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1Motivation and Problem

Statement

„ Science, my lad, is made up of mistakes, but they are

mistakes which it is useful to make, because they lead

little by little to the truth.

— Jules Verne

In the last few decades chemometrics had a major role in the progress of ana-

lytical chemistry. Besides the advancement of lab equipment and instruments,

there is a huge demand for constantly creating more sophisticated methods

to analyse the ever increasing amount of data. The evolution of computer

science allowed the data, generated in the labs, to rapidly evolve from simple

graphs to complex, multi-dimensional sets, which rendered the day-to-day use

of evaluating software not just recommended but mandatory.

The expectations for chemometric methods have two – in some way contradic-

tory – cornerstones: be able to analyse the more and more advanced data sets;

and create simple, easily understandable results. There is, however, a field in

chemometrics which seems to incorporate these goals effortlessly, called two-

dimensional correlation analysis (2DCOR). This method was built to extend the

possibilities of infrared spectroscopy (IR) with some of the two-dimensional

concept used in nuclear magnetic resonance spectroscopy (NMR). It was a

great success and later proved to be useful with many probes other than IR.

Despite the rapid growth of the field, 2DCOR operated mostly in spectroscopy,

only a few attempts have been made outside that, however we strongly believe

that its basic concept can be advantageous in chromatography as well.
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The main aims of this work were:

• exploration of the possibilities, attributes and details of 2DCOR in the

field of chromatography;

• extension of 2DCOR to three-dimensional datasets where a series of two-

dimensional measurements - instead of the original one-dimensional -

are evaluated;

• building a new method which uses the properties of 2DCOR, but is

able to work with three-dimensional datasets and is fine-tuned to use in

chromatography;

• comparison of 2DCOR and our new method on two-dimensional datasets

where a series of one-dimensional measurements are used;

• proving the capability of 2DCOR in chromatography by applying it

to measured chromatograms and comparing it to other chemometric

methods;

• demonstrate the practical use of our new method on measured chro-

matograms and highlight its advantages in the evaluation of complex

chromatographic problems.

In the next sections we will describe 2DCOR’s origins, how it became a versatile,

widely used chemometric method and its way from IR through other probes

to chromatography. We will give details of the mathematical background for

both 2DCOR and our new method. Furthermore our studies will be presented,

where 2DCOR’s abilities are being tested on computer generated series of

chromatograms; our new method is introduced, in silico experiments will

detail its properties with 3D datasets and it will be compared to 2DCOR in 2D.

In the last chapter two practical examples will show the advantages of methods

used in chromatography. The first one will present 2DCOR’s performance

compared to principal component analysis (PCA) in a reproducibility study of

chromatographic columns, whereas the other focuses on concentration changes

in supercritical fluid chromatography (SFC) measurements.
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2Literature review

„You cannot teach a man anything; you can only help him

discover it in himself.

— Galileo Galilei

2.1 2DCOR

The concept of 2D spectroscopy was first introduced in the field of NMR

in 1976 [1]. It was a breakthrough in analytical chemistry, and opened a

number of ways for promising possibilities. Ten years later, 2D spectroscopy

outgrew the boundaries of resonance spectroscopy, when Noda introduced

the perturbation based two-dimensional correlation spectroscopy (2DCOS)

[2]. With that method a number of chemical phenomena became available

for analysis and interpretation with vibrational spectroscopy. 2D correlation

spectroscopy gained large interest and became very popular in IR, ultraviolet

spectroscopy (UV) and visible spectroscopy (VIS). It only took a few years

to realize that 2D spectroscopy was clearly a volatile technique that could be

applied in a wider perspective.

The construction of the generalized method was the next step in the evolu-

tion of 2DCOS [3]. The fundamental step of the calculation was based on

Fourier transform, i.e. the intensity variations had to be built by sinusoidal

components.

In 2000 Noda published a study [4], which introduced an entirely new calcula-

tion method for 2D correlation, the discrete Hilbert transform. This procedure

replaced the Fourier transform with matrix operations, lifted all the boundaries

of the previous technique, but provided the same results (see Fig. 2.1). With

that, an ultimate tool was made available, which could be applied to any kind

of measured data [5]. By 2DCOR we refer to this general calculation method re-

gardless what kind of data is used. Not surprisingly, 2D correlation has spread
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rapidly from vibrational spectroscopy to new analytical methods, such as mass

spectrometry [6–8], X-ray [9–12] or chromatography (detailed in Section 2.2).

Fig. 2.1.: The process of 2D correlation: (a) measurement system, (b) dynamic spectra,
(c) Fourier transform, (d) the generalized correlation function, (e) discrete
Hilbert transform, (f) synchronous and asynchronous spectra [5]

The variety of data used by 2DCOR shows its earned place in chemometric

methods, however, its growth is far more adequate than just leaping to other

analytical probes [13–19].

2.2 2DCOR in chromatography

Despite its wide range of usefulness, the application of 2D correlation calcula-

tion in chromatography is still very rare. The first breakthrough was the work

of Izawa et al. [20]. In their study, the foundations of the two-dimensional cor-

relation gel permeation chromatography (2D-GPC) were established. Another

2.2 2DCOR in chromatography 4



milestone was the application in gas chromatography (GC) published by Hyde

et al. [21]. They used hetero-correlation analysis with GC-IR spectroscopy.

There are several publications in this field, but 2D correlation has not really

gained popularity in chromatography, and there may be much more potential

in it.

One of the greatest benefits of 2DCOR is that it is able to handle data from any

kind of measurements. The main interest is still in spectroscopy, but it slowly

starts to gain popularity in chromatography as well [20–33].

2.3 Multi-way data analysis

Using three-way data is not a common procedure in analytical practice, despite

the fact that its methods have a long history. The mathematics of multi-way

analysis was first applied in psychometrics in 1970. The same method was

developed independently as PARAFAC by Harshman [34] and as CANDE-

COMP by Carrol and Chang [35]. There are a few decomposition methods

for multi-way data, but the main three are the PARAFAC, the Tucker3 [36]

and performing a two-way PCA by unfolding the multi-way array. As always

in chemometrics, there is no universal law to pick the best method; it highly

depends on the actual task. PCA has the most degrees of freedom, so it is the

most complex and flexible, and PARAFAC with the least degrees of freedom is

the simplest and most restricted [37]. In the dissertation we do not go into more

details regarding those methods, but excellent summaries can be found in the

literature [38, 39], or a tutorial for PARAFAC [40] can give a good outlook on

the field. All the mentioned studies are from the 20th century, but the methods

are still being used and further developed [41, 42].

These decomposition methods can be used in image analysis too [43]. Such data

are for example satellite-, spectroscopic- (fluorescence, IR, etc.) and microscopic

images. As expected it is a very complex field, because of the numerous

possibilities. One of them is the diversity of the applicable data, how they

are interpreted. A multi-way array can be sorted by the properties of its

ways (modes, dimensions). A way can be seen as an object (O) or a variable

(V). In a two-way data it is rather simple, but in a three-way (multi-way)

array it is not so straightforward. ALA on 2D chromatographic measurements

can be considered an image analysis tool as a case of OOV (object-object-

2.3 Multi-way data analysis 5



variable), because the dimensions of the measurements - the points of the

chromatographic plane - are the objects, and the perturbation is the variable.

The examples discussed so far for multi-way methods are from various fields of

science, but chromatography and 2DCOR are no exceptions. There are plenty of

examples in chromatography [44–47], however it is still rare in 2DCOR [48].

2.3 Multi-way data analysis 6



3Mathematical background

„ Life is and will ever remain an equation incapable of

solution, but it contains certain known factors.

— Nikola Tesla

3.1 2DCOR, original concept

First we want to show the original concept for 2DCOR. Its calculation is a

grueling mathematic procedure with Fourier-transform [3] which was later

replaced by a simpler approach with matrix algebra which we also use and it is

presented in the next section. However, it is appropriate to present this concept

as well, because it can lead to a better understanding of the roots of 2DCOR.

In this section we stuck to spectroscopic nomenclature and later switched to

chromatographic interpretation, because we wanted to distance it from the

other formulas, which were actually used in practice, and emphasize that it has

only historical meaning in the boundaries of this thesis.

The basis of this formula is the so-called dynamic spectrum (ỹ(ν, t)) which is

calculated from spectral intensities y(ν, t) at an appropriate spectral index (ν)

and an external variable (t) which runs from Tmin to Tmax, with the help of a

reference spectrum (ȳ(ν)), that is usually the average.

ỹ(ν, t) =

y(ν, t)− ȳ(ν), if Tmin ≤ t ≤ Tmax

0, otherwise
(3.1)

ȳ(ν) =
1

Tmax − Tmin

∫ Tmax

Tmin

y(ν, t)dt (3.2)
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The concept of 2DCOR is to quantitatively compare the patterns of spectral

intensity variations. It is summarized in this equation:

X(ν1, ν2) = 〈ỹ(ν1, t) · ỹ(ν2, t′)〉 (3.3)

The brackets (〈〉) symbolize a cross-correlation function. To expound further

we consider X(ν1, ν2) as a complex function:

X(ν1, ν2) = Φ(ν1, ν2) + iΨ(ν1, ν2) (3.4)

where i is the imaginary unit. X combines two orthogonal components which

are the synchronous Φ and asynchronous Ψ 2D correlation intensities respec-

tively.

If we go one step further we can define now the previously introduced terms

by the generalized two-dimensional correlation function:

Φ(ν1, ν2) + iΨ(ν1, ν2) =
1

π(Tmax − Tmin)

∫ ∞

0
Ỹ1(ω) · Ỹ∗2(ω)dω (3.5)

where Ỹ1(ω) is the Fourier transform of ỹ(ν1, t):

Ỹ1(ω) =
∫ ∞

−∞
ỹ(ν1, t)e−iωtdt

= ỸRe
1 (ω) + iỸIm

1 (ω)

(3.6)

and Ỹ∗2(ω) is the conjugate formula with ỹ(ν2, t):

Ỹ∗2(ω) =
∫ ∞

−∞
ỹ(ν2, t)e+iωtdt

= ỸRe
2 (ω)− iỸIm

2 (ω)

(3.7)

3.1 2DCOR, original concept 8



where Re is the real and Im is the imaginary part.

3.2 Data

As stated in the previous chapter, 2DCOR can work with data from any kind

of measurements. Alteration Analysis (ALA) also shares this property, so the

application examples could be from any analytical field. In the present study,

we focus only on chromatograms in order to keep the discussion simple, and

we do not focus on comparing the methods in different fields of analytical

chemistry. The goal is to present the basic concepts of 2DCOR and ALA as well

as their relations.

The two methods are comparable if data from 1D measurements are used. For

instance, when n chromatograms – each containing m digitalized points – are

put in a matrix’s rows (X).

X =
(
xi,j
) i = 1, 2, ..., n

j = 1, 2, ..., m
(3.8)

To be clear in the nomenclature, in that case from the measurement’s point of

view, the first dimension is the time, and the second dimension is the perturba-

tion we applied on the analytical system. From the two-way matrix’s point of

view, the first dimension (the rows) is the chromatograms (perturbation), and

the second dimension is the time.

3.3 2DCOR

The field of 2DCOR has become diversified over the past twenty years, and the

employed mathematical background behind the results is sometimes unclear.

When using the term 2DCOR we refer to the discrete Hilbert transform [4]

which uses simple matrix algebra. We present the basic calculations, but further

details can be found in our paper [49], or there is an excellent book dedicated

to the field of 2DCOR [50].

3.2 Data 9



3.3.1 Pretreatment

The pretreatment of the data is also an essential part of 2DCOR. A reference sig-

nal is subtracted from the chromatograms. We use the most common method,

the mean signal of the chromatograms (centering), see Eq. 3.9.

x =
(
xj
)

Y =
(
yi,j
) xj =

n

∑
i=1

xi,j

n

yi,j = xi,j − xj

i = 1, 2, ..., n

j = 1, 2, ..., m
(3.9)

Other choices for the reference signal can be a zero baseline – the original

data are retained and used – or any given signal along the perturbation, for

example the initial or the last data set in the series. There is no general rule

on how to choose the reference signal, but centering is used in most cases,

probably it is the most beneficial. When we use the average chromatogram

(x) as the reference signal, each element that is present in the measurement

but is not changing will be cut out. For example if there are two peaks in the

chromatograms but only the first one is changing throughout the measurement,

the treated data (Y) will contain information about the first peak only, the

second one will disappear because its values in every chromatogram are equal

(or very close) to the average. Another major benefit is that baseline-correction

is not needed. Since data pretreatment removes all the static elements from

the data, so if we have the same baseline over the experiments, all data will be

corrected for the baseline.

Please note that the effect of smoothing is not discussed in this thesis.

3.3.2 Synchronous 2D Correlation

The concept of 2DCOR comes from the cross-correlation function, which pro-

vides a complex value (Equation 3.4). The real (Φ) and the imaginary (Ψ) parts

refer to the synchronous and asynchronous components, respectively. The

deduction is not very complicated, however, the matrix algebra approach is the

3.3 2DCOR 10



easiest and proven to be the most useful in practice [50]. The formula for the

calculation of the synchronous correlation matrix (Φ) becomes quite simple:

Φ =
1

n− 1
YTY (3.10)

We have to mention that in 2DCOR, the employed terms can be misguiding

and this section is a great example to illustrate it. Both parts of the term

“synchronous correlation” need some explanation. The term synchronous

is stuck with the method, because in the original correlation concept time

was the variable behind the perturbation, hence the term syn-chronous = the

synergy of time (chrónos, greek) dependent variables. The method has evolved

immensely since its introduction, and now any reasonable physical meaning

(temperature, pressure, etc.) can be the basis of perturbation. On the other hand,

the term correlation also originates from the concept and not from equation

(Eq. 3.10) itself, because it is in fact the covariance of the retention times. Thus,

a newcomer to this field is advised to study the origins and backgrounds of

2DCOR in order to fully understand the terminology.

3.3.3 Asynchronous 2D Correlation

The imaginary part (Ψ) of the cross-correlation function (Equation 3.4) is a little

more complicated to implement in matrix algebra, but with the discrete Hilbert

transform it is more than possible [4]. With matrix algebra, the calculation for

the asynchronous correlation matrix (Ψ) is rather similar to its synchronous

counterpart:

Ψ =
1

n− 1
YTNY (3.11)

3.3 2DCOR 11



where N is the Hilbert–Noda transform matrix with the dimension of n× n:

N =
1
π



0 1 1/2 1/3 . . .

