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1. INTRODUCTION 
 

 

The topic of this thesis is the examination of energetic regulation in the course 

of fasting and obesity. In developing countries the pathological loss of body 

weight/starvation, in modern society obesity is an important public health problem. 

International surveys show that in 2010 approximately one billion people starved 

worldwide (United Nations). In the last 25 years in the USA the prevalence of obesity 

increased by 75% (Flegal et al., 2002). In 2009, according to a Health Survey of 

Hungary issued by the Central Statistical Office, more than 50 percentage (53,7 %) of 

people older than 15 the body weight was higher than optimal, and every fifth adult 

had overweight.    

Obesity and the pathological loss of body weight, or changes in the thermal 

balance (hypothermia, hyperthermia, and fever) indicate changes in energy balance. 

Components of the energy balance are in interaction with each other, where the 

metabolic rate (heat production) has a central role (Figure 1). In the complex 

regulation of energetics beside peripheral neural and humoral afferents central 

transmitters/mediators also play an important role. In case of normal energy balance 

body weight and core temperature remain in a normal range. Stability of body weight 

is the result of a prolonged balance between food intake and metabolic rate (heat 

production), while the short-term regulation of thermal balance depends on the 

relationship between heat loss and heat production/metabolic rate.  

 

 

 

 

 

 

 

 

 

 

Figure 1: Components of regulation of energetics and their interactions  

                (  Stimulation, Inhibition) 
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Long-term energetic imbalances could lead either to obesity or to pathological 

loss of body weight. Continuous thermal regulation is characteristic of homeothermic 

species (birds, mammals). Active imbalances of central origin may result in regulated 

shifts of body temperature (fever, anapyrexia), while ineffective regulation due to 

failure of sufficient defense could lead to passive hyperthermia or hypothermia. 

Components of energy balance may influence both body weight and core temperature. 

Namely, primary alterations of thermoregulation also modify body weight, e.g. food 

intake is increased by cold exposure. Alternatively, primary changes of the feeding 

status by influencing metabolic rate may influence also the thermoregulatory state. For 

example, during fasting the changes of food intake initiate energetic changes. In 

particular, the resulting reduced metabolic rate may lead to a higher tendency for 

hypothermia. On the one hand, in the long-term metabolic rate (or heat production) 

should be adjusted to the general nutritional and actual feeding status, on the other 

hand, increased metabolic rate should counterbalance the heat loss to avoid 

hypothermia in cold in the short-term.  

 

 
2. OBJECTIVES 

 

Mice – because of their small body mass – have a relatively higher body 

surface area, so they have a more dynamic body temperature fluctuation than rats 

have, so this makes them ideal to study changes in core temperature.  It was described 

earlier that during starvation heterothermia develops in mice, i.e. core temperature 

shows progressive falls during the day, while night core temperature remains largely 

normal (Williams et al., 2002; Overton and Williams, 2004; Gelegen et al., 2006). 

Using total fasting seemed to be an ideal procedure to assess the possible strategies 

protecting the mice against excessive, life-threatening hypothermia during fasting and 

to see how they can still conserve energy.  

A standardized fasting protocol was applied in mice to induce heterothermia 

under free moving conditions while body core temperature and locomotor activity 

were monitored by biotelemetry. The role of shivering and non-shivering 

thermogenesis in the manifestation of fasting-induced heterothermia was assessed by 

administration of specific inhibitors of these processes (mephenesin and guanethidine, 
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respectively). Furthermore, the possible role of opiate mechanisms was assessed by 

administration of naloxone. It was hypothesized that inhibition of any of the 

mechanisms that are known to play a role in cold defense (Gordon, 1993) might also 

limit increased thermogenesis and affect the level of fasting-induced hypothermia. At 

the same time, the role of these thermogenic pathways during fasting-induced effects 

on core temperature and during recovery from fasting could also be ascertained.  

Body core temperature and locomotor activity were monitored in TRPV1-KO 

and wild mice during fasting and on re-feeding by biotelemetry to reveal the possible 

role of this ion channel in the energetics of fasting state. Although temporary 

hypothermia as a response to fasting has been known for some time (Williams et al., 

2002; Overton and Williams, 2004), the possible energetic background of night 

normothermia has not been studied so far. The monitoring of locomotor activity was 

believed to shed some light on the possible role of physical activity in body 

temperature regulation, an issue having been debated in animal studies (Gordon, 1993; 

Girardier et al., 1995).  

