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Abbreviations 

 

ACTH adrenocorticotropic hormone 

AIDS acquired immune deficiency syndrome 

APACHE acute physiology and chronic health evaluation 
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BNP brain natriuretic peptid 
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FC0 free cortisol at 0 hour 
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FiO2 fraction of inspired oxygen 

GH growth hormone 

HPLC-MS high performance liquid chromatography coupled mass 

 spectrometry 

ICU intensive care unit 

IGF-1 insulin-like growth factor 1 

IGFBP-3 insulin-like growth factor-binding protein 3 

IS internal standard 
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LC-MS liquid chromatography coupled mass spectrometry 

LH luteinizing hormone 

LOD limit of detection 

LOQ limit of quantification 

MRM multiple reaction monitoring 

PaO2 partial pressure of oxygen in arterial blood 

PBS phosphate-buffered saline 

PRL prolactin 

QTOF quadrupole time of flight 

RAI relative adrenal insufficiency 

ROC receiver operating characteristic 

rT3 reverse triiodothyronine 

SAPS simplified acute physiology score 

SC salivary cortisol 

SPE solid-phase extraction 

SRM selected reaction monitoring 

T3 triiodothyronine 

T4 thyroxin 

TC total cortisol 

TC0 total cortisol at 0 hour 

TC6 total cortisol at 6 hours 

TC24 total cortisol at 24 hours 

TC48 total cortisol at 48 hours 

TC96 total cortisol at 96 hours 

TOF time of flight 

TSH thyroid-stimulating hormone 
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1 Introduction 

1.1 Measurement of cortisol 

Cortisol is a glucocorticoid hormone produced in the zona fasciculata of the 

adrenal gland. Its synthesis is regulated by the adrenocorticotrophic hormone of the 

pituitary gland [Pretorius, 2011]. Cortisol is secreted in a diurnal pattern with early 

morning peak levels. The investigation of the diurnal rhythm is an important 

diagnostic tool because it disappears in hypercorticism. Approximately 90 % of 

circulating cortisol is bound to proteins, whereas the remaining 10 % is present in an 

unbound, free form [Kirchhoff, 2011]. The bound fraction is distributed between 

corticosteroid binding globulin (CBG) and albumin [Kley, 1977; Rhen, 2005]. Only 

the free fraction is physiologically active [Tomlinson, 2004; Hamrahian, 2004]. 

Cortisol is present in blood, urine [Wear, 2007] and saliva; the latter clearly reflects 

blood free-cortisol status [Galbois, 2010; Restituto, 2008]. Cortisol has a diagnostic 

value in Cushing’s syndrome [Sereg, 2011; Guaraldi, 2012], Addison’s disease 

[Ross, 2013], renal and adrenal dysfunction [Arregger, 2008; Holst, 2007] and 

tumour diagnostics of the hypothalamic-pituitary-adrenal axis [Ronchi, 2012; van 

Waas, 2012]. 

Most routine laboratory methods measure total cortisol (TC) concentration, 

but the measurement of free cortisol (FC) provides more informative results. There is 

a large individual variation in the binding characteristics of CBG. Alterations in 

albumin and CBG concentrations might adversely affect results [Pretorius, 2011; Ho, 

2006]. Possible ways of estimating FC cover two different approaches. One is to 

calculate FC mathematically, by quantifying TC and cortisol-binding proteins and 

then evaluating FC using the free serum cortisol index [Bonte, 1999] or the Coolens 

formula [Coolens, 1987]. The main problems with these approaches are that they do 

not consider inter-individual variations in binding characteristics, and that the 

possible errors of the measurements might accumulate [Kirchhoff, 2011]. The other 

option is to measure FC directly. The assay starts with the mechanical removal of the 

protein fraction to obtain a protein free preparation: this is commonly performed by 

equilibrium dialysis [Durber, 1976] or, as a faster alternative, by ultrafiltration. The 

latter requires an ultrafiltration device equipped with a membrane having a molecular 

weight cut-off value more than the weight of the analyte, but less than the weight of 
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CBG and albumin [McWhinney, 2010]. A simpler method of establishing unbound, 

circulating cortisol status is measuring salivary cortisol (SC), because this does not 

require the removal of any protein fraction [De Palo, 2009]. 

Analytical tools used for FC and SC estimation are similar to those used for 

the measurement of TC. The only difference is that TC assays contain a hormone 

displacement to liberate the protein-bound fraction. The routinely used 

immunoassays, for example enzyme immunoassays (EIA) and 

electrochemiluminescence assays (ECLIA) [Kominami, 1980; Kohen, 1980], have 

high sensitivity and are used on different matrices [Chiu, 2003]. The major challenge 

of immunoassays is specificity, because steroid compounds have high structural 

similarity, resulting in potential cross reactivity. This is especially problematic if the 

patient receives a common prednisolone or methylprednisolone treatment, which can 

lead to fals results [Kobayashi, 2002; Nishiyama, 2000]. Kobayashi et al. 

[Kobayashi, 2002] described a series of further steroids that can react with antibodies 

raised against cortisol. Immunoassays carry further analytical problems, namely the 

antibody interferences (heterophilic antibodies or autoantibodies).  

Mass spectrometry coupled with high-performance liquid chromatography 

(HPLC-MS) has higher specificity than immunoassays because identification is on 

the basis of the compound’s mass-to-charge ratio, instead of structural 

characteristics. This enables the differentiation and specific quantification of 

structurally highly similar compounds. Recent studies describe tandem mass 

spectrometry [Pretorius, 2011; McWhinney, 2010; Han, 2011; Kushnir, 2004] using 

triple-quadrupole instruments, where specificity is achieved by the fragmentation of 

cortisol, requiring a multiple reaction monitoring (MRM) transition. During the 

analysis, the mass of the analyte and the masses of two or three characteristic 

molecular fragments are scanned simultaneously. No analytical error from cross 

reactivity and heterophilic antibodies are expected using liquid chromatography (LC-

MS). It allows analysis of multiply metabolites from small sample volume. However, 

LC-MS requires rigorous validation [Briegel, 2009; Clark, 2011]. 

 

1.2 Endocrine changes in critical illness 

Critical illness is a life-threatening condition due to serious illnesses, 

infections, surgery or trauma manifested in vital organ failure and severe physical 
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stress. Support of insufficient organ systems is essential for survival. These patients 

might not survive without the new therapeutic options of critical care medicine. 

The critical illness is associated with neuroendocrine and metabolic 

alterations such as central and peripheral endocrine stress reactions. The life-

threatening condition is the ultimate form of severe physical stress.  The endocrine 

and metabolic adaptations presumably provide energy for vital organ functions to 

serve the fight-or-flight response. The changes in lipolysis, proteolysis and 

gluconeogenesis help survival. The critical condition may persist for weeks and the 

patient may require long-term intensive care. The prolonged critical illness increases 

the risk of mortality. The endocrine characteristics of the chronic phase of critical 

illness are different from the acute phase and not solely beneficial.  For example, the 

protein breakdown from skeletal muscles may impair the recovery. In recent years 

novel data accumulated about the pathomechanism of endocrine responses in critical 

illness [Sharshar, 2011; Van den Berghe, 2003]. 

 

1.2.1 Pituitary-adrenal axis 

The strong relationship between stress and adrenocortical function was first 

described in 1923 by Scott [Scott, 1923] and then was investigated in detail by Selye 

in 1936 [Selye, 1998]. Since then it is universally accepted that stress is associated 

with elevated cortisol levels. Later human studies demonstrated the connection 

between the severity of stress and the magnitude of adrenocortical response [Melby, 

1958; Chernow, 1987]. Stress reaction was believed to be mainly regulated by 

hypothalamic corticotropin releasing hormone (CRH) but vasopressin is also a weak 

adrenocorticotropic hormone (ACTH) secretagog, works in synergy with CRH and 

may have role in critical conditions [Schuster, 2012]. Proinflammatory cytokines 

have been also shown to activate the hypothalamic-pituitary-adrenal axis. Moreover, 

they can modulate the activity of 11-beta-hydroxysteroid dehydrogenases and 

affinity of glucocorticoid receptors influencing the effects of glucocorticoids. The 

term “relative adrenal insufficiency” (RAI) was introduced many decades ago and 

was later applied to critically ill patient populations [Annane, 2000; Annane, 2003; 

Beishuizen 1999; Beishuizen, 2001b; Cooper, 2003; Loriaux, 2009; Knapp, 2004; 

Kwon, 2009]. A serum total cortisol increase of 250 nmol/L following administration 

of 250 μg ACTH was used as the diagnostic criteria of normal glucocorticoid 

http://www.ncbi.nlm.nih.gov/pubmed?term=Van%20den%20Berghe%20G%5BAuthor%5D&cauthor=true&cauthor_uid=12800538
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response [Beishuizen, 2001b; Marik, 2008; Norasyikin, 2009]. However, others used 