−1 0 1 1/2 . . .
−1/2 −1 0 1 . . .
−1/3 −1/2 −1 0 . . .

. . . . . . . . . . . . . . .


(3.12)

The elements of this matrix are generated as follows:

Ni,j =

0, if i = j

1/π(j− i), otherwise
(3.13)

3.4 Alteration Analysis

Originally, we developed ALA for three-way arrays, but its concepts allow that

it can be used in lower dimensions as well. That is the reason why the formulas

presented here are the simplifications of the ones found in our first paper in

the topic [51]. For three-way arrays, ALA is advantageous, because it produces

matrices instead of higher dimensional data sets, which cannot be visualized

properly. This means that if we want to examine the changes in an n dimen-

sional measurement with an additional dimension for the perturbation, the

ALA maps will be n-dimensional, while 2DCOR maps will be 2n-dimensional.

In traditional one-dimensional measurements, the benefits are the same, the

generated simple graphs are easier to interpret and to connect to the dimension

of the measurement (wavelength, frequency, retention time, etc.)

3.4 Alteration Analysis 12



3.4.1 Basic Altertion Map

The basic alteration map (BAM) shows the overall changes in the series of

the chromatograms. It is needed because the synchronous and asynchronous

alteration maps are maximum scaled, and the BAM has to show the magnitude

of these changes. The basic alteration vector’s (b) formula is very simple:

b =
(
bj
)

bj = max(xj)−min(xj) j = 1, 2, ..., m (3.14)

3.4.2 Difference Data Matrix

The first step in ALA is to calculate the differences (D) between every two

adjacent points along the perturbation. This is the fundamental aspect. It

shows the straightforward point of view of this method: it strictly focuses on

the individual points of the measurement and investigates the changes at those

points.

D =
(
di,j
)

di,j = xi+1,j − xi,j
i = 1, 2, ..., n− 1

j = 1, 2, ..., m
(3.15)

3.4.3 Synchronous Alteration Map

At this point we can show all the changes that occur throughout the perturba-

tion. The next two maps demonstrate how to separate those changes in some

ways. The main goal of ALA is to investigate the properties of the changes of

the huge data set and to illustrate them on simple visual graphs. To describe

the functions beneath the changes without actual curve-fitting – which would

take a lot of time and energy – some statistical parameters are emphasized, like

the average (d̄j) and the standard deviation (σdj ) of the change.

In the synchronous alteration map, only the monotone changes will be shown,

because they have a high average and a low deviation. If we multiply this frac-

tion with the value of overall change, then we have the synchronous alteration

3.4 Alteration Analysis 13



matrix (s′j). The term +1 has to be added, because if there were a perfect case,

and the function of the change were linear with no noise, then σdj becomes 0.

s′ =
(

s′j
)

s′j =
bjd̄j

σdj + 1
j = 1, 2, ..., m (3.16)

As it can be seen below, the asynchronous alteration matrix has a different

formula, but the two maps have to be comparable, that is why the values have

to be scaled. We chose maximum scaling:

s =
(
sj
)

sj =
s′j

max(|s′|) j = 1, 2, ..., m (3.17)

3.4.4 Asynchronous Alteration Map

In the asynchronous alteration matrix (a′) noise-like patterns and non-monotone,

complex functions are dominant. We accomplished that with cutting out all

the monotone functions, because functions like that have the same value for bj

and for

∣∣∣∣∣n−1

∑
i=1

di,j

∣∣∣∣∣, that is why in this case a′j is going to be 0. But if a function is

still present, although it belongs to the synchronous map, it is going to have

a small value, because it has a low deviance in the changes (σdj ). The third

part of the equation is simply present because it is often important to know

the direction of some non-monotone functions, such as one single change in

the series of points. This is the simplest way to implement this property to the

asynchronous map.

a′ =
(

a′j
)

j = 1, 2, ..., m

a′j =

(
bj −

∣∣∣∣∣ n−1

∑
i=1

di,j

∣∣∣∣∣
)

σdj

(
max(xj) + min(xj)− 2x̄j

) (3.18)

3.4 Alteration Analysis 14



The asynchronous matrix (a′) is also maximum scaled.

a =
(
aj
)

aj =
a′j

max(|a′|) j = 1, 2, ..., m (3.19)

3.5 Extension of Alteration Analysis to 3D
datasets

The formulas in this section are for the extensions of previous ones to 3D

datasets. ALA was originally built for this purpose, so the development was

the other way around. It is mathematically possible to do the same on 2DCOR,

however it has little practical significance. In 2D data environments alteration

formulas provide vectors which can be plotted in 2D graphs, in 3D data they

become matrices which need 3D to plot. 2DCOR has matrices already in 2D

data, so the upper dimensional maps are four-way arrays, not just three-way

because we have 2D chromatograms to correlate so it is 2x2 dimensions. They

can be plotted in 5D space, but the foundation of 2DCOR is to create relatively

simple visual representation of the examined chemical system, that is why this

approach is futile.

3.5.1 Three-way Data Array

The data frame (X) is a 3D array, and it contains n number of 2D chromatograms,

each having m× p points as their dimensions.

X =
(
xi,j,k

) i = 1, 2, ..., n

j = 1, 2, ..., m

k = 1, 2, ..., p

(3.20)

3.5 Extension of Alteration Analysis to 3D datasets 15



3.5.2 Basic Alteration Map

The basic alteration matrix (B):

B =
(
bj,k
)

bj,k = max(xi,j,k)−min(xi,j,k)

i = 1, 2, ..., n

j = 1, 2, ..., m

k = 1, 2, ..., p

(3.21)

3.5.3 Difference Data Array

The difference data array (D), where the values are the differences between

every next point in the third dimension of the data frame.

D =
(
di,j,k

)
di,j,k = xi+1,j,k − xi,j,k

i = 1, 2, ..., n− 1

j = 1, 2, ..., m

k = 1, 2, ..., p

(3.22)

3.5.4 Synchronous Alteration Map

The synchronous alteration matrix (S′):

S′ =
(

s′j,k
)

s′j,k =
bj,kd̄j,k

σdj,k + 1
j = 1, 2, ..., m

k = 1, 2, ..., p
(3.23)

The matrix still has to be normalized, just like in 2D:

S =
(
sj,k
)

sj,k =
s′j,k

max(|S′|)
j = 1, 2, ..., m

k = 1, 2, ..., p
(3.24)
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3.5.5 Asynchronous Alteration Map

The asynchronous alteration matrix (A′):

A′ =
(

a′j,k
) j = 1, 2, ..., m

k = 1, 2, ..., p

a′j,k =

(
bj,k −

∣∣∣∣∣n−1

∑
i=1

di,j,k

∣∣∣∣∣
)

σdj,k

(
max(xj,k) + min(xj,k)− 2x̄j,k

) (3.25)

The asynchronous matrix is also normalized, the same way as its synchronous

counterpart:

A =
(
aj,k
)

aj,k =
a′j,k

max(|A′|)
j = 1, 2, ..., m

k = 1, 2, ..., p
(3.26)

3.5.6 Correlation Coefficient

In 2DCOR – besides the synchronous and asynchronous correlation – the so-

called sample-sample correlation is often used. In this technique, we calculate

the covariances not for the retention times (second dimension of the data

matrix) but for the samples (first dimension). Combining that with the other

correlation maps, we have the correlation information for both the retention

times and the samples through the perturbation.

Although we use correlation coefficient maps, which are sometimes also used

in 2DCOR, because despite the similarity with the covariance map, in most

cases it is more informative.
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For a matrix (M), the calculation of the correlation coefficient matrix (P) is very

simple:

M =
(
mi,j
) i = k = l = 1, 2, ..., n

j = 1, 2, ..., m

M̃ =
(
m̃i,j
)

m̃i,j = mi,j − m̄j

P = (ρk,l) ρk,l =
1

m−1

m

∑
j=1

m̃k,jm̃l,j

σm̃k
σm̃l

(3.27)

First the average of columns are subtracted from the proper values, then the

covariances of rows are calculated and divided by the combined standard

variations.

We can make the formula work on a three-way array (X) with some simple

alterations.

X =
(
xi,j,k

) i = l = q = 1, 2, ..., n

j = 1, 2, ..., m

k = 1, 2, ..., p

X̃ =
(
x̃i,j,k

)
x̃i,j,k = xi,j,k − x̄j,k

P =
(
ρl,q
)

ρl,q =
1

mp−1

m

∑
j=1

p

∑
k=1

x̃l,j,k x̃q,j,k

σx̃l
σx̃q

(3.28)
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4Experimental and methods

„ Science is what we understand well enough to explain to

a computer. Art is everything else we do.

— Donald Knuth

4.1 Programming

An extensive part of our work was taken up by creating the computational back-

ground for the experiments. This thesis does not focus on the programming

aspect, however we want to emphasize here that no commercial software was

used, every script was written by the author. All calculations were executed in

the programming language R [52] with the help of Rstudio software [53].

4.2 Chromatographic data simulation

Chromatographic peaks were generated with the exponentially modified gaus-

sian peak (EMG). It has five parameters: t - time (abscissa), tR - retention time,

A - area under the peak, σ - width and τ - time constant (asymmetry) [54]:

α = exp
(

σ2

2τ2 − t−tR
τ

)
β = erf

(
t−tR√

2σ
− σ√

2τ

) y(t) =


A
2τ α(β + 1), τ > 0

A
2τ α(β− 1), τ < 0

(4.1)

In some cases baseline with a simple formula was added to the chromatograms:

y(t) = atb + c (4.2)
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The noise was generated with normally distributed random number. The

chromatograms were simply build by adding their elements – peaks, baseline

and noise – together.

4.3 Changes along the perturbation

The perturbation-induced changes in the series of chromatograms were simu-

lated by changing one parameter of the EMG peaks (Eq. 4.1) along the second

dimension of the dataset - between the chromatograms - where the perturba-

tion occurs. The functions which were used in the experiments are summarized

in Table 4.1. The emphasis was on the comparison of monotonous and non-

monotonous functions and to cover a wide variety of changes, but keeping it

simple with relatively few examples.

Table 4.1.: The formulas of the changes

# Type Formula # Type Formula
1 linear ax + b 5 sine a sin x + b
2 quadratic ax2 + b 6 cosine a cos x + b

3 exponential aex + b 7 single

{
ax + b, if x = c
0, otherwise

4 EMG Eq. 4.1

4.4 Properties of generated examples

The parameters of generated chromatograms are presented as tables in the

appendix which were the bases of plots in Chapter 5. In the tables only the

names of change-types appear, the exact formulas can be seen in Table 4.1. The

parameters which were changed are highlighted in red, the others were kept

throughout the perturbation.
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4.5 Reproducibility of chromatographic
columns

4.5.1 Reproducibility of chromatographic retention data

Felinger et al. studied the reproducibility of chromatographic retention data on

reversed-phased high performance liquid chromatography (HPLC) columns,

and identified the factors that influenced the reproducibility [55]. The sys-

tematically measured data were provided by Kele et al. [56, 57]. From the

huge amount of experimental data, the results of a test mixture (mixture #3 in

Refs. [56, 57]) on five Symmetry C18 (Waters, Milford, MA, USA) columns were

available for the comparison. The test mixture contained thiourea, theobromine,

theophylline, caffeine, pyridine, phenol, 2,2-dipyridyl, and 1,3-dihydroxynaphtalene

eluted in methanol-water (30:70 v/v). The details of the experiments are given

by Kele et al. [56, 57].

4.5.2 Isotherm reproducibility

Continuing the work of Kele et al. [56–61], Gritti et al. studied the repro-

ducibility of HPLC columns under nonlinear conditions, and determined the

isotherms of overloaded band profiles [62, 63]. Felinger et al. in turn examined

the reproducibility of the equilibrium isotherms with principal component

analysis [64]. The examination included seven samples, each containing one

component: aniline, ethylbenzene, phenol, caffeine, propranolol with or with-

out buffer, and theophylline.

The isotherms were determined for every analyte, respectively, on ten Kromasil

C18 (Eka Nobel, Bohus, Sweden) columns with the inverse method. PCA [65]

was then performed on the isotherm parameters to compare the HPLC columns

[64].

4.5.3 Smoothing and baseline correction

When one works with real measured chromatograms, it is necessary to integrate

a data pretreatment step to the calculations, otherwise the correlation maps
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will contain false information or the expected results may be hidden by the

artifacts of the baseline drift or noise. In this work the asymmetric least squares

approach [66] is selected for baseline correction. For smoothing, the Savitzky–

Golay algorithm [67] was used, which is the most common technique in this

field [68].

4.5.4 Scaling

It is often a problem that some features in the chromatograms stay hidden

and therefore valuable information is lost. That occurs because of the great

difference between the magnitudes of the individual peaks. The solution to

this problem is a properly chosen scaling. Scaling may appear in many forms;

in this study we use the generalized scaling, described by Noda [15]. After the

treatment, also the least pronounced patterns of the maps become visible. The

scaling parameters, however, should be chosen carefully, because the drawback

of the method is that it produces artificial baseline- and noise-like disturbing

patterns.

4.5.5 Top view of chromatograms

During the comparison of chromatograms, the correlation maps provide the

differences in the data as expected. But for a better understanding, we have

to know which sample is responsible for a given type of difference, and the

synchronous and asynchronous maps are unable to tell us. We chose the

simplest solution to this issue. The data were already arranged in a matrix. We

simply plotted this chromatomatrix in the same manner as the correlation maps,

in the form of contour maps. By this way we obtained a pseudo 3D graph,

where the abscissa represents the retention time and the ordinate represents

the number of the sample. With that representation, every difference in the

chromatograms can be clearly paired with the given sample.
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4.6 ALA in practice

The thesis presents two experiments with measured data aimed to highlight the

advantages of ALA. The first one is constructed by changing the concentration

of seven compounds, listed in Table 4.3, throughout a series of chromatograms

and then comparing the results to computer generated data. The parameters of

this data are presented in Table A.26 where A is equivalent to the concentrations

of the measured chromatograms. The experimental conditions are listed below

(Table 4.2). The second experiment has the same conditions except the sample

concentrations were permanently 0.4 mg/ml and the solvent composition was

changed. This perturbation was started at 0:100% methanol:acetonitrile ratio

and ended at 100:0% with 10% steps.

