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LIST OF ABBREVIATIONS 

A, Ala-alanine 
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Ph. D.-phage display 
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TBS-Tris buffered saline 
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PA-plasminogen activator 

tPA-tissue-type plasminogen activator 

uPA-urokinase-type plasminogen activator 

PlgR-plasminogen receptor 

SK-streptokinase 

SAK-staphylokinase 

Pla-Yersiniapest is plasminogen activator 

ddH 2 0-double distilled water 

RPMI-Roswell Park Memorial Institute Mec 

BM-basement membrane 

HRPO-horse-radish-peroxidase 

OPD-ortho-phenylenediamine dihydrochloride 

TMB-tetra-methyl-benzidine 

ECM-extracellular matrix 

LD, ( r 50 % lethal dose 

MMP-matrix metalloproteases 

A^-absorbance at X wavelength 
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PK-protein kinase 

PKC-protein kinase C 

TPK-tyrosine protein kinase 
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PtIns-4-kinase-phopshatidyl-inositol-4-kinase 
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1.INTRODUCTION TO PHAGE DISPLAY 

1.1. THF PRINCIPI F OF Pll AGF DISPI AY 

Phage display is a rapidly growing technology first described in 1985 by G. P. Smith (Smith, 

1985), which is a very effective way for producing a large number of diverse peptides and 

proteins and isolating molecules that perform specific functions. It relies on two simple concepts 

(Rodi and Makowski, 1999). Firstly an insertion mutation at an appropriate location within a 

structural gene of a virus will lead- as long as it does not interrupt essential functions of the gene 

product- to the display of the mutation-encoded peptide on the surface of the viral particle. 

Secondly, if the insert is a random oligonucleotide, the resulting particles w ill comprise a library 

of peptides - each one displayed on a viral scaffold which bears mutated coat proteins 

surrounding the enclosed mutant DNA. It is this physical linkage that is the basis of the broad 

utility of phage display libraries. Large-scale growth of that viral particle and sequencing of the 

inserted nucleic acid can easily determine a single peptide sequence selected for some specific 

property by an appropriate screening technique. Instead of having to genetically engineer 

proteins or peptide variants one-by-one and then express, purify and analyse each variant, phage 

display libraries containing several billion of variants can be constructed simultaneously. 

Biological vehicles that have been utilised as platforms for the presentation of random peptide, 

gene fragment, cDNA and antibody libraries on a genetic package include X and T4 phages, 

baculovirus or even bacterial flagella, pili and cell-surface proteins (Rodi and Makowski, 1999). 

Nonetheless, the filamentous bacteriophage M l 3 has been the platform of choice both from 

historical perspective as the first and best characterised library display vector and as the source 

of the majority of successful screenings. 

1.2. STRUCTURE AND REPLICATION OF M13 BACTERIOPHAGE 

1.2.1. Capsid structure 

The M13 filamentous phage is a member of the family Inoviridae, contains single-stranded DNA 

and displays the simplest helical viral capsid. It is closely related to phage fd. They are about 900 

nm long and 9 nm in diameter and the particles contain 5 proteins. All are similar and are known 

collectively as Ff phage- they require the E. coli F pilus for infection. The major coat protein is 

the product of phage gene 8 (pVIII) and there are 2,700 - 3,000 copies of this protein per particle, 

together with approximately 5 copies each of four minor capsid proteins, pil l , pVI, pVII and pIX 

which are located at the ends of the filamentous particle. They are indistinguishable in electron 



micrographs. It is the protein pill , which interacts with the bacterial pilus. Hence the pointed 

capsid end expressing pi 11 along with pVI-is called the proximal end. Both proteins are needed 

in order to detach the phage from the cell membrane; pVI is degraded in cells that lack pi 11, 

which suggests that these proteins assemble in the cell membrane before their incorporation into 

phage particles (RusscI, Model and Clackson, 2004). The 406-residue pill is the most commonly 

used coat protein for display. Its N-terminal domain, which is necessary for phage infectivity, is 

surface exposed and forms the small "knobs" that can often be seen in electron micrographs. 

Three p lh domains have been determined, the two N-terminal domains (N1 and N2) probably 

interact intramolccularly, based on crystallographic analysis (Russel, Model and Clackson, 

2004). The three domains are separated by two long, presumably flexible linkers characterised 

by repeats of a glycine-rich sequence. The final 132 residues within the C-terminal CT domain 

are necessary and sufficient for pill to be incorporated into the phage particle and to mediate 

termination of assembly and release of phage from the cell; this domain is possibly buried in the 

particle (Russel, Model and Clackson. 2004). The other distal (blunt) end of the phage expresses 

pVII and pIX, two of the smallest ribosomally translated proteins (33 and 32 amino acid long 

respectively). Neither the structure nor the disposition of pVII and pIX in the particle is known. 

However, immunological evidence indicates that at least some of pIX are exposed and antibody 

variable regions have been successfully displayed on the amino termini of pVII and pIX (Russel, 

Model and Clackson, 2004). Phage assembly begins at the pVII-pIX end, and in the absence of 

either protein, no particle is formed. The primary structure of the major coat protein pVIII 

explains .nany of the properties of the particle. Mature molecules of pVIII consist of 

approximately 50 amino acid residues (a signal sequence of 23 amino acids is cleaved from the 

precursor protein during its translocation into the outer membrane of the host bacterium), and is 

almost entirely alpha-helical in structure so that the molecule forms a short rod. There are three 

distinct domains within this rod: A negatively-charged region at the amino terminal end which 

contains acidic amino acid residues and which forms the outer, hydrophilic surface of the virus 

particle, a basic, positively-charged region at the carboxy-terminal end which lines the inside of 

the protein cylinder adjacent to the negatively-charged DNA genome and a hydrophobic region 

which is responsible for interactions between the pVIII subunits which allow the formation of 

and stabilise the phage particle. Ff phage particles are held together by the hydrophobic 

interactions between the coat protein subunits and this is demonstrated by the fact that the 

particles fall apart in the presence of chloroform, even though they do not contain any lipid 

component. The pVIII protein subunits in successive turns o f t h e helix are tilted at an angle of 



approximately 2 ( r to the long axis of the particie and have been described as overlapping one 

another like the scales of a fish (Russel, Model and Clackson, 2004) 

p in 

Figure 1. Structure of the M13 filamentous phage. Modified after Rodi and Makowski, 1999 