1 µg ACTH in the stimulation test and no consensus has been reached about the 

cortisol increment after stimulation. A threshold for minimal baseline cortisol was 

also suggested between 276 and 938 nmol/L without final conclusion [Mesotten, 

2008]. The concept of RAI was primarily based on total serum cortisol 

measurements [Annane, 2003; Beishuizen, 2001b; Cooper, 2003; Venkatesh, 2011; 

Rothwell 1991]. However, the total serum cortisol and the response to ACTH 

probably are not the most reliable indicators of adrenal function in critically ill 

patients. No correlation was found between total serum cortisol and mortality in 

patients with septic shock [Dimopoulou, 2007; Loriaux, 2009; Dickstein, 2005; 

Rady, 2005; Udelsman, 1986]. Others found that high total cortisol levels were 

associated with increased mortality [Melby, 1958; Kehlet, 1973; Sam, 2004]. This 

observation debated the hypothesis of RAI. Moreover, total serum cortisol values 

measured by commonly used immunoassays showed a high degree of variability 

[Cohen, 2006] and the classification of patients markedly differed based on the assay 

used [Briegel, 2009]. The random measurement of cortisol further increased the 

uncertainty of evaluation [Venkatesh, 2011; Venkatesh 2005]. 

The measurement of serum total cortisol by immunoassay is markedly 

influenced by the concentrations of the CBG and albumin. In critically ill patients 

there is a decrease in CBG concentration due to elevated cytokines or insulin 

resistance. The mechanisms of CBG depletion are the decreased hepatic production 

and the elastase-induced cleavage which is a mechanism of cortisol delivery to 

tissues. Albumin levels are also markedly reduced in critical illness. CBG is 

saturated at higher cortisol levels. The concentration of free cortisol rises 

exponentially at higher concentrations due to the cleavage from CBG [Beishiuzen, 

2001a; Venkataraman, 2007; Clark, 2011]. The relationship of total and free cortisol 

became nonlinear in critically ill patients, so free cortisol levels may be more 

informative. Free cortisol was reported being a good marker of inflammatory 

response in septic shock [Beishuizen, 2001a; Beishuizen, 2001b]. While free cortisol 

levels corresponded to severity of illness, the elevation of total cortisol did not 

[Rady, 2005; Hamrahain, 2004]. Others confirmed that free cortisol is a better 

marker of adrenal response in critical illness than total cortisol measurement 

[Beishuizen, 2001b; Hamrahain, 2004; Burt, 2013]. Thresholds for baseline free 

cortisol levels of 49.7 nmol/L and stimulated cortisol of 85.6 nmol/L have been 
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suggested [Hamrahian, 2004]. The effect of cortisol is regulated in tissue level by 

activity of 11-beta-hydroxysteroid dehydrogenase and the real cortisol effect on 

cellular level is difficult to predict [Beishuizen, 2001a; Gatti, 2009]. The concept of 

RAI has been further challenged based on the lack of survival benefit with 

supranormal dose glucocorticoid administration [Venkatesh, 2011; Oppert, 2000].  

Nowadays a new concept about the dramatic increase of cortisol levels in 

critical illness has been proposed by Boonen et al. [Boonen, 2013; Boonen, 2014]. It 

is known from pioneering work from Vermes et al. [Vermes, 2001] that ACTH 

concentrations are just transiently elevated after trauma or sepsis. Plasma ACTH 

levels were rather suppressed in heterogeneous critically ill patient population at 

intensive care unit (ICU) admission [Mesotten, 2008]. The low plasma ACTH levels 

parallel to high serum cortisol concentrations may be due to non-ACTH-driven 

cortisol secretion or caused by reduced cortisol breakdown. The elevated 

proinflammatory cytokines may play a role in the stimulation of adrenocortical 

response. The decreased cortisol metabolism was proven and it is attributed to the 

low activity of A-ring reductases of the liver and the suppressed activity of 11-beta-

hydroxysteroid dehydrogenase type 2 in the kidney. The potential role of the bile 

acids was proposed in mediating the suppression of these enzymes [Boonen, 2013]. 

This new concept of hypercortisolism in critical illness due to decreased cortisol 

metabolism may explain the concomitantly low plasma ACTH concentrations 

because high cortisol levels exert negative feedback inhibition in the pituitary gland 

and hypothalamus. The results of Boonen et al. change our explanation about cortisol 

responses to ACTH stimulation in critical illness and the concept of RAI. It was 

shown that cortisol responses in ACTH stimulation test correlated positively with 

both cortisol production rate and cortisol plasma clearance. So patients with the 

lowest response to ACTH were the ones with the most suppressed cortisol 

metabolism. The low cortisol response to ACTH presumably reflects the negative 

feedback inhibition by the already elevated cortisol levels and not the relative adrenal 

insufficiency [Boonen, 2013]. 

Recently, major development has been achieved in the measurement of 

cortisol levels by the technique of LC-MS [Clark, 2011; Montskó, 2014]. LC-MS has 

greater analytical specificity in detecting total and free serum cortisol than 

immunoassays and is able to separate and quantify serum total cortisol in the 
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presence of other steroids and metabolites [Burt, 2013; Gatti, 2009; Shackleton, 

2010]. 

Despite the obvious advantages of free cortisol measurements by LC-MS in 

critically ill patients, literature data are sparse in this field [Vassiliadi, 2013], partly 

because free cortisol determination is time-consuming. 

 

1.2.2 Somatotropic axis 

The growth hormone (GH) secretion is very sensitive to stress. At the 

beginning of critical illness, GH levels become elevated, there are increased pulse 

frequency and higher interpulse concentrations [Ross, 1991; Voerman, 1992]. It is 

unknown which factors are responsible for the stimulation of GH release in response 

to stress. Insulin-like growth factor 1 (IGF-1) and insulin-like growth factor-binding 

protein 3 (IGFBP-3) concentrations decrease and an acquired peripheral resistance to 

GH is presumed. The role of cytokines is hypothesized behind the reduced GH 

receptor expression. It was suggested that the primary event is the reduced peripheral 

GH receptor expression resulting low IGF-1 levels and the reduced negative 

feedback is responsible for elevated GH release in stress. The elevated GH - low 

IGF-1 constellation may be beneficial in critical illness exerting direct lipolytic, 

insulin antagonizing and immune stimulating effects while the IGF-1 mediated 

metabolic consequences are decreased. This situation would shift the consumption of 

essential substrates to vital organs. GH secretion in the prolonged critical illness is 

reduced but still higher than in non-stressed conditions [Sharshar, 2011; Van den 

Berghe, 2003]. The question of relative GH insufficiency raised and high dose GH 

treatment was tried in a multicenter study. Unfortunately, GH treatment did not 

improve outcome but doubled mortality and increased morbidity [Takala, 1999]. No 

clear explanation is available for the unexpected outcome. 

 

1.2.3 Thyrotropic axis 

It is well known that acute illnesses and fasting result in decreased plasma 

concentration of triiodothyronine (T3) and elevated reverse T3 (rT3) levels. This 

condition is called acute “low T3 syndrome” or “non-thyroidal illness” or “sick 

euthyroid syndrome” [Van den Berghe, 2003]. The changes in thyroid hormone 



 12 

levels are due to the inhibition of the thyroid hormone conversion from thyroxin (T4) 

to T3 by type 1 deiodinase (D1) and inactivation of thyroid hormone in peripheral 

tissues mediated by the increased activity of the type 3 deiodinase (D3). [Wajner, 

2011; Peeters, 2005]. Concentrations of thyroid-stimulating hormone (TSH) and T4 

have been found to be increased immediately after surgery and then often return to 

normal levels [Michalaki, 2001]. The possible mediators of acute low T3 syndrome 

in critically ill patients are the lack of nutrition, the increased levels of cytokines and 

hypoxia. It was found that proinflammatory cytokines are able to evoke the acute 

stress induced alterations of the thyroid axis. The inhibition of thyroid hormone 

binding and transport by elevated levels of free fatty acids may also be involved 

[Lim, 1993]. The beneficial or deleterious role of low T3 syndrome is questionable. It 

may be adaptive by protecting the critically ill patient from hypercatabolism and 

consequences of malnutrition reducing energy expenditure. The decrease of thyroid 

hormone activation also occurs during fasting in healthy subjects and regarded as an 

adaptive process. However, the magnitude of rT3 elevation and the T3/rT3 ratio was 

found to be associated with the severity of illness and risk of death [Peeters, 2005]. 