Table 4.2.: Parameters of the chromatographic (SFC) system.

instrument: Waters ACQUITY UPC2 System
column: Supelcosil ABZ+Plus (alkylamide, 3 µm, 4.6x150 mm)

column temperature: 60°C
mobile phase: 100% CO2

flow rate: 1.0 ml/min
solvent: acetonitrile

sample temperature: 25°C
injection volume: 2 µl

detection: 192, 200 and 260 nm
backpressure: 150 bar

The parameters of peak height changes are in Table A.26 in the appendix. There

were seven compounds listed below:

Table 4.3.: The compounds and their retention times in the experiments linked to Fig.
5.69 b), 5.70 b)

# tR (min) Compound
1 1.68 ethylbenzene
2 1.91 butylbenzene
3 2.22 hexylbenzene
4 2.64 octylbenzene
5 3.2 decylbenzene
6 3.92 dodecylbenzene
7 4.88 tetradecylbenzene
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5Results and discussions

„ Science does not know its debt to imagination.

— Ralph Waldo Emerson

5.1 2DCOR in chromatography

Our first goal is to show the properties and benefits of 2DCOR with chro-

matographic examples. 2DCOS has a long history and detailed background,

however the few papers working in chromatography do not pay attention to

the fundamental workings. In theory there is no difference if the type of data

was changed (in this case from spectra to chromatograms), but it has to be

clarified and also a description is inevitable for the reader to have a glimpse at

what 2DCOR is capable of.

5.1.1 Linear changes

The simplest case is where only the size of peaks – area under the peak –

is changing and just with a linear function. In the first example four peaks

are changing along the perturbation with four different rates and different

directions (Fig. 5.1 and 5.2). Two of them have positive changes, the others

have negative (Table A.1).

From the synchronous correlation map (SCM) (Fig. 5.2 a)) we can see three

peaks in the diagonal called auto-peaks and many off-diagonal peaks called

cross-peaks. Auto-peaks give information about the magnitude of change on

the given peak while cross-peaks tell the correlations between the changes. As

mentioned there are three auto-peaks meaning three changing peaks, but we

can see cross-peaks with another peak at 2.0 min, meaning there are not three

but four changing peaks in this system. The heights of the auto-peaks show
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Fig. 5.1.: Visual representation of the given changes in chromatograms, projected
on the first point in the series: four linear changes with different rates and
different directions.

Fig. 5.2.: a) synchronous and b) asynchronous correlation maps with four linear
changes.

four different rates (as expected). The first (2.0 min) has the smallest change,

the fourth (4.0 min) has largest.

The presence of large cross-peaks means that the changes are much correlated,

meaning they have similarly executed changes. As we know, they have the

same linear function with different rates, so these patterns just show that. The

heights of cross-peaks are a combination of the two corresponding auto-peaks.

The directions of cross-peaks indicate the directions of the two corresponding

peaks. The SCM is always symmetrical to the diagonal, so the coherent peaks

have the same direction. If the cross-peaks are positive that means the two

peaks are changing in the same direction, otherwise one is positive while the

other is negative, but we can not tell which is which. The auto-peaks are
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always positive. Thus from this patterns we can say that first (2.0 min) and

third (4.0 min) peak and second (6.0 min) and fourth (8.0 min) have the same

directions.

Only noise can be seen on the asynchronous correlation map (ACM) (Fig. 5.2

b)) which means there are no asynchronous changes present. Later examples

will show the details of this map.

Fig. 5.3.: Visual representation of the given changes in chromatograms, projected
on the first point in the series: four linear changes with different rates
and different directions. It is present to illustrate the directional anomaly
compared to Fig. 5.1.

Fig. 5.4.: a) synchronous and b) asynchronous correlation maps with four linear
changes to illustrate the directional anomaly compared to Fig. 5.2.

The next figures (Fig. 5.3 and 5.4) are almost identical to the previous ones (Fig.

5.1 and 5.2), the difference can only be found in the parameters (Table A.2). In

this example the two pair of peaks are still changing in the same direction but

between them it has shifted. As discussed above SCM shows the similarity or
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difference between the directions of two changes, however the exact way is

kept hidden.

Fig. 5.5.: Visual representation of the given changes in chromatograms, projected on
the first point in the series: four linear changes with same rates but different
original values.

Fig. 5.6.: a) synchronous and b) asynchronous correlation maps with four linear
changes with different bases.

Figs. 5.5 and 5.6 show that the heights of correlation peaks only depend on

the magnitudes of changes and do not consider the initial heights of chromato-

graphic peaks (Table A.3). That means if the compound of mixture we want

to attend is negligible to other peaks in the initial chromatogram, it will not

bother our correlation study, because if we can generate considerable change

selectively on that peak, the original handicap becomes obsolete, we will see

clearly our sign of interest on the correlation maps without any other interfering

peaks.
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The patterns of cross-peaks still show the coupled directions of changes with

positive and negative peaks. The rates are similar thus every peak in SCM have

the same heights.

5.1.2 Other monotonous changes

Linear change is the ideal case in correlation experiments, however in practice

much more complex situations will appear. Now we move on step by step to

these cases. First quadratic (Fig. 5.8) then exponential (Fig. 5.10) changes are

present on the maps, similar to the previous arrangement (Fig. 5.7, Table A.4;

Fig. 5.9, Table A.5).

Fig. 5.7.: Visual representation of the given changes in chromatograms, projected on
the first point in the series: four quadratic changes with different rates and
different directions.

Fig. 5.8.: a) synchronous and b) asynchronous correlation maps with four quadratic
changes.
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Fig. 5.9.: Visual representation of the given changes in chromatograms, projected on
the first point in the series: four exponential changes with different rates
and different directions.

Fig. 5.10.: a) synchronous and b) asynchronous correlation maps with four exponen-
tial changes.

The asynchronous maps (Fig. 5.8 b), 5.10 b)) continue to have only noise. The

synchronous maps (Fig. 5.8 a), 5.10 a)) are almost identical to Fig. 5.2 a), only

the magnitudes differ.

The next two figures (Fig. 5.12, 5.15) have more than one kind of change (Fig.

5.11, Table A.6; Fig. 5.14, Table A.7) and this is the point where 2DCOR starts

to reveal its real treasures. The ACM becomes relevant and the separation of

different types appears.

We can see from the SCM (Fig. 5.12 a)) that there are six changing peaks (six

auto-peaks) with the same direction (all positive cross-peaks), but with different

magnitudes (variant heights for the peaks). The interesting part is the ACM
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Fig. 5.11.: Visual representation of the given changes in chromatograms, projected
on the first point in the series: three distinguishable changes with two
different rates respectively.

Fig. 5.12.: a) synchronous and b) asynchronous correlation maps with different
monotonous changes.

(Fig. 5.12 b)). Now we have peaks in this map as well but only cross-peaks.

ACM never has auto-peaks. Unlike SCM this map is not symmetrical to the

diagonal. The presence of asynchronous peaks means that there are changes

with different runs. Their functions in the dimension of perturbation differ.

Please note that not all possible cross-peak has appeared, meaning every two

peaks are synchronous and asynchronity has happened between these pairs.

Arguably the most useful feature of 2DCOR is to tell the sequence of events in

the chemical system. In Fig. 5.12 b) the peaks in the lower half are negative, the

others are positive, this indicates that the first two changes happened first, the

two in the middle of chromatogram were next and the two at the end were last.

As we know they had linear, quadratic and exponential functions respectively
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Fig. 5.13.: The monotonous functions used in the experiments.

Fig. 5.14.: Visual representation of the given changes in chromatograms, projected
on the first point in the series: three distinguishable changes with two
different rates respectively, but with different order from the previous one
(Fig. 5.11)

and if we look at the graph of these functions maybe it becomes clear why is

that order (Fig. 5.13).

The second graphs (Fig. 5.15) show similar features, however the pattern of the

ACM has been mixed up. The order is as follows: last, first and second pair

of peaks. Compared to the parameters of chromatograms in Table A.7 it is in

harmony with our intentions.
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Fig. 5.15.: a) synchronous and b) asynchronous correlation maps with different
monotonous changes.

5.1.3 Non-monotonous changes

In this chapter non-monotonous changes are considered. The last section dealt

with in some ways simpler cases, what we mean is monotonous, especially

linear, changes are easier to interpret. Theoretically there is no difference in the

sense that 2DCOR can handle both, the patterns appearing on the maps are not

much harder to explain. The physical meaning behind these changes can be

tricky to grasp on, however real-life examples surely contain at least portions

of non-monotonous changes.

What we see in the next example (Fig. 5.16 and 5.17) is very similar to where

we started, the simple linear change (Fig. 5.2). The features discussed there are

applicable here as well. However from the chromatograms perspective it is

different (Table A.8) and still the maps are almost identical. This is supposed

to illustrate that 2DCOR is not concerned with the source of changes or their

individual properties of them. It emphasises the connections or correlations

between them. This becomes clearer when later we compare 2DCOR with

ALA.

Although the maps have not changed much compared to the previous chapter,

with this kind of non-monotonous change we can set a third parameter (c, Table

4.1) which shifts this single change on the dimension of perturbation. There is

never an asynchronous peak with same kind of monotonous changes, but here

(Figs. 5.18 and 5.19) with different parameter c (Table A.9) the ACM is filled

with peaks.
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Fig. 5.16.: Visual representation of the given changes in chromatograms, projected
on the first point in the series: four single changes with different rates and
different directions.

Fig. 5.17.: a) synchronous and b) asynchronous correlation maps with four single
changes with different ratios.

Similar patterns are expected as in Fig. 5.17, however there is a small but

essential detail: here the peaks are changing in different directions. The maps

are still reliable and we get the same information, only our statements about the

patterns need to be extended, because the sequence is not determined only by

the asynchronous peaks but the combination of synchronous and asynchronous

cross-peaks, with negative synchronous cross-peaks the outcomes explained in

Section 5.1.2 are reversed. With this in mind we can conclude that the sequence

is still from the first peak (2.0 min) to the last (8.0 min).

Please also pay attention to the smaller synchronous cross-peaks compared

to monotonous changes. These indicate a far-from-linear behaviour of the

changes.
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Fig. 5.18.: Visual representation of the given changes in chromatograms, projected
on the first point in the series: four single changes with same rates but
different directions and at different point in the series.

Fig. 5.19.: a) synchronous and b) asynchronous correlation maps with four single
changes with different points in the perturbation.

Furthermore we widened the function in the perturbation’s dimension so

it influences more points in the series of chromatograms, now it has EMG

function just like the chromatographic peaks as well. Fig. 5.20 shows the EMGs

we used for the next three experiments as seen along the perturbation.

In the first step in this series we simulated four peaks with similar parameters,

only the area under the peak (A) is different in the perturbation’s function

(Table A.10). Fig. 5.21 shows that the principles of evaluation are the same

with this kind of change: SCM highlights the four similar changes with the

same direction and different ratios and ACM contains only noise for no asyn-

chronity.
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Fig. 5.20.: The EMG functions of perturbation used in the experiments. a) is for Fig.
5.21, b) is for Fig. 5.22, c) is for Fig. 5.23,

Fig. 5.21.: a) synchronous and b) asynchronous correlation maps with four EMG
changes with different ratios.

With EMG function we can set the location of change just like with the sin-

gle function, technically retention time parameter (tR) determines where the

5.1 2DCOR in chromatography 35



change will occur in the points of series. Fig. 5.22 shows what happens when

we mix up this detail. At first glance the patterns seem familiar, but soon it can

be realized that something is odd. In SCM the closest cross-peaks are positive

without exception, indicating that every change is going in the same direction.

However the other cross-peaks are negative, creating an impossibility and also

mess up the well-founded rules of sequential order examination. Because ACM

has a simple anti-symmetrical pattern, but it could meet our expectation (Table

A.11) only if the synchronous cross-peaks were positive. In conclusion it is an

extreme case and an exception and it can be explained by the function unique

shape and the overlaps between the four changes (Fig. 5.20 b)). The start of

every curve is in order but while one slope declines the other grows so there is

a good chance this phenomenon appears because of this.

Fig. 5.22.: a) synchronous and b) asynchronous correlation maps with four EMG
changes with different maximum points in the perturbation.

We continued to widen the EMGs, now with twice the width (Table A.12).

Basically the patterns are kept the same, only the cross-peaks became more

prominent (Fig. 5.23). One detail worth mentioning is that the fourth change

is not contained within the boundaries of series (Fig. 5.20 c)) and the smaller

cross-peaks between the first and fourth peaks are showing this.

The last kinds of function we want to examine is sine and cosine. Handling

these are again different from the latter. We saw monotonous changes, others

had one extreme point but here the changes constantly fluctuate their direction,

naturally it results in unique patterns. As seen in Fig. 5.25 a) there are four syn-

chronous auto-peaks and four (2x2) cross-peaks, but between the two groups

there are no cross-peaks. So the first two and last two peaks are synchronous

and going in opposite directions. The two groups are, however, totally asyn-
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Fig. 5.23.: a) synchronous and b) asynchronous correlation maps with four wider
EMG changes with different maximum points in the perturbation.

chronous. From the visual representation (Fig. 5.24) and the parameters in

Table A.13 we can see it covers the anticipated.

The ACM (Fig. 5.25 b)) in this case is hard to explain, because there are no

synchronous cross-peaks where asynchronous ones are present, but it clearly

confirms the results from the previous map. Also, from the functions’ view it is

hard to point out which change precedes the other because of fluctuation.

Fig. 5.24.: Visual representation of the given changes in chromatograms, projected
on the first point in the series: four wavelike changes, two sinusoidal and
two cosinusoidal with the same amplitudes but different directions.
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Fig. 5.25.: a) synchronous and b) asynchronous correlation maps with two sine and
two cosine changes.

5.1.4 Changes in shape

One can argue that the previously detailed cases can become hard to follow

quite fast. All of those changes occurred only on the height of peaks and that is

the simplest perturbation which can occur, any other change which involves

the shape or location of peak makes the evaluation much more difficult. We

tried to cover a wide range of occurrences with height changes and still got

dazzled by their extensive complexity. In the next two sections we do not want

to touch every aspect but to give an overview in order to keep the discussion

relatively simple.

In the original field, spectroscopic peak shape changes are rare and there

is no report of migrating peaks. On the contrary in chromatography it is

almost unavoidable to have at least minimal distortion and displacement in

correlation systems. So the next few examples are very important for us because

they diverge from 2DCOS and fundamental in chromatographic correlation

study.