1.2.2. Phage genome 

The 6400 nucleotide Ff genome contains nine genes, one major non-coding region (1G), which 

includes the replication origins for (+) and (-) strand synthesis and the packaging signal (PS) 

determining the orientation of the phage genome (R). PS, an imperfect but stable hairpin is 

positioned at the pVIl plX end of the particle and is necessary and sufficient for efficient 

encapsidation of circular ssDNA into phage particlcs. Two of the phage genes (I and II) have 

internal translationa! initiation sites from which in-frame restart proteins, (piX and pX, 

respective ') ; are produced. In each case, both the full-length and the restart protein (whose 

sequence is identical to the carboxy terminal third of the full-length protein) are necessary for 

successful phage production. Of the 11 phage-encoded proteins, three (pll, pX, pV) are required 

to generate ssDNA, three (pi, pXI, pIV) are required for phage assembly, and five (pill, pVI, 

pVII, pVIII, plX) are components of the phage particle. Since the phage DNA is packaged inside 

the core of the helical particle, the length of the particle is dependent on the length of the 

genome. In all Ff phage preparations the following forms occur: Polyphage contain more than 

one genome length of DNA, miniphage contain deleted forms- 0.2-0.5 phage genome lengths- of 

DNA, maxiphage are also genetically defective forms but they comprise more than one phage 

genome length of DNA. This plastic property of these filamentous particles has been exploited 

by molecular biologists to develop the M13 genome as a cloning vector - insertion of foreign 

DNA into the non-essential intergenic region results in recombinant phage particles, which are 

longer than the wild-type filaments. Unlike most viruses, there is no sharp cut-off genome-length 

at which l i e genome can no longer be packaged into the particle. However, as M13 genome size 

increases, the efficiency of replication declines such that while recombinant phase genomes 1-

10% longer than the wild-type do not appear to be significantly disadvantaged, those 10-50% 

longer than the wild-type replicate significantly more slowly and above 50% increase over the 

normal genome length it becomes progressively more difficult to isolate recombinant phase. This 

property has been exploited in M l 3 cloning vectors (Russel, Model and Clackson, 2004). 

1.2.3. Phage replication 

1.2.3.1. Attachment and penetration 

The consecutive steps of replication start with viral attachment to and penetration into the host E. 

coli bacterium. Ff phage are 'male-specific', i.e. they require the F pili on the surface of E. coli 

for infection. Infection normally begins when the N2 domain of pill binds to the tip of a pilus. 

Pili normally assemble and disassemble continuously, and this, possibly stimulated by phage 

binding, I-rings the phage close to the cell surface. Upon pilus binding to N2, the N1 domain is 
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released from its normal interaction with N2, making it available to bind to the hosi TolA 

protein, which extends into the periplasm from the cytoplasmic membrane (Russel, Model and 

Clackson. 2004). How the phage penetrates the outer membrane and the underlying 

peptidoglycan layer is not known. Three Tol proteins (Q, R, and A), all integral cytoplasmic 

membrane proteins, are absolutely required for phage infection (Russel, Model and Clackson, 

2004). Thcv mediate dcpolvmcrisation of the phage coat proteins into the cytoplasmic membrane 

and the translocation of the viral ssDNA into the bacterial cytoplasm. 1 he gp l l l - l o lA interaction 

causes a conformational change in pVIII: Initially, its structure changes from 100% alpha-helix 

to 85% alpha-helix and this causes the filament to shorten. The end of the particle attached to the 

F pilus flares open, exposing the phage DNA. Subsequently, a second conformational change in 

the pVIII subunits reduces its alpha-helical contcnt from 85% to 50%, causing the phage particle 

to form a hollow spheroid about 40 nm in diameter and expelling the phage DNA, thus initiating 

the infection of the host cell. Then pVIII is stripped off and ends up in the inner cell membrane, 

where it may possibly be stored and reused to produce new particles. 

1.2.3.2. Genome replication and transcription 

During the genome replication the infecting (+) strand DNA is converted in double-stranded RF 

(replicative form) by host cell enzymes, which together with pll build up a pool of RF DNA in 

the cell. Pll is a site-specific nicking-closing enzyme necessary for further replication. Virus 

proteins are synthesised from this pool of DNA. Through a rolling circle mechanism, pll nicks 

the (-) strand of the RT at a specific site in the non-coding IG region of the phage genome, and 

the 3 'end of the nick is elongated by host DNA polymerase III using the (-) strand as template. 

The original (+) strand is displaced by Rep helicase as the new (+) strand is synthesised, and 

when a round of replication is complete, the displaced (+) strand is recircularised by the nicking-

closing activity of pll and again converted to RF. Synthesis of the (-) strand requires an RNA 

primer. The primer is generated by RNA polymerase, which initiates synthesis at an unusual site 

in the IG region of the (+) strand consisting of two adjacent hairpins including promoter-like -35 

and -10 motifs detached by a single-stranded region (Russel, Model and Clackson, 2004). All 

phage proteins are synthesised simultaneously, although diverse mechanisms ensure that each is 

produced at an appropriate rate. There are differences in promoter and ribosome binding site 

strength or accessibility. At the beginning of gene I a weak rho-dependent termination signal 

limits its transcription, and the large number of infrequently used codons reduces its rate of 

translation. Proteins pV and pVIII required in greatest quantities have overlapping transcripts 

from multiple promoters (there are only two terminators) and multiple RNA processing events 
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increase the abundance o! RNAs. During the early phase of infection, when the concentration of 

the phage ssDNA-binding protein (pV) is low, newly synthesised single strands are immediately 

converted to RF, and both RF and phage proteins increase exponentially. As its concentration 

increases, pV binds co-operatively to newly generated (+) strands, preventing polymerase access 

and blocking their conversion to RF. Protein pX is required for the stable accumulation of single 

strands at this stage (Russel, Model and Clackson, 2004). pV is a dimeric protein, with the 

interaction surfacc of the subunits opposite the DNA-binding surface. 1'he pV/ssDNA complex is 

the substrate for phage assembly. 