Total fasting was applied also in mice made obese by feeding a fat-rich diet 

and monitored core temperature and locomotor activity before, during and after 

fasting. It appeared worthwhile to study, whether they respond to total fasting with a 

similar change of body core temperature and its daily oscillations as observed in 

control lean mice and whether they reduced their body mass to the same extent as 

controls did by the end of fasting. It was also expected to gain information about the 

maximal duration of total fasting tolerated by the animals and to see whether their 

original body weight and characteristic circadian rhythm of core temperature and 

locomotor activity was returning after re-feeding.   

To study the role of ciliary neurotrophic factor (CNTF) in body weight 

regulation and temperature regulation, central CNTF infusion was applied in mice 

made obese with fat-rich diet. The aim of our study was to investigate effects of 

intracerebroventricular (icv) infusion of CNTF on changes of nocturnal rhythm and 

energy parameters such as day-time and night-time core temperature and locomotor 

activity beside the expected long-term reduction of body weight.  
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3. MATERIALS AND METHODS 
 
 

3.1. Experimental animals and their housing 
 
 

C57BL/6 wild type (WT) male and female and TRPV1-KO male mice were 

used in  our experiments. Mice were kept individually in plastic cages with 

approximately 3-5 cm wood shaving bedding. Food pellets were available ad libitum 

with the exception of fasting periods, when only tap water was provided. Besides 

standard rodent food pellets, for some groups of animals high-fat diet was given 

(TestDiet 58Y1, IPS Product Supplies Ltd.) containing 60% fat-derived calories. A 

12/12 hour light/darkness schedule was used (lights on at 6 a.m.). Ambient 

temperature in the animal house was set to 24-26 °C (cool) or 27-28 °C (just 

thermoneutral, only used when the duration of fasting was three-day long) volt. The 

mice were habituated to daily body mass measurements. The experiments were run 

according to the general rules set in the Hungarian law on animals and the 

experimental protocols used were approved by the Ethical Committee of the Pécs 

University (BA 02/2000-20/2001 and BA 02/2000-13/2006).  

  

3.2. Surgeries 

 

Mice were operated under ketamine/xylazine anesthesia (Calypsol (Richter) + 

Rometar (Spofa), 78mg/13 mg kg-1). To prevent infections, 0.2 mg gentamycin was 

administered intraperitoneally (ip). The anesthesia was always the same regardless 

from the type of the surgery (ip radiotransmitter implantation, transmitter implantation 

or icv cannula implantation). Most procedures (food deprivation, another surgery, e.g., 

icv cannula insertion after ip radiotransmitter implantation, etc.) were executed at least 

one whole week after the (first) surgery.  

 

3.3. Biotelemetry 

 

Core temperature and horizontal locomotor activity were registered 

continuously with the help of the biotelemetry method. Biotelemetry transmitters (ER-
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4000 model VMFH, Minimitter, Sunriver, OR) were implanted ip into the abdominal 

cavity of mice under the same anesthesia. Abdominal temperature and horizontal 

locomotor activity was measured at 5 min intervals throughout the experiments. For 

further data sampling and analysis the VitalView software supplied by the 

manufacturer (Minimitter Co., Ltd., Sunriver, OR) was used.  

 

3.4. Total fasting duration 

 

At least 7 days following transmitter implantation, the mice were exposed to 

complete fasting initiated at 9 a.m. The duration of fasting was set either to 2 days (in 

a cool environment, 23-24 °C), or to 3 days (at a temperature of 27-28 °C). Extension 

of the duration of fasting to 3 days allowed a longer time course to follow changes in 

animal energetics, while the extent of fall in body mass remained in the same order by 

the end of fasting. In an other experiment, fasting period was set to 40 hours at 24-26 

°C.  