The first example in peak shape changes (Figs. 5.26 and 5.27) shows right away

the problems with this kind of changes. First it seems even auto-peaks become

complex, they have a center and surrounding hills (technically cross-peaks)

with different shapes and directions. It is because when σ is changing, the

intensities of peak’s center and sides move oppositely.
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Fig. 5.26.: Visual representation of the given changes in chromatograms, projected
on the first point in the series: four linear shape changes with two rates
and different directions.

Fig. 5.27.: a) synchronous and b) asynchronous correlation maps with four linear
changes in the peak shape.

Furthermore, everything has synchronous and asynchronous values as well

despite the fact that the changes on peak shapes were linear everywhere (Table

A.14). The solution is very simple: the maps consider only the intensities at

certain points and not the functions how they change and the values do not

change linearly.

The basic rules, however, still apply to the patterns. We can see from SCM that

the first and third peak change in the same direction just like the second and

fourth, the first two have the same magnitude which is smaller than the last

pair. ACM is again harder to interpret, because it tells a sequence but it has no

physical meaning, because we know they are the same changes just in every

second cases reversed. It is only good for telling which peak is narrowing and
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which is widening, but for that the maps have to contain both. In conclusion

we will see unmatched patterns when peak shape changes occur so they can be

identified.

Fig. 5.28.: Visual representation of the given changes in chromatograms, projected on
the first point in the series: four EMG changes with two rates and different
directions.

Fig. 5.29.: a) synchronous and b) asynchronous correlation maps with four EMG
changes in the peak shape.

The second example has EMG functions in the changes of peak shape to demon-

strate how non-monotonous changes appear (Fig. 5.28, Table A.15). The pat-

terns (Fig. 5.29) have no new features here because of the above detailed

phenomenon. The EMG’s own properties makes the two directions differ from

what we saw with linear functions, but we can not distinguish the two. The

peak shape changes are more complex than to see deeper the functions what

caused them.
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5.1.5 Peak migration

The patterns seen in the next three examples also contain complex peaks like

the previous ones, because during the migration of peak the maximum point

and the sides behave differently. They also have a distinct look which got the

nickname "butterfly" in the field due to the ACM’s strong resemblance to that

insect.

The first example has four linear peak shifts in the same direction (Fig. 5.30,

Table A.16), but the first two peaks have longer trajectory than the rest. The

mentioned butterfly patterns can be seen accordingly to the parameters (Fig.

5.31). What we see becomes more clear when we change the direction of

every second peak and look at those maps in Fig. 5.33 with the parameters of

Table A.17 (Fig. 5.32). The auto-peaks have not changed but the cross-peaks

have shifted. Now we can conclude that 2DCOR can show peak shifts with

unmistakable patterns and even tell their directions.

Fig. 5.30.: Visual representation of the given changes in chromatograms, projected
on the first point in the series: four linear peak location changes with two
rates but same direction.

Non-monotonous peak migrations are just a little different from their monotonous

counterparts. We chose EMG functions to change the tR parameters with, and

like in Fig. 5.33 there are two rates and directions. In Fig. 5.35 The butterfly

patterns can be seen and we can tell the type of change, only here it is clear that

these shifts were not linear, they were more complex (Figs. 5.34 and Fig. 5.35).

Similarly to the width changes, ACM is not really informative about sequential

order, its sole purpose is to show the directions of changes.
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Fig. 5.31.: a) synchronous and b) asynchronous correlation maps with four linearly
migrating peaks in the same direction.

Fig. 5.32.: Visual representation of the given changes in chromatograms, projected
on the first point in the series: four linear peak location changes with two
rates and different directions.

Fig. 5.33.: a) synchronous and b) asynchronous correlation maps with four linearly
migrating peaks in two directions.
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Fig. 5.34.: Visual representation of the given changes in chromatograms, projected on
the first point in the series: four EMG location changes with two different
rates and different directions.

Fig. 5.35.: a) synchronous and b) asynchronous correlation maps with four migrating
peaks in two directions with EMG functions.
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5.1.6 Overlapping peaks

So far the examples covered separated peaks, however the this section deals

with overlapping peaks where the changes interfere with each other or from

the other way around the peaks are physically connected. The question is how

well 2DCOR can separate those signals. And the answer is: it can exceptionally

well. Actually, this has been a strong argument for 2DCOR, because of the 2D

environment the resolution is higher compared to traditional 1D projections

which leads to easier detection of overlapping peaks.

We set up a chromatographic system with five overlapping peaks, so ten

peaks in general, the parameters can be seen in Table A.19. These peaks are

narrow and their retention times have little difference, so they are seemingly

inseparable as Fig. 5.36 shows with every chromatogram projected to each

other. The changes are very small too, they can be barely seen by the naked eye

let alone evaluate efficiently.

Fig. 5.36.: The series of chromatograms with five (a total of ten) seemingly inseparable
overlapping peaks.

Fig. 5.37 contains the correlation maps of those changes. We can see imme-

diately that they are much more informative, they represent those features

very extensively. Let us now focus on the separation of overlaps. Only one

peak can be distinguished from its pair in SCM (a)), the second group where

one peak is changing positively and the other in negative direction. ACM

(b)) is more suitable in this case, two more overlaps can be revealed. At the

end only the first and the third group looks like one peak. The differences of

changes in them are really small, but it still shows the limitations of this feature.

In conclusion we can say that 2DCOR enhances our chances to spot overlap-
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ping peaks in all cases, however if we manage to evoke very different kind

of changes on the overlapping peaks, like different directions or monotonous

versus non-monotonous changes, it can be a powerful tool.

Fig. 5.37.: a) synchronous and b) asynchronous correlation maps with five (a total of
ten) seemingly inseparable overlapping peaks.

A second example is presented too because the first one was something like an

extreme case and a more usual scenario is expedient to a closure. Here three

pair of peaks are present, they are wider, the inflexion points are visible but

they are still highly overlapped. However the true nature of changes are again

hard to tell, if not impossible, from the projection of the chromatograms (Fig.

5.38). Parameters are in Table A.20.

The patterns are more prominent on every group, no peak or information

stays hidden, but remember, they are still highly overlapped peaks with small

changes, other visual evaluations can be troublesome. The most interesting

change from the previous example is that the two peaks in the first group can

be seen clearly despite it is the same change.
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Fig. 5.38.: The series of chromatograms with three (a total of six) highly overlapping
peaks.

Fig. 5.39.: a) synchronous and b) asynchronous correlation maps with three (a total
of six) highly overlapping peaks.
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5.2 Introduction to ALA and comparison to
2DCOR

ALA was made to extend the possibilities of 2DCOR to higher dimensions,

to successfully make correlation maps on 3D datasets. However it has been

proved that because of the simplified mathematics ALA is just as useful in 2D

as in 3D and provides a different but in some ways simpler and more practical

alternative to 2DCOR.

First we will introduce our method through traditional datasets where pertur-

bation is applied to 1D measurements forming a 2D dataset. The examples

will be parallel to the ones in the previous section (Section 5.1). In that part we

detailed the properties of correlation maps and the reader could get familiar

with the right mindset for correlation experiments. Alteration maps have the

same fundamentals so now we can focus on ALA’s unique features. Chapter 3

described the calculations for both methods. ALA seems very different there,

here we also want to show how the two are still connected.

5.2.1 Linear changes

Before we begin with the examples we should take a look at the alteration

maps. Instead of two – as in 2DCOR – there are three maps: the synchronous

and asynchronous maps have the same purpose as in the original method,

i. e. showing the different aspects of changes triggered by the perturbation,

the addition of basic alteration map was necessary because the latter two are

normalized and the overall magnitudes of changes have to be shown and only

the three together give complete information about the properties of changes

as we will see.

Fig. 5.40 shows the alteration maps side by side for the same example as Fig.

5.2 (Table A.1). Compare the two figures and the first and arguably the most

important advantage of ALA is shown immediately. We have simple linear

plots instead of the 3D maps plotted in pseudo-3D graphs which’s two halves

are not even necessary, the SCM is always symmetrical while ACM is anti-

symmetrical to the diagonal. That means ALA highly improves the simplicity

of information gathering. Having three maps is definitely a disadvantage but
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Fig. 5.40.: Example for the a) basic, b) synchronous and c) asynchronous alteration
maps.

it is dwarfed by the fact that the nature of these graphs allows us to plot them

in only one figure. The combined plot for Fig. 5.40 is shown in Fig. 5.41 a).

Fig. 5.41.: Alteration maps of four linear changes with different directions. a) the
initial set up and b) the reversed.
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On the BAM (black) we can see all changes irrespectively of their type. It is

always positive and shows only the magnitudes. synchronous alteration map

(SAM) (red) shows monotonous changes almost exclusively and asynchronous

alteration map (AAM) shows non-monotonous changes. This differs from

2DCOR because the alteration maps separate different types of changes while

correlation maps emphasise different behaviours of peak pairs. The concepts

of the two methods are maybe not matched, but we will show the parallel

outcomes of their evaluations.

Here we can see four changes with four magnitudes. We can not tell if they

are linear or not, but they have no asynchronous value, so it is certain that

they are monotonous. The AAM has an interesting feature, it is made up

only of noise except for the locations where the peaks should be present. This

phenomenon has no practical use at this point, maybe in future cases it can

be used for peak detection. SAM shows the directions of changes and it can

not be emphasised enough that it is the real direction the changes took not just

some relative attribute. ALA focuses on the peaks individually and from that it

gains the ability to give more detailed information. Meanwhile it lacks direct

information on the correlations between changes, which is the main focus of

2DCOR. However this information can be gathered through the comparison

of peaks, if two changes have the same values for both three alteration maps,

we can safely say they are highly correlated in the sense of 2DCOR. Although

we do not want to use that term in this field, because there is no mathematical

background to back it.

Thus the directions are additional information in the alteration maps compared

to their correlation counterparts. The difference between the two graphs in Fig.

5.41 is that the direction are reversed (Table A.1, A.2). The two ALA plots show

exactly this change while the 2DCOR maps remain the same (Fig. 5.2 and 5.4),

because the relative directions are not changed.

The next graph (Fig. 5.42) shows the alteration maps where the linear changes

have same magnitudes, only the initial heights of the peaks are different (Table

A.3). Compared to the correlation maps (Fig. 5.6) they deliver the same

information and additionally the exact directions are only shown here.
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Fig. 5.42.: Alteration maps of four linear changes with different bases.

5.2.2 Other monotonous changes

Besides the linear function, other monotonous changes were studied by cor-

relation maps (Fig. 5.8, 5.10) with the parameters from Table A.4, A.5. The

alteration maps for the same quadratic and exponential changes are in Fig.

5.43 a) and b) respectively. The properties are similar to what we discussed

with linear changes and still alteration maps have the same information as

correlation maps and more.

The interesting feature is to look at the ratios of BAM and SAM together in

both graphs and compare them to linear changes (Fig. 5.41). The quadratic and

exponential SAM peaks follow the BAM, the synchronous values have linear

response to the magnitude of change while linear change has a quadratic-like

response in SAM. This occurs because of the calculation of SAM (Eq. 3.16)

with the properties of these functions. It makes a bit harder to evaluate more

complex alteration maps, but the next example will show that actually it can be

managed quite easily and also the noise patterns in AAM will be of help: linear

changes have no noise at the peak’s location, quadratic changes have noise on

the margins of peaks and exponential changes have high noise at the peaks.

The inclusion of more than one types of monotonous changes are revealing

another basic difference between 2DCOR and ALA. Both shows the differences

of changes, but for that the original method has the asynchronous correlation

cross-peaks (Fig. 5.12, 5.15), ALA uses the BAM and SAM ratios (Fig. 5.44). For

similar basic peaks the linear change has the highest synchronous peaks and
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Fig. 5.43.: Alteration maps of a) four quadratic changes and b) four exponential
changes.

the exponential has the lowest. In this case the AAM is not really necessary,

but it makes it clear which are the exponential peaks. From this information,

the sequential order told by 2DCOR can be set.

Fig. 5.44.: Alteration maps with different monotonous changes.

5.2.3 Non-monotonous changes

We started with one single change along the perturbation, because it has a

unique style in ALA. It has only AAM peaks, so in this way it is the opposite

of monotonous changes. They have some similarities in the form of single

change’s AAM peaks are not going with BAM (Fig. 5.45 a)), they do not have

a linear response while the rates of changes certainly are linear (Table A.8).

Furthermore we can see the directions too.
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Fig. 5.45 b) has the same type of changes only this time the rates are the same,

the difference is that these single changes are realized at different points in the

series of chromatograms (Table A.9). Correlation maps show the sequential or-

der in an elaborate manner, through comparing synchronous and asynchronous

cross-peaks (Fig. 5.19). Unfortunately alteration maps do not have this feature.

The sequence of monotonous changes can be obtained, but with this type it

lacks this information. We have to mention that this is the only disadvantage

of our method compared to 2DCOR, however later we will show a possible

solution.

Fig. 5.45.: Alteration maps with four single changes with different rates.

EMG is another non-monotonous function we examined. Its formula is nothing

like the single change yet from the perspective of perturbation they are quite

similar. The change is localized to one extreme point, only the EMG is affecting

more than one. The patterns of alteration maps show this similarity (Fig. 5.46).

The ratios of BAM and AAM are identical and SAM has only noise exaggerated

at the peaks. This example has the same tR parameter for every peak (Table

A.10), but for the next figure it is different for every peak (Table A.11, A.12). Fig.

5.47 a) and b) has the same retention times for the perturbation function, but

they are wider in b). The difference is that a recognizable synchronous peak

appears in a) at the last peak and b) has all four. It can be explained by the

properties of alteration maps. SAM was build to show monotonous changes,

not exclusively but to emphasise them, one single change is the opposite of that

so SAM shuts it out entirely. However when monotonous behaviour gets more

prominent, SAM notices, thus the sequential order is appearing. It is a reversed

order: the latest change has the highest value, but it is shown nevertheless. Our

studies suggest that at least half of the points along the perturbation has to

be involved for SAM to identify the sequence. If it was not the case, the noise
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vales the synchronous peaks. However, further improvements on the method

may be able to include this feature.

Fig. 5.46.: Alteration maps with four EMG changes with different rates.

Fig. 5.47.: Alteration maps with four EMG changes with different retention time
parameters.

A very interesting case is when waveforms are the functions behind the per-

turbation. The example has four changes with sine and cosine run and both

are added and subtracted from the initial peak (Table A.13). Correlation maps

(Fig. 5.25) show that there is two different changes through the absolute out of

phase behaviour of the two types with no synchronous cross peaks. ALA (Fig.

