. There are also minor changes
in representation, and a major, but nontrivial improvement in rendering.

The rendering engine of OpenLayers went through numerous revisions between
the two examined versions. While some of these revisions cannot be identified from
the feature coverage table, the library achieved its most significant improvements in
this area. The 10% increment in the library’s scoring is from the added capability
of rendering raw raster data on the client side, however, its WebGL engine took
most of the changes during a lengthy development process with many iterations
and revisions.

Not far after the extended WebGL renderer discussed in this study has been
completed, it got integrated into OpenLayers. It became an experimental feature,
since fresh out of the oven, it was only tested with unit tests and basic rendering

95

Feature group OpenLayers (3) OpenLayers (6)
Rendering 60% 70%
Formats 76% 82%
Database 0% 0%
Data 44% 50%
Projection 88% 88%
Interaction 72% 72%
Representation 56% 56%
Average 56% 60%

Table 28: GIS feature coverage of the latest release of OpenLayers (6.0.1) compared to the one
from the original study (3.17.1). Detailed results can be seen in Appendix 5.

tests. With only one maintainer (the developer of the code), bug fixes were slow, and
there were little to no new features added. As the engine had only basic rendering
capabilities, and there were no prospects of extending it to the Canvas renderer’s
level, it had been discarded with version 6.

The improvement in this step is not obvious. The developers did not drop the
WebGL renderer without compensations. They restructured the whole rendering
system, making it the most versatile one among similar libraries. Previously, the
rendering engine was tied to the view, therefore, every layer was forced to use a
single technology. With the new structure, rendering technology is tied to a layer,
therefore, users can choose their preferred engine on a per-layer basis.

One of the advantages of such design is now users are allowed to use hardware
accelerated rendering with large layers in a GIS workflow, and can choose the Can-
vas renderer with more capabilities for cartographic use in the same map. They
can process large layers, filter the number of features, generalize geometries with
WebGL, and create maps from the smaller results with the Canvas engine. From a
GIS perspective, this allows for integrating an editor and a cartographic composer
in the same application seamlessly.

Furthermore, per-layer renderers allow for integrating various third-party map-
ping technologies in the same application. Users can include D3 visualizations and
hardware accelerated layers in the same map. This versatility allows for arbitrary
extensions by interfacing with OpenLayers, which can be very useful in a universal
Web GIS application.

Regarding format handling (Table 29), the scoring of OpenLayers also increased
due to the raster manager extension. By implementing various data exchange for-
mats, two format requirements (GeoTIFF and Arc/Info ASCII Grid) have been
fulfilled. As the implementation was designed to be used with various Web ser-
vices, WCS was also implemented, which can be used with both GeoTIFF and
Arc/Info ASCII Grid, completing a third criterion.

Changes in the Data category (Table 30) were also due to new raster capabili-
ties. The raster manager can expose its raw matrix content, which can be manipu-
lated with simple algorithms. Therefore, trivial raster manipulation processes, like

96

Format OpenLayers (3) OpenLayers (6)
Vector 90% 90%
Raster 17% 50%
Image 100% 100%
Tile service 83% 83%
Average 76% 82%

Table 29: Data exchange format support of the latest release of OpenLayers (6.0.1) compared to
the one from the original study (3.17.1). Detailed results can be seen in Appendix 5.

Data OpenLayers (3) OpenLayers (6)
Pre-process 63% 63%
Conversion 0% 0%
Manipulation 67% 67%
Analysis 25% 44%
Average 44% 50%

Table 30: Data management feature support of the latest release of OpenLayers (6.0.1) compared
to the one from the original study (3.17.1). Detailed results can be seen in Appendix 5.

raster modification, raster algebra, and classification were considered partially im-
plemented. Convolution was not included in the supported processing features, as
it would need larger amount of custom code to implement without helper functions.

There were two changed functionalities affecting examined features, which did
not change the score of the library. Styling rasters was partially implemented in the
original version by accessing raw image pixel values, and the new raw raster styling
was also considered a partial fulfillment. The other changed capability was the
overview map, which became more stable in the new version. However, as the new
version cannot synchronize itself with map layers, it was still considered a partial
support.

While the overall improvement was only 4%, OpenLayers became more capable
as a basis of a universal Web GIS application. By using the raster module, and
hardware accelerated vector rendering, one can now build an effective GIS appli-
cation, which can work in a cloud architecture, and does not require any installed
GIS software or any particular platform. Such applications can adapt themselves to
the used platform. Apart from the usual responsive Web design, for example, they
can limit their processing capabilities on handheld devices during a field survey for
extended battery life. They can also use the client’s machine for calculations below
server scale for a more effective server-client balance. Finally, these improvements
do not only affect universal Web GIS applications, as specialized software can also
benefit from both raster and coverage support (e.g. using hexagonal rasters).

97

9. Conclusions

This thesis has explored the possibility of building a universal Web GIS software
using existing components. Since no feasible solution was found for this goal, some
of the most crucial features were implemented in the most appropriate library,
OpenLayers. The features deemed necessary for a universal client, but missing from
OpenLayers were hardware accelerated vector rendering and raster management.
With those features implemented, there is now a feasible stack for creating better
Web GIS clients.

Since the thesis consists of several diverse parts, a more elaborate set of conclu-
sions seems appropriate, one for each part. During the search for the best foundation
for such a client, several approaches were examined. The analysis remained met-
rical, there was no expert survey included. From the results, it seems like a set of
static software metrics along with some softer ones related to documentation, com-
munity, and other characteristics can be enough for assessing different JavaScript
libraries.

Furthermore, a new metric, Approximate Learning Curve for JavaScript was
created and used. By correlating to other, more interactive and survey-based results
along with personal experience, it seems like the metric can do what it was designed
for. It can roughly approximate the learning curve of a JavaScript library. It cannot
be used for distinguishing between similarly complex libraries, although it seems
appropriate for detecting outliers (e.g. too complex, too simple).

While many libraries were assessed, only a few were selected, mostly according
to their GIS functionalities. There are many capable spatial data visualization
libraries, both in the 2D, and the 3D areas, however only a few were created with
cartographic and GIS aspects in mind. Most of the libraries can be used for various
data analysis workflows, charting, or creating simple static maps, but they would
require an excessive amount of work to form them into a universal Web GIS.

It might seem a little surprising, that two virtual globes made it into the group
of candidates. It is, however, a plausible ratio, since a virtual globe requires at
least as many spatial functionality as a web mapping library, although with better-
optimized solutions. The two candidate virtual globes also had some GIS function-
ality, with Cesium being the more capable. It would not be much of an exaggeration
to state that Cesium is the most capable of all candidates. However, it has serious
shortcomings from the aspect of GIS, like its lack of proper projection support.