Beyond the serum T3 concentrations, the thyroid hormone action on tissue level is 

determined by the increased D3 activity which may have a role in optimizing 

inflammatory responses [Lim, 1993; Boelen, 2008, Boelen, 2011]. In the prolonged 

phase of critical illness low serum T3 concentrations are accompanied by low T4 and 

low TSH concentrations which similar to central hypothyroidism [Boonen, 2014]. It 

was demonstrated that bacterial lipopolysaccharides stimulate type 2 deiodinase (D2) 

in the mediobasal hypothalamus and are responsible for the development of central 

hypothyroidism by suppressing thyrotropin-releasing hormone neurons in the 

paraventricular nucleus. The upregulation of D2 expression and activity in the 

prolonged phase of the critical illness was detected not just in the hypothalamus but 

in the skeletal muscles, lung and liver [Sánches, 2008]. 

 

1.2.4 Lactotropic axis 

Prolactin (PRL) was one of the first hormones known to increase in response 

to stress. It was suggested that the elevated PRL level contributes to the altered 

immune functions. PRL receptors are present on T- and B-lymphocytes. The 

inhibition of PRL secretion by bromocriptine was found to modify the immune 
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response in humans after heart transplantation [Carrier, 1990]. In animal models, 

inhibition of PRL secretion impaired lymphocyte function, decreased macrophage 

activation and coping with bacterial infections. In the prolonged phase of critical 

illness, the PRL secretion is blunted and the secretory pattern is changed, the 

pulsatility is reduced. Dopamine administration as an inotropic drug has been found 

the further suppress PRL secretion and may be involved in impaired immune 

response [Van den Berghe, 2003; Devins, 1992]. As PRL is not available for therapy, 

it is theoretical question whether PRL might be used for optimizing immune 

functions in critical illness. It is also unknown that bromocriptine treatment should be 

interrupted or continued during intercurrent diseases. 

 

1.2.5 Luteinizing hormone-testosterone axis 

Testosterone is the most important anabolic steroid, so stress-induced changes 

in the luteinizing hormone-testosterone axis may influence the catabolic condition in 

critical illness. Decreased testosterone concentration was found during starvation, 

after myocardial infarction and surgical procedures [Klibanski, 1981; Wang, 1978a; 

Wang 1978b]. Low testosterone and high luteinizing hormone (LH) levels were 

found in the immediate postoperative stage and acute phase of myocardial infarction 

presuming the suppression of Leydig-cell function. The pathomechanism of Leydig-

cell dysfunction is not known. The potential role of proinflammatory cytokines were 

suggested based on animal studies [Guo, 1990]. The rationale for decreased anabolic 

androgen levels would be to conserve energy and save metabolic substrate for vital 

functions. 

The secretory pattern of LH is crucial for its biologic activity. In prolonged 

critical illness, high LH pulse frequency and low pulse amplitude has been reported 

resulting in impaired LH effect. The contributing role of endogenous and exogenous 

dopamine and opioids was presumed in the pathogenesis of hypogonadotropism 

[Van den Berghe, 1994]. Estradiol secretion is preserved and may further diminish 

LH secretion. Increased aromatization of adrenal androgens was suggested behind 

the normal estrogen levels. The effect of inflammatory cytokines in the 

hypothalamus was intensively studied to clarify the pathomechanism of 

hypogonadotrop hypogonadism. Interleukin-1 (IL-1) has a role in the suppression of 

luteinizing hormone-releasing hormone production. The adaptive or maladaptive 



 14 

feature of hypogonadism is questionable, similarly to the low T3-syndrome [Van den 

Berghe 2003]. The suppression of reproductive axis in critical illness was found to be 

related to diseases severity [Spratt, 1993]. 

 

1.2.6 Endocrine predictors of poor prognosis in critically ill patients 

In the clinical practice, validated scoring systems are used in the critical care 

medicine to predict the outcome of individual patients: acute physiology and chronic 

health evaluation (APACHE), simplified acute physiology score (SAPS), etc. These 

scores use multiple parameters of vital functions, laboratory tests and patient 

characteristics. There were numerous attempts to find biomarkers of adverse 

outcome. Many hormones were investigated from this point of view. In the acute 

phase of critical illness, low cortisol response to ACTH stimulation and high baseline 

serum cortisol levels were reported as indicators of poor prognosis. The elevated rT3 

and T3/rT3 ratio were also found as markers of high mortality risk [Peeters, 2005]. 

Estradiol concentrations at 48 hour after admission were significantly elevated in 

non-survivors regardless of gender [Dossett, 2008]. Estradiol levels at admission and 

later also independently associated with mortality in a large population of critically 

ill patients [Kauffmann, 2011]. The possible prognostic role of ghrelin was 

investigated and high ghrelin levels were found as positive predictor at ICU-survival 

in septic patients. Ghrelin levels were associated with requirement of mechanical 

ventilation [Koch, 2010]. ICU-survivors had significantly lower brain natriuretic 

peptid (BNP) concentrations when compared to non-survivors in a large unselected 

cohort of critically ill patients. SAPS II and BNP levels were independently 

associated in a logistic regression model [Meyer, 2007]. Increased plasma 

adiponectin level was also reported being associated with mortality in patients with 

respiratory failure [Walkey, 2010]. Median GH concentrations at admission 

increased about 7-fold in non-survivors as compared with survivors in the study of 

Schuetz et al. As the GH plasma concentrations were independent predictors for 

mortality, the authors suggested to use GH measurement to complement the existing 

risk prediction scores [Schuetz, 2009]. 

It should be concluded from many studies that the magnitude of expected 

endocrine changes is higher in patients with more severe disease and high risk of 
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mortality, and a number of hormonal parameters can be useful in predicting the 

prognosis of individual patients. 
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2 Aims 

 

2.1 Validation of a new method for cortisol measurement 

Our objective was to develop a sensitive and specific HPLC-MS-based cortisol assay 

using a Bruker micrOTOF high-resolution mass spectrometer. Specificity was 

achieved using accurate mass identification instead of an MRM transition. The 

development of the assay was planned for the measurement of 

a) total serum cortisol 

b) free serum cortisol 

c) salivary cortisol 

 

2.2 Cortisol response measured by LC-MS in critical illness 

The aim of this study was 

a) to analyze the total and free cortisol concentrations measured by LC-MS in a 

mixed population of critically ill patients with medical emergencies 

b) to determine the time course of cortisol response in critical illness 

c) to estimate the prognostic role of cortisol levels in comparison to APACHE II 

and SAPS II mortality scores which are the best known predictors of 

mortality 

d) to evaluate serum total and free cortisol concentrations as new prognostic 

biomarkers in critical illness 
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3 Patients and Methods 

3.1 Chemicals and standards 

All analytical standards (cortisol, cortisone, dexamethasone, prednisolone, 

prednisone, and methylprednisolone) were purchased from Sigma-Aldrich, Budapest, 

Hungary, except the deuterated internal standard (IS), (9,12,12-D3 cortisol), which 

was purchased from Cambridge Isotope Laboratories Inc. (USA). Two different 

internal standard solutions were prepared in 20 % methanol. One was used during the 

TC assay and had a concentration of 1.1 μmol/L, and the other was used for FC and 

SC analyses and had a concentration of 0.11 μmol/L. All other standard solutions 

were prepared in 20 % methanol in water, and all were kept at 4 °C. Calibrators used 

for the quantification of SC and FC measurements were prepared in phosphate-

buffered saline (PBS) pH=7.4, to cover the concentration range 400 pmol/L to 100 

nmol/L. The calibration series used during the TC assay was prepared in 6 % bovine 

serum albumin dissolved in PBS, to cover the concentration range 10-4000 nmol/L. 

All solvents were of LC-MS grade, purchased from Molar Chemicals (Molar 

Chemicals, Hungary). Ammonium acetate (Sigma-Aldrich, Hungary) and formic 

acid (Molar Chemicals, Hungary) were used as HPLC additives. 

 

3.2 Patients and/or volunteers during the validation of LC-MS cortisol 

measurement 

The total number of patients and/or volunteers involved was 292, with a 

gender distribution of 175 females and 117 males. The mean age of the female 

patients was 59.1 years (23-82 years) and that of the males was 53.4 years (24-76 

years). 

All blood samples were collected in anticoagulant-free Vacutainer (Becton 

Dickinson, Hungary) plastic tubes. Sampling was performed from 8:30 am to 10:00 

am. After centrifugation at 2200g for 10 min, sera samples were transferred to plastic 

container tubes and were kept frozen at -24 °C until sample preparation. Salivary 

samples were collected from healthy volunteers among laboratory staff by using 

Salivette Cortisol devices (Saarstedt, Hungary) according to the manufacturer’s 

procedure. Samples were stored frozen until the measurement. Blood samples were 
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randomly chosen; only patients receiving steroidal therapy were excluded. The 

authors have confirmed in writing that they have complied with the World Medical 

Association Declaration of Helsinki regarding ethical conduct of research involving 

human subjects and/or animals. 