1.2.3.3. Viral assembly 

The final viral assembly occurs at the inner membrane of the host cell. It has five stages: 

preinitiation, initiation, elongation, preterniination, and termination. Preinitiation is defined as the 

formation of an assembly site, a region visible by electron microscopy where the cytoplasmic and 

outer membranes are in close contact (Russel, Model and Clackson, 2004). Assembly sites are 

composed of the three morphogenetic proteins, pi, pXI, and pIV, which interact via their 

periplasmic domains (N-terminal for pIV and C-terminal for pi and, presumably, for pXI); the 

sites form independently of any other phage proteins. pIV is a cylindrical structure with a central 

cavity. In the cryoelectronmicroscopical structure of pIV there is some density within the cavity 

explaining why the normal state of the pIV channel is closed. Certain mutant forms of pIV, 

however, open frequently and allow entry of foreign substances into the bacterial periplasm. The 

interior of the pIV channel can accommodate an occasional pVIll subunit carrying a large N-

terminal extension or pVIII uniformly substituted with short (6-8 residue-) N-terminal extensions, 

as in phage display. The dimensions and/or properties of the channel may be a factor limiting the 

size of polypeptides that can be displayed on pVIII. pi and pXI also form a multimeric complex 

composed of about 5-6 copies of each. In the absence of the other phage proteins, pI/pXI causes 

membrane depolarisation, which suggests that the complex may also be a channel. Thus the 

assembly site may be an extremely large channel that traverses both bacterial membranes. The 

cytoplasmic N-terminal domain of pi (absent from pXI) contains a conserved nucleotide-binding 

motif, which is essential for phage assembly. Phage assembly requires ATP hydrolysis (Feng, 

Russel, and Model, 1997) therefore pi is likely to be an ATP-ase. Initiation takes place only if the 

assembly site, the two minor coat proteins (pVII and plX) located at the distal tip of the particle, 

and the ssDNA substrate are present. In the membrane pVII and plX interact with the PS, which 

protrudes from one end of the pV-ssDNA complex (in the cytoplasm) and associates with the 

cytoplasmic domain of pi. Host-encoded thioredoxin, a small, cytoplasmic protein known as a 
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potent reductant of protein disulfides, aiso interacts with pi. Although phage assembly does not 

utilise this redox activity, thioredoxin appears to be part of the initiation complex, and may confcr 

processivitv to the elongation reaction. Hlongation involves the successive replacement of pV 

dimers that cover the viral DNA by membrane-embedded pVIII and translocation of the DNA 

across the membrane. The process continues until the end of the viral DNA has been coated by 

pVIII. If either pill or pV! is absent, the largely extracellular phage particle remains tethered to the 

cytoplasmic membrane where it remains competent to resume elongation when another pV-

ssDNA complex enters the assembly site; ultimately, tethered phage filaments of more than 10 

times unit length accumulate. Even in normal infections when piII and pVI are present, about 5% 

of progeny phage particles are double length. Pretermination is the incorporation of the 

membrane-embedded pIIl-pVI complex at the proximal end of the nascent phage particle. A 

fragment containing only the C-terminal 83 residues of pill is sufficient to mediate this step, but 

cannot affect detachment of the phage from the cell. Termination or release of the phage, which 

requires a 93 residue C-terminal segment of pi 11, has been proposed to consist of a conformational 

change in the pIII-pVI complex that detaches the complex (and the phage) from the cytoplasmic 

membrane. A still longer portion of pi l l (the 132 C-terminal residues) is required for the formation 

of stable virus particles. 

1.3. COAT PROTEINS USED FOR DISPLAY 

All five capsid proteins have been used to display proteins or peptides, to varying degrees. One 

report has described the fusion of antibody fragments to the amino termini of both pVII and pIX 

(Russel, Model and Clackson, 2004). The pVI protein, which interacts with pil l has also been 

used to display polypeptides through a carboxy-terminal fusion (Russel, Model and Clackson, 

2004). C-terminal linkage is particularly desirable for display of polypeptides encoded by cDNA 

fragments, since the inclusion of the stop codon at the end of the cDNA will not prevent display. 

However, by far the most commonly used virion proteins for phage display are pVIII and pill . 

1.3.1. pVIII 

pVIII, the major coat protein, is present in several thousand copies in phage particles. Sequences 

for display are typically inserted at the N-terminus, between the signal sequence and the 

beginning of the mature protein coding sequence. However, only short peptide sequences (6-8 

residues) can be displayed on every copy of pVIII because larger sizes prevent packaging of the 

virions. It might be due to the size restrictions of the pIV channel through which phage pass 

during extrusion. Display of larger polypeptides on pVIII requires expression of the fusion 



protein from a phagcmid vector, yielding hybrid virions bearing mainly wild-type pv'iii. 

Recently engineered pVIII proteins have been described that permit the display of large 

polypeptides at high copy number, or the display of proteins fused to the ( '-terminus (Russel, 

Model and Clackson, 2004). 

1.3.2. p i l l 

PHI, present in five copies at the proximal end of the capsid, is the protein ot choice for most 

phage display fusions due to its tolerance for large insertions and the wide availability of suitable 

vectors. Although pill is more tolerant than pVIII to substantial insertions, infectivity of the 

resulting phage can be reduced, sometimes dramatically. As with pVIII. this can be overcome by 

using phagcmid constructs, resulting in the production of hybrid virions that also bear wild-type 

pill . Since such virions no longer rely on the infectivity of the pil l fusion protein, proteins can 

instead be fused to truncated pills designed with the structure of the protein in mind. These can 

confer more efficient display, by reducing or eliminating proteolysis of the fusion protein, as 

well as reducing the size of the phagemid vector. Potential disadvantages include the possibility 

of sterica'ly hindering access to the displayed protein. C-tenninal pill display through fusion to a 

linker at the C-terminus of the pil l is also possible (Russel, Model and Clackson, 2004) 

1.4. CONSTRUCTION OF LIBRARIES 

1.4.1. Feasibility 

The first step in a phage display project is establishing that display of the polypeptide of interest 

is feasible (Russel, Model and Clackson, 2004). It was supposed that the limitations of virion 

extrusion and infection would restrict display to small peptides and proteins, and only proteins 

that are normally extracellular would be suitable, since display involves secretion of the fusion 

protein into the bacterial periplasm (Russel, Model and Clackson, 2004). Both concerns have 

proved false, and intracellular and extracellular proteins of a wide range of sizes and structures 

have been functionally displayed. For proteins that are normally intracellular, precautions can be 

taken to try to preserve the native structure of the molecule-for example, addition of zinc during 

preparation of phage displaying zinc finger proteins. If necessary, displayed proteins can even be 

refolded prior to selection by exposure of the particles to denaturants followed by dialysis. It has 

also proved feasible to display multi-subunit proteins. Homo-oligomeric proteins can also be 

displayed by relying on proteolysis of the displayed fusion protein to release sufficient soluble 

protein, or by invoking interactions between displayed proteins, either inter- or intra-phage. 
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1.4.2. Display systems 

Proteins can be displayed using vectors based on the natural Ff phage sequence-phage vectors-or 

using plasmid-hased phagemid vectors that contain only the fusion protein gene, and no other 

phage genes. In phage vectors, the heterologous sequence for display is inserted directly into the 

coding sequence for p 111 or another coat protein. When introduced into E. coli, phages will be 

produced in which all copies of the coat protein display the heterologous protein, in other words 

the protein is displayed polyvalently. Examples of pill phage display vectors include the lUSh 

vectors cc i jtructed by Smith and coworkers (Parmley and Smith, 1988), and the M13KE vectors 

commercially available from New England Biolabs. Libraries constructed in such a way are also 

called 'type 3' for pill , or 'type 8' for pVIII. In type '88 ' and type '33 ' vectors the single phage 

genome bears two genes of pVIII and pill , respectively, encoding two different types of pVIII or 

pill molecule; one is ordinarily recombinant and the other wild-type (Smith and Petrenko, 1997). 