Creating a hardware accelerated rendering engine is not a trivial task. There
are many pitfalls, if the solution needs to be both fast and general. It is presumed,

98

that some of the major obstacles were not even encountered. However, a basic
renderer could be created, which can outperform the current one with large, ar-
bitrary datasets. While the WebGL implementation might be not as suitable for
cartographic purposes as the Canvas renderer, it can be used for GIS workflows and
basic spatial visualizations.

Due to the extended capabilities of the Canvas renderer, it should be used, if
the visualized layers can be optimized. It is suitable for vector tiles when each
zoom level can be sufficiently generalized on the server-side, but the client still has
the opportunity to render and style vector graphics. For small maps in other data
exchange formats (around 2000 features or 60 000 vertices), the Canvas renderer is
sufficient, the results are smoother, and there are more styling options than in the
current WebGL renderer. In cases when the Canvas renderer is not feasible anymore
(e.g. big data, animated vectors), the WebGL renderer offers a usable alternative.

Presumably, the most significant part of this thesis is revisiting raster manage-
ment. Desktop solutions rely on mature libraries with a long history, and very
few bugs. These libraries (e.g. GDAL) can do such great work in raster processing,
swapping them for a new component in order to support a modern concept does not
seem feasible. On the other hand, Web technologies are still young, and due to dif-
ferent constraints, most traditional problems require new solutions. This makes the
Web a great boilerplate for testing out new concepts. If a technique, an approach,
or an application works out well, it might be of greater interest for implementing
in other environments.

An example of such a concept is the coverage model. While the raster model’s
popularity is understandable due to its advantages – especially for working with
spatially continuous data – it has severe limitations. While demands for alternatives
were not strong enough for revisiting such a stable concept, recently, the increasing
popularity of hexagonal rasters spawned efforts for extending on the traditional
raster concept. For example, core developers of GRASS GIS found Lúıs Moreira de
Sousa’s idea of a hexagonal raster implementation with a warm welcome.

Since it is now possible to create a new raster concept due to increased demand,
investigating the feasible degree of generalization is the correct approach. Since
then, the extended model will be more stable, and it is less likely that it will need
further revisions in the near future. The coverage model offers such an investigation
by generalizing the raster model to the level of vectors. On the other hand, it
still keeps rectangular and hexagonal coverages as edge cases, which can be better
optimized than custom ones.

Preliminary results showed that while the coverage model is not feasible to use
for real-world data, it can be shaped into a working library. The proof of concept
demonstrated, hexagonal coverages can be handled without using verbose vector
data structures, and maintaining complex topological relationships. Furthermore,
coverages should not replace rasters, as they will never be as fast as textures. The
coverage model should complement the raster model, offering a hybrid solution for
professionals working with more complex coverages. On mobile devices and embed-
ded systems, where processing power and memory is limited, or battery discharge

99

time is a relevant factor, rasters will be a better solution in the foreseeable future,
than rectangular coverages.

The coverage model’s lack of scalability is mostly a matter of optimization,
which points at future works. Both the raster management and the WebGL renderer
implementations should be optimized better. The coverage pipeline should have a
more efficient caching mechanism, while the vector renderer pipeline should have
better graphical quality. When the coverage renderer can stand as a feasible proof
of concept for professional use, its practicality can be seen.

As a more imminent future task, both of the extensions will be recreated as
modules. The main reason behind this is OpenLayers’ revised rendering pipeline.
With OpenLayers 6, the library will have layer renderers, allowing users to mix
Canvas and WebGL powered layers. On this, the WebGL renderer will be recreated
as a third-party module, along with the raster management parts. The two separate
modules will only be improved after they are successfully reimplemented. This is
the main reason behind concrete examples of using the implementations are mostly
excluded from this work. Still, the coupled version of the raster manager can
be reached at GitHub (Farkas, 2018a). The vector implementation was part of
OpenLayers until version 6.

100

Acknowledgements

First, I would like to thank my advisor, Dr. Titusz Bugya, for helping me in the
past years. His tutoring, ideas, and remarks significantly influenced the quality of
the whole research behind this thesis, for the better. He always tried to point me
in a better direction, with more outcomes, generality, applicability, and future. He
never let me stuck in a loophole, and made serious efforts to guide me to the best
path for an aspiring researcher.

I would like to thank Dr. Zoltán Dövényi, former head of the Doctoral School of
Earth Sciences for his help during my PhD studies. He never ceased to inspire me
by helping me reach grants, standing up for me, or just having a good conversation
with me. I also thank Mónika Kovács, the coordinator of the same school, for taking
the toll of administration of me, and for kindly helping me with all of my problems
and questions during my studies.

I own serious gratitude to Jørn Watvedt and András Hervai for having me
working on Cadify. During my time on the project, I gained valuable first-hand
experience on how a modern CAD software relates to a GIS by programming CAD
solutions using SolidWorks’ API.

The months of writing this thesis burdened me down to a great extent. I am
grateful to Dr. István Geresdi, director of the Institute of Geography, and to Dr.
Péter Gyenizse, head of the Department of Cartography and Geoinformatics, for
letting me move away from some of my academic and institutional duties for this
time. I am also grateful to all of those who took over some of my works and
responsibilities in the period of writing this thesis.

Implementing raster management was supported by the ÚNKP-17-3-I New Na-
tional Excellence Program of the Ministry of Human Capacities, Hungary. Some
publications on the research covered by this thesis have been supported by the Eu-
ropean Union, co-financed by the European Social Fund Grant no.: EFOP-3.6.1.-
16-2016-00004 entitled by Comprehensive Development for Implementing Smart
Specialization Strategies at the University of Pécs.

101

References

Agrawal, S., & Gupta, R. D. (2014). Development and Comparison of Open
Source Based Web GIS Frameworks on WAMP and Apache Tomcat Web Servers.
The International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, XL(4), 1–5.

Albrecht, J. (1998). Universal analytical GIS operations – a task-oriented systemati-
zation of data structure-independent GIS functionality. Geographic information
research: Transatlantic perspectives, 577–591.

Antoniou, V., Morley, J., & Haklay, M. M. (2009). Tiled vectors: A method for
vector transmission over the web. In International symposium on web and wireless
geographical information systems (pp. 56–71).

Battersby, S. E., Finn, M. P., Usery, E. L., & Yamamoto, K. H. (2014). Implications
of web Mercator and its use in online mapping. Cartographica: The International
Journal for Geographic Information and Geovisualization, 49 (2), 85–101.

Batty, M., Hudson-Smith, A., Milton, R., & Crooks, A. (2010). Map mashups,
Web 2.0 and the GIS revolution. Annals of GIS , 16 (1), 1–13.

Beckmann, N., Kriegel, H.-P., Schneider, R., & Seeger, B. (1990). The R*-tree:
an efficient and robust access method for points and rectangles. ACM SIGMOD
Record, 19 (2), 322–331.