 

3.3 Sample preparation 

TC samples were treated as follows: 20 μL internal standard solution (1.1 

μmol/L) was added to 100 μL serum and the mixture was vortex mixed for 1 min. 

Afterwards, 300 μL acetonitrile was added for protein precipitation and the sample 

was vortex mixed vigorously for 1 min, followed by centrifugation at 14000g for 

10min. 50 μL upper phase was added to 50 μL water in an autosampler vial and was 

vortex mixed. 20 μL of this mixture was injected onto the HPLC column. 

To analyze FC, 500 μL serum was ultrafiltrated, using 30000 Da molecular 

weight cut-off Amicon Ultra-0.5 mL centrifugal filters (Merck, Hungary). After 

filtration according to the manufacturer’s procedure, 400 μL ultrafiltrate was 

transferred to solid-phase extraction (SPE) cartridges. 

Saliva samples and serum ultrafiltrate were further processed with SPE. 20 

μL internal standard solution (0.11 μmol/L) was added to 400 μL saliva or 

ultrafiltrate. Extraction was performed on Strata-X (60 mg) polymeric reversed-

phase extraction cartridges (Phenomenex, USA). The phase was activated with 1 mL 

methanol, and then equilibrated with 1 mL water. Samples were washed with 1 mL 

20 % methanol in water; elution was performed using 2×500 μL acetonitrile. The 

eluate was dried under vacuum, and the residue was redissolved in 20 % methanol in 

water containing 2 mmol/L ammonium acetate and 0.05 % formic acid. The injection 

volume was 20 μL. 

 

3.4 Instrumentation 

A Dionex Ultimate 3000 (Dionex, USA) analytical HPLC equipped with an 

autosampler and a column thermostat set at 30 °C was used. Separation was 

performed on a Kinetex C8 2.6 μm, 2.1×100 mm analytical column (Phenomenex, 

USA) with a multi-step gradient elution at a flow of 200 μL/min. HPLC solvents 

contained 2 mmol/L ammonium acetate and 0.05 % formic acid in 5 % (A) and 95 % 
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(B) acetonitrile. The gradient profile is described in Table 1; the total runtime was 13 

min. 

 

Table 1. Description of the HPLC gradient used in the LC-MS run 

 

Time (minute) A (%) B (%) 

0.0 85 15 

5.0 30 70 

6.5 15 85 

8.0
 a
 15 85 

13.0 85 15 

 

a 
At the end of every chromatographic run a five minute re-equilibration phase was 

inserted to start the new run at 15 % „B” solvent concentration.
 

 

The mass spectrometer coupled to the HPLC was a Bruker micrOTOF 

accurate mass instrument, equipped with an electrospray ionization (ESI) source 

operated in the positive mode. Main source settings were: capillary voltage: 4500 V, 

nebuliser pressure: 2.4 bar, drying gas flow (nitrogen): 8 L/min, and drying 

temperature: 210 °C. Mass spectra were collected between m/z 200 and m/z 500. 

Internal mass calibration was performed at the beginning of every run, using the 

peaks of Na
+
 formate clusters. 

 

3.5 Critically ill patients 

The prospective, observational study was carried out in 69 non-selected 

patients admitted to the Intensive Care Unit of the 1
st
 Department of Internal 

Medicine, University of Pécs, Hungary. During the enrollment period, 108 patients 

were treated at our intensive care unit and 79 were enrolled to the study (73%). In 

cases when informed consent was not feasible and those who died within six hours 

were not enrolled. Ten patients were excluded from the final evaluation because of 

missing samples at critical time points. Gender distribution was the following: 39 

males and 30 females, median age was 74 (23-87) years. Patients’ characteristics and 
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diagnosis at admission are shown in Table 2. It was a mixed population of patients 

with medical emergencies, no surgical or trauma patients were included (Table 2). 

Five patients had complete cardiopulmonary resuscitation and three patients were 

defibrillated prior to admission. Vital signs, clinical status and routine laboratory 

parameters were monitored. The treatment of patients was thoroughly evaluated and 

blood samples disturbed by glucocorticoid treatment were excluded from the further 

analysis (at admission 3 samples, at 6 hours 9 samples, 24 hours 7 samples and 48 

hours 6 samples). The major indication for glucocorticoid treatment was the 

unresponsive septic shock. None of the patients received etomidate, ketoconazole or 

any other drug influencing the steroid metabolism. The severity of the diseases was 

scored according to the SAPS II [Le Gall, 1993] and the APACHE II [Knaus, 1985] 

(Table 3). 

Our study was performed in accordance with the ethical guidelines of the 

2003 Declaration of Helsinki and we obtained the permission of Regional Research 

Ethical Committee of University of Pécs. When feasible, informed consent was 

obtained prior to enrollment in conscious patients; otherwise the consent was 

obtained from the patients’ next of kin. 

Blood samples were taken for the measurement of free and total cortisol 

levels at admission (0 hour), 6, 24, 48 and 96 hours after admission. Blood samples 

were collected in anticoagulant free Vacutainer (Becton Dickinson, Hungary Kft., 

Környe, Hungary) plastic tubes. Routine laboratory parameters were determined by 

the Institute of Laboratory Medicine, University of Pécs accredited according to ISO 

15189. Concentrations of free and total cortisol were measured by high performance 

liquid chromatography (HPLC) coupled high resolution electrospray ionization-time 

of flight (ESI-TOF) mass spectrometry. 
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Table 2. Patients’ characteristics 

 

Age (median, interquartiles) years 74.0 (60.5/79.0) 

Gender (female/male) 30/39 

Mortality rate (30-day) 26.1% 

Mechanical ventilation 33.3% 

Catecholamine treatment 34.8% 

APACHE II score (median, interquartiles) 21.0 (16.5/29.0) 

SAPS II score (median, interquartiles) 36.0 (25.0/55.5) 

Diagnosis  

Sepsis  20 

Heart failure 14 

Pulmonary embolism 8 

Acute myocardial infarction  7 

Respiratory failure 6 

Atrial fibrillation 3 

Ventricular tachycardia 1 

Complete atrioventricular block 2 

Drug intoxication 3 

Acute kidney failure 2 

Diabetic ketoacidosis 1 

Gastrointestinal bleeding 1 

Hypothermia 1 
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Table 3. APACHE II and SAPS II clinical scoring systems to classify the severity of 

illness 

 

APACHE II SAPS II 

Age Age 

Organ insufficiency or 

immunocompromised state 

Type of admission: nonsurgical/surgical 

(scheduled/unscheduled) 

Temperature Temperature 

Mean arterial pressure Systolic blood pressure 

Heart rate Heart rate 

Glasgow Coma Scale Glasgow Coma Scale 

PaO2/FiO2 PaO2/FiO2 

White blood cell count White blood cell count 

Respiratory rate Urine output 

Hematocrit Blood urea nitrogen 

Creatinine Bilirubin 

Potassium Potassium 

Sodium Sodium 

Arterial pH Bicarbonate 

 AIDS 

 Metastatic cancer 

 Hematological malignancy 
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3.6 Statistics 

Statistical analysis was performed using the IBM SPSS Statistics Version 20 

(IBM Magyarország Kft. Budapest, Hungary) and SPSS Statistics Version 22.0 

(SPSS, Inc., Chicago, IL, USA) softwares. 

Kolmogorov-Smirnov test was used to determine the distribution of the data. 

All normally distributed data are presented as mean ± SD. Medians and interquartile 

ranges are reported for data that were not normally distributed. Significant results 

were those with P values < 0.05. Total and free cortisol levels of survivors and non-

survivors were compared using Mann-Whitney U test. Relationships between non-

normally distributed quantitative variables were evaluated by bivariate correlation 

(Spearman correlation). The diagnostic value of cortisol levels to predict mortality 

was determined by receiver operating characteristic (ROC) analysis. The optimal cut-

off point was assessed using Youden’s J statistic. Kaplan-Meier survival curves were 

created to compare the mortality risk in cortisol quartiles. Independent determinants 

of mortality were investigated by binary logistic regression analysis using backward 

method. 
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4 Results 

4.1 Establishment of a new method for cortisol measurement using LC-MS 

4.1.1 HPLC coupled ESI-TOF detection 

The retention time of cortisol and the IS was consistent at 6 min (±0.1 min). 