Also in obese mice, core temperature was closely monitored during the course 

of the longer periods of fasting.  On the basis of earlier experience in total fasting was 

continued as long as daytime body core temperature approached a value around 30-

31°C in mice belonging to either group. Thereafter, fat-rich food was given back to the 

animals.  In other words, the duration of fasting could not be exactly the same in every 

obese mouse exposed to long fasting periods but ranged between 24 and 30 days.   

No attempt has been made in the present study to investigate the survival of 

mice, in other words, not even one mouse was lost as a result of total fasting. After re-

feeding every animal looked like normal, re-feeding led to a fast body weight gain.  

 

3.5. Osmotic minipump operation 

 

An icv cannula (Brain-infusion kit, ALZET) was implanted into the right 

lateral cerebral ventricle of mice fed on DIO diet using a stereotaxic frame for mice 

(Narishige, Japan). The icv cannula was fixed by dental cement and screws to the skull 

and attached by a connecting tube to an ALZET osmotic minipump inserted 

underneath the skin of the nape. Osmotic minipumps of 100 or 200 µl capacity having 

a mean pumping rate of 1.0 µl/h (ALZET micro-osmotic pump, model 1003D or 
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2001D) were used, allowing infusions for 3 or 7 days, respectively. Intraperitoneal 

implantation of the osmotic minipump secured the ip infusion of the solution.  

 

3.6. Substances applied 

 

 CNTF (Sigma-Aldrich): 720 ng/hour, 7 day-long icv infusion;  

 Guanethidine (Sigma-Aldrich): 10 mg/kg/day daily ip injections;  

 Control salt infusion: 0,9 % NaCl solution;  

 Mephenesin (Sigma-Aldrich): 42 mg/kg/day 3 day-long ip infusion; 

 Naloxone (Sigma- Aldrich): 20mg/kg/day 3 day-long sc infusion 

  

3.7. Statistical analyses 

 

Based on the design of the actual experiment, for statistical analyses ANOVA 

repeated measures, one-way ANOVA with post hoc test was used, as appropriate. All 

results are presented as means ± S.E.M. The level of significance was set at p<0.05.  

 
  
 

4. RESULTS  
 

4.1. Energetics of fasting heterothermia in TRPV-KO and wild type mice 

 

The overall response of core temperature to 2-day-long or 3-day-long complete 

fasting carried out at cool or neutral ambient temperature, respectively, consisted of 

progressive fall of day minima with maintenance of night maxima at or close to pre-

fasting values. On re-feeding core temperature returned to normothermia within one 

hour.  

When comparing average responses to two-day fasting of WT mice with those 

of TRPV1-KO ones, during the first fasting day there was no significant core 

temperature difference between the two groups. During the whole second fasting day, 

however, core temperature decreased significantly more in WT mice than in TRPV1-

KO ones. Rises of activity in TRPV1-KO mice were significantly higher than that of 

WT-mice.  

When fasting was extended to 3 days in mice exposed to a warmer ambient 

temperature, similar differences could be observed between the two groups as when 
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fasting lasted for two days. In particular, decreases of core temperature on the second 

and third days were less severe in TRPV1-KO mice, than in WT ones with minimum 

values showing progressive decreases in the course of the three days of fasting. When 

fasting lasted for three days, TRPV1-KO mice exhibited progressive increased activity 

rises on consecutive fasting nights, while in WT mice activity could not be enhanced 

on the third night of fasting.  

A further phenomenon is related to the timing of increased activity and 

temperature during fasting. In TRPV1-KO mice the rising phases of night temperature 

and activity occurred about the same time just before the start of the dark period. In 

WT mice, however, there occurred a progressive advance in the appearance of rises in 

temperature and activity well before the start of the dark period of the day. Mean 

duration of daily cycles of core temperature were 23-25 hours in the fed state, but were 

shortened to 17 hours during the third day of fasting in WT mice only.  

Re-feeding has completely altered the parallel behavior of core temperature 

and activity prevailing both before and during fasting. Immediately after the return of 

food to the mice core temperature started to rise and reached normal values 

independent of the actual core temperature observed at the last fasting morning. In 

neither types of mice did increased activity accompany the sharp rise in core 

temperature on re-feeding, a unique phenomenon observed only very rarely in 

chronobiological studies in general and in the practice of the present authors, in 

particular. It should be emphasized that the speed of the rise in core temperature was 

very rapid in both types of mice and reached normothermia within 30 to 40 minutes.  