Behrens, J. T. (1997). Principles and procedures of exploratory data analysis.
Psychological Methods, 2 (2), 131–160.

Berners-Lee, T. J. (1989). Information management: A proposal (Tech. Rep. No.
CERN-DD-89-001-OC). CERN.

Birch, C. P., Oom, S. P., & Beecham, J. A. (2007). Rectangular and hexagonal grids
used for observation, experiment and simulation in ecology. Ecological Modelling,
206 (3), 347–359.

Bostock, M., Ogievetsky, V., & Heer, J. (2011). D3: Data-Driven Documents. IEEE
Transactions on Visualization and Computer Graphics, 17 (12), 2301–2309.

102

Bugya, T., & Farkas, G. (2018). An Alternative Raster Display Model. In
C. Grueau, R. Laurini, & L. Ragia (Eds.), Proceedings of the 4th international
conference on geographical information systems theory, applications and manage-
ment (gistam 2018) (pp. 262–268).

Butler, H., Gillies, S., & Schaub, T. (2016). The GeoJSON Format (Tech. Rep.
No. RFC 2946). IETF.

Cabanier, R., Mann, J., Munro, J., Wiltzius, T., & Hickson, I. (2015). HTML
Canvas 2D Context (Tech. Rep.). W3C.

Carr, D. B., Olsen, A. R., & White, D. (1992). Hexagon mosaic maps for dis-
play of univariate and bivariate geographical data. Cartography and Geographic
Information Systems, 19 (4), 228–236.

Chrisman, N. (1987). Fundamental principles of geographic information systems.
In Proceedings of auto-carto (Vol. 8, pp. 32–41).

Christen, M., Nebiker, S., & Loesch, B. (2012). Web-based large-scale 3D-
geovisualisation using WebGL: the OpenWebGlobe project. International Journal
of 3-D Information Modeling (IJ3DIM), 1 (3), 16–25.

Cozzi, P., & Ring, K. (2011). 3D engine design for virtual globes. CRC Press.

Curran, K., & George, C. (2012). The future of web and mobile game development.
International Journal of Cloud Computing and Services Science, 1 (1), 25–34.

de Sousa, L. M., & Leitão, J. P. (2017). HexASCII: A file format for cartographical
hexagonal rasters. Transactions in GIS , 22 (1), 217–232.

Di Staso, U., Soave, M., Giori, A., Prandi, F., & De Amicis, R. (2016).
Heterogeneous-resolution and multi-source terrain builder for cesiumjs webgl vir-
tual globe. International Journal of Computer, Electrical, Automation, Control
and Information Engineering, 10 (1), 129-135.

Doyle, A. (2000). OpenGIS Web Map Server Interface Implementation Specification
Revision 1.0.0 (Tech. Rep. No. 00-028). OGC.

Ecma International. (2015). ECMAScript® 2015 Language Specification (Tech.
Rep. No. ECMA-262). ECMA.

Eugene, G. Y., Di, L., Rahman, S., Lin, L., Zhang, C., Hu, L., . . . Yang, G. (2017).
Performance improvement on a Web Geospatial service for the remote sensing
flood-induced crop loss assessment web application using vector tiling. In 2017
6th international conference on agro-geoinformatics (pp. 1–6).

Evans, J. D. (2002). OWS1 Web Coverage Service (WCS) Version 0.7 (Tech. Rep.
No. OGC 02-058). OGC.

103

Farkas, G. (2015). Comparison of Web Mapping Libraries for Building WebGIS
Clients (Unpublished master’s thesis). University of Pécs, Pécs, Hungary.

Farkas, G. (2016). Mastering OpenLayers 3. Packt Publishing, Birmingham, UK.

Farkas, G. (2017a). Applicability of open-source web mapping libraries for building
massive Web GIS clients. Journal of Geographical Systems, 19 (3), 273–295.

Farkas, G. (2017b). Practical GIS. Packt Publishing, Birmingham, UK.

Farkas, G. (2018). Towards visualizing coverage data on the Web. In Az elmélet
és a gyakorlat találkozása a térinformatikában ix.: Theory meets practice in gis.
(pp. 107–113).

Farkas, G. (2019). Hardware-Accelerating 2D Web Maps: A Case Study. Carto-
graphica, 54 (4), 245–260.

Farkas, G. (2020). Possibilities of using raster data in client side Web maps.
Transactions in GIS , 24 (1), 72–84.

Felzenszwalb, P. F., & Huttenlocher, D. P. (2012). Distance transforms of sampled
functions. Theory of computing, 8 (1), 415–428.

Feng, X., Shen, J., & Fan, Y. (2009). REST: An alternative to RPC for Web
services architecture. In 2009 first international conference on future information
networks (pp. 7–10).

Fenton, N. E., & Neil, M. (1999). Software metrics: successes, failures and new
directions. Journal of Systems and Software, 47 (2–3), 149–157.

Fowler, M., Beck, K., Brant, J., Opdyke, W., & Roberts, D. (1999). Refactoring:
Improving the Design of Existing Code. Addison-Wesley Professional.

Gaffuri, J. (2012). Toward web mapping with vector data. In International confer-
ence on geographic information science (pp. 87–101).

Ganovelli, F., Corsini, M., Pattanaik, S., & Di Benedetto, M. (2014). Introduction
to computer graphics: a practical learning approach. CRC Press.

Gede, M. (2015). Novel Globe Publishing Techniques Using WebGL. e-Perimetron,
10 (2), 87–93.

Gong, L., Pradel, M., & Sen, K. (2015). JITProf: pinpointing JIT-unfriendly
JavaScript code. In Proceedings of the 2015 10th joint meeting on foundations of
software engineering (pp. 357–368).

Goodchild, M. F., Yuan, M., & Cova, T. J. (2007). Towards a general theory of ge-
ographic representation in GIS. International journal of geographical information
science, 21 (3), 239–260.

104

Grigorik, I., Mann, J., & Wang, Z. (2016). Performance timeline level 2 (Candidate
Recommendation). W3C.

Haerder, T., & Reuter, A. (1983). Principles of transaction-oriented database
recovery. ACM computing surveys (CSUR), 15 (4), 287–317.

Haklay, M., Singleton, A., & Parker, C. (2008). Web Mapping 2.0: The Neogeog-
raphy of the GeoWeb. Geography Compass, 2 (6), 2011–2039.

Hearn, D., & Baker, M. P. (2004). Computer graphics with OpenGL. Pearson
Prentice Hall.

Held, M. (2001). FIST: Fast industrial-strength triangulation of polygons. Algo-
rithmica, 30 (4), 563–596.

Her, I. (1995). Geometric transformations on the hexagonal grid. IEEE Transac-
tions on Image Processing, 4 (9), 1213–1222.