In Figure 1a, extracted ion chromatograms (EIC) of a patient FC sample run are 

presented; the measured concentration is 12.1 nmol/L. The EIC of cortisol is at m/z 

363.2099, and the EIC of the IS at m/z 366.2287. The mass width was set at ±0.001 

Da (1 mDa). The same mass width was used for all the other measurements. The m/z 

value of the EIC was chosen according to the observed masses of cortisol (m/z 

363.2099) and the IS (m/z 366.2287), as seen in Figure 1b.  

  

 

Figure 1. Extracted ion chromatograms (a) and average mass spectrum at half 

maximum (b) of a typical serum free cortisol sample run. Peak number 1 (red) 

corresponds to the proton adduct ion of cortisol [M+H]
+
 at m/z 363.2099, while peak 

number 2 (blue) to the [M+H]
+
 of the internal standard at m/z 366.2287. Mass 

accuracy is 1.6 ppm for cortisol and 1.4 for the internal standard 
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Both masses correspond to the proton adduct ions [M+H]
+
. Ion 

chromatograms were selected according to the above-discussed rules for all the other 

sample runs. A mass accuracy of 1-2.5 ppm was achieved throughout the whole set 

of measurements. Because of the high mass accuracy achieved, the narrowest mass 

window (±1 mDa) was used on all chromatograms. 

During the study the following concentration ranges were established from 

the processed samples. TC concentrations ranged from 35.6-1088 nmol/L, with an 

average of 372 nmol/L, whereas FC levels were in the range 0.5-12.4 nmol/L, with 

an average of 3.7 nmol/L. SC levels were in the range 0.7-10.4 nmol/L; the average 

value was 3.2 nmol/L. 

4.1.2 Method validation 

Intra-assay and inter-assay variations were determined using a total of nine 

pooled sample lots constructed for the three assays (TC, FC, and SC). Every pooled 

lot was composed of ten randomly chosen samples. One was constructed in the low 

range (<100 nmol/L for TC and <3 nmol/L for FC and SC), one in the middle range 

(100-500 nmol/L and 3-8 nmol/L), and one in the high range (>500 nmol/L and >8 

nmol/L). Every material was assayed 20 times. Interassay variation was estimated by 

six repeated analyses of the respective material on consecutive days. 

Limit of detection (LOD) and limit of quantification (LOQ) were determined 

using sera and saliva samples diluted with PBS till the achievement of a three (LOD) 

or ten (LOQ) times average signal-to-noise ratio. The values of LOQ and LOD were 

determined from the results of 10 repeated analyses of the corresponding material. 

Recovery was calculated by determining the cortisol concentration of pooled 

samples (n=5) before and after addition of a known amount of cortisol. The spiking 

solution was prepared in 20 % methanol in water, with concentrations of 200, 500, 

and 1000 nmol/L for TC, and 2, 5, and 10 nmol/L for FC and SC. 20 μL spiking 

solution was added to every pool. 

For evaluation of ion suppression, known amounts of IS were spiked into 100 

μL of five different extracted TC, FC, and SC samples, and the same amount of IS 

was also spiked into 100 μL 20 % methanol. IS peak areas measured in the spiked 

solvents were compared with those measured in extracted samples. 

The limit of detection and limit of quantification were similar for FC and SC 

samples, but much higher for TC. The values were determined by ten repeated 
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measurements of the corresponding diluted sample. Coefficient of variation (CV) 

values of the ten repeated LOD and LOQ measurements were also calculated. The 

LOD was 140 pmol/L (CV 8.9 %) for serum ultrafiltrate, and 190 pmol/L (CV 9.1%) 

for saliva. The LOD for TC assay was 9 nmol/L (CV 7.8 %), as a result of the 

dilution during sample treatment. LOQ for FC was 440 pmol/L (CV 6.6 %), and for 

SC the LOQ was 600 pmol/L (CV 7.1 %). For TC the LOQ was 12.5 nmol/L (CV 

6.5 %). The assay was linear from 400 pmol/L-4000 nmol/L nominal concentration. 

Results of the intra-assay and inter-assay study, and mean concentrations of 

the constructed sample pools, are summarized in Table 4. 

 

Table 4. Results of the HPLC-MS method validation. The pooled TC, FC, and SC 

samples were constructed of ten randomly selected patient serum, serum ultrafiltrate, 

and saliva samples containing cortisol at the desired concentration interval 

 

 

Intra-assay (n=20) Inter-assay (n=6) 

Mean 

(nmol/L) 
SD 

CV

% 

Mean 

(nmol/L) 
SD 

CV

% 

Total 

cortisol 

45.8 3.4 7.4 43.4 3.7 8.5 

254.5 4.5 1.7 242.6 22.9 9.6 

720 21.2 3.2 685.6 41.1 6.2 

Free 

cortisol 

1.6 0.11 6.9 1.5 0.12 8.0 

7.5 0.29 3.9 7.8 0.39 5.0 

10.5 0.49 4.6 11.1 0.57 5.1 

Salivary 

cortisol 

2.5 0.14 5.6 2.6 0.17 6.5 

8.4 0.26 3.1 8.8 0.36 4.1 

12.5 0.76 6.1 11.9 0.81 6.8 
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Intra-assay CV was best with the 254.5 nmol/L TC pool, at 1.7 %, and worst 

with the 45.8 nmol/L TC pool, at 7.4 %. We observed the worst inter-assay CV with 

the 254.5 nmol/L TC pool, at 9.6 %, and the best with the 8.4 nmol/L SC pool, at 

4.1%. Overall, the best intra or inter-assay CV was 1.7 % and the worst was 9.6 %. 

The average intra-assay CV was 4.7 %, and the average inter-assay variance was 

6.6%. 

During the recovery studies, we observed a mean recovery of 101.2 % for 

TC, and of 98.9 % and 94.6 % for FC and SC, respectively. Calculated recovery 

values ranged from 94.6-107.8 %. No ion suppression was observed except in the 

saliva analysis, where the matrix effect resulted in an average suppression of the 

added IS signal to 96 % of the average signal measured in 20 % methanol. 

 

4.1.3 Investigation of method interference with frequently used steroid drugs 

Interference studies were performed using pooled samples spiked with 

solutions of frequently used steroidal drugs (cortisone, dexamethasone, prednisolone, 

prednisone, and methylprednisolone) to achieve a final concentration of 5000 nmol/L 

of the added drug. Every spiking experiment was repeated ten times. Cortisol 

concentrations of the samples were measured before and after the addition of the 

corresponding drugs. 

Five commonly administered steroidal drugs were tested to establish whether 

they interfered with the HPLC-MS cortisol assay. Of the five drugs, cortisone, 

dexamethasone, prednisone, and methylprednisolone were chromatographically 

separated from cortisol and no interference was observed. Prednisolone, however, 

had the same retention time as cortisol and the IS. We observed an average 3 % (2.2-

4.1 %, n=10) overestimation of cortisol concentration, which is less than the average 

CV observed during the study. 

With our HPLC-ESI-TOF method, after internal calibration of each sample run a 

±0.001 Da (1 mDa) mass width was obtainable on the EICs. For the masses of 

cortisol (362.2093 Da) and the IS (365.2282 Da), the calculated mass accuracy was 

always <2.5 ppm. Conventionally, a measurement is regarded as an “accurate mass 

measurement” if the maximum mass error is less than or equal to 2.5 mDa [Zhang, 

2012] and the mass accuracy is not higher than 5 ppm [Hogenbooma, 2009], or, more 
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recently, 3 ppm [Polgár, 2012]. Figure 2 shows an example, where mass accuracy for 

the detected compounds is in the range 1.4-1.6 ppm. 

 

 

Figure 2. Example of the result of an interference study using prednisolone. The 

measured cortisol concentration of the sample was 246 nmol/L (a). After the addition 

of prednisolone spiking solution to achieve a 5000 nmol/L final prednisolone 

concentration a 252 nmol/L cortisol level was estimated (b). Chromatogram number 

1 (blue) at 361.1941 m/z corresponds to the proton adduct ion [M+H]
+
 of 

prednisolone 

 

 

4.1.4 Comparison of the LC-MS method with commonly used immunoassays in 

non-critically ill patient population 

Method comparison was performed using three different immunoassays. 

Results of the TC measurements were compared with the Roche Modular Analytics 

E 170 ECLIA assay (n=96), the validated method used in our laboratory. Results of 

the FC and SC measurements (n=96 in both cases) were compared with the results of 

two commercially available immunoassay kits. The Enzo Cortisol EIA kit 

(Biomarker, Budapest, Hungary) was used for parallel FC measurements, and the 

IBL International Cortisol ELISA kit (Diagnosticum, Budapest, Hungary) for SC 

measurements. Results of the LC-MS assay were compared with the results of the 

reference methods by Pearson correlation and linear regression analysis. Results are 

displayed on scattergrams (Figure 3a, b, c). The corresponding regression equations 

are described in the caption of Figure 3. 