The resulting virion is a mosaic; its coat comprised of both wild type and recombinant pVIII 

molecules (the former usually predominating). This allows hybrid pVIII proteins with quite large 

foreign peptides to be displayed on the virion surface, even though the hybrid protein by itself 

cannot support phage assembly. Similarly, a type '33 ' vector bears two genes of pil l , one of 

which is recombinant. Mosaic proteins are produced using '3+3'and '8+8'systems as well 

(Smith and Petrenko, 1997). In these cases the wild type and the recombinant gene 3 or gene 8 

are present in the distinct genomes of a helper phage and a phagemid, respectively. In phagemid 

vectors, the displayed protein fusion gene is cloned into a small plasmid under the control of a 

weak promoter. In addition to a plasmid origin of replication, the vector also has a Ff origin to 

allow production of single-stranded vector and subsequent encapsidation into phage particles. To 

produce such particles, E. coli cells harbouring the plasmid arc infected with helper phage, which 

is a Ff phage with a compromised origin that leads to its inefficient packaging. The infected cells 

express all the wild-type phage proteins from the helper phage genome, as well as a small 

amount of the fusion protein encoded by the phagemid. Because the helper phage genome is 

poorly packaged, nearly all the phage particles contain the phagemid genome, preserving the 

linkage between the displayed protein and its gene. Phagemid vectors have been described for 

both pil l and pVIII display. A major advantage of phagemid vectors is their smaller size and 

ease of cloning, compared to the difficulties of cloning in phage vectors without the disruption of 

the complex structure of overlapping genes, promoters, and terminators. This generally translates 

into much higher library sizes for phagemid vectors. For pVIII display, use of phagemids is 

generally required to achieve display of sequences longer than 6-8 amino acids. 
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1.4.3. V alency 

The choice of monovalent display (display of a single recombinant capsid protein) or polyvalent 

display of more than one copies of the recombinant capsid protein) is associated to the choice of 

vector type. Conventional phage vectors with natural phage promoters will generally produce 

polyvalent display unless there is extensive proteolysis of the displayed proteins. Phagcmid 

vectors tor pV111 display, in which only a fraction of the - 2700 copies arc fusion proteins, will 

typically still display polyvalently. On the other hand, use of phagcmid vectors to display protein 

on pill under the control of a weak (or uninduced) promoter will typically lead to monovalent 

display (Russel, Model and Clackson, 2004). The valency of display is important principally 

because of its impact on the ability to discriminate binders of differing affinities. It has been 

shown that polyvalent display prevented the highest-affinity clones in a selection from being 

identified, because multivalency conferred a high apparent affinity (avidity) on weak-binding 

clones (Russel, Model and Clackson, 2004). Monovalent display allows selection based on pure 

affinity, and is therefore generally preferred for the many studies where the aim is to identify the 

tightest binding variant(s) from a library. Conversely, in applications where the initial selectants 

are of very low affinity target polyvalency increases the chances of isolating rare and weakly 

binding clones. A frequent experimental strategy in such projects is to start with polyvalent 

display, and then move to monovalent display as the affinity of the displayed polypeptide 

matures. 

1.5. SELECTION PROCEDURES 

1.5.1. General principles 

Selection consists of adding an initial sizeable population of phage-borne peptides to give a 

subpopulation with increased fitness according to user-defined criterions (Smith and Petrenko, 

1997). In most cases, the input to the first round of selection is a very large initial library (109 

different sequences represented individually on average in about 100 individual copies) and the 

selected subpopulation is a very small fragment of the initial population. Selected sequences can 

be amplified by infecting fresh bacterial host cells, so that each individual phage in the 

subpopulation is represented by millions of copies in the amplified stock. Then the amplified 

population can be subjected to further rounds of selection (perhaps accompanied by 

mutagenesis) to obtain an ever-fitter subset of the starting peptides. 
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1.5.2. Affinity selection 

The most common selection pressure imposed on phage-displayed peptide populations is their 

affinity for a target receptor. Throughout a procedure called biopanning (instead of gold you 

search lor biologically valuable molecules) it is possible to select for sequences and common 

motifs foi interest. The receptor is tethered to a solid support, and the phage mixture is passed 

over the immobilised receptor. Those phage whose displayed peptides bind the receptor arc 

captured on the surface or matrix, unbound phage are washed away. Then the bound phage are 

eluted in a solution that loosens receptor-peptide bonds, yielding an eluate population of phage 

that is greatly enriched (often a million fold or more) for receptor-binding clones. The eluted 

phage are still infective and are propagated by infecting fresh bacterial host cells, yielding an 

amplified eluate that can serve as input to another round of affinity selection. Phage clones from 

the final eluate (typically after 2-3 rounds of selection) are propagated and characterised 

individually. The amino acid sequences of the peptides responsible for binding the target 

receptor are determined by uncovering the corresponding coding sequence in the viral DNA. 
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Figure 2. Main steps of affinity selection 

1.5.2.1. Capturing the target 

The solid supports to which target receptors are captured are usually surface supports like 

polystyrene dishes (Smith, 1985), impermeable plastic beads (Bass, Greene, and Wells, 1990), 

nitrocellulose membranes (Dyson and Murray, 1995), paramagnetic beads (Fowlkes et al., 1992). 