Hickson, I., Berjon, R., Faulkner, S., Leithead, T., Navara, E. D., O’Connor, T., &
Pfeiffer, S. (2014). HTML5 (Tech. Rep.). W3C.

Ingensand, J., Nappez, M., Moullet, C., Gasser, L., Ertz, O., & Composto, S.
(2016). Implementation of Tiled Vector Services: A Case Study. In Sdw@ gi-
science (pp. 26–34).

Jayathilake, D., Perera, S., Bandara, S., Wanniarachchi, H., & Herath, L. (2011).
A technical insight into community Geographic Information Systems for smart-
phones. In 2011 ieee international conference on computer applications and in-
dustrial electronics (iccaie) (pp. 379–384).

Jones, E. L. (2001). Metrics based plagarism monitoring. Journal of Computing
Sciences in Colleges, 16 (4), 253–261.

Kaur, G., & Fuad, M. M. (2010). An evaluation of protocol buffer. In Proceedings
of the ieee southeastcon 2010 (southeastcon) (pp. 459–462).

Kaur, K., Minhas, K., Mehan, N., & Kakkar, N. (2009). Static and dynamic
complexity analysis of software metrics. World Academy of Science, Engineering
and Technology, 56 , 159–161.

Konde, A., & Saran, S. (2017). Web enabled spatio-temporal semantic analysis of
traffic noise using CityGML. J Geomatics, 11 (2), 248–259.

Krämer, M., & Gutbell, R. (2015). A case study on 3D geospatial applications
in the web using state-of-the-art WebGL frameworks. In Proceedings of the 20th
international conference on 3d web technology (pp. 189–197).

Król, K. (2018). Comparative analysis of the performance of selected raster map
viewers. Geomatics, Landmanagement and Landscape, 2 , 23-32.

105

Król, K., & Szomorowa, L. (2015). The possibilities of using chosen jQuery Ja-
vaScript components in creating interactive maps. Geomatics, Landmanagement
and Landscape, 2 , 45–54.

Kulawiak, M., Dawidowicz, A., & Pacholczyk, M. E. (2019). Analysis of server-side
and client-side Web-GIS data processing methods on the example of JTS and
JSTS using open data from OSM and geoportal. Computers & Geosciences, 129 ,
26–37.

Lee, D.-T., & Schachter, B. J. (1980). Two algorithms for constructing a Delaunay
triangulation. International Journal of Computer & Information Sciences, 9 (3),
219–242.

Leiner, B. M., Cerf, V. G., Clark, D. D., Kahn, R. E., Kleinrock, L., Lynch, D. C.,
. . . Wolff, S. S. (1997). The past and future history of the Internet. Communi-
cations of the ACM , 40 (2), 102–109.

Leung, C., & Salga, A. (2010). Enabling webgl. In Proceedings of the 19th inter-
national conference on world wide web (pp. 1369–1370).

Liktor, G., & Dachsbacher, C. (2013). Decoupled Deferred Shading on the GPU.
In W. Engel (Ed.), Gpu pro 4: Advanced rendering techniques (pp. 81–98). CRC
Press.

Lim, H. (2008). Raster Data. In S. Shekhar & H. Xiong (Eds.), Encyclopedia of
gis (pp. 949–955). Springer, NY, USA.

Lindley, C. (2009). jQuery Cookbook: Solutions & Examples for jQuery Developers.
O’Reilly Media, Inc.

Liu, Z., Pierce, M. E., Fox, G. C., & Devadasan, N. (2007). Implementing a caching
and tiling map server: a web 2.0 case study. In 2007 international symposium on
collaborative technologies and systems (pp. 247–256).

Maguire, D. J. (1991). An overview and definition of GIS. Geographical information
systems: Principles and applications, 1 , 9–20.

Marrin, C. (2011). WebGL Specification Version 1.0 (Tech. Rep.). Khronos Group.

Masó, J., Pomakis, K., & Julià, N. (2010). OpenGIS® Web Map Tile Service
Implementation Standard Version 1.0.0 (Tech. Rep. No. OGC 07-057r7). OGC.

McCabe, T. J. (1976). A Complexity Measure. IEEE Transactions on Software
Engineering, SE-2 (4), 308–320.

Meaden, G. J., & Chi, T. D. (1996). Geographical information systems Applications
to marine fisheries. Food and Agriculture Organization of the United Nations,
Rome.

106

Mehta, N., Sicking, J., Graff, E., Popescu, A., Orlow, J., & Bell, J. (2015). Indexed
Database API (Tech. Rep.). W3C.

Meisters, G. H. (1975). Polygons have ears. The American Mathermatical Monthly,
82 (6), 648–651.

Mengeringhausen, H. C., & Witherell, W. R. (1962). A nonstandard use of 16mm
to meet the 8mm print cost challenge. Journal of the SMPTE , 71 (8), 566–568.

Neteler, M., Bowman, M. H., Landa, M., & Metz, M. (2012). GRASS GIS: A multi-
purpose open source GIS. Environmental Modelling & Software, 31 , 124–130.

Nguyen, V., Deeds-Rubin, S., Tan, T., & Boehm, B. (2007). A SLOC Counting
Standard (Tech. Rep. No. USC-CSSE-2007-737). Center for Systems and Software
Engineering.

O’Reilly, T. (2007). What is Web 2.0: Design patterns and business models for the
next generation of software. Communications & strategies, 65 (1), 17–37.

Orlik, A., & Orlikova, L. (2014). Current Trends in Formats and Coordinate
Transformations of Geospatial Data – Based on MyGeoData Converter. Central
European Journal of Geosciences, 6 (3), 354–362.

Paulson, L. D. (2005). Building rich web applications with Ajax. Computer , 38 (10),
14–17.

Peng, Z. R. (1999). An assessment framework for the development of Internet GIS.
Environment and Planning B: Planning and Design, 26 (1), 117–132.

Peng, Z. R., & Zhang, C. (2004). The roles of geography markup language (GML),
scalable vector graphics (SVG), and Web feature service (WFS) specifications in
the development of Internet geographic information systems (GIS). Journal of
Geographical Systems, 6 (2), 95–116.

Persson, J. (2004). Streaming of compressed multi-resolution geographic vec-
tor data. In Proceedings of the 12th international conference on geoinformatics
geospatial information research: Bridging the pacific and atlantic (pp. 765–772).

Peterson, M. P. (1999). Trends in Internet Map Use – A Second Look. In Proceedings
of the 19th international cartographic conference (pp. 571–580).

Peucker, T. K., Fowler, R. J., Little, J. J., Mark, D. M., & Carto, A. (1978). The tri-
angulated irregular network. In American society of photogrammetry proceedings
of the digital terrain models symposium (pp. 96–103).