5.48) goes an extra mile again, because if we know that waves are involved in

the experiment the two species can be identified: sine changes have opposite

SAM and AAM peaks while cosines have peaks with identical directions.
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Fig. 5.48.: Alteration maps with four EMG changes with different retention time
parameters.

5.2.4 Changes in shape

Section 5.1.4 dealt with how informative correlation maps are in peak shape

changes. There we discussed the difficulty with these cases, the complex

patterns we have to evaluate (Figs. 5.27, 5.29), but if we are familiar with these

patterns, 2DCOR can be a very effective tool for deciphering what happens

in the chemical system. Alteration maps neither have trouble bringing the

information (Fig. 5.49). They have the luxury to deliver it in 1D graphs, so

it is much easier to understand them, and again the real directions can only

be seen here. For example, the first peak in Fig. ?? a) has positive sides

and negative middle part in SAM, that means during the perturbation the

sides were increasing and the middle was decreasing, which leads to the fact

that the peak was widening, the peak shape parameters were increased. The

second peak has the opposite look which means narrowing. If we look at

the parameters, what the graph was based on, we can see exactly that (Table

A.14).

Furthermore AAM in ?? a) has interesting peaks. Only some distorted looking

peaks appear, two at every change while in graph b) three unambiguous peaks

developed. The parameters attached to the second graph hold non-monotonous

changes contrary to the previous linear ones and this difference is what shown

in the two graphs. 2DCOR also informs us about this with the small cross-peaks,

but ALA is more straightforward.
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Fig. 5.49.: Alteration maps with peak shape changes.

5.2.5 Peak migration

Peak shift has a unique pattern in 2DCOR (Fig. 5.31, 5.33, 5.35), we can see

from Fig. 5.50 that ALA is no exception, but the meaning behind it can be

gathered without much effort. We have three examples: the first one has four

linear peak shifts with the same direction (Table A.16), in the second, two of

them are reversed (Table A.17), the third one has non-monotonous peak shifts

(Table A.18).

The patterns vary with the distance taken by the peak, just as in 2DCOR. If this

distance is small we can see two peaks in BAM and their synchronous pair.

From the direction of synchronous peaks, the direction of migration can be told:

from negative to positive. They do not have asynchronous value, only a tiny

peak in the middle. On the other hand, if long distance is taken by the peak

the BAM’s peak become a plateau. Synchronous peaks still fulfil their purpose,

but here asynchronous values arise too. We can differentiate monotonous and

non-monotonous shifts, one has symmetrical patterns (a), b)), the other does

not (c)). As we can see in this case, 2DCOR and ALA are very similar to each

other.
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Fig. 5.50.: Alteration maps with shifting peaks.
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5.2.6 Overlapping peaks

2DCOR proved to be successful in detecting overlapping peaks, described in

Section 5.1.6. ALA is no exception. Fig. 5.51 a) and b) shows the alteration

maps for the experiments of correlation maps in Fig. 5.37 and Fig. 5.39. The

parameters are presented in Table A.19 and Table A.20.

In the first example (a)) the two overlapping peaks can be easily determined

in the groups, where the changes are very dissimilar, different directions in

the second group and different types in the fifth. Unfortunately, the other

groups seem like just one combined peak, the separation is not prominent.

2DCOR neither could tell the overlap in the first and third groups, but through

asynchronous cross peaks it could show that in the fourth. It is because of the

separable sequential behavior of linear and quadratic changes. In ALA these

are more similar. They can be identified because with quadratic change the

ratio gap between BAM and SAM is bigger compared to linear change, but in

this case it is not helping with separate the overlapping peaks.

In the second example (b)) the situation is identical to what we could see

in correlation maps, every last detail is visible on the maps, even the small

difference in changes is showcased (first group). So we can conclude that both

methods can be highly efficient to separate overlapping changes, only 2DCOR

can be slightly more susceptible in extreme cases.

Fig. 5.51.: Alteration maps with a) five (a total of ten) seemingly inseparable overlap-
ping and b) three (a total of six) highly overlapping peaks.
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5.3 ALA in 3D environments

The previous section dealt with comparing the two methods, however 2DCOR’s

reach ends with 1D measurements, only ALA is capable to adapt to 3D datasets

built from a series of 2D chromatograms. The simple graphs for alteration

maps become more complex. They will be 3D plots visualized from an above

perspective as contour-plots just like correlation maps. So alteration maps in 3D

will have a resemblance with 2D correlation maps. There are major differences

as well: There will be three maps, basic, synchronous and asynchronous,

just as discussed in 2D, but here they have to be plotted separately. The

most important one, however, is that they are not symmetric in any way

(only in extreme cases, but that would come from the arrangement of 2D

chromatograms and not from the properties of the map), the diagonal has no

large part in their evaluation. Because unlike the correlation maps what we see

is not an abstract second dimension but a chromatographic plane where every

point is of interest.

5.3.1 Properties of alteration maps

Chapter 3 states that the formulas of 2D and 3D ALA are the same, only in 3D

we examine every dot in a plane rather than a line, the points of interest leap

into higher dimension, but the calculations in the perturbation’s dimension

remain the same. So, we expect no less from the maps, but to have the same

properties like their previous counterparts.

The next experiment is designed to summarize the working of alteration maps,

it contains a few representative functions of perturbation we mentioned before

(Table A.21). Fig. 5.52 shows four plots, the first one (a)) represents the starting

point of the perturbation, the first chromatogram in the series. The second is

the BAM (b)) which as we know signals every change and their magnitudes.

Comparing the two informs us that only those peaks appear in the alteration

map where some change occurs, the rest is cut out, static elements of the

system, which are permanent throughout the perturbation, do not disturb the

evaluation. Thus the first major advantage of 2DCOR and ALA is secured.

Without further details we see peaks at different locations in SAM (c)) and

AAM (d)), so clearly some form of separation is apparent. The two maps have
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only four peaks while BAM has eight. This mystery is solved when the maps

are magnified, as it is shown in Fig. 5.53. Now we can see all the synchronous or

asynchronous peaks associated with the basic peaks. This gives us the difficulty

with 3D ALA, it is hard to plot them efficiently with every detail visible, while

in linear graphs one can usually see wider scale of peaks. However it is not

really the method’s fault, even today with recent technology, 3D plotting is still

not easy in either field. 2DCOR has to deal with this problem too, in fewer

dimensions. Maybe virtual or augmented reality will enhance this aspect in

the near future.

Fig. 5.52.: Example for exhibit the properties of alteration maps. The a) first chro-
matogram of the series, b) basic, c) synchronous and d) asynchronous
alteration maps.

If we have a closer look on the alteration maps, we can see the regular tenden-

cies we discussed in 2D experiments. Namely the monotonous changes (#1-4)

only have synchronous peaks, single changes (#5,6) only have asynchronous

and wavelike changes (#7,8) have both. The monotonous changes can be sep-

arated too, he ratios of basic and synchronous peaks reveal the linear (#1,2),
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quadratic (#3) and exponential changes (#4). We already isolated single changes

from wavelike ones, but also sine (#7) has opposite facing peaks while cosine

has two positive peaks. The direction of certain changes can also be pointed

out, #2 and #6 is negative while #1,3-5 is positive.

Fig. 5.53.: More detailed version of the maps from Fig. 5.52. a) basic, b) synchronous
and c) asynchronous alteration maps.

The changes in peak height are demonstrated above, but what about other

changes that affect peak shape and location? An instructional experiment is

made to clue us in (Table A.22). Fig. 5.54 shows a few examples of what we can

see on alteration maps with these changes. There are twelve patterns associated

with them, the first seven (#1-7) belong to shape changes. A significant update

from 2D is that now there are two ways where the peak can change its shape.

In the lower line (#1-4) only one dimension is affected. #1 and #3 is widened,

#2 and #4 got thinner, indicated by SAM (b)) with negative center and positive

sides and reversed respectively. The difference between pairs is that the change

happens either in the first or second dimension.
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The middle line (#5-7) is where both dimensions have shape distortion. #5’s

width is getting larger with the same magnitude in both directions. #6 and #7

is widening in both ways too, but significantly more in one dimension.

The AAM seems to have no peaks for peak shape changes, that is not the case,

magnifying the map will reveal them, but the peaks of shift are much higher

than them, so they disappear in the base colour. However for more complex

examples they are absolutely essential, but for this case they are not really

necessary.

Finally, the upper line (#8-12) represents peak shifts. There are examples for

two dimensions (#8,9 and #10,11) and two directions (#8,10 positive and #9,11

negative). The last one (#12) shows what happens when the movement is not

aligned with any dimension, from the parameters perspective: the tR of both

dimensions are changing.

Fig. 5.54.: Examples for shape change and peak shift in 3D. a) basic, b) synchronous
and c) asynchronous alteration maps.
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2DCOR and ALA are proved to be effective in detecting overlapping peaks

(Sections 5.1.6, 5.2.6). Now we will see how 3D ALA is up to the task. The

overlapping peaks, we will see, are identical to the ones studied before, only

this time they were fitted in one 2D chromatogram due to the expanded space.

The first chromatogram of the series (Fig. 5.55) shows how they look on

the chromatographic plane. The peaks were changed in only one dimension

the second was untouched, the exact parameters can be found in Table A.25.

There are eight peak groups with two-two overlapping peaks, five seemingly

inseparable (#1-5) and three recognizable but still highly overlapped (#6-8).

Fig. 5.55.: Examples for overlapping peaks in 3D. The first chromatogram of the
series.

The alteration maps with default options are shown in Fig. 5.56. And clearly

scaling issues are present here as well, only a few peaks can be seen. We

chose the magnification approach against scaling ones due to its simplicity. We

adjusted the options of z axis to show the smaller peaks, and this time every

change is featured in the maps (Fig. 5.57). The patterns are reminiscent of 2D

ALA maps, in fact they are basically identical, only expanded with another

dimension. To start with disadvantages #1,3 can still not be separated, but other

than that only advantages left. SAM is enough to separate #2,7, the changes

with opposite directions. The two peaks in groups #5,8 divided between SAM

and AAM on the basis of their monotonicity, linear showed in the first, sine in

the latter. #6 has the same setup as #1, but because of the bigger difference of

retention time, the two peaks are appeared separately. The greatest mystery is

#4 where there is two different types of monotonous changes, but only one peak

appears, however it is a strangely shaped one. We can not tell unequivocally

its overlapped background, but due to the nature of 2D separation and 3D

visualization the shape distortions of two co-eluting peaks can be seen more
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clearly, it is also especially conspicuous on #6-8. So, in this case we have a

higher chance to spot this anomaly on #4 too.

Fig. 5.56.: Examples for overlapping peaks in 3D. a) basic, b) synchronous and c)
asynchronous alteration maps.

In conclusion we can rightfully say that ALA in 3D delivers the same infor-

mation as in 2D. The singular differences come from the difficulties of higher

dimensions. On one hand, visualizing the maps becomes significantly more

troublesome, the sophisticated details are harder to detect with the naked eye

and the maps have to be plotted separately, making it harder to compare their

values. On the other hand, changes (height not included) now have another

dimension to be realized which makes more combinations possible leading to

more complex patterns. Except all that the desired information still can be gath-

ered within reasonable conditions, because the representation of perturbation’s

dimension, the changes in the system are reminiscent to 2D ALA.
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Fig. 5.57.: Examples for overlapping peaks in 3D. Magnified correlation maps: a)
basic, b) synchronous and c) asynchronous alteration maps.

5.3.2 Practical examples

In this section we will show two cases where alteration analysis can become

handy. These are simple examples, because the exploitation of all the properties

of ALA in action will not fit in the boundaries of the present study. These are

just two of the many practical approaches with more realistic chromatograms

than the examples before, because in measured systems it is more likely to have

only one or two kinds of changes.

If one wants to evaluate a simple chromatogram to unveil the usual proper-

ties of the peaks in it, one will not need alteration analysis, there are already

sophisticated methods included in almost every chromatographic software to

do that. Alteration analysis becomes useful when there is a series of measure-

ments and one needs to know the changes between them. Also, if there are

only two or three chromatograms, their analysis can be done easily visually,

5.3 ALA in 3D environments 64



by placing them next to each other. The difficulty arises when there are sev-

eral or even more chromatograms, or there are only minor changes between

chromatograms. The comparison still can be done the same way visually with

the default software, but it will be hard and time-consuming. In contrary,

alteration analysis can be done in a few minutes with just a few simple and

straightforward graphs.

One of the cases where alteration analysis can be very attractive is when the

chromatograms are crowded (Fig. 5.58 a)) and there are only a few small

changes between chromatograms (Table A.23). It is almost impossible to notice

the differences visually in the plotted chromatograms. The alteration maps,

however (Fig. 5.58 b), c), d)) provide a simple solution. In the basic map

(Fig. 5.58 b)) we can see the changes, the few spots where the chromatograms

differ. It is also shown that there are two types of changes. Three of the four

changes are synchronous (Fig. 5.58 c)), probably all of them linear, because the

ratios on the basic and asynchronous maps are the same. But there is a smaller

asynchronous change (Fig. 5.58 d)). It has a peak only on the asynchronous

map, so we can assume that it is a single difference. And that is one of the

reasons to include the correlation coefficient map (Fig. 5.58 e)) into the method,

because it shows the exact sample where this single change has occurred. It

can be seen by the break of the pattern at sample #6 of 8.

In the second example (Fig. 5.59, Table A.24) all the peaks of the chromatograms

change synchronously with the perturbation. We can say so, because the asyn-

chronous map (Fig. 5.59 d)) has no peaks, it is close to zero almost everywhere,

only the noise can be seen on it. This feature can be noticed from the plot-

ted chromatograms, but one little detail may stay hidden. Four of the peaks

change slightly differently from the others. Their ratios are kept in the basic

and synchronous maps (Fig. 5.59 b), c)), this suggests that they are somehow

connected, at least more than the other peaks. The correlation coefficient map

(Fig. 5.59 e)) verifies linear synchronicity with its symmetric pattern.

5.3 ALA in 3D environments 65



Fig. 5.58.: Practical example of the usefulness of ALA with only a few small changes.
The a) first chromatogram of the series, b) basic, c) synchronous, d) asyn-
chronous alteration and e) correlation coefficient maps.
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Fig. 5.59.: Practical example of the usefulness of ALA with many but two different
changes. The a) first chromatogram of the series, b) basic, c) synchronous,
d) asynchronous alteration and e) correlation coefficient maps.
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5.4 Experiments on measured data

After establishing fundamental properties via computer generated data 2DCOR

and ALA has to be tested on measured chromatograms. First we provide an

example to how 2DCOR can be useful in chromatography. This technique is

compared with PCA in a reproducibility study. After that ALA gets into the

highlight. Its workings in practice will be demonstrated by two experiments, in

the first one peak height changes will be the focus, in the second one methanol’s

role in detection will be studied.