  

4.2. Mechanism of fasting heterothermia and re-feeding normothermia in mice  

 

    In the control mice, complete fasting resulted in a progressive daytime 

hypothermia with night normothermia that was followed by rapid return of body core 

temperature to normal on re-feeding applied in the morning of the second fasting day. 

During administration of guanethidine, mephenesin or naloxone the basic course of 

core temperature remained essentially similar, while significant quantitative changes 

in these trends were observed. 

    Under the effect of guanethidine, core temperature was slightly lower on the 

first day of fasting, but was slightly higher during most of the second day and after re-
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feeding. Under either condition, re-feeding led to rapid return of core temperature to 

normal with daily oscillations reappearing gradually. 

    Mephenesin decreased core temperature during fasting compared to the 

same animals tested under control conditions. In addition, during the second fasting 

night, mephenesin treatment resulted in a progressive fall of core temperature up to the 

time of re-feeding. The re-feeding recovery of core temperature was unaffected by the 

infusion of mephenesin. 

     Under the effect of naloxone core temperature was lower during the whole 

fasting period compared to controls. Re-feeding recovery of core temperature was as 

rapid with naloxone as was observed under control conditions. 

      None of the inhibitors of heat production applied had an effect on the 

dynamics of re-feeding normothermia.  

 

4.3. A month-long reversible total fasting in mice with diet-induced obesity  

 

Effects of total fasting were compared in mice originally on a conventional 

rodent diet (control) with those in mice made obese by feeding them a high-fat diet. 

Core temperature and locomotor activity and daily body mass were monitored.   

Mice were fed with a fat-rich diet until body mass increased about 50% after 

two months. Body mass curves for control and DIO-fed (DIO) mice indicated a 

significant difference in favor of DIO mice from the 5th weeks onwards. Daily core 

temperature excursions during control feeding were in the order of 2.5 to 3.0 °C and 

decreased within two days to 1.2 to 1.5 °C  after switching to DIO chow with their 

night maxima remaining similar, while day minima increased significantly and 

stabilized rapidly.  

In contrast to the 2-days fasting in mice with initial body weight of 24-26 g 

(aged 2-3 months), mice having a body weight of 50-55 g tolerated complete fasting 

for some 30-35 days, while their body weight reduced to 19-20 g, a value not different 

from those measured in non-obese animals at the end of fasting. In the whole period of 

long-term complete fasting body temperature and locomotor activity and their daily 

oscillations remained normal as long as body weight approached the low value 

mentioned above; these animals lost 64 per cent of their original body mass.  

Re-feeding reversed obese body mass with a rapid rise leading to the original 

obese values by the end of five weeks 5. It was only during the fourth week of fasting 
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when daytime core temperature started to fall more progressively on consecutive days 

reaching values below 31 °C, and the re-feeding that followed led to a robust decrease 

of daily body temperature oscillations. The duration of fasting could not be exactly the 

same in every obese mouse exposed to long fasting periods, total fasting was 

continued as long as daytime body core temperature approached a value around 30-

31°C. 

Over a body weight range of 27-19 g the change in body weight as a function 

of daylight minimum core temperature was nearly linear with a coefficient of 

correlation that was 0.89 and 0.94 for the obese and the control groups, respectively. 

The two regression lines share a common point for a body mass of about 19 g, the 

daylight minimum core temperature is than about 30.5 °C.    

Seven days before re-feeding daily excursions of core temperature started to 

rise significantly and reached a value of 4.1±0.4 °C on the last day of fasting. Re-

feeding led to rapid significant decrease of daily body temperature excursions to 

0.5±0.1 °C with a return to the control value by day 5 of re-feeding (1.5±0.3 °C).    

 

 

4.4. Effect of central infusion of CNTF in freely moving mice with diet-induced 

obesity on the core temperature and locomotor activity 

 

In this study core temperature and locomotor activity of obese mice has been 

followed during and after intracerebroventricular infusion of CNTF for 7 days. Body 

weight of the mice was measured manually. DIO mice infused icv with CNTF lost 

body mass and this tendency remained progressive beyond the time of infusion, while 

icv infusion of the solvent was without effect on body mass. A transient hypothermia 

developed after any surgery in the first couple of days.  