Plewe, B. (1997). GIS online: Information retrieval, mapping, and the Internet.
OnWord Press.

107

Poorazizi, M. E., & Hunter, A. J. (2015). Evaluation of Web Processing Service
Frameworks. OSGEO Journal, 14 , 29–42.

Ramakrishna, A., Chang, Y., & Maheswaran, R. (2013). An interactive web based
spatio-temporal visualization system. In G. Bebis et al. (Eds.), Advances in visual
computing: 9th international symposium, isvc 2013, part ii. (pp. 673–680).

Ramsey, P. (2007). The State of Open Source GIS (Tech. Rep.). Refractions
Research Inc.

Reed, C., Buehler, K., & McKee, L. (2015). OGC consensus: How successful
standards are made. ISPRS International Journal of Geo-Information, 4 (3),
1693–1706.

Resch, B., Wohlfahrt, R., & Wosniok, C. (2014). Web-based 4D visualization of
marine geo-data using WebGL. Cartography and Geographic Information Science,
41 (3), 235–247.

Revesz, P. (2008). Constraint Databases, Spatial. In S. Shekhar & H. Xiong (Eds.),
Encyclopedia of GIS (pp. 157–160). Springer, NY, USA.

Ritter, N., & Ruth, M. (1997). The GeoTiff data interchange standard for raster
geographic images. International Journal of Remote Sensing, 18 (7), 1637-1647.

Roth, R. E. (2017). Visual variables. In D. Richardson, N. Castree, M. F. Goodchild,
A. Kobayashi, W. Liu, & R. A. Marston (Eds.), International encyclopedia of
geography: People, the earth, environment and technology (pp. 1–11).

Roth, R. E., Donohue, R., Sack, C., Wallace, T., & Buckingham, T. (2014). A
Process for Keeping Pace with Evolving Web Mapping Technologies. Cartographic
Perspectives, 0 (78), 25–52.

Sahr, K. (2013). On the Optimal Representation of Vector Location using Fixed-
Width Multi-Precision Quantizers. International Archives of the Photogramme-
try, Remote Sensing and Spatial Information Sciences, XL-4 (W2), 1–8.

Sauerwein, T. (2010). Evaluation of HTML5 for its Use in the Web Mapping
Client OpenLayers (Thesis). Fachhochschule Kaiserlautern, University of Applied
Sciences.

Schernthanner, H., Steppan, S., Kuntzsch, C., Borg, E., & Asche, H. (2017). Auto-
mated web-based geoprocessing of rental prices. In International conference on
computational science and its applications (pp. 512–524).

Schut, P. (2007). OpenGIS® Web Processing Service Version 1.0.0 (Tech. Rep. No.
OGC 05-007r7). OGC.

108

Seidel, R. (1991). A simple and fast incremental randomized algorithm for comput-
ing trapezoidal decompositions and for triangulating polygons. Computational
Geometry, 1 (1), 51–64.

Shalloway, A., & Trott, J. R. (2002). Design Patterns Explained A New Perspective
on Object-Oriented Design. Addison-Wesley Professional.

Shepperd, M., & Ince, D. C. (1994). A critique of three metrics. Journal of Systems
and Software, 26 (3), 197–210.

Stefanakis, E. (2017). Web mercator and raster tile maps: two cornerstones of
online map service providers. Geomatica, 71 (2), 100–109.

Steiniger, S., & Hunter, A. J. (2013). The 2012 free and open source GIS software
map – A guide to facilitate research, development, and adoption. Computers,
Environment and Urban Systems, 39 , 136–150.

Steiniger, S., & Hunter, A. J. (2017). Data structure: spatial data on the web.
In D. Richardson, N. Castree, M. F. Goodchild, A. Kobayashi, W. Liu, &
R. A. Marston (Eds.), International encyclopedia of geography: People, the earth,
environment and technology (pp. 1–12).

Taivalsaari, A., Mikkonen, T., Anttonen, M., & Salminen, A. (2011). The death
of binary software: End user software moves to the web. In Creating, connecting
and collaborating through computing (c5) (pp. 17–23).

Thorne, C. (2005). Using a floating origin to improve fidelity and performance of
large, distributed virtual worlds. In 2005 international conference on cyberworlds
(cw’05) (pp. 263–270).

Thrall, S. E., & Thrall, G. I. (1999). Desktop GIS software. In P. A. Longley,
M. F. Goodchild, D. J. Maguire, & D. W. Rhind (Eds.), Geographical Information
Systems Abridged (pp. 331–345). John Wiley & Sons, Inc.

Tomlin, C. D. (2017). Cartographic modeling. In D. Richardson, N. Castree,
M. F. Goodchild, A. Kobayashi, W. Liu, & R. A. Marston (Eds.), International
encyclopedia of geography: People, the earth, environment and technology (pp.
1–6).

Turton, I. (2008). GeoTools. In G. B. Hall & M. G. Leahy (Eds.), Open source
approaches in spatial data handling. advances in geographic information science,
vol 2. (pp. 153–169). Springer.

Vasilescu, B., Casalnuovo, C., & Devanbu, P. (2017). Recovering clear, natural iden-
tifiers from obfuscated JS names. In Proceedings of the 2017 11th joint meeting
on foundations of software engineering (pp. 683–693).

109

Vretanos, P. A. (2002). Web Feature Service Implementation Specification Version
1.0.0 (Tech. Rep. No. OGC 02-058). OGC.

Warmerdam, F. (2008). The Geospatial Data Abstraction Library. In G. B. Hall &
M. G. Leahy (Eds.), Open source approaches in spatial data handling. advances
in geographic information science, vol 2. (pp. 87–104). Springer.

Wood, L., Hors, A. L., Apparao, V., Byrne, S., Champion, M., Isaacs, S., . . .
Wilson, C. (2000). Document Object Model (DOM) Level 1 Specification (Second
Edition) (Tech. Rep.). W3C.

Yang, C., Wu, H., Huang, Q., Li, Z., Li, J., Li, W., . . . Sun, M. (2011). WebGIS
performance issues and solutions. In S. Li, S. Dragicevic, & B. Veenendaal (Eds.),
Advances in web-based gis, mapping services and applications (pp. 121–138). CRC
Press.

Yang, P., Cao, Y., & Evans, J. (2007). Web map server performance and client
design principles. GIScience & Remote Sensing, 44 (4), 320–333.