5.4.1 Reproducibility of chromatographic columns

After the establishment of the method by a number of computer experiments,

the first study on measured data was the comparison of the retention prop-

erties of the components of a test mixture (Fig. 5.60) on five HPLC columns.

The same sample was injected five times on each column. This resulted in 24

chromatograms (on the first column only 4 injections were made) with approxi-

mately 27 minutes of elution time, digitalized with more than sixteen-thousand

data points respectively. Without the proper calculation technique, the evalua-

tion of this data matrix can be quite challenging. However the 2D-correlation

can fairly simplify that procedure, providing valuable information within a

short time.

Fig. 5.60.: The test mixture of eight compounds used in the reproducibility study.
The experimental conditions are detailed in Section 4.5.1 and in its original
source: Kele et al. [56]
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Comparing the five-five chromatograms measured on the same columns, the

conclusion is that, as expected, there is no significant difference between them.

Surely there are minor fluctuations in the retention times of the peaks, but the

values of the asynchronous maps are two orders of magnitude lower than the

synchronous maps, indicating the presence of only negligible differences. There

are also no noticeable distinctions on the top-views, same as the sample–sample

correlation coefficient maps.

The results are represented with the correlation maps of the data obtained on

column #3 (Fig. 5.61). If we examine the synchronous and asynchronous correla-

tion maps in this example, the patterns only show the consequences of retention

time changes. However the top-view of the chromatograms show a straight

line for each peak in Fig. 5.61 c), meaning the retention time changes are practi-

cally negligible in that instance. In the fourth map (sample–sample correlation

coefficient map) there is no correlation coefficient lower than 0.998, verifying

that only minor differences can be observed between the chromatograms.

Studying all the 24 chromatograms together, similar results can be concluded,

although this time the differences are more distinct (Fig. 5.62). As the top-view

shows, the variation of the retention times comes from the dissimilarities of

the HPLC columns, because the chromatograms are settled in five groups,

each representing an HPLC column. The sample–sample correlation coefficient

map also indicates high correlations inside the groups (with values no less

than 0.98), differences only appear between the groups. The lowest correlation

coefficients (0.57–0.63) are found between columns #2 and #4. For all the other

pairs of HPLC columns, the values are always greater than 0.8. That explains

the chessboard-like pattern of the map, because the 5× 5 surfaces are obtained

for almost identical chromatograms, measured on the same column.

Furthermore, the conclusion for the correlation between the HPLC columns

is that column #1 and #3 are the most similar, whereas the chromatograms

measured on columns #2 and #4 are the most different. On the whole, however,

there is a good correlation for the entire data matrix, so the reproducibility is

far above plausible.

In this case, the perfect reproducibility of the chromatograms on the same

columns are also clearly shown, therefore there is no need to make the compari-
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Fig. 5.61.: a) synchronous and b) asynchronous correlation maps, c) top-view of
the chromatograms measured on column #3 and d) the sample–sample
correlation coefficient map.

son on every column respectively. These four graphs contain all the information

we need.

At this point we know that the 2D-correlation method provides information

about the data in a logical manner, but we have not yet verified its results. To

achieve that, we compare the 2D correlation to the previously published results

of PCA calculation on the same data set [55].

The score plot of the PCA (Fig. 5.63) on the retention times reveals that HPLC

columns #2 and #4 differ the most in their properties, and there is almost

no difference between the retentions measured on columns #1 and #3. This

confirms the results of sample–sample correlation. Hence, one can conclude

that the two methods – principal component analysis and 2D correlation –

provide identical conclusions.

5.4 Experiments on measured data 70



Fig. 5.62.: a) synchronous and b) asynchronous correlation maps, c) top-view of all
the chromatograms measured on every column and d) the sample–sample
correlation coefficient map.

Fig. 5.63.: The score plot of PCA performed on retention times of five HPLC columns
[55].

Moreover, 2D correlation gives not only the quantity of agreement or disagree-

ment between samples, but also an insight of the quality of difference via the
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synchronous and asynchronous correlation maps. With PCA, first the retention

times had to be determined, then the calculation was performed only on the

set of retention time values. With 2D correlation, there is no need for this step;

the raw data, the entire digitized chromatogram can be directly used in the

evaluation. Therefore, with the calculation of 2D correlation maps, we can

also identify subtle peak shape changes even if the retention times remain

unchanged.

5.4.2 Isotherm reproducibility

The 2D correlation calculation was also applied to overloaded band profiles

to study the reproducibility of HPLC columns under nonlinear conditions.

Seven analytes were separately injected on ten HPLC columns. Then isotherm

parameters were determined for each analyte on each column, and the results

were subjected to 2D correlation calculations.

The synchronous, asynchronous, and sample–sample correlation coefficient

maps, as well as the top-view of the chromatograms for aniline are presented in

Fig. 5.64. In this case, the synchronous and asynchronous correlation maps are

rather simple, because the chromatograms contain only one peak. Nevertheless,

they clarify that the differences are in the retention times. The top-view of

the chromatograms indicates the same. A slight retention time change can be

seen on columns #1 to #4, and between #1 and #2 in particular. For columns

#5 to #9 a similar conclusion can be drawn, then column #10 shows a radical

difference. The sample–sample correlation coefficient map shows a similar

pattern. Columns #2 to #9 have great correlation coefficients among them

(>0.91). Values for column #1 are smaller, but still above 0.82. Column #10

diverges more from the group with correlation coefficients between 0.56 and

0.72.

The 2D correlation studies of the other samples have yielded quite similar

results. First of all the conclusion is that columns #2 to #9 are rather similar,

they show a very good correlation, although for #4 or #5 value is a bit lower. It

is, however, obvious that columns #1 and #10 differ from the rest of the group

and from each other the most.

Once again, the usefulness of the 2D correlation analysis is confirmed by the

comparison with the results of PCA obtained on the same data set. It can-
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Fig. 5.64.: a) synchronous and b) asynchronous correlation maps, c) top-view for the
chromatograms of aniline and d) the sample–sample correlation coefficient
map.

not be emphasized enough, that for the PCA calculations, the determination

of the isotherms and isotherm parameters is crucial, which is a massive ad-

ditional step in the calculations with its possible errors. On the other hand,

2D-correlation utilizes the raw chromatograms; therefore the entire band pro-

file is involved in the calculation. In this study pretreatment, such as baseline

correction or smoothing was not necessary.

PCA was applied to the isotherm parameters of each sample separately, then the

results were summarized for the HPLC columns. The correlation calculation is

demonstrated here for aniline, and the results obtained with PCA for the same

sample are found in Fig. 5.65. That figure reveals the score plots of the PCA

performed on the Jovanović and Langmuir isotherm parameters determined

for aniline on each HPLC column. The graphs show that the properties of

columns #2 to #9 are rather similar. The high-contrast differences are only in
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columns #1 and #10. Thus recalling the results of 2D correlation plotted in

Fig. 5.64, we can conclude that the validity of the correlation method has been

proven once again.

Fig. 5.65.: The score plots of PCA performed on the Jovanović and Langmuir isotherm
parameters of aniline. [64].

There is, however, a minor difference between the results of the two methods.

In the score plots (Fig. 15 of Ref. [64]), column #5 is located between two groups,

indicating lesser similarity, while in the sample–sample correlation coefficient

map (Fig. 5.64 d)) column #4 has the lower correlation value. Examining all

the results it turns out that almost every column has a stable place on the score

plots, except for #4 or #5. Their behavior depends on the employed model of

isotherms, but this alteration can not be compared with the other distances on

the plot, same holds for the values of the sample–sample correlation map. That

is why this difference can be considered irrelevant, and does not change the

fact that the correlation method is efficiently comparable to PCA.

Felinger et al. compared the reproducibility of the HPLC columns under over-

loaded conditions by summing up the results of the PCAs obtained for each

analyte, respectively [64]. Up to this point we followed the same approach in

2D correlation too, but with a simple manipulation of the data, the comparison

of the HPLC columns can be evaluated directly including the chromatograms

of all analytes. To do so, the chromatograms of the various analytes measured

on the same columns are combined together (Fig. 5.66). Analyzing those ap-

pended chromatograms, information can be obtained directly for the HPLC

columns.
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Fig. 5.66.: Combined chromatograms measured on column #1.

Fig. 5.67.: a) synchronous and b) asynchronous correlation maps, c) top-view of the
generated chromatograms and d) the sample–sample correlation coefficient
map.

The results of this approach are rather similar to those described above. The

difference is that, instead of seven times four graphs (four graphs for every
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sample) we can get to the conclusion with only four graphs (Fig. 5.67). This

time the sample–sample correlation coefficient map shows full conformity with

the PCA, because in the highly correlated group, column #5 has the lowest

correlation values.

5.4.3 ALA in practice

This experiment was designed simply to put the theoretical properties of ALA,

described in Section 5.2, into practice. The focus was peak height changes,

later examples will delve more into other kind of changes. A series of SFC

measurements were executed with seven compounds in the sample and their

concentration was changed according to different functions from sample to

sample (Fig. 5.68), details are in Section 4.6.

Fig. 5.68.: Visual representation of the given changes in measured chromatograms,
projected on the first point in the series: two linear and single changes with
opposite directions, sine and cosine and an EMG change.

Computer simulation was also made with the peak parameters in the measured

chromatograms in order to see what we should get in the alteration maps. So

Fig. 5.69 a) shows this generated data and b) is the measured counterpart. At a

first glance the two images are different, but closer examination reveals that

these differences are negligible on most peaks. The major difference is the BAM

peak heights and their ratios. This issue comes from the fact that simulation

does not take into account the differences of absorption at 192 nm.

After this statement we can see that the patterns of three peaks are identical,

the first two and the sixth (in order of the generated maps, Fig. 5.69 a)). On the

other peaks the difference comes from appearing SAM values. It is because
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there is a small peak shift which is triggered by the reproducibility issues

of the chromatographic system. Unfortunately, in real life chromatographic

measurements we can not expect perfect alignment in all cases, retention times

are naturally not as stable as the locations of spectroscopic peaks, and these

relatively small migrations are affecting the alteration and correlation maps.

However there are still plenty of information which is delivered by ALA.

The monotone changes (first two peaks) are easily separable, they have no

visible asynchronous value, only the magnified maps (Fig. 5.70 b)) show small

peaks, but they are clearly just the result of some noise. Also quadratic change

(second) has different BAM and SAM rate, not as much as in the generated data,

but still noticeable. Single changes (third, fourth) have the highest AAM peaks,

so this feature is also reliable and just like monotonous peaks, the directions

are clear. The properties of wavelike changes (fifth, sixth) are intact as well. We

already mentioned the similarity of peak #6 which is the cosine change, but

the sine change has the expected pattern with the added peak shift: SAM and

AAM peaks are opposites, only the AAM peak is shattered into three because

of the movement of the peak’s tailing.

The biggest differences are ironically at the two ends of the chromatogram.

One small peak emerged before the first expected one. It is from the solvent

and because of that it is highly unlikely that it will disturb the evaluation. On

one hand it is not overlapping any of the peaks, on the other hand usually we

have some knowledge about the chromatographic system, especially when we

are the ones developing the method. The other difference is the big existing

SAM value, relatively to AAM, on the last peak. It is likely to be added because

of the reasons like the other instances and also as mentioned EMG changes are

hard to grasp on.

The corresponding correlation maps are presented in Fig. 5.71. We do not want

to go into detail, but it has to be mentioned that it is a great example why the

evaluation process is far more cumbersome with 2DCOR. Similar information

can be gathered at the end for sure, but there are scaling issues, which are to

be honest apparent in ALA as well, but can be more easily overcome, and the

patterns are unnecessary overcomplicated. The connection between maps of

generated and measured data is similar to ALA. They are alike overall with a

few differences only caused by peak shifts.
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Fig. 5.69.: Alteration maps for peak height changes in measured chromatograms. a)
computer simulated alternative, b) measured data.

Fig. 5.70.: Magnified alteration maps for peak height changes in measured chro-
matograms. a) computer simulated alternative, b) measured data.

The last example comes from a series of experiments where the effect of

methanol was studied in SFC (Fig. 5.72). Eleven samples were made with

mixed solvent of acetonitrile and methanol by varying percentage of the latter

from 0 to 100. Figure 5.73 shows the resulting alteration maps. We made two

variations with detection on different wavelength, 192 nm a) and 260 nm b).

The reason behind this is that methanol has little absorption on 260 nm so the

compounds can be studied here separately from its sign.

First of all, there are far more signals than what would be expected. Every

peak has comparable changes not just the ones which are affected directly

by the peak of methanol. In theory the last peak (at about 7.5 min) can not

be influenced by the perturbation, but alteration patterns can still be seen.
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Fig. 5.71.: Correlation maps for peak height changes in measured chromatograms.
a) synchronous map of computer simulated alternative, b) asynchronous
map of computer simulated alternative, c) synchronous map of measured
data, d) asynchronous map of measured data.

Fig. 5.72.: First chromatograms for the effects of methanol in a SFC separation. a)
detection at 192 nm, b) detection at 260 nm.
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We assume that it is due to the poor reproducibility of SFC system and not

an intended result, because its pattern is different than any other peak’s. It

features high asynchronous value concentrated at the middle of the peak

and the maximum is split into two in AAM and BAM. This leads us to the

assumption that it is only a relatively small unintentional peak shift.

The main feature is the big basic peak of methanol on a) from about 2.5 min to

6.0 min. The direction is not clear for the first glance, because the linked syn-

chronous peak is positive everywhere, but other peaks along its way show, with

positive-negative synchronous peak combinations, that its migration started

at the back of the chromatogram to earlier elution times. Also, asynchronous

peaks are getting bigger in this direction in b), which is the result of methanol

being absent at that point for more time in the series of chromatograms. The

peak at 4.7 min is mostly synchronous because methanol is a constant factor at

that retention time, but it is arriving late in the series at 2.5 min. The peak at

2.2 min is also influenced by methanol but not as strongly as the previously

mentioned ones.