Daily body temperature of DIO mice infused with CNTF increased 

immediately and remained high for the whole period of infusion. The rise of average 

daily values of core temperature proved to be even more marked as a result of CNTF 

infusion, in other words, core temperature excursions virtually disappeared and then 

returned only after the end of infusion. Locomotor activity decreased from the 

beginning of CNTF infusion and returned to higher values towards the end of infusion. 

Also, similar to the case of core temperature, daily activity excursions disappeared but 
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reappeared again from the next days of infusion onwards. Neither core temperature, 

nor activity or their daily excursions were affected by icv infusion of the solvent.  

 

 

5. DISCUSSION 

 

5.1. Energetics of fasting heterothermia in TRPV-KO and WT mice 

 

It was M. Chossat who around the middle of the nineteenth century first 

described the phenomenon of decrease in body temperature during starvation 

(Chossat, 1843). Indeed, depending on the body mass and the severity of food 

restriction, core temperature shows progressive falls during the day, while night 

temperature remains largely normal in nocturnal species (Overton and Williams, 2004; 

Gelegen et al, 2006; Abe et al, 2007). The present data confirmed these basic results 

and extended them to mice lacking functional TRPV1 receptor. Furthermore, evidence 

has been presented in favor of physical activity as an important source of heat during 

fasting allowing normothermia at night. 

To look for the possible tendency of changes in core temperature and activity, 

complete fasting was applied not only for two days in mice exposed to a cool ambient 

temperature (23-25 oC), but also for three days in mice exposed to slightly warmer 

neutral ambient temperature (26-28 oC). In particular, the application of a longer 

fasting period allowed one to observe progressive falls of day core temperature 

followed by repeated rises observed at night. 

In both types of mice applied in this study body temperature rises were 

accompanied by increased activity at night, in TRPV1-KO mice the activity raises 

were even progressively greater during the second and third night. This phenomenon 

may be regarded as an evidence for the possible role of physical activity in 

thermoregulatory heat production (Gordon 1993). In fact, during fasting skeletal 

muscle UCP3 is upregulated and may play a role in increased thermogenesis that may 

coincide with increased locomotor activity (Argyropoulos, 2002).  The behavior of 

locomotor activity during food restriction was variable in different published studies 

depending on the severity and duration of food restriction (complete or partial) and on 

the method of measuring physical activity (spontaneous natural or running-wheel) 
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applied. In the present study complete fasting has resulted in increased activity only at 

night with a tendency of further rise during third day of fasting.  

The phenomenon of day hypothermia followed by night normothermia can be 

regarded as heterothermia as opposed to torpor, the latter lasting the whole day 

(Schleucher et al., 2006).  

The difference between the responses of TRPV1-KO mice and the WT ones 

were twofold: on the one hand, the extent of decrease in core temperature on fasting 

was significantly greater in wild type mice when compared to that of TRPV1-KO 

ones. On the other hand, during fasting there appeared an advance in the rises of core 

temperature and activity in WT mice well ahead of the dark period, a phenomenon not 

observed in the TRPV1-KO mice exposed to the same fasting. The advance in the 

appearance of increases in core temperature and activity during fasting can be 

explained as a sign of resetting of the circadian pacemaker caused by the anticipation 

activity otherwise occurring in connection with food intake. The robust shortening of 

the activity-temperature rhythm during fasting has been known in rat and mice but 

shown only either in constant light or in constant darkness (Chalet et al, 1997). In the 

present experiment the phase-advance caused by fasting occurred in spite of the 

maintenance of the 12:12 hours light-darkness schedule. In other words, the rapidly 

developing energetic insufficiency induced by complete fasting might have induced a 

strong speeding up of the need for food and thus masking the effect of the main 

pacemaker stimulus, that is, the darkness cue.  

The idea of  comparing WT mice with TRPV1-KO ones in their responses to 

fasting has originated from results of earlier studies from the authors laboratory 

showing that TRPV1-KO mice had a significantly less effective defense response to 

heat exposure than WT ones (Szelényi et al., 2004b). In the present study TRPV1-KO 

mice tolerated fasting much better than their WT counterparts in terms of stability of 

core temperature.  