110

Online References

Adobe Corporate Communications. (2017). Flash & The Future of Interactive Con-
tent. https://theblog.adobe.com/adobe-flash-update/. (Accessed: 2019-04-
06)

Agafonkin, V. (2015). Earcut: The fastest and smallest JavaScript polygon tri-
angulation library for your WebGL apps. https://github.com/mapbox/earcut.
(Accessed: 2019-05-24)

Bostock, M., & Metcalf, C. (2013). The TopoJSON Format Spec-
ification. https://github.com/topojson/topojson-specification/blob/
master/README.md. (Accessed: 2019-04-16)

DesLauriers, M. (2015). Drawing Lines is Hard. https://mattdesl.svbtle.com/
drawing-lines-is-hard. (Accessed: 2019-05-21)

Ericsson. (2017). Internet of Things forecast. https://www.ericsson.com/en/
mobility-report/internet-of-things-forecast. (Accessed: 2019-04-09)

Farkas, G. (2018a). GaborFarkas/ol3 at raster base. https://github.com/
GaborFarkas/ol3/tree/raster base. (Accessed: 2019-06-06)

Farkas, G. (2018b). OpenLayers WebGL rendering benchmark tool. https://
gaborfarkas.github.io/rendering pub/profile/. (Accessed: 2019-04-30)

Firefox Contributors. (2002). [RFE] TIFF Support? https://bugzilla.mozilla
.org/show bug.cgi?id=160261. (Accessed: 2019-04-20)

Google. (2019). Google Maps. https://www.google.com/maps. (Accessed: 2019-
04-16)

Käfer, K. (2014). Drawing Text with Signed Distance Fields in Map-
box GL. https://blog.mapbox.com/drawing-text-with-signed-distance
-fields-in-mapbox-gl-b0933af6f817. (Accessed: 2019-05-25)

Miniwatts Marketing Group. (2019). World Internet Users and 2019 Population
Stats. https://www.internetworldstats.com/stats.htm. (Accessed: 2019-04-
09)

111

https://theblog.adobe.com/adobe-flash-update/
https://github.com/mapbox/earcut
https://github.com/topojson/topojson-specification/blob/master/README.md
https://github.com/topojson/topojson-specification/blob/master/README.md
https://mattdesl.svbtle.com/drawing-lines-is-hard
https://mattdesl.svbtle.com/drawing-lines-is-hard
https://www.ericsson.com/en/mobility-report/internet-of-things-forecast
https://www.ericsson.com/en/mobility-report/internet-of-things-forecast
https://github.com/GaborFarkas/ol3/tree/raster_base
https://github.com/GaborFarkas/ol3/tree/raster_base
https://gaborfarkas.github.io/rendering_pub/profile/
https://gaborfarkas.github.io/rendering_pub/profile/
https://bugzilla.mozilla.org/show_bug.cgi?id=160261
https://bugzilla.mozilla.org/show_bug.cgi?id=160261
https://www.google.com/maps
https://blog.mapbox.com/drawing-text-with-signed-distance-fields-in-mapbox-gl-b0933af6f817
https://blog.mapbox.com/drawing-text-with-signed-distance-fields-in-mapbox-gl-b0933af6f817
https://www.internetworldstats.com/stats.htm

NASA. (2018). WorldWind GeoTiff. https://files.worldwind.arc.nasa.gov/
artifactory/apps/web/examples/GeoTiffExample.html. (Accessed: 2019-04-
20)

Nielsen, M. (2008). Spherical/Web Mercator: EPSG code 3785. https://www
.sharpgis.net/post/2008/05/15/SphericalWeb-Mercator-EPSG-code-3785.
(Accessed: 2019-04-11)

OGC. (2019). About OGC. http://www.opengeospatial.org/about. (Accessed:
2019-04-10)

OSGeo. (2012). Tile Map Service Specification. http://wiki.osgeo.org/wiki/
Tile Map Service Specification. (Accessed: 2019-04-10)

OSGeo. (2019). About OSGeo. https://www.osgeo.org/about/. (Accessed: 2019-
04-10)

Schindler, F. (2016). geotiff.js and plotty.js - Visualizing Scientific Raster Data in
the Browser. https://av.tib.eu/media/20373. (Accessed: 2019-04-20)

Springmeyer, D. (2015). Mapbox Vector Tile Specification adopted
by Esri. https://blog.mapbox.com/mapbox-vector-tile-specification
-adopted-by-esri-14138105872f. (Accessed: 2019-04-19)

Yu, E., & Custer, A. (2006). ArcInfo ASCII Grid format. http://old.geotools
.org/ArcInfo-ASCII-Grid-format 5250.html. (Accessed: 2019-04-20)

Zakai, A. (2019). sql.js Releases. https://github.com/kripken/sql.js/
releases. (Accessed: 2019-05-18)

112

https://files.worldwind.arc.nasa.gov/artifactory/apps/web/examples/GeoTiffExample.html
https://files.worldwind.arc.nasa.gov/artifactory/apps/web/examples/GeoTiffExample.html
https://www.sharpgis.net/post/2008/05/15/SphericalWeb-Mercator-EPSG-code-3785
https://www.sharpgis.net/post/2008/05/15/SphericalWeb-Mercator-EPSG-code-3785
http://www.opengeospatial.org/about
http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification
http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification
https://www.osgeo.org/about/
https://av.tib.eu/media/20373
https://blog.mapbox.com/mapbox-vector-tile-specification-adopted-by-esri-14138105872f
https://blog.mapbox.com/mapbox-vector-tile-specification-adopted-by-esri-14138105872f
http://old.geotools.org/ArcInfo-ASCII-Grid-format_5250.html
http://old.geotools.org/ArcInfo-ASCII-Grid-format_5250.html
https://github.com/kripken/sql.js/releases
https://github.com/kripken/sql.js/releases

A. Appendix

Category Cesium Leaflet NASA WWW OpenLayers 2 OpenLayers
Rendering
Hardware acceleration 1 0 1 0 0.5
Render geometry 1 1 1 1 1
Render raster 0 0 0 0 0
Render image 1 1 1 1 1
Blend layers 1 0 0 0 0.5
Formats – Vector
ESRI Shapefile 0.5 0.5 1 0.5 0.5
KML 1 0.5 0.5 1 1
GeoJSON 1 1 1 1 1
WFS 0 0.5 0 1 1
Write transaction 0 0.5 0 1 1
Formats – Raster
GeoTiff 0.5 0.5 0.5 0.5 0.5
Arc/Info ASCII GRID 0 0 0 0 0
WCS 0 0 0 0 0
Formats – Image
JPEG 1 1 1 1 1
PNG 1 1 1 1 1
WMS 1 1 1 1 1
Formats –Image – Tile service
WMTS 1 0.5 1 1 1
TMS 1 1 0 1 0.5
OpenStreetMap slippy map 1 1 1 1 1
Google Maps 0 0.5 0 1 0.5
ArcGIS REST API 1 0.5 0 1 1
Bing Maps 1 0.5 1 1 1
Database – Connection
PostGIS 0 0 0 0 0
SpatiaLite 0 0 0 0 0
MySQL 0 0 0 0 0

Appendix 1: Detailed support table of candidate libraries for the competitive analysis (Farkas,
2017a). 1 means core support, 0.5 means partial support or support by a third party extension,
and 0 means no support.