Permeable agarose beads are convenient to use (McCafferty et al., 1990) and have a very high 

capacity per unit volume. Nevertheless it seems unlikely that phage particlcs, whose long 

dimension (~1 jxm) is orders of magnitude larger than the average diameter of the pores of an 

agarose gel, can diffuse far into the interior of a bead; for this reason, only receptors tethered at 

the very surface of a bed may actually be effective at capturing phage. Receptors can be directly 

attached to the solid support by chemical coupling (Smith and Petrenko, 1997) or non covalcnt 
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adsorption to a hydrophobic plastic surface (Smith, 198.*)). Alternatively, receptor molecules can 

be biotinylated and allowed to bind to a surface that has already been coated with avidin or 

streptavidin, thereby attaching them indirectly through the super strong biotin-avidin or hiotin-

streptavidin bond (Parmley and Smith, 1988). This allows a two-step mode of capture. In the 

first step, the phage mixture is reacted with biotinylated receptor in homogeneous solution, 

which overcomes issues of conformational changes of coating proteins to solid surfaces. In the 

second step, the mixture is reacted with streptavidin-coatcd solid support in order to capture 

those phage whose displayed peptide bound the biotinylated receptor during the first step. In 

principle, at least, two-step capture allows the kinetics of the binding reaction to be controlled 

without the complications of surface reactions. A promising new variant of affinity selection 

does not rely on physical capture on a solid support (Duenas and Borrebaeck, 1994). Here, the 

peptide is displayed on a mutant version of coat protein pil l that is missing its N-terminal 

domain. Since this domain is required for infectivity, these particles are non-infective. Attaching 

the missing N-terminal domain to a receptor that binds the phage-borne peptide can restore 

infectivity. Therefore, only phage displaying peptides that bind the receptor are infective and are 

thus amplified. Another alternative possibility is an in vivo selection, when phage repertoires are 

directly injected into animals and then tissues are collected and examined for phage bound to 

tissue-specific cell markers (Smith and Petrenko, 1997). In vivo panning has several further 

advantages: an inherent blocking step is included where most of the phage-displayed peptides 

that recognise ubiquitous plasma and cell surface proteins are eliminated; these peptides may be 

useful for the functional analysis of new receptors and potential identification of novel drug 

target candidates. 

1. 5. 2. 2. Washes and elution 

After the capture step, the solid support is washed to remove unbound phage and eluted under 

conditions that release the bound phage without impairing their infectivity. Non specific elution 

conditions weaken receptor-peptide interactions without regard to their specificity. They exploit 

the high resistance of filamentous phage to denaturation by acidic buffers with pH's down to 2. 2 

(Smith, 1985), alkaline buffers such as 0. 1 M triethylamine, proteases such as trypsin and factor 

Xa (Smith and Petrenko, 1997). Specific elution releases phage bound to the target receptor's 

binding site without releasing phage that are bound for some other reason-for example, by 

interaction with a contaminant, or with the carrier protein that is often used to block non specific 

adsorption sites on the solid support after the target receptor itself has been immobilised. In 

competitive elution, a known soluble ligand for the receptor competes with phage for binding to 
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immobilised receptor (Smith and Petrenko, IVV/). I his is a two-stage process: the phage-borne 

peptides must first dissociate spontaneously from the solid support, after that the competitor 

binds the receptor binding site reducing its availability for rebinding phage-borne peptide. Thus 

if the time course of dissociation is long on the scalc of the experiment, competitive elution will 

fail. Non '^mpetitive elution, in contrast, relies on a compound that specifically loosens binding 

by the receptor without binding to its binding site, and without weakening binding interactions in 

general. For instance, phage bound to a calcium-dependent receptor can be eluted with the 

calcium cheater EGTA (Smith and Petrenko, 1997) increasing the specificity of elution, since 

only rarely would a non-specifically bound phage happen to be held in a calcium-dependent 

fashion. It is not inevitably necessary to elute the captured phage at all. Adding fresh bacterial 

host cells to the solid support allows the captured phage to infect cells and thus be propagated. 

The yield is generally low, but the first round of selection is probably sufficient to ensure 

retention of binding clones. The progress of affinity selection through succeeding rounds is 

ordinarily reflected in increasing affinity of individual phage clones or of entire eluate 

populations for the target receptor. The affinity of individual clones or entire eluate populations 

can be assessed quantitatively by standard enzyme-linked immunosorbent assay (ELISA). 

1.5.2.3. Y jp!d and stringency 

Affinity selection is a very sensitive method and depending on the adjustment of its different 

phases a completely different cluster of sequences can be collected. There are two pivotal 

parameters of selection, which can often be manipulated to some extent in order to enhance the 

efficacy of selection (Smith and Petrenko, 1997). Stringency is the degree to which peptides with 

higher fitness are favoured over peptides with lower fitness; yield is the fraction of particles with 

a given fitness that survive selection. The ultimate goal of selection is usually to isolate peptides 

with high fitness. Stringency is most often controlled by target concentration though other means 

such as increasing wash time are also effective. High target concentrations (low stringency) 

ensure the survival of the best ligands, but at the cost of reducing differential enrichment of the 

better species and hence requiring many rounds of good selection. Low target concentrations 

(high stringency) yield differential enrichment, but also risk losing some of the best ligands due 

to their initially very low concentration. As a compromise to allow relatively rapid enrichment of 

the best species with low risk of their loss, laboratories have various schedules for starting with 

low stringency that are increased in later generations (Levitan, 1998). The more stringent 

selection favours higher affinity phage. However, even though mole fraction of the high affinity 

peak increases each round, this mole fraction is always much lower than that for the 

19 



corresponding generation at constant stringency. This happens because decreasing target 

concentrations lessen the total number of phage that bind target but does not lessen the degree of 

background binding (Levitan, 1998). As a result, the mole fraction of low-affinity phage is much 

higher than that in the constant stringency case. Thus while an increasing stringency strategy 

allows higher affinity hgands to be tound. more rounds will be needed to find them with the 

same probability. For higher rates of stringency increase, the peak migrates to higher affinities 

more rapidly, but the background contribution decreases very slowly. The best strategy for low 

background binding is using a large initial target concentration followed by a rapid increase in 

stringency. Washes in general have only a relatively little effect on the selection process-except 

of the case when there is very little non specific binding (Levitan, 1998). Long washes can also 

increase stringency and may be of greater benefit than using lower target concentrations. They 

affect both target-bound and non-specifically bound ligands. As a result, long washes will not 

drastically reduce the mole fraction of high affinity ligands but will still remove low affinity 

ligands compared to high affinity ligands. Including detergents like Tween 20 in wash buffers 

can also have a similar effect. When too many rounds of biopanning are performed, there is a 

point, when it becomes progressively more difficult to find a consensus as the best few phage 

compete the other best phage out of the library and measurement error can cause the continual 

loss of the best ligands in the library. During amplification between the individual rounds there is 

the possibility that phase not expressing a real binder sequence but showing extreme good 

growth properties can overgrow phase of interest therefore the yielded peptide sequence will not 

be valuable for analysis. Identical peptide sequences with completely identical nucleotide 

sequences are suspicious of selecting for a phase with favourable growth but not with beneficial 

affinity. Valence of display has also an effect on stringency as it is described at 1.4.3. 