The first peak (at around 1.6 min) is the exact opposite of the peaks from 2.2 to

5.0 min and there are some irregular shapes before it. This means a different

effect causing its change. Further investigation showed that acetonitrile was

the source of it and the shapes were also belonged to it. The most interesting

part is the second peak because seemingly no mentioned effect has contact

with it and clearly it has a unique alteration pattern which shows peak shape

changes in contrary to any other peaks’ shifting tendency. At this point we are

unsure of the exact explanation, we assume that the described causes and the

perturbation overall have this indirect effect on it.

Figure 5.74 shows the correlation maps of the same experiment. The first

impression is, especially with the maps of 192 nm (a) and b)), that they are

overcrowded and with this set up it is hard to evaluate the minor details. They

need scaling and/or magnifications and focusing on several parts separately to

do it rightly. Thus we do not aim to further discuss them, they already made

their purpose, which is to show how easier it is to evaluate ALA maps.
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Fig. 5.73.: Alteration maps for the effects of methanol in a SFC separation. a) detection
at 192 nm, b) detection at 260 nm.

Fig. 5.74.: Correlation maps for the effects of methanol in a SFC separation. a) syn-
chronous map of detection at 192 nm, b) asynchronous map of detection at
192 nm, c) synchronous map of detection at 260 nm, d) asynchronous map
of detection at 260 nm.
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6Conclusion

„ Science cannot solve the ultimate mystery of nature. And

that is because, in the last analysis, we ourselves are a

part of the mystery that we are trying to solve.

— Max Planck

2DCOR’s features were inspected in perspective of using it in chromatography

instead of its original field, spectroscopy. In a series of chromatograms where

some kind of perturbation is applied to the system throughout the measure-

ments, it can show the triggered changes and their relations on simple graphs

with easy usage, from them we can gather essential information about the

chemical system. There are endless possible cases what can occur in the corre-

lation maps, it would be a rigorous task to cover them all, in this document a

wide variety of representative changes were studied and the unique patterns

they form in the correlation maps were presented and discussed. The results

show that 2DCOR can be applied to this field efficiently, its advantages are

surely beneficial.

2DCOR, however, has a few flaws: The chromatographic peaks in most cases

correlate less than spectroscopic peaks, they change mostly individually, so it

would make more sense to study them separately, while 2DCOR emphasises

the correlations between peaks and fails to deliver basic attributes about them

like the individual direction of changes. Also, chromatographic peaks tend

to have a slight retention time shifts during the measurements which can

disturb the detection of peak height changes. It is true, that the method can

show accurately the peak shifts if that is the interest of study, but usually

that is only a by-product of the system. Furthermore 2DCOR is limited to 1D

measurements because the maps are two-dimensional and need 3D to plot

them and 2D chromatography is becoming more and more popular with every

year. Higher dimensional correlation maps are mathematically possible to

calculate, but they are not useful in practice. Finally, correlation maps can
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become crowded very quickly with auto- and cross-peaks, which makes the

evaluation no easier.

ALA was made to fine-tune 2DCOR’s fundamental properties to chromato-

graphic usage. It creates 1D alteration maps from 1D measurements instead

of 2D, which means similar information can be get from much simpler pre-

sentations and it can be applied to 2D measurement systems as well. The

properties of our novel method were demonstrated by comparing it with its

parent method. It is proven that it can deliver the same information as 2DCOR

while has some additional features. Alteration maps are simpler to evaluate be-

cause they have no additional dimensions and cross-peaks. Although this can

lead to the argument that they lack direct information about the correlations of

peaks, which is arguably true, but it does not mean that this feature was left

out, only simplified, because instead of cross-peaks we have to compare the

individual peaks and the relevant information is revealed, so indirectly it is

present. After the comparison of two methods in 2D experiments the nature

of 3D ALA is presented and showed that its features are parallel with the

lower dimensional counterpart, only the visualization bears a few difficulties

comparably.

All the experiments about the basic properties of methods were carried out on

computer generated data. After those establishments experimentally recorded

chromatograms were used to illustrate the benefits of such techniques. First

2DCOR was applied in a study about reproducibility of chromatographic

columns. Then two experiments were carried out with ALA in the focus. On

one hand simple peak height changes were implemented with SFC in order to

verify the link between simulation and measured data. On the other hand, the

effect of methanol on other compounds in chromatograms was studied in SFC

too. ALA was able to provide the necessary information about the chemical

systems through the evaluation of perturbation induced changes and opened

the way for further applications and developments.
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7Thesis points

1. We introduced a novel method called Alteration Analysis (ALA), in

order to extend two-dimensional correlation analysis (2DCOR) to three-

dimensional datasets where a series of two-dimensional measurements –

instead of the original one-dimensional – are evaluated.

2. Our method, ALA was built to use the properties of 2DCOR, but it made

able to work with three-dimensional datasets and fine-tuned to use in

chromatography, because of its focus on individual changes rather than

the connection between them. These benefits were explored by a series

of examples which showed that ALA can work equally on one and two-

dimensional measurements, but more importantly that it made possible

for the field of 2DCOR the analysis of higher dimensional datasets.

3. We made an intensive comparison of our method and 2DCOR on two-

dimensional datasets where a series of one-dimensional measurements

are used. We proved that ALA is more than capable of competing with

its predecessor, because it has many advantages to overcome its one

disadvantage. It can work with 3D datasets, it can show the absolute

direction of changes instead of only relative ones and it can be understood

much easier with its simpler graphs.

4. We tested the capability of 2DCOR in chromatography by applying it to

measured chromatograms and comparing it to other chemometric meth-

ods. We clarified that it can be applied well in this field and it delivered

the same informations about the reproducibility of HPLC columns as

PCA.

85



5. We demonstrated the practical use of our new method, ALA on measured

chromatograms and its advantages were highlighted in the evaluation of

complex chromatographic problems. The information in ALA maps of

measured chromatograms were compared to in silico experiments and

only negligible differences arose, meaning the theory behind ALA can

be put into good use in practical experiments. Furthermore, the effect of

methanol was shown on ALA maps in SFC measurements.

86



Publications

Publications related to this thesis

1. Simon, J., Felinger, A., Two-dimensional correlation analysis of the re-

producibility of high-performance liquid chromatography columns, J.

Chromatogr. A, 2015, 1384, 115–123

2. Simon, J., Felinger, A., Correlation analysis on 3D data – Introducing the

alteration analysis, Chemometr. Intell. Lab. Syst., 2016, 158, 54–60

3. Simon, J., Felinger, A., Exploring the changes in a series of measurements

– The comparison of the two-dimensional correlation analysis and the

alteration analysis, Chemometr. Intell. Lab. Syst., 2017, 168, 28–37

Posters and presentations related to this thesis

1. Simon, J., Felinger, A., Two-dimensional correlation in chromatography,

9th Balaton Symposium on High-Performance Separation Methods, 2013.

09.04–09.06., Siófok

2. Simon, J., Felinger, A., Kétdimenziós korreláció alkalmazása a kromatográ-
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List of Symbols

Greek Symbols

α first part of EMG function

β second part of EMG function

Φ synchronous correlation matrix

Ψ asynchronous correlation matrix

σ standard deviation

Other Variables

X raw data array

x average chromatogram vector

D difference data array

A′ raw asynchronous alteration matrix

a′ raw asynchronous alteration vector

A maximum scaled asynchronous alteration matrix

a maximum scaled asynchronous alteration vector

B basic alteration matrix

b basic alteration vector
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D difference matrix

M example data matrix

N Hilbert–Noda transform matrix

P correlation coefficient matrix

S′ raw synchronous alteration matrix

s′ raw synchronous alteration vector

S maximum scaled synchronous alteration matrix

s maximum scaled synchronous alteration vector

X raw data matrix

Y centered data matrix

τ time constant

A area under the peak

t time

tR retention time
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Glossary

2D-GPC two-dimensional correlation gel permeation chromatography

2DCOR two-dimensional correlation analysis

2DCOS two-dimensional correlation spectroscopy

AAM asynchronous alteration map

ACM asynchronous correlation map

ALA Alteration Analysis

BAM basic alteration map

EMG exponentially modified gaussian peak

GC gas chromatography

HPLC high performance liquid chromatography

IR infrared spectroscopy

NMR nuclear magnetic resonance spectroscopy

PCA principal component analysis

SAM synchronous alteration map
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SCM synchronous correlation map

SFC supercritical fluid chromatography

UV ultraviolet spectroscopy

VIS visible spectroscopy
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AAppendix

Table A.1.: The parameters of chromatograms for Fig. 5.2, 5.1, 5.40, 5.41 a)

# tR
A

σ τ
Type a b

1 2.0 linear 1 100 0.1 0.1
2 4.0 linear -2 100 0.1 0.1
3 6.0 linear 3 100 0.1 0.1
4 8.0 linear -4 100 0.1 0.1

Table A.2.: The parameters of chromatograms for Fig. 5.3, 5.4, 5.41 b)

# tR
A

σ τ
Type a b

1 2.0 linear -1 100 0.1 0.1
2 4.0 linear 2 100 0.1 0.1
3 6.0 linear -3 100 0.1 0.1
4 8.0 linear 4 100 0.1 0.1

Table A.3.: The parameters of chromatograms for Fig. 5.5, 5.6, 5.42

# tR
A

σ τ
Type a b

1 2.0 linear 1 100 0.1 0.1
2 4.0 linear -1 200 0.1 0.1
3 6.0 linear 1 300 0.1 0.1
4 8.0 linear -1 400 0.1 0.1
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Table A.4.: The parameters of chromatograms for Fig. 5.7, 5.8, 5.43 a)

# tR
A

σ τ
Type a b

1 2.0 quadratic 1 100 0.1 0.1
2 4.0 quadratic -2 100 0.1 0.1
3 6.0 quadratic 3 100 0.1 0.1
4 8.0 quadratic -4 100 0.1 0.1

Table A.5.: The parameters of chromatograms for Fig. 5.9, 5.10, 5.43 b)

# tR
A

σ τ
Type a b

1 2.0 exponential 1 100 0.1 0.1
2 4.0 exponential -2 100 0.1 0.1
3 6.0 exponential 3 100 0.1 0.1
4 8.0 exponential -4 100 0.1 0.1

Table A.6.: The parameters of chromatograms for Fig. 5.11, 5.12, 5.44 a)

# tR
A

σ τ
Type a b

1 1.0 linear 1 100 0.1 0.1
2 2.5 linear 2 100 0.1 0.1
3 4.0 quadratic 1 100 0.1 0.1
4 5.5 quadratic 2 100 0.1 0.1
5 7.0 exponential 1 100 0.1 0.1
6 8.5 exponential 2 100 0.1 0.1

Table A.7.: The parameters of chromatograms for Fig. 5.14, 5.15, 5.44 b)

# tR
A

σ τ
Type a b

1 1.0 quadratic 1 100 0.1 0.1
2 2.5 quadratic 2 100 0.1 0.1
3 4.0 exponential 1 100 0.1 0.1
4 5.5 exponential 2 100 0.1 0.1
5 7.0 linear 1 100 0.1 0.1
6 8.5 linear 2 100 0.1 0.1
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Table A.8.: The parameters of chromatograms for Fig. 5.16, 5.17, 5.45 a)

# tR
A

σ τ
Type a b c

1 2.0 single 1 100 5 0.1 0.1
2 4.0 single -2 100 5 0.1 0.1
3 6.0 single 3 100 5 0.1 0.1
4 8.0 single -4 100 5 0.1 0.1

Table A.9.: The parameters of chromatograms for Fig. 5.18, 5.19, 5.45 b)

# tR
A

σ τ
Type a b c

1 2.0 single 1 100 2 0.1 0.1
2 4.0 single -1 100 3 0.1 0.1
3 6.0 single 1 100 4 0.1 0.1
4 8.0 single -1 100 5 0.1 0.1

Table A.10.: The parameters of chromatograms for Fig. 5.21, 5.46

# tR
A

σ τ
Type A tR σ τ

1 2.0 EMG 100 5 0.5 0.5 0.1 0.1
2 4.0 EMG 200 5 0.5 0.5 0.1 0.1
3 6.0 EMG 300 5 0.5 0.5 0.1 0.1
4 8.0 EMG 400 5 0.5 0.5 0.1 0.1

Table A.11.: The parameters of chromatograms for Fig. 5.22, 5.47 a)

# tR
A

σ τ
Type A tR σ τ

1 2.0 EMG 100 5 0.5 0.5 0.1 0.1
2 4.0 EMG 100 7 0.5 0.5 0.1 0.1
3 6.0 EMG 100 9 0.5 0.5 0.1 0.1
4 8.0 EMG 100 11 0.5 0.5 0.1 0.1
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Table A.12.: The parameters of chromatograms for Fig. 5.23, 5.47 b)

# tR
A

σ τ
Type A tR σ τ

1 2.0 EMG 100 5 1.0 1.0 0.1 0.1
2 4.0 EMG 100 7 1.0 1.0 0.1 0.1
3 6.0 EMG 100 9 1.0 1.0 0.1 0.1
4 8.0 EMG 100 11 1.0 1.0 0.1 0.1

Table A.13.: The parameters of chromatograms for Fig. 5.24, 5.25, 5.48

# tR
A

σ τ
Type a b

1 2.0 sine 1 100 0.1 0.1
2 4.0 sine -1 100 0.1 0.1
3 6.0 cosine 1 100 0.1 0.1
4 8.0 cosine -1 100 0.1 0.1

Table A.14.: The parameters of chromatograms for Fig. 5.26, 5.27, 5.49 a)

# tR A σ τ
Type a b Type a b

1 2.0 100 linear 0.005 0.1 linear 0.005 0.1
2 4.0 100 linear -0.005 0.175 linear -0.005 0.175
3 6.0 100 linear 0.01 0.1 linear 0.01 0.1
4 8.0 100 linear -0.01 0.25 linear -0.01 0.25

Table A.15.: The parameters of chromatograms for Fig. 5.28, 5.29, 5.49 b)

# tR A σ τ
Type A tR σ τ Type A tR σ τ

1 2.0 100 EMG 3 1 6 6 EMG 3 1 6 6
2 4.0 100 EMG -3 1 6 6 EMG -3 1 6 6
3 6.0 100 EMG 6 -5 12 12 EMG 6 -5 12 12
4 8.0 100 EMG -6 -5 12 12 EMG -6 -5 12 12
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Table A.16.: The parameters of chromatograms for Fig. 5.30, 5.31, 5.50 a)

#
tR A σ τ

Type a b
1 linear 0.05 2 100 0.1 0.05
2 linear 0.05 4 100 0.1 0.05
3 linear 0.01 6 100 0.1 0.05
4 linear 0.01 8 100 0.1 0.05

Table A.17.: The parameters of chromatograms for Fig. 5.32, 5.33, 5.50 b)

#
tR A σ τ

Type a b
1 linear 0.05 2 100 0.1 0.05
2 linear -0.05 5 100 0.1 0.05
3 linear 0.01 6 100 0.1 0.05
4 linear -0.01 8 100 0.1 0.05

Table A.18.: The parameters of chromatograms for Fig. 5.34, 5.35, 5.50 c)

#
tR A σ τ

Type A tR σ τ s*
1 EMG 30 4 5 5 0.13 100 0.1 0.05
2 EMG -30 4 5 5 1.63 100 0.1 0.05
3 EMG 30 4 8 8 4.83 100 0.1 0.05
4 EMG 30 4 8 8 6.83 100 0.1 0.05

*s is an additional starting value, the EMG function was added to it.