113

Category Cesium Leaflet NASA WWW OpenLayers 2 OpenLayers
Database – Functionality
Using DBMS 0 0 0 0 0
Query/filter 0 0.5 0 1 0
Query language 0 0 0 0 0
Data – Pre-process
On the fly transformation 1 0 1 0 0.5
Read attribute data 1 1 0 1 1
Z, and M coordinates 1 0 0.5 0 1
Geometry types 0.5 0.5 0.5 0.5 0.5
Spatial indexing 0 0 0 0 1
Geometry validation 0 0 0 0 0
Geometry simplification 0.5 0.5 0 0 1
Attribute table 0 0 0 0 0
Data – Conversion
Interpolate 0 0 0 0 0
Raster to vector 0 0 0 0 0
Vector to raster 0 0 0 0 0
Data – Manipulation
Update attribute data 1 1 0 1 1
Update geometry 0 1 0 1 1
Field calculator 0 0 0 0 0
Add/remove layer 1 1 1 1 1
Change layer order 1 1 0.5 1 1
Typed layers 0 0 0 1 0
Data – Analysis
Basic geoprocessing 0.5 0.5 0.5 0.5 0.5
Topological analysis 0.5 0.5 0.5 0.5 0.5
Modify image 0 0 0 0 0.5
Modify raster 0 0 0 0 0
Raster algebra 0 0 0 0 0
Classification 0 0 0 0 0
Convolution 0 0 0 0 0
Write WPS request 0 0.5 0 1 0.5
Projection
Transform vector 1 1 1 1 1
Warp raster 1 0 1 0 1
Well-known projections 0.5 0.5 0.5 0.5 0.5
Custom projections 0 0.5 0.5 1 1

Appendix 1 continued . . .

114

Category Cesium Leaflet NASA WWW OpenLayers 2 OpenLayers
Interaction
Draw features 0 0.5 0 1 1
Modify features 0 0.5 0 1 1
Snap points 0 0.5 0 1 1
Modify view 1 0.5 1 0.5 1
Select features 1 0.5 0.5 1 1
Query 0 0.5 0.5 0.5 0.5
Measure 0 0.5 0 1 0
Change time 1 0.5 0 0.5 0
Show mouse coordinates 0 0.5 1 1 1
Representation – Styling
Style vector 1 1 1 1 1
Style raster 0 0 0 0 0.5
Thematic maps 1 1 1 1 1
Representation – Cartographic elements
Scale bar 0 1 0 1 1
North arrow 0 0 1 0 0
Legend 0 0 0 0 0
Graticule 0 0.5 0 1 1
Text box 0 0 0 0 0
Overview map 0 0.5 0 1 0.5

Appendix 1 continued . . .

115

N
am

e
Ve

rs
io

n
Ty

pe
Li

ce
ns

e
D

ep
en

de
nc

y
La

st
re

le
as

e
La

st
ac

tiv
ity

C
la

ss
ifi

ca
tio

n
A

rc
G

IS
A

PI
fo

r
Ja

va
Sc

rip
t∗

4.
0

W
eb

m
ap

pi
ng

C
om

m
er

ci
al

–
<

6
m

on
th

s
U

nk
no

w
n

Pr
op

rie
ta

ry
Bi

ng
M

ap
s

A
JA

X
C

on
tr

ol
∗

7.
0

W
eb

m
ap

pi
ng

C
om

m
er

ci
al

–
>

Ye
ar

U
nk

no
w

n
Pr

op
rie

ta
ry

C
ar

to
D

B.
js

3.
15

.1
0

W
eb

m
ap

pi
ng

BS
D

3-
C

la
us

e
Le

afl
et

<
M

on
th

<
M

on
th

Sp
ec

ifi
c

C
es

iu
m

1.
23

V
irt

ua
lg

lo
be

A
pa

ch
e

2.
0

–
<

M
on

th
<

W
ee

k
C

an
di

da
te

D
3

4.
1.

1
D

at
a

vi
su

al
iz

at
io

n
BS

D
3-

C
la

us
e

–
<

M
on

th
<

W
ee

k
G

en
er

al
G

oo
gl

e
M

ap
s

Ja
va

Sc
rip

t
A

PI
∗

3.
24

W
eb

m
ap

pi
ng

C
om

m
er

ci
al

–
<

6
m

on
th

s
U

nk
no

w
n

Pr
op

rie
ta

ry
H

ER
E

M
ap

s
A

PI
fo

r
Ja

va
Sc

rip
t∗

3.
0.

12
.4

W
eb

m
ap

pi
ng

C
om

m
er

ci
al

–
<

Ye
ar

U
nk

no
w

n
Pr

op
rie

ta
ry

ka
-M

ap
1.

0
W

eb
m

ap
pi

ng
M

IT
–

>
Ye

ar
U

nk
no

w
n

A
ba

nd
on

ed
K

ar
to

gr
ap

h
0.

8.
2

W
eb

m
ap

pi
ng

G
N

U
LG

PL
R

ap
ha

ël
>

Ye
ar

>
Ye

ar
A

ba
nd

on
ed

Le
afl

et
1.

0.
0-

rc
2

W
eb

m
ap

pi
ng

BS
D

2-
C

la
us

e
–

<
M

on
th

<
W

ee
k

C
an

di
da

te
M

ap
bo

x
JS
∗

2.
4.

0
W

eb
m

ap
pi

ng
BS

D
3-

C
la

us
e

Le
afl

et
<

6
m

on
th

s
<

M
on

th
Sp

ec
ifi

c
M

ap
bo

x
G

L
JS
∗

0.
21

.0
W

eb
m

ap
pi

ng
BS

D
3-

C
la

us
e

–
<

M
on

th
<

D
ay

Sp
ec

ifi
c

M
ap

Q
ue

ry
0.

1
W

eb
m

ap
pi

ng
M

IT
O

pe
nL

ay
er

s
2

>
Ye

ar
>

Ye
ar

A
ba

nd
on

ed
M

ap
Q

ue
st

Ja
va

Sc
rip

t
M

ap
s

A
PI
∗

7.
2

W
eb

m
ap

pi
ng

C
om

m
er

ci
al

–
>

Ye
ar

U
nk

no
w

n
Pr

op
rie

ta
ry

M
od

es
t

M
ap

s
3.

3.
6

W
eb

m
ap

pi
ng

BS
D

–
>

Ye
ar

>
Ye

ar
A

ba
nd

on
ed

N
A

SA
W

eb
W

or
ld

W
in

d
0.