Monovalent display is the one, which allows selection of ligands with really high affinity. 

Furthermore shorter incubation and longer elution times between ligands and targets ensure the 

selection of high affinity targets. 

1.5.3. Effect of conformational constraints 

Unlike natural proteins or protein domains, random peptides do not generally fold into a well-

defined three-dimensional structure. However, constraints can be artificially imposed on the 

peptide in order to greatly reduce the range of available conformation. In general, a library of 

constrained peptides will represent far fewer three-dimensional shapes than a library of 

unconstrained peptides. The probability that a clone will possess the target activity-affinity for a 

receptor is correspondingly reduced (Smith and Petrenko, 1997). On the other hand, a 
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constrained peptide whose accessible conformations happen to overlap extensively with active 

conformations may possess far higher activity than any unconstrained peptide. The most 

common constraint on displayed peptides is a disulfide bond between two half-cvstine residues 

at fixed positions in an otherwise random sequence. Because the phage coat proteins are secreted 

into the oxidising milieu of the periplasm and ultimately secreted into extracellular medium with 

abundant dissolved oxygen, cysteine residues within a single displayed peptide can be cxpected 

to form mtrapeptide disulfides in at least a portion of the displayed peptides. Interchain disulfides 

are much less likely, since the distance between neighbouring coat-protein subunits is at least 10 

times longer than a disulfide bond. The disulfide bond has been shown to be required for the 

ability of the displayed peptide to bind a target receptor (Smith and Petrenko, 1997). In general, 

the closer the half-cystincs, the tighter the constraint imposed on the amino acids lying between 

them. Thus, disulfides spanning different numbers of amino acid positions would be expected to 

interrupt very different, mutually exclusive conformational constraints when the numbers are 

small. In contrast, disulfides spanning more than about six residues probably impose relatively 

weak constraints that are compatible with a great diversity of conformations. Co-ordination 

bonds between histidine residues and metal ions can constrain peptides in much the same way as 

disulfide bonds. A second way of constraining peptides is to present them in the context of a 

protein scaffold. In this case, random peptides can be presented not only as loop structures, but 

also as parts of helices, sheets, turns, and other elements of secondary structure (Smith and 

Petrenko, 1997) 

1.5.4. Enrichment and analysis of specific sequence motifs 

Increasing fitness is typically accompanied by emergence of a common motif in the amino acid 

sequences of the selected peptides (sometimes more than one motif)- Hence the selected peptides 

can provide insight into the minimum size and composition requirements for binding to a protein 

or to a drug. (Rodi, Makowski, and Kay, 2002) Though subsets of peptide ligands share a 

consensus ihe clear-cut identification of that consensus may not be easy. For example, SH3 

domains, where a single, well-defined, peptide-binding cleft is involved in the peptide-protein 

interaction, a relatively small number of sequences can lead to the definition of a motif (Rood, 

Makowski, and Kay, 2002). On the other hand, for a protein target such as actin, which is known 

to bind to several proteins along different surfaces, such a simple result would not be expected, 

and many peptides need to be sequenced and sorted in order to identify these multiple binding 

motifs. Using oligopeptide libraries there is usually a small chance that the peptide with the 

highest affinity for the target is in that library. However, there is a relatively high chance that 
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peptides with similar sequences are present and will be selected. Although there aie well-

documented cases where conservative amino acid substitutions alter affinities by orders of 

magnitude, in many cases, conservative and even semi-conservative substitutions may not 

greatly alter affinity (Rodi, Makowski, and Kay, 2002). 

1.6. APPLICATIONS OH PHAGK-DISPLAY 

1.6.1. Epitope mapping and mimicking 

An epitope is the small determinant on the surface of a ligand with which the receptor makes 

close, geometrically and chemically specific contact. If the ligand is a protein, the epitope is 

sometimes continuous, comprising a few adjacent critical amino acids in the primary sequence. 

For instance, antibodies specific for continuous epitopes on protein antigens typically contact 

three to four critical amino acids over a six-residue segment. More often, however, protein 

epitopes are more complex. Many are discontinuous comprising critical binding residues that arc 

distant in the primary sequence but close in the folded native conformation. Several epitopes, 

including discontinuous ones, are conformation-dependent because they require the context of 

the overall protein structure to constrain them in a binding conformation (Smith and Petrenko, 

1997). 

It is of ter desirable to map the epitope to a confined portion of the natural protein ligand. If the 

epitope is (or might be) continuous and not conformation dependent, random peptide libraries 

provide an easy approach to this goal. The receptor is used to affinity select random peptide 

ligands, and the sequence motif in the selected peptides is compared to the amino acid sequence 

of the natural ligand. In these cases the motif frequently matches clearly the critical binding 

amino acids in the natural protein ligand, thereby mapping the epitope to a very narrow part of 

the overall natural ligand structure. Only rarely will a random peptide library contain a binding 

motif extending to more than about six amino acids or adequately represent conformation-

dependent or discontinuous epitopes. Although receptors recognising such epitopes often select 

ligands from random peptide libraries, these artificial ligands seldom bear a recognisable 

similarity to any part of the natural protein ligand at the amino acid sequence level. Alternatively 

gene-specific libraries displaying 15-100 amino acid segments of the natural amino acid 

sequence can be constructed, which are long enough to occasionally include small elements of 

secondary structure from the native protein (Smith and Petrenko, 1997). Such libraries 

sometimes contain good ligands for receptors that fail to select ligands from random peptide 

libraries. Because it requires construction of a specific library for each new ligand gene, 

however, this approach is much more demanding than use of all-purpose random peptide 
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libraries. Affinity seleeiion from random peptide iibraries often reveals entirely unexpected 

ligands, which do not match any linear epitope and which could not have been anticipated from 

even extensive knowledge of the receptor and/or its natural ligand. This is especially so when the 

receptor's natural epitope is non-proteinaceous or is a discontinuous or conformation-dependent 

protein epitope. Geysen and his colleagues introduced the term "mimotope"(Geysen et a!., 1987) 

to refer to small peptides that specifically bind a receptor's binding site (and in that sense mimic 

the epitope on the natural ligand) without matching the natural epitope at the amino acid 

sequence level. The definition includes cases where the natural ligand is non-proteinaceous. 

1.6.2. Identifying new receptors and natural ligands 

A ligand for a receptor can be used as a probe to identify new rcccptors that bind the same 

ligand. In a few very favourable cases, identifying peptide ligands from a random peptide library 

may suffice to find the natural ligand for an orphan receptor - a receptor whose natural ligand is 

unknown (Smith and Petrenko, 1997). 