   2 

1 

5.6 5.8 6.0 6.2 6.4 6.6 Time [min] 
0.0 

0.5 

1.0 

1.5 

4 x10 Intens. 

Kontrol1_RA2_01_6736.d: EIC 366.2289±0.001 + 
Kontrol1_RA2_01_6736.d: EIC 363.2098±0.001 + 

 

3 
2 

1 

5.6 5.8 6.0 6.2 6.4 6.6 Time [min] 
0.0 

0.5 

1.0 

1.5 
5 x10 Intens. 

Spiked8_RA6_01_6737.d: EIC 366.2288±0.001 + 
Spiked8_RA6_01_6737.d: EIC 363.2097±0.001 + 
Spiked8_RA6_01_6737.d: EIC 361.1941±0.001 + 

a b 
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Figure 3. Scattergrams of the linear regression analyses of the three method 

comparison study. (a) Enzo Life Sciences Cortisol EIA assay (free cortisol, HPLC-

MS=0.149+0.906×EIA), (b) IBL International Gmbh Cortisol ELISA assay (salivary 

cortisol, HPLC-MS =0.05+0.898×ELISA) and (c) Roche Modular Analytics E 170 

ECLIA assay (total cortisol, HPLC-MS=0.0738+0.994×ECLIA) 

 

 

A notable positive bias was observed in the higher concentration ranges for 

FC and SC measurements; however, we did not observe this when comparing results 

of the TC analysis. The value of the Pearson correlation coefficient was similar for 

the TC and SC results (0.991 and 0.992 p<0.001); however, the FC results were 

lower than those estimated using the EIA kit (0.987 p<0.001). The calculated 

statistical variables are listed in Table 5. 
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Table 5. Statistical parameters (linear regression and correlation) of the HPLC-MS 

method comparison 

 

 
Comparative 

method 

Slope 

(95 % CI) 
R

2
 

Pearson 

correlation 

p 

(corr.) 

Total cortisol ECLIA 
0.994 

(0.967-1.02) 
0.983 0.991 p<0.001 

Free cortisol EIA 
0.906 

(0.876-0.936) 
0.975 0.987 p<0.001 

Salivary cortisol ELISA 
0.898 

(0.874-0.922) 
0.983 0.992 p<0.001 

 

 

4.2 Total and free cortisol measurements in critically ill patients 

4.2.1 Cortisol response in critical illness and the correlation of total and free 

cortisol levels 

The range of total cortisol varied between 49.9 and 8797.8 nmol/L (normal 

values: 138-690 nmol/L) with a median (interquartile ranges) of 583.5 (381.5/855.8) 

nmol/L, free cortisol between 0.4 and 759.9 nmol/L (reference range: 1-8 nmol/L) 

with a median (interquartile ranges) of 13.4 (4.3/60.1) nmol/L. The maximal 

elevation of total cortisol was 13 times, of free cortisol was 95 times of the upper 

limit of reference range. 

The median of total cortisol of hydrocortisone treated septic patients (13 

samples at different time points) was 3880 nmol/L, at the upper range of untreated 

patients. The median of free cortisol due to hydrocortisone treatment was 

supraphysiological high, 801 nmol/L. These values were not included in the 

statistical analyses. 

The cortisol levels did not show normal distribution based on the 

Kolmogorov-Smirnov test so the groups were expressed as median and interquartile 

range. Total and free cortisol levels significantly correlated (P<0.001) (R=0.710) 

(Figure 4). 
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Figure 4. Correlation of free cortisol (FC) and total cortisol (TC) (Spearman 

correlation, p<0.001, correlation coefficient = 0.710) 

 

 

4.2.2 Time course of adrenocortical response in critical illness 

The median, interquartiles and 95% confidence interval of total and free 

cortisol at different time points can be seen at Figure 5 and 6. Total cortisol at 

admission was significantly higher than later and at 6 hours was also elevated 

compared to later time points (Figure 5). Free cortisol was significantly elevated only 

at admission compared to later measurements (Figure 6).  
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Figure 5. Total cortisol (TC) concentrations at different time points expressed as 

median, interquartiles and 95 % confidence interval (CI) 

*Total cortisol at admission (TC0) is significantly higher than all the later medians  

** Total cortisol at 6 hour (TC6) is significantly higher than the total cortisol at 24 

hour (TC24) 

 

 

 

 

 

Figure 6. Free cortisol (FC) concentrations at different time points expressed as 

median, interquartiles and 95 % confidence interval 

*Free cortisol at admission (FC0) is significantly higher than the other values 
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4.2.3 Comparison of cortisol values in survivor and non-survivor population 

The total and free cortisol levels of survivors (n=51) and non-survivors 

(n=18) (30-day mortality) were compared. Elevated total cortisol was found in non-

survivors at 0, 6 and 48 hours (Figure 7). Free cortisol was significantly higher in 

non-survivors at admission and 6, 24 and 48 hours after admission (Figure 8).  

 

 

 

 

 

Figure 7. Total cortisol concentrations expressed as medians, interquartiles and 95% 

confidence intervals in survivors (n=51) and non-survivors (n=18) at different time 

points 

* Significantly elevated cortisol levels in non-survivors analyzed by Mann-Whitney 

U-test. P values for TC0:0.001, TC6:0.029, TC48:0.017 
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Figure 8. Free cortisol concentrations expressed as medians, interquartiles and 95% 

confidence intervals in survivors (n=51) and non-survivors (n=18) at different time 

points 

*Significantly elevated cortisol levels in non-survivors analyzed by Mann-Whitney 

U-test. P values for FC0:0.000, FC6:0.001, FC24:0.018, FC48:0.002 

 

 

Because intubation and mechanical ventilation may increase cortisol levels 

and may be associated with bad prognosis, the cortisol levels of ventilated and not 

ventilated patients were also compared at every time points. TC0 (p=0.001), FC0 

(p<0.001) and FC6 (p=0.001) were significantly higher in ventilated patients. The 

mortality rate was also significantly elevated in cases that required ventilation 

(p<0.001).  
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4.2.4 The predictive role of cortisol concentrations at different time points for 

mortality 

The predictive role of cortisol levels was investigated in comparison to the 

well accepted clinical scores, APACHE II and SAPS II mortality (Figure 9). 

 

 

 

 

Figure 9. Relationship between free cortisol at admission (FC0) and APACHE II 

mortality (Spearman correlation, p<0.000, correlation coefficient: 0.559) 

 

 

 

 

The results of these correlations can be seen in Table 6. Free cortisol at 0 

(FC0), 6 (FC6), 24 (FC24), 48 (FC48) and 96 hours (FC96) significantly correlated 

with predicted mortalities. Total cortisol at 0 (TC0) and 6 hours (TC6) also 

correlated with mortality scores but the correlation disappeared from total cortisol at 

24 hour (TC24). 
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Table 6. Correlations of free cortisol (FC) and total cortisol (TC) levels to APACHE 

II and SAPS II mortalities (Spearman correlation) 

 

 

APACHE II mortality SAPS II mortality 

p value Correlation coefficient p value Correlation coefficient 

FC0 0.000 0.559 0.000 0.584 

FC6 0.000 0.479 0.000 0.474 

FC24 0.011 0.330 0.029 0.284 

FC48 0.008 0.421 0.002 0.480 

FC96 0.029 0.489 0.030 0.487 

TC0 0.000 0.455 0.000 0.542 

TC6 0.009 0.332 0.029 0.283 

TC24 0.125 0.202 0.272 0.145 

TC48 0.435 0.130 0.132 0.249 

TC96 0.206 0.295 0.195 0.302 
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The diagnostic value of cortisol concentrations to predict mortality was next 

evaluated by ROC analysis. ROC curve for serum total and serum free cortisol levels 

at admission are shown in Figure 10. 