0.
1

V
irt

ua
lg

lo
be

N
O

SA
–

>
6

m
on

th
s

<
W

ee
k

C
an

di
da

te
O

pe
nL

ay
er

s
2

2.
13

.1
W

eb
m

ap
pi

ng
BS

D
2-

C
la

us
e

–
>

Ye
ar

<
W

ee
k

C
an

di
da

te
O

pe
nL

ay
er

s
3

3.
17

.1
W

eb
m

ap
pi

ng
BS

D
2-

C
la

us
e

–
<

M
on

th
<

W
ee

k
C

an
di

da
te

O
pe

nS
ca

le
s

2.
2

W
eb

m
ap

pi
ng

G
N

U
LG

PL
–

>
Ye

ar
<

6
m

on
th

s
O

th
er

O
pe

nS
tr

ee
tM

ap
iD

1.
9.

7
W

eb
m

ap
pi

ng
IS

C
D

3
<

M
on

th
<

D
ay

Sp
ec

ifi
c

O
pe

nW
eb

G
lo

be
U

nk
no

w
n

V
irt

ua
lg

lo
be

M
IT

–
N

o
re

le
as

e
<

Ye
ar

A
ba

nd
on

ed
Po

ly
m

ap
s

2.
5.

1
W

eb
m

ap
pi

ng
BS

D
3-

C
la

us
e

–
>

Ye
ar

>
Ye

ar
A

ba
nd

on
ed

Pr
oc

es
sin

g.
js

1.
6.

0
D

at
a

vi
su

al
iz

at
io

n
M

IT
–

<
M

on
th

<
M

on
th

G
en

er
al

R
ap

ha
ël

2.
2.

0
D

at
a

vi
su

al
iz

at
io

n
M

IT
–

<
6

m
on

th
s

<
M

on
th

G
en

er
al

W
eb

G
L

Ea
rt

h
2.

4.
2

V
irt

ua
lg

lo
be

G
N

U
G

PL
v3

C
es

iu
m

<
M

on
th

<
M

on
th

Ex
te

ns
io

n
∗ R

eq
ui

re
s

an
A

PI
ke

y.

A
pp

en
di

x
2:

Li
st

of
co

ns
id

er
ed

Ja
va

Sc
rip

tl
ib

ra
rie

s
ca

pa
bl

e
of

sp
at

ia
ld

at
a

vi
su

al
iz

at
io

n.
O

rig
in

al
lis

t(
Fa

rk
as

,2
01

7a
).

R
el

at
iv

e
tim

es
ar

e
co

m
pa

re
d

to
th

e
da

te
of

su
rv

ey
:

28
th

Ju
ly

,2
01

6.

116

Appendix 3: Larger version of the UML diagram in Figure 14.

117

Appendix 4: Larger version of the UML diagram in Figure 30.

118

Category OpenLayers (3) OpenLayers (6) Changed
Rendering
Hardware acceleration 0.5 0.5 *
Render geometry 1 1
Render raster 0 0.5 *
Render image 1 1
Blend layers 0.5 0.5
Formats – Vector
ESRI Shapefile 0.5 0.5
KML 1 1
GeoJSON 1 1
WFS 1 1
Write transaction 1 1
Formats – Raster
GeoTiff 0.5 0.5 *
Arc/Info ASCII GRID 0 0.5 *
WCS 0 0.5 *
Formats – Image
JPEG 1 1
PNG 1 1
WMS 1 1
Formats –Image – Tile service
WMTS 1 1
TMS 0.5 0.5
OpenStreetMap slippy map 1 1
Google Maps 0.5 0.5
ArcGIS REST API 1 1
Bing Maps 1 1
Database – Connection
PostGIS 0 0
SpatiaLite 0 0
MySQL 0 0

Appendix 5: Detailed support table of the latest release of OpenLayers (6.0.1) compared to the
one from the original study (3.17.1). 1 means core support, 0.5 means partial support or support
by a third party extension, and 0 means no support.

119

Category OpenLayers (3) OpenLayers (6) Changed
Database – Functionality
Using DBMS 0 0
Query/filter 0 0
Query language 0 0
Data – Pre-process
On the fly transformation 0.5 0.5
Read attribute data 1 1
Z, and M coordinates 1 1
Geometry types 0.5 0.5
Spatial indexing 1 1
Geometry validation 0 0
Geometry simplification 1 1
Attribute table 0 0
Data – Conversion
Interpolate 0 0
Raster to vector 0 0
Vector to raster 0 0
Data – Manipulation
Update attribute data 1 1
Update geometry 1 1
Field calculator 0 0
Add/remove layer 1 1
Change layer order 1 1
Typed layers 0 0
Data – Analysis
Basic geoprocessing 0.5 0.5
Topological analysis 0.5 0.5
Modify image 0.5 0.5
Modify raster 0 0.5 *
Raster algebra 0 0.5 *
Classification 0 0.5 *
Convolution 0 0
Write WPS request 0.5 0.5
Projection
Transform vector 1 1
Warp raster 1 1
Well-known projections 0.5 0.5
Custom projections 1 1

Appendix 5 continued . . .

120

Category OpenLayers (3) OpenLayers (6) Changed
Interaction
Draw features 1 1
Modify features 1 1
Snap points 1 1
Modify view 1 1
Select features 1 1
Query 0.5 0.5
Measure 1 1
Change time 0 0
Show mouse coordinates 1 1
Representation – Styling
Style vector 1 1
Style raster 0.5 0.5 *
Thematic maps 1 1
Representation – Cartographic elements
Scale bar 1 1
North arrow 0 0
Legend 0 0
Graticule 1 1
Text box 0 0
Overview map 0.5 0.5 *

Appendix 5 continued . . .

121

	Introduction
	Purpose of the Study
	Literature Review
	From Internet mapping to Web GIS
	Geospatial visualization on the Web
	Early days of vector data in web clients
	Hardware accelerated vector rendering
	Rasters on the Web

	Web GIS clients
	A universal GIS

	Materials and Methods
	Scoring libraries on GIS features
	Static software metrics
	Benchmarking
	Sample data

	The Ideal Candidate
	Competitive analysis
	Metrical results
	Approximate learning curve for JavaScript

	Selecting a candidate
	The structure of OpenLayers

	Hardware Accelerated Vector Rendering
	Line strings as triangles
	Breaking up polygons
	Drawing other features
	Benchmarking the renderer

	Implementing Raster Management
	Rasters and coverages
	Characteristics of the raster model
	Treating rasters as vectors

	Traditional raster management
	Base classes
	The raster renderer

	Handling coverages
	Hexagonal pyramids

	Benchmarking the pipelines
	Applied optimizations on coverage rendering
	Rasters versus coverages

	Evolution and Impact
	Changes in supported features

	Conclusions
	Acknowledgements
	References
	Online References
	Appendix