In both types of mice refeeding was followed by a steep rise in core 

temperature either without or with only a small rise or no rise in activity.  It should be 

emphasized that the parallel behavior of core temperature and activity generally 

observed by a number of authors (Gelegen, 2006; Murphy, 1996 and Weinert, 1998) 

and also in the present studies both under conditions of food intake and activity 

disappeared for several days following refeeding. As observed both in WT and 

TRPV1-KO mice, following the rapid rise of core temperature at the first hour of 
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refeeding circadian cycles of core temperature and activity disappeared with a gradual 

return of the daily rhythms only after several days. It should be emphasized that in the 

present study refeeding led to a rise of core temperature within a couple of ten minutes 

that could have started well before absorption of the ingested food.  

 

5.2. Mechanism of fasting heterothermia and re-feeding normothermia in mice 

 

Fasting has been known to influence the strategy of temperature regulation in 

small rodent. In laboratory rodents such as the rat and mouse, homeothermia is 

maintained for several days of fasting only at night, presumably a response that allows 

for effective search for food. Opposed to this, progressive hypothermia during the 

daytime develops during several days of fasting as long as the extent of hypothermia 

will not prevent the animal from achieving normothermia during the next active 

nocturnal period (Overton and Williams, 2004). In other words, small rodents develop 

hypothermia only during their inactive period, while night normothermia has to be 

maintained by heat produced by progressively increased locomotor (physical) activity. 

The heat generated in the nocturnal period by increased motor activity could 

contribute to the maintenance of normothermia at night. However, we hypothesized 

that the heat from shivering and non-shivering thermogenesis would have a major role 

in the maintenance of nocturnal normothermia in the fasted mouse.    

 In the present studies, repeated injections of guanethidine did not cause 

reductions in core temperature either before or during fasting. In fact, serial injections 

of guanethidine led to a slight improvement in the tendency to reach normothermia at 

night and led to a higher body temperature during the daytime period. Although the 

dose of the drug corresponded to that used by other authors in rats calculated on a 

body weight basis (Johnson et al., 1975; Mory et al., 1982; Tordoff et al., 1984), it 

cannot be excluded that significantly higher doses could have influenced daily body 

temperature oscillations in the expected way (i.e. decrease of core temperature). 

Even when applied in the dose used here, guanethidine could probably inhibit 

NST as part of the sympathetically mediated thermogenic response induced by cold 

exposure (Griggio, 1982; Lowell and Spiegelman, 2000; Morrison et al., 2008), but in 

the present studies neutral ambient temperature was applied without the need for an 

increased thermoregulatory heat production.  
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Peripheral infusion of mephenesin led to a significant reduction in body 

temperature of fasted mice during the day time. This would suggest that fasted mice 

employ shivering thermogenesis to thermoregulate during the daytime when they are 

normally inactive.   

The general course of core temperature was similar during fasting whether 

naloxone was infused or not, but core temperature was lower under the effect of opiate 

antagonist during the whole fasting period. In addition, the fall of core temperature 

during the second fasting day was markedly accentuated in these mice by the 

application of the opiate receptor blocker. These effects of naloxone may speak for the 

role of opiate mechanisms in protecting the mice against excessive day hypothermia 

and in maintaining normothermia at night.  

It is concluded that normothermia during the first fasting night is mainly 

supported by increased locomotor activity, since none of the inhibitors of heat 

production applied in the present study had a major effect on it. Effects of mephenesin 

indicate that shivering could play a role in keeping temperature normal at the second 

night and in mitigating daylight hypothermia during fasting. Similarly, an opiate 

mechanism appears to have also some a role in the adaptation of temperature 

regulation to fasting.  

However, none of the inhibitors of heat production applied had an effect on the 

dynamics of re-feeding normothermia. The mechanism of re-feeding rise of core 

temperature, therefore, still awaits clarification.  