Table A.19.: The parameters of chromatograms for Fig. 5.36, 5.37, 5.51 a)

# tR
A

σ τ
Type a b

1 1.0 linear 0.1 100 0.1 0.1
2 1.2 linear 0.2 50 0.1 0.1
3 3.0 linear 0.1 100 0.1 0.1
4 3.2 linear -0.2 50 0.1 0.1
5 5.0 linear 0.1 100 0.1 0.1
6 5.2 linear 0.5 50 0.1 0.1
7 7.0 linear 0.1 100 0.1 0.1
8 7.2 quadratic 0.2 100 0.1 0.1
9 9.0 linear 0.1 100 0.1 0.1
10 9.2 sine 0.2 50 0.1 0.1
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Table A.20.: The parameters of chromatograms for Fig. 5.38, 5.39, 5.51 b)

# tR
A

σ τ
Type a b

1 1.0 linear 0.1 170 0.05 0.4
2 1.5 linear 0.2 10 0.05 0.4
3 4.0 linear 0.1 170 0.05 0.4
4 4.5 linear -0.2 10 0.05 0.4
5 7.0 linear 0.1 170 0.05 0.4
6 7.5 sine 0.2 10 0.05 0.4

Table A.21.: The parameters of 2D chromatograms for Fig. 5.52, 5.53

# tR1
A1

σ1 τ1 tR2 A2 σ2 τ2
Type a b c

1 0.8 linear 0.1 200 - 0.1 0.1 0.61 100 0.1 0.1
2 2.3 linear -0.1 200 - 0.1 0.1 0.65 100 0.1 0.1
3 3.4 sine 0.4 200 - 0.1 0.1 0.67 100 0.1 0.1
4 4.3 cosine 0.4 200 - 0.1 0.1 0.63 100 0.1 0.1
5 0.8 quadratic 0.012 200 - 0.1 0.1 1.57 100 0.1 0.1
6 0.85 NO 0 120 - 0.1 0.1 1.79 100 0.1 0.1
7 0.88 single 0.6 100 5 0.1 0.1 3.22 100 0.1 0.1
8 0.91 single -0.6 100 5 0.1 0.1 4.19 100 0.1 0.1
9 2.31 exponential 0.0005 180 - 0.1 0.1 2.11 100 0.1 0.1

10 2.3 NO 0 200 - 0.1 0.1 2.56 100 0.1 0.1
11 3.41 NO 0 110 - 0.1 0.1 1.41 100 0.1 0.1
12 3.41 NO 0 300 - 0.1 0.1 1.62 100 0.1 0.1
13 3.42 NO 0 260 - 0.1 0.1 1.83 100 0.1 0.1
14 3.4 NO 0 270 - 0.1 0.1 2.15 100 0.1 0.1
15 3.41 NO 0 180 - 0.1 0.1 2.89 100 0.1 0.1
16 3.42 NO 0 90 - 0.1 0.1 3.21 100 0.1 0.1
17 3.42 NO 0 100 - 0.1 0.1 4.59 100 0.1 0.1
18 4.32 NO 0 140 - 0.1 0.1 2.55 100 0.1 0.1
19 4.3 NO 0 160 - 0.1 0.1 3.99 100 0.1 0.1
20 4.31 NO 0 150 - 0.1 0.1 4.18 100 0.1 0.1
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Table A.22.: The parameters of 2D chromatograms for Fig. 5.54

#
tR1 A1

σ1, τ1
Type a b Type a b

1 NO 0 1 100 linear 0.01 0.05
2 NO 0 2 100 linear -0.01 0.14
3 NO 0 3 100 NO 0 0.05
4 NO 0 4 100 NO 0 0.05
5 NO 0 1 100 linear 0.01 0.05
6 NO 0 2 100 linear 0.02 0.05
7 NO 0 3 100 linear 0.01 0.05
8 linear 0.05 0.5 100 NO 0 0.05
9 linear -0.05 1.95 100 NO 0 0.05
10 NO 0 2.5 100 NO 0 0.05
11 NO 0 2.5 100 NO 0 0.05
12 linear 0.05 4.2 100 NO 0 0.05

#
tR2 A2

σ2, τ2
Type a b Type a b

1 NO 0 1 100 NO 0 0.05
2 NO 0 1 100 NO 0 0.05
3 NO 0 1 100 linear 0.01 0.05
4 NO 0 1 100 linear -0.01 0.14
5 NO 0 1 100 linear 0.01 0.05
6 NO 0 1 100 linear 0.01 0.05
7 NO 0 1 100 linear 0.02 0.05
8 NO 0 4 100 NO 0 0.05
9 NO 0 4 100 NO 0 0.05
10 NO 0 4 100 NO 0 0.05
11 NO 0 4 100 NO 0 0.05
12 linear 0.05 4 100 NO 0 0.05
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Table A.23.: The parameters of 2D chromatograms for Fig. 5.58

# tR1
A1

σ1 τ1 tR2 A2 σ2 τ2
Type a b c

1 0.8 NO 0 100 - 0.1 0.1 0.61 100 0.1 0.1
2 2.3 NO 0 250 - 0.1 0.1 0.65 100 0.1 0.1
3 3.4 NO 0 120 - 0.1 0.1 0.67 100 0.1 0.1
4 4.3 NO 0 150 - 0.1 0.1 0.63 100 0.1 0.1
5 1.47 NO 0 150 - 0.1 0.77 0.77 100 0.1 0.1
6 1.43 NO 0 150 - 0.1 0.1 1.81 100 0.1 0.1
7 1.48 NO 0 150 - 0.1 0.1 2.68 100 0.1 0.1
8 1.46 NO 0 150 - 0.1 0.1 2.86 100 0.1 0.1
9 1.45 NO 0 150 - 0.1 0.1 4.05 100 0.1 0.1

10 1.5 NO 0 150 - 0.1 0.1 4.37 100 0.1 0.1
11 3.02 NO 0 150 - 0.1 0.1 0.65 100 0.1 0.1
12 2.95 NO 0 150 - 0.1 0.1 1.1 100 0.1 0.1
13 3.08 NO 0 150 - 0.1 0.1 1.52 100 0.1 0.1
14 3.08 NO 0 150 - 0.1 0.1 2.03 100 0.1 0.1
15 3.07 NO 0 150 - 0.1 0.1 3.05 100 0.1 0.1
16 3.06 NO 0 150 - 0.1 0.1 3.46 100 0.1 0.1
17 2.98 NO 0 150 - 0.1 0.1 3.67 100 0.1 0.1
18 3.01 NO 0 150 - 0.1 0.1 4.77 100 0.1 0.1
19 0.8 NO 0 150 - 0.1 0.1 1.57 100 0.1 0.1
20 0.85 NO 0 120 - 0.1 0.1 1.79 100 0.1 0.1
21 0.88 linear 10 80 - 0.1 0.1 3.22 100 0.1 0.1
22 0.91 NO 0 110 - 0.1 0.1 4.19 100 0.1 0.1
23 2.31 linear 15 180 - 0.1 0.1 2.11 100 0.1 0.1
24 2.30 NO 0 200 - 0.1 0.1 2.56 100 0.1 0.1
25 3.41 NO 0 110 - 0.1 0.1 1.41 100 0.1 0.1
26 3.41 NO 0 300 - 0.1 0.1 1.62 100 0.1 0.1
27 3.42 linear 10 260 - 0.1 0.1 1.83 100 0.1 0.1
28 3.4 NO 0 270 - 0.1 0.1 2.15 100 0.1 0.1
29 3.41 single 50 180 6 0.1 0.1 2.89 100 0.1 0.1
30 3.42 NO 0 90 - 0.1 0.1 3.21 100 0.1 0.1
31 3.42 NO 0 100 - 0.1 0.1 4.59 100 0.1 0.1
32 4.32 NO 0 140 - 0.1 0.1 2.55 100 0.1 0.1
33 4.30 NO 0 160 - 0.1 0.1 3.99 100 0.1 0.1
34 4.31 NO 0 150 - 0.1 0.1 4.18 100 0.1 0.1
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Table A.24.: The parameters of 2D chromatograms for Fig. 5.59

# tR1
A1

σ1 τ1 tR2 A2 σ2 τ2
Type a b

1 0.8 linear 0.1 100 0.1 0.1 0.61 100 0.1 0.1
2 2.3 linear 0.1 250 0.1 0.1 0.65 100 0.1 0.1
3 3.4 linear 0.1 120 0.1 0.1 0.67 100 0.1 0.1
4 4.3 linear 0.1 150 0.1 0.1 0.63 100 0.1 0.1
5 1.47 linear 0.1 150 0.1 0.77 0.77 100 0.1 0.1
6 1.43 linear 0.1 150 0.1 0.1 1.81 100 0.1 0.1
7 1.48 linear 0.25 150 0.1 0.1 2.68 100 0.1 0.1
8 1.46 linear 0.1 150 0.1 0.1 2.86 100 0.1 0.1
9 1.45 linear 0.1 150 0.1 0.1 4.05 100 0.1 0.1
10 1.5 linear 0.1 150 0.1 0.1 4.37 100 0.1 0.1
11 3.02 linear 0.1 150 0.1 0.1 0.65 100 0.1 0.1
12 2.95 linear 0.25 150 0.1 0.1 1.1 100 0.1 0.1
13 3.08 linear 0.1 150 0.1 0.1 1.52 100 0.1 0.1
14 3.08 linear 0.1 150 0.1 0.1 2.03 100 0.1 0.1
15 3.07 linear 0.1 150 0.1 0.1 3.05 100 0.1 0.1
16 3.06 linear 0.1 150 0.1 0.1 3.46 100 0.1 0.1
17 2.98 linear 0.1 150 0.1 0.1 3.67 100 0.1 0.1
18 3.01 linear 0.1 150 0.1 0.1 4.77 100 0.1 0.1
19 0.8 linear 0.1 150 0.1 0.1 1.57 100 0.1 0.1
20 0.85 linear 0.1 120 0.1 0.1 1.79 100 0.1 0.1
21 0.88 linear 0.1 80 0.1 0.1 3.22 100 0.1 0.1
22 0.91 linear 0.1 110 0.1 0.1 4.19 100 0.1 0.1
23 2.31 linear 0.1 180 0.1 0.1 2.11 100 0.1 0.1
24 2.30 linear 0.1 200 0.1 0.1 2.56 100 0.1 0.1
25 3.41 linear 0.1 110 0.1 0.1 1.41 100 0.1 0.1
26 3.41 linear 0.25 300 0.1 0.1 1.62 100 0.1 0.1
27 3.42 linear 0.1 260 0.1 0.1 1.83 100 0.1 0.1
28 3.4 NO 0 270 0.1 0.1 2.15 100 0.1 0.1
29 3.41 linear 0.1 180 0.1 0.1 2.89 100 0.1 0.1
30 3.42 linear 0.1 90 0.1 0.1 3.21 100 0.1 0.1
31 3.42 linear 0.1 100 0.1 0.1 4.59 100 0.1 0.1
32 4.32 linear 0.1 140 0.1 0.1 2.55 100 0.1 0.1
33 4.30 linear 0.1 160 0.1 0.1 3.99 100 0.1 0.1
34 4.31 linear 0.1 150 0.1 0.1 4.18 100 0.1 0.1
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Table A.25.: The parameters of 2D chromatograms for Fig. 5.55, 5.56, 5.57

# tR1
A1

σ1 τ1 tR2 A2 σ2 τ2
Type a b

1 1.0 linear 0.1 100 0.1 0.1 2.0 100 0.1 0.1
2 1.2 linear 0.2 50 0.1 0.1 2.0 100 0.1 0.1
3 3.0 linear 0.1 100 0.1 0.1 2.0 100 0.1 0.1
4 3.2 linear -0.2 50 0.1 0.1 2.0 100 0.1 0.1
5 5.0 linear 0.1 100 0.1 0.77 2.0 100 0.1 0.1
6 5.2 linear 0.5 50 0.1 0.1 2.0 100 0.1 0.1
7 7.0 linear 0.1 100 0.1 0.1 2.0 100 0.1 0.1
8 7.2 quadratic 0.2 50 0.1 0.1 2.0 100 0.1 0.1
9 9.0 linear 0.1 100 0.1 0.1 2.0 100 0.1 0.1
10 9.0 sine 0.2 50 0.1 0.1 2.0 100 0.1 0.1
11 1.0 linear 0.1 170 0.05 0.4 5.0 100 0.05 0.4
12 1.5 linear 0.2 10 0.05 0.4 5.0 100 0.05 0.4
13 4.0 linear 0.1 170 0.05 0.4 5.0 100 0.05 0.4
14 4.5 linear -0.2 10 0.05 0.4 5.0 100 0.05 0.4
15 7.0 linear 0.1 170 0.05 0.4 5.0 100 0.05 0.4
16 7.5 sine 0.2 10 0.05 0.4 5.0 100 0.05 0.4

Table A.26.: The parameters of chromatograms for Fig. 5.69 a), 5.70 a)

# tR
A

σ τ
Type a b c d

1 1.68 linear 0.005 0.025 - - 0.03 0.03
2 1.91 quadratic -0.0005 0.07 - - 0.025 0.025
3 2.22 single 0.045 0.025 5 - 0.022 0.022
4 2.64 single -0.045 0.07 5 - 0.022 0.022
5 3.2 sine 0.0231 0.0471 - - 0.022 0.022
6 3.92 cosine 0.0231 0.0471 - - 0.022 0.022
7 4.88 EMG A = 0.086 tR = 5 s = 0.5 τ = 0.5 0.025 0.025
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