1.6.3. Drug discovery 

Many of the receptors used in affinity selection are targets of drug discovery programs, and the 

peptide ligands selected by them are therefore potential leads to new drugs (Smith and Petrenko, 

1997). Such peptides might act as receptor agonists or antagonists (for example, of enzymes or 

hormone receptors) or otherwise modulate the receptor's biological effect. Affinity selection 

resembles in essence the traditional approach to drug discovery: screening libraries of synthetic 

compounds or natural products for substances that bind the target receptor and that might 

therefore be leads to new agonists, antagonists, or modulators. However affinity selection has the 

key advantage that the scale of the search is many orders of magnitude greater than is feasible 

when chemical libraries must be screened compound by compound - billions of peptides versus 

tens of thousands of chemicals. On the other hand, for most pharmaceutical applications, 

peptides have poor pharmacological properties, being generally orally unavailable and subject to 

rapid degradation in the body by naturally occurring enzymes. The most important contribution 

of phage display to drug discovery will be confined to applications where peptides themselves 

can serve as plausible therapeutics. 

1.6.4. Epitope discovery in vaccine development and diagnostic 

When the receptor used for affinity selection is an antibody, the peptides it selects from random 

peptide libraries are called antigenic mimics of the corresponding natural epitope. When these 
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peptides arc used in turn to immunise naive animais, some are able to elicit new antibodies thai 

cross-reac* with the natural epitope, even though the naive animals have never been directly 

exposed to it (Smith and Petrenko. 1997). Such peptides are immunogenic mimics as well as 

antigenic mimics. However, not all antigenic mimics are immunogenic mimics. Most small 

peptides are flexible, and they might adopt one conformation when it binds the selector antibody 

but myriad other conformations when it elicits new antibodies, few if any of which would 

therefore cross-react with the authentic epitope. On the other hand a peptide may be an antigenic 

mimic without being a true structural mimic. Such a peptide would bind the selector antibody in 

an entirely different way than does the original authentic epitope. Such a peptide would be 

expected to elicit new antibodies that fit it in an altogether different way than does the original 

selector antibody. Only rarely and coincidentally would these antibodies cross-react with the 

authentic epitope. Antigenic and immunogenic mimicry are the basis of epitope discovery, a new 

approach to disease diagnosis and vaccine development (Smith and Petrenko, 1997). Most 

diseases- particularly infectious ones - leave their imprint on the complex mixture of antibody 

specificiti that comprises the total serum immunoglobulin population. Included in this 

population are disease-specific antibodies - some elicited directly by antigens on a pathogen, 

others possibly recognising antigens that reflect the disease process more indirectly. When total 

serum antibody from a patient is used to affinity select clones from a random peptide library, 

therefore, some of the selected ligands will correspond to disease-specific antibodies. Of course 

the patient's pool of antibodies will contain many non-disease-specific antibodies, too, so it may 

require extensive counter-selection or screening with antibodies from control subjects (not 

suffering from the disease) to identify those peptides that correspond to authentic disease-related 

antibody specificities and that therefore can be considered diagnostic for the disease. Peptides 

obtained through epitope discovery have two main uses (Smith and Petrenko, 1997). First, as 

antigenic mimics they serve as specific probes for antibodies that are diagnostic for the diseases, 

much as natural viral proteins serve in current tests for HIV. Their advantages over natural 

antigens as diagnostic reagents include that they are easier and cheaper to discover and 

manufacture, that they can focus on a few particularly diagnostic specificities and exclude 

potentially confusing signals from non-diagnostic determinants, and that they can be discovered 

and used even when the natural antigens associated with the disease are entirely unknown. The 

second possible use of peptides obtained through epitope discovery is as components of synthetic 

vaccines (Smith and Petrenko, 1997). Only antigenic mimics that are also immunogenic mimics 

are useful in this regard, of course, since in order to be protective an antibody must react with a 

natural epitope on the actual pathogen. Small segments of different proteins displayed on Ml 3 
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virus particics were used to eiicit antibodies against the coat proteins of parasites and viruses. 

The immunological response to injected M13 is T-cell dependent and does not require an 

adjuvant. 

1.6.5. Single-chain antibody libraries 

antibodies with a unique specificity (Hoogcnboom ct al., 1991). In this regard, phage display 

technology can be used to 1.) generate human monoclonal antibodies or humanise mouse 

antibodies, significant for cancer immunotherapy, 2.) to isolate human antibodies from patients 

exposed to certain viral pathogens to better understand the immune response during infection and 

how protective antibodies are generated, and 3. ) to elucidate the specificity of autoimmune 

antibodies. Both Fab (consisting V h - C h and V | - C L segments linked by a disulphide bond) and 

the variable fragment (Fv) were expressed on the surface of Ml 3 viral particles with no apparent 

loss of the antibody's specificity and affinity. To construct a single chain variable fragment 

(scFv) library using phage display, genes of variable heavy (VN) and variable light ( V I J chains of 

antibodies are prepared by reverse transcription of m R N A obtained from B-lymphocytes. The 

heavy and light chain gene products are amplified and assembled into a single gene using a DNA 

linker fragment. The assembled scFv DNA fragment is inserted into a phagemid vector and the 

recombinant phagemid is introduced into competent E. coli by C a C b transformation or 

electroporation. Ligation and bacterial transformation are crucial, as they directly influence the 

size of the library. Phagemid-containing bacterial cells are grown and then infected with a helper 

phage to yield recombinant phage that display scFv antibody fragments as fusion to one of the 

phage coat proteins. 

1.6.6. Selection of DNA-binding proteins 

Phage display may help to design proteins that specifically bind a given target DNA sequence. A 

promising approach is to construct a library of randomised variants of a parent DNA binding 

domain (e.g., one of the zinc-finger domains, a common DNA-binding motif in eukaryotic 

nuclei) displayed on a fi lamentous phage; randomisation is concentrated on positions that are 

thought to make sequence-specific contacts with the target DNA in the parent domain. From this 

library, clones that bind a new target DNA sequence, different from that recognised by the parent 
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1.6.7. Landscape libraries 

The surface landscape of a filamentous virion is a cylindrical array of thousands of repeating 

subunits composed of the exposed parts of the major coat protein pVIII accounting for about half 

the weight of the particle. When a random peptide is displayed on every copy of this protein, it 

subtends a major fraction (20% or more) of the repeating unit and thus of the entire particle 

surface. Unless the random peptide is loosely tethered to the bulk of the major coat protein, it is 

forced to interact with residues in its immediate neighbourhood, and may therefore be 

constrained in a definite three-dimensional conformation that differs markedly from the surface 

conformation of wild-type particle and of clones displaying other random peptides | Smith and 