 

 

         

 

Figure 10. Receiver operating characteristic (ROC) curve for serum total cortisol 

levels at admission (TC0). AUC=0.762 (A) Receiver operating characteristic (ROC) 

curve for serum free cortisol levels at admission (FC0). AUC=0.801 (B) 

 

 

The cut-off values of cortisol with optimal diagnostic accuracy can be seen at 

Table 7. For example, free cortisol level ≥ 28.2 nmol/L at admission has 88.2 % 

sensitivity and 67.3 % specificity to predict mortality. The FC0 and TC0 had higher 

sensitivity and lower specificity than the later values. The sensitivity and specificity 

of APACHE II and SAPS II mortality was similar to the diagnostic value of FC6, 

FC24 and FC48. 
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Table 7. Cut-off values of free cortisol (FC), total cortisol (TC) and mortality scores 

(APACHE II and SAPS II mortality) with optimal diagnostic accuracy (based on 

ROC analysis) 

 

 
AUC* Cut-off value 

Sensitivity 

(%) 

Specificity 

(%) 

FC 0 (nmol/L) 0.801 28.2 88.2 67.3 

FC 6 (nmol/L) 0.769 51.0 62.5 87.0 

FC 24 (nmol/L) 0.702 21.1 56.3 81.4 

FC 48 (nmol/L) 0.847 29.7 75.0 87.1 

TC 0 (nmol/L) 0.762 583.6 100.0 46.9 

TC 6 (nmol/L) 0.694 886.5 57.1 82.6 

APACHE II Mortality (%) 0.814 53.4 77.8 82.4 

SAPS II Mortality (%) 0.843 54.1 66.7 88.2 

 

* AUC: area under the curve 

 

The best separation of survival in Kaplan-Meier curves was found at FC0 

analyzed in quartiles. Patients with the lowest 25 % of free cortisol all survived while 

60 % of patients died in the highest quartile (>75 %) (Figure 11). 
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Figure 11. Kaplan-Meier curves of survival depending on free cortisol quartiles at 

admission (FC0). Patients belonging to the lowest quartile all survived and the 

mortality increased with increasing free cortisol level. Free cortisol 25%: 6.0 nmol/L, 

50%: 26.7 nmol/L, 75%: 173.3 nmol/L 

 

 

4.2.5 Mortality predicting models using total and free cortisol concentrations 

Based on this excellent prognostic role of cortisol levels, they were included 

in mortality predicting models together with gender, age and the complex clinical 

scores, APACHE II and SAPS II mortality. FC6, FC24 and FC48 turned to be 

independent determinants of mortality beside APACHE II and SAPS II. The 

sensitivity, specificity and validity of these models were surprisingly high (Table 8). 

It is notable that the clinical scores created by 12 or 17 parameters and the cortisol as 

a single parameter are comparable in their predictive roles. 
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Table 8. Independent determinants of mortality in binary logistic regression analysis 

using six predictive models - observed mortality was used as a dependent variable 

 

 

Model 1 
p 

value 
Model 2 

p 

value 
Model 3 

p 

value 

Gender 
 

Gender 
 

Gender 
 

Age 
 

Age 
 

Age 
 

APACHE II- 

mortality  

APACHE II- 

mortality 
 

APACHE II-

mortality 
 

FC6 
 

FC24 
 

FC48 
 

independent 

determinant 

FC6 0.058 FC24 0.004 FC48 0.021 

APACHE II- 

mortality 
0.006 

APACHE II- 

mortality 
0.001 age 0.056 

Cox & Snell R
2
 0.267  0.394  0.419  

Nagelkerke R
2
 0.393  0.572  0.658  

sensitivity 87 
 

86 
 

96.8 
 

specificity 37.5 
 

56.3 
 

62.5 
 

validity 74.2 
 

78 
 

89.7 
 

 

 

Model 4 
p 

value 
Model 5 

p 

value 
Model 6 

p 

value 

Gender 
 

Gender 
 

Gender 
 

Age 
 

Age 
 

Age 
 

SAPS II -

mortality  

SAPS II -

mortality  

SAPS II -

mortality  

 FC6 
 

FC24 
 

FC48 
 

independent 

determinant 

FC6 0.024 FC24 0.003 FC48 0.023 

SAPS II -

mortality 
0.001 

SAPS II - 

mortality 
<0.001 

SAPS II - 

mortality 
0.051 

Cox & Snell R
2
 0.331  0.477  0.470  

Nagelkerke R
2
 0.486  0.692  0.738  

sensitivity 89.1 
 

90.7 
 

96.8 
 

specificity 56.3 
 

81.3 
 

75.0 
 

validity 80.6 
 

88.1 
 

92.3 
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The contribution of intubation and mechanical ventilation per se to cortisol 

elevation is difficult to estimate. To approach this question, the role of ventilation, 

mortality scores, gender, age and cortisol levels were investigated in binary logistic 

regression models. The need for ventilation was very strong determinant of mortality, 

even stronger than the mortality scores. However, FC6, FC24 and FC48 remained 

independent determinant of mortality beside ventilation. These data confirms that the 

intubation and ventilation themselves may, at least partly be responsible for the 

significant differences in cortisol levels of survivor and non-survivor patient 

population. 
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5 Discussion 

5.1 Establishment of a new method for cortisol measurement using LC-MS 

Commonly, targeted mass-spectrometry analysis is carried out using triple-

quadrupole mass spectrometers. The advantage of these instruments is their ability to 

perform fragmentation of the analyte, providing a significant fragmentation pattern. 

Specificity is achieved by comparing the chromatographic retention time of the IS 

and the analyte and by scanning the previously identified molecular fragments - 

commonly two or three. Specific quantification is performed by integrating the 

fragment-ion peaks instead of the parent mass. 

The other way of achieving specific mass-spectrometry molecular 

identification is using the accurate monoisotopic mass of the molecule instead of 

performing fragmentation before detection. The accurate theoretical monoisotopic 

mass of a molecule is a result of its elemental composition. If we can improve mass 

accuracy we can determine lower mass differences between two molecules. As a 

result, specificity increases, because we are able to exclude molecules having similar 

molecular mass but different elemental compositions. The other consequence of high 

mass accuracy is the possibility of using a narrow mass window on the EIC. If the 

accurate mass cannot be determined, a wide EIC mass window must be used, and 

there will be an increasing chance that the integrated chromatographic peak will also 

contain other compounds. 

Quantification in our method was performed using a 5.5 ppm-wide mass 

window, with no interference observed even with coeluting compounds of similar 

mass. This is a very important aspect when developing an alternative method to 

immunoassays, because the major advantage of mass spectrometry over 

immunoassays is the higher specificity. Steroids administered as therapeutic drugs 

often cross-react with antibodies raised against cortisol. A work published by Han et 

al. [Han, 2011] described the use of a quadrupole time of flight (QTOF) instrument, 

where a 25 ppm mass accuracy was achieved and a 50 ppm-wide mass window was 

used for quantification. However, the authors did not publish data on interference 

studies. 

Compound identification and quantification on the basis of accurate mass, 

instead of including an MRM or selected reaction monitoring (SRM) transition 

during method development, has several advantages. It may simplify transferring the 
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method to another instrument, because there is no need to develop an MRM 

transition. The other important advantage of an ESI-TOF instrument is that it is 

possible to scan a wide mass range without losing specificity, because accurate mass 

identification is possible for every compound present in the chromatographic run. 

This makes it possible to search for any additional compounds (hormone metabolites, 

therapeutic drugs, etc.) in sample data after the analysis. To achieve specificity using 

common triplequadrupole instruments, an MRM or SRM transition has to be 

developed before analysis for each potentially interesting compound. This means it is 

not possible to do a specific search for new compounds after the run is completed. 

During the validation of the HPLC-MS method, LOD and LOQ values were 

first established. The LOQs for FC (440 pmol/L), SC (600 pmol/L) and TC (12.5 

nmol/L) are well below the ranges commonly observed under physiological 

conditions (1-8 nmol/L FC and SC, 100-800 nmol/L TC) [McWhinney, 2010]; 

however, that for TC is much higher than for the two other assays. This is because 

TC has a relatively high concentration range, well within the sensitivity of mass 

spectrometry, so there was no need to use SPE sample concentration. Instead, a 

simple protein precipitation with acetonitrile was suitable, as seen from the results of 

the recovery, variation, and ion suppression measurements. This step results in 

dilution of the sample, because acetonitrile has to be added in a 1:3 ratio to achieve 

an adequate degree of precipitation. When higher sensitivity is required for TC (e.g. 

for applications related to adrenal insufficiency or Addison’s disease), reversed-

phase SPE concentration can be used; however, this means protein precipitation by 

organic solvents is not possible. Use of heavy metal salts [Hempen, 2012], for 

example ZnSO4, which was tested in our laboratory, is a possible option (data not 

shown). The precipitation salt is removed from the sample during the washing step of 

the SPE. 

The results of the intra- and inter-assay studies are detailed in the previous 

section. The CV value for TC, where no sample clean-up was involved, was in a 

range comparable with the variation of FC and SC measurements, where the use of 

SPE resulted in the removal of some undesired compounds. The averaged intra-assay 

CV value for TC is 4 %, and for FC and SC the value is 5 %. The averaged inter-

assay CV value for TC is 8.1 %, whereas for FC and SC the value is 6 %. These 

results concur with those described in literature [Pretorius, 2011; Perogamvros, 

2009]. Comparison with the immunoassays resulted in a positive bias in the higher 
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concentration ranges for TC and SC, as described elsewhere [Pretorius, 2011; Miller 

2013]. We assume that this is caused by cross-reactions of the immunoassays with 

other matrix compounds. Usually our method underestimated cortisol compared with 

the results of all three immunoassays; this was less notable when comparing the 

results with the validated clinical Roche Modular E 170 ECLIA assay. We observed 

the best correlation of our results with the results of this immunoassay. 