 

5.3. A month-long reversible total fasting in mice with diet-induced obesity 

 

Total fasting as a way to reduce grossly obese body mass of humans has been 

applied since the 60’s of the last century (Bray et al. 1972) and was also tested in rats 

and in mice to learn changes of body composition. In earlier studies carried out either 

in humans or animals no clear threshold symptom or physiological parameter could be 

defined for stopping total fasting before irreversible pathological changes occur, 

although limitations such as the size of remaining protein pool for gluconeogenesis or 

adverse changes in different plasma electrolytes affecting cardiac rhythmicity have 

long been known. As an alternative signal of severe depletion of energy stores for 

basic life processes, hypothermia has been observed in previous studies carried out 

during total fasting in mice previously fed a normal chow. 
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It was therefore logical to apply biotelemetry also in the present study in obese 

mice to follow the time-course of changes in body core temperature during total 

fasting to see if there was any major difference in the endpoint of body mass that was 

still compatible for survival.  

Under natural circumstances, small rodents have been known to enter torpidity 

or daily heterothermia when food sources are severely limited and/or ambient 

temperature decreases (Geiser, 2004). Still, no relevant data have been published so 

far that compared effects of long-term total fasting on body mass, core temperature 

and locomotor activity in normal or obese mice. In fact, the use of biotelemetry in the 

present study furnished some evidence for the close link between the loss of body 

mass on the bases of a daytime hypothermia utilized as an indicator.  

As demonstrated by the present data, obese mice previously kept on a fat-rich 

diet could survive total fasting as long as day body temperature reached a value just 

below 31 °C which was in the same range as in mice previously kept on conventional 

chow and exposed to total fasting. It should be emphasized that no attempt has been in 

the present study to investigate the survival of mice, in other words, not even one 

mouse was lost as a result of total fasting. In fact, extensive experience gained from 

earlier studies served as a safeguard to avoid any mortality also in the present study by 

carefully monitoring core temperature with biotelemetry and hence interrupting fasting 

if daytime core temperature approached threshold values of 30-31 °C.  

As opposed to the control mice able to withstand only 2 to 3 days of total 

fasting with daily core temperature oscillations increasing from the first day onwards, 

the obese mice showed normal daily body temperature oscillation for some three 

weeks and it was only about four weeks of fasting, after which time daylight body 

temperature approached values below 31 °C, while night core temperature was 

maintained around normothermia. In particular, daily oscillation of core temperature 

increased from 1.5 °C to 4 °C by the end of fasting. Hence, the duration of reversible 

total fasting seems to depend on a threshold low body mass that was indicated by a 

progressive decrease of daylight body temperature both in obese and in non-obese 

mice.  

Metabolic consequences of 16 days long total fasting in ob/ob mice losing 

some 40 per cent of their body mass were reported several decades ago; in these 

studies mice became slightly hypoglycemic and all substrates for gluconeogenesis 

remained high up to the end of fasting (Cuendet et al. 1975) but body core temperature 
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was not monitored. It would be interesting to learn the way cerebral glucose supply 

must have maintained sufficient during a still longer fasting applied in the present 

study carried out in mice with dietary obesity.  

The present authors are not aware of any study carried out so far in mice with 

diet-induced or any other types of obesity, in which body mass decreased as much as 

in the present study (by 64 per cent) and the animals survived after 4 weeks of fasting 

and re-feeding with the final body mass ending up the original obese value measured 

at the beginning of the experiments. It is remarkable that a body mass of about 19 g 

proved around the low threshold at which daytime hypothermia became severe enough 

to necessitate re-feeding to prevent fatal outcome irrespective of the original body 

mass before fasting. It can be speculated that a hormonal and/or metabolic signal 

activated by the normal adult body mass could act like a ponderostat (Cabanac and 

Richard, 1996), in this case acting as a fail-safe leading to hypothermia that could lead 

to a metabolic depression and later to death of hypothermia. This mechanism still 

awaits clarification.  

 

5.4. Effect of central infusion of CNTF in freely moving mice with diet-induced 

obesity on the core temperature and locomotor activity 

  

The dynamics of increase of body mass induced by the DIO diet was similar to 

that observed by an earlier study carried on in the same mouse strain (Kokoeva et al., 

2005). The present studies have revealed a robust decrease in the daily body core 

temperature excursions at the start of switching to DIO diet caused by a rise of 

daylight core temperature with night values remaining virtually unchanged. At the 

same time, the excursions of locomotor activity have remained unchanged. This 

modification of daily core temperature is difficult to explain, but may be connected to 

disruption of the circadian system observed in mice with diet-induced obesity studied 

under free-running conditions (Kohsaka et al, 2007; Mendoza et al., 2008). In the 

present study standard light/darkness schedule was applied that may have masked a 

real disruption of circadian changes observed in the studies just quoted and the 

reduction of rhythmic changes of core temperature may be interpreted as an indication 

of weakened effect of the light/darkness cue on application of the fat-rich diet applied. 