Petrenko, 1997}. A large population of such clones can therefore be regarded as a library of 

organic landscapes. The ensemble of a random peptide in a landscape library with its 

surrounding wild-type residues may have emergent properties that are lost when the peptide is 

excised from its context. Such peptides are analogous to the complementarity-determining 

regions of antibodies: oligopeptide loops that in the context of the intact protein make most of 

the specific contacts with antigen but as free peptides seldom have appreciable antigen-binding 

propensities. Localisable emergent properties are present even when the foreign peptide is 

displayed on only an occasional pVIII molecule, as in type 88 and 8+8 systems. Nevertheless, 

the high-density display in landscape phage may greatly enhance overall effectiveness in some 

applications. For instance, if a single target receptor complex can bind two or more neighbouring 

peptides on the phage surface, the overall effective affinity may be enhanced many orders of 

magnitude compared to monovalent binding. Some emergent properties are not localisable to a 

single subunit but seem instead to be a global property of the entire surface landscape. 

1.6.8. Ribosomal display 

A major limiting step of constructing a large-size phage display library is the transformation 

efficiency. Libraries smaller than 109 independent members prepared in E. coli are smaller by 

several orders of magnitude due to less efficient transformation of bacterial cells. 

Ribosome display was developed to overcome this limitation (Schaffitzel et til., 1999). This in 

vitro technology aims for simultaneous selection and evolution of proteins from diverse libraries 

without any bacterial transformation. In ribosome display, DNA (which encodes a protein 

library) is first transcribed to mRNA that is then purified and used for in vitro translation. In 

vitro translation of mRNA is designed in such a way to prevent dissociation of mRNA, 

ribosomes, and the translated peptide. Such mRNA-ribosome-peptide complexes are then used 
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for affinity scicction on an immobiiiscd target where oniy the complexes that do not encode a 

binding polypeptide, that specifically recognises the target antigen, are removed by washing. The 

mRNA. that encodes a polypeptide cognate for the target, is then dissociated from the ribosomal 

complexes and reverse transcribed into cDNA. The prepared cDNA is then amplified by PCR 

and used for the next cycle of enrichment and PCR and/or analysed by sequencing. Because no 

transformation is ncccssary, large libraries can be constructed and used for selection 

Additionally, library diversification is suitably introduced either before starting or m between 

cycles of ribosome display via DNA shuffling or error-prone PCR. Ribosome display has been 

successfully applied to both peptides and folded proteins. 

1.6.9. Diagnostic applications. 

Phage display is a newcomer in the detection area, which expertise in the development of 

molecular probes for targeting of various biological structures. Specific proline-rich peptide 

ligands binding to the coat protein of cucumber mosaic virus were selected from a nonamer 

pVIII library. Binding peptides were also selected against botulinum neurotoxin. Phage 

antibodies were isolated against several viruses and spores of the genus Bacillus (Petrenko and 

Vodyanoy, 2003). 

1.6.10. Applications of phage display in this thesis work 

After desi -Ibing the main aspects of phage display I want to present two application possibilities 

in two different fields of microbiology. The first section deals with identification of Bacillus 

spores, the second one with mapping the laminin binding site of Yersinia pestis plasminogen 

activator. The actuality of these subjects is underlined by the fact that both Bacillus anthracis 

and Yersinia pestis are re-emerging pathogens with global significance. It is pertinent to note that 

these agents genuinely are zoonotic pathognes but they also have the potential to be weaponised. 

A further remarkable common feature of the two pathogens is that both can spread through 

inhalational route. In this way these bacteria impose a threat as possible or even factual means of 

bioterrorism. In June 1999, an American meeting of national experts was convened to review 

agents that might be utilised as biological weapons or tools of bioterrorism. A list of agents for 

public health preparedness to respond against attacks of bioterrorism was developed and placed 

into three categories. Both B. anthracis and Y. pestis were placed into Category A including 

agents considered to have the greatest potential for adverse public health impacts (Rotz et al, 
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Concerns about the use of B. anthracis as a biological weapon have re-emerged in the United 

States when spore containing envelopes were sent to selected individuals via the postal systems 

(CDC, 2001). 

Plague probably because of its success in devastating Europe in the 14th century is generally 

regarded as a disease of the Middle Ages. In fact. Yersinia pestis is known to have caused at least 

three pandemics, and there have been a steady increase in reported plague morbidity since the 

early 1990s (Dennis. 1999). The potential of plague to induce panic and economic loss was 

demonstrated during the 1994 outbreak of pneumonic plague in Surat, India. The international 

response resulted in increased control at ports and airports including people being placed in 

quarantine, and embargoes were placed on the import of goods and movement of people from 

India. T h j final death toll was 54 people, and the total cost of this outbreak to India was 

estimated at 2 billion US S (Cash and Narasimhan, 2000). Interestingly enough, in spite of the 

public and media alertness and the public health concern no positive sputal culture was achieved. 

All the above-presented data support the assumption that an intensive research aiming at the fast 

and specific diagnosis, control and prevention of these infections is justified. Basic research on 

the spore surface proteins of Bacillus spp. including B. anthracis and the virulence associated 

outer membrane protein Pla of Y. pestis might supply data applicable in those practical fields 

listed above. As phage display is a well-established method for the identification and functional 

investigation of peptide domains we applied this assay system to analyse spore coat proteins and 

Pla. 



2. UTILISATION OF RANDOM PHAGE DISPLAY LIBRARIES FOR 

IDENTIFICATION OF BACILLUS SPORES 

2.1. INTRODUCTION 

2.1.1. Formation and structure of Bacillus subtilis endospores 

The genus Bacillus includes a diverse collection of gram-positive, rod-shaped, aerobic, spore-

forming bacteria. The best studied of the spore forming bacteria is one with no special powers 

other than the ability to be readily manipulated in the laboratory: Bacillus subtilis. Spore 

formation, referred to as sporulation, occurs in a series of stages that can be monitored by light 

and electron microscopy and, once initiated, requires approximately 8 h to complete. The 

morphological process of sporulation is driven by a temporally and spatially controlled program 

of gene expression (Driks, 2002). Commencement of this program requires that the cell has 

reached a certain stage in the cell cycle that the tricarboxylic acid cycle is intact, that at least one 

extracellular pheromonc is present in the appropriate amount, and that an unknown 

environmental stimulus has activated a complex phosphorylation cascade. When these conditions 

are met (as they are during starvation), sporulation ensues and the pattern of vegetative gene 

expression is largely replaced with the specialised program of sporulation gene expression. The 

rapid series of morphological changes