During the analysis of the TC, FC, and SC samples, observed concentration 

ranges were similar to the values established in other studies. However, the mean 

concentration of our samples was slightly higher than those described in other papers 

[Pretorius, 2011; Kushnir, 2004]: we found these values to be 372 nmol/L (TC), 3.7 

nmol/L (FC), and 3.6 nmol/L (SC), whereas in other studies these values were found 

to be under 300 nmol/L (TC) and 3 nmol/L (FC, SC). This might be because our 

sampling was performed in the morning hours. 

 

5.2 Free and total serum cortisol levels are useful prognostic markers in 

critically ill patients 

In this prospective observational study, total and free cortisol levels were 

determined by LC-MS in the serum of critically ill patients with medical 

emergencies. An extremely wide range of cortisol concentrations were found upward 

exceeding the upper limit of normal by 13 times in total and 95 times in free cortisol 

levels. Both total and free cortisol levels were elevated at admission compared to 

later time points. Free cortisol within 2 days and total cortisol within 6 hours 

correlated with the observed mortality. Patients with higher cortisol levels had higher 

risk to die. The requirement for ventilation may be partly responsible for the higher 

cortisol levels in non-survivors. The prognostic role of cortisol concentration was 

compared to the routinely used clinical mortality scores APACHE II and SAPS II. 

Vital signs, clinical parameters, laboratory values are included in these scores 

systems. The diagnostic value of cortisol concentrations to predict mortality was 

similar to APACHE II and SAPS II. Furthermore, FC6, FC24 and FC48 proved to be 

independent determinants of mortality even in predicting models including – beyond 

gender and age – these complex clinical scores. Information provided by these 

cortisol levels as single parameters about the prognosis were similar to complex 

mortality scores that have been formed by 12 and 17 parameters, respectively. 
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There are some key reports investigating the total serum cortisol in critically 

ill patients [Cohen, 2006; Clark, 2011; Arafah, 2006]. Free cortisol levels were 

measured in few papers and sparse data are available about free cortisol determined 

by LC-MS [Clark, 2011; Burt, 2013; Shackleton, 2010; Vassiliadi, 2013; Cohen, 

2013]. Only one paper is available where both total and free cortisol levels were 

measured by LC-MS in critically ill patients [Cohen, 2012]. Cortisol measurements 

using immunoassays are disturbed by many analytical errors, especially in critically 

ill patients. The changes in CBG and albumin concentrations, the cross-reactivity of 

antibodies to similar chemical structures and heterophilic antibodies all influence the 

results. These potential errors are eliminated by LC-MS method [Briegel, 2009; 

Clark, 2011; Burt, 2013]. Our cortisol method using LC-MS was previously 

validated in normal subjects [Montskó, 2014]. The method is capable of specific 

cortisol quantification in different matrices on the basis of accurate mass 

identification. The measurement of total cortisol is quite simple and accurate; 

therefore nowadays this method is used routinely for this purpose in our institute. 

The measurement of free cortisol requires more complex sample preparation which is 

a disadvantage in the everyday routine. Otherwise all LC-MS methods should be 

carefully validated [Clark, 2011]. Considering all these factors, free cortisol 

measured by LC-MS is the best method to evaluate the adrenal response in critically 

ill patients but for prognostic purposes total cortisol measured by LC-MS seems to be 

more available in the daily practice. Commonly, targeted mass-spectrometry analysis 

is carried out using triple-quadrupole mass spectrometers. The method and the way 

of analysis are different compared to our measurement but both assessments give 

similar results without the disadvantages of IAs [Montskó, 2014]. We believe that 

our results are fully transferable to cortisol levels determined by triple-quadrupole 

MS. 

Beyond the practical consequences, our results have theoretical aspects. The 

cortisol response to medical emergencies seems to be proportional to the severity of 

illness. It can be presumed that the adrenal response is appropriate and maximal in 

life-threatening conditions [Melby, 1958; Chernow, 1987; Arafah, 2006]. It is not 

clear whether the cortisol level should be further increased by ACTH stimulation. 

According to a new concept of cortisol homeostasis in critical illness, ACTH is not 

elevated, even suppressed due to the high cortisol level. It is possible that ACTH 

stimulation test does not result in significant cortisol elevation in those patients who 
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already have high cortisol level. They are regarded having relative adrenal 

insufficiency [Dimopoulou, 2007; Knapp, 2004; Kwon, 2009; Norasyikin, 2009]. 

The overproduction of cortisol is also debated. The primary cause of cortisol 

elevation probably is the decreased metabolism of glucocorticoids [Van den Berghe 

2003]. The concept of RAI should be reappraised based on these new studies. Our 

results did not support the existence of RAI and its role in the poor prognosis of 

critically ill patients. Further investigations are essential in patients with 

unresponsive septic shock where the high dose hydrocortisone treatment is a routine 

therapy [Sprung, 2008; Toma, 2011; Arafah, 2006]. 

Limitation of our study is the relatively small patient population as multiple 

cortisol measurements restricted the size of study. However, the investigated 

prognostic markers including cortisol had high statistical power. Although the 

heterogeneity of underlying diseases might be regarded as another potential 

weakness on the investigation, severity of various diseases were similar, therefore the 

same prognostic models could be applied to all of them. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Van%20den%20Berghe%20G%5BAuthor%5D&cauthor=true&cauthor_uid=12800538
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6 Conclusions 

In conclusion, our HPLC-MS assay based on accurate ESI-TOF-MS mass 

detection proved to be a real alternative to the common triple-quadrupole MS assays, 

with less complicated method development. The performance of the method was 

demonstrated on three clinically important laboratory variables. The only potential 

disadvantage of our method is that a triple-quadrupole instrument usually offers 

higher sensitivity. However, the LOD and LOQ achieved in this work are much 

lower than accepted and described physiological ranges. The use of a simpler mass-

spectrometry tool might reduce instrument-to-instrument or laboratory-to-laboratory 

variation. Furthermore, with a high-resolution instrument we have the ability to 

search with high specificity for any new potentially interesting compounds (drugs, 

metabolites) present in the sample run, even after the measurement is completed. 

This feature enables us to overcome the main disadvantage of triple-quadrupole mass 

spectrometry, which cannot specifically detect compounds present in the sample but 

excluded from the process of MRM-transition development. Using an accurate mass 

spectrometry instrument, however, a high number of different compounds can be 

monitored in a single analytical run. 

The total and free cortisol concentrations in critically ill patients varied in so 

wide range, that the highest total cortisol exceeded 13 times, free cortisol 95 times of 

the upper limit of reference range. Both total and free cortisol levels measured by 

LC-MS were useful prognostic markers, patients with higher cortisol levels had 

higher mortality risk. Free cortisol had an advantage compared to total cortisol being 

predictive for mortality in the first 2 days after admission. Free cortisol at 6, 24 and 

48 hours proved to be independent predictor of mortality in prognostic models even 

including the SAPS II and APACHE II mortality scores. Cortisol levels in critical 

illness probably reflect the severity of disease. 
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7 Novel findings 

 

7.1 We have validated a novel LC-MS method for measurement of  

a) serum total cortisol 

b) serum free cortisol 

c) salivary cortisol. 

7.2 Our method is capable of specific cortisol quantification in different matrices 

on the basis of accurate mass identification. The measurement of total cortisol 

is quite simple, accurate and cost-effective; therefore nowadays this method is 

used routinely in our institute. 

7.3 Our study was the first where both total and free serum cortisol levels were 

measured by LC-MS in a mixed population of critically ill patients with 

medical emergencies. 

7.4 We have proven that serum total and free cortisol concentrations measured by 

LC-MS are able to predict morality and reflect the severity of disease. 

Consequently both of them could be a useful prognostic marker in critical 

illness. 

7.5 Our data support that the prognostic value of cortisol concentrations to predict 

mortality was similar to the routinely used clinical mortality scores (APACHE 

II and SAPS II) which are the best known predictors of mortality. 

7.6 Our data also demonstrated that critically ill patients with higher cortisol levels 

had higher mortality risk and that cortisol levels at different time points of the 

critical condition proved to be independent determinants of mortality.  

7.7 These findings could help the application of new prognostic biomarkers in 

critical illness. 
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