The dose of CNTF infused icv in the present study was the same as that 

published in an earlier paper (Kokoeva et al., 2005), accordingly, the decrease of body 
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mass proved to be also in the same order of magnitude in our study as in the one 

quoted. In the present study monitoring changes in body core temperature and 

locomotor activity has provided additional information on the energetics of the effects 

of centrally administered CNTF. 

In particular,  CNTF-induced decrease in body mass could partly accounted for 

by a rise in body core temperature probably due to an increased metabolic rate, an idea 

supported by a reciprocal relationship between body mass and metabolic rate in a 

variety of mammals (Lambert et al., 2001; Janoschek et al., 2006).  

The significant decrease of locomotor activity together with a rise of core 

temperature observed may be regarded as two components of a febrile response 

known to accompany infections, and if coupled with decreased food intake, these three 

factors together may represent sickness behavior (Szelényi and Székely, 2004). In fact, 

this fever-like response induced by icv infusion of CNTF resembles that observed in 

rats during icv infusion of either CCK-8 or PGE1 (Szelényi et al, 2004). Our finding 

of a fever-like effect of centrally infused CNTF in mice is a novel one, the only similar 

effect having been earlier shown in rabbit on peripheral administration of the peptide 

without information on other components of sickness behavior (Shapiro et al., 1993). 

These results are compatible with the idea that chronic decrease of obese body mass 

on central infusion of CNTF may have been the result of hypothalamic neurogenesis, 

but the short-term fever-like syndrome may be a result of the peptide’s effect on 

gp130 receptors (Schuster et al., 2003).  

 

6. SUMMARY  

  

In TRPV1-KO mice, the fasting-induced hypothermia is attenuated compared 

to their wild type counterparts. Furthermore during food deprivation their circadian 

core temperature and activity rhythms are shifted. In TRPV1-KO mice the rising 

phases of night temperature and activity occurred about the same time just before the 

start of the dark period. In WT mice, however, there occurred a progressive advance in 

the appearance of rises in temperature and activity well before the start of the dark 

period of the day.  

Fasting small rodents develop hypothermia only during their inactive period, 

while night normothermia has to be maintained by heat produced from locomotor 
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activity and with the help of shivering, non-shivering thermogenesis and opiate-

mechanism.  

After fasting, on re-feeding core temperature is normalized within a couple of 

ten minutes without increased locomotor activity. This rapid return of core 

temperature was unaffected by guanethidine, mephenesin or naloxone, and it was the 

same in TRPV1-KO animals.   

As opposed to the control mice able to withstand only 2 to 3 days of total 

fasting with daily core temperature oscillations increasing from the first day onwards, 

the obese mice showed normal daily body temperature oscillation for some three 

weeks and it was only about four weeks of fasting, after which time daylight body 

temperature approached values below 31 °C, while night core temperature was 

maintained around normothermia. In particular, daily oscillation of core temperature 

increased from 1.5 °C to 4 °C by the end of fasting. Locomotor activity showed a rise 

in both groups upon fasting. It is remarkable that a body mass of about 19 g proved 

around the low threshold at which daytime hypothermia became severe enough to 

necessitate re-feeding to prevent fatal outcome irrespective of the original body mass 

before fasting. Re-feeding reversed the body mass of the animals.  

Right after switching to fat-rich diet core temperature minima values increased 

significantly, while maxima remained similar, so it led to prompt decrease in circadian 

core body temperature excursions.  

Icv infusion of CNTF resulted in a reduction of body mass of obese mice 

beyond the period of infusion. This response was accompanied by a rise in day-time 

(passive period) core temperature and a fall in night-time (active period) locomotor 

activity, so this means a fever-like response.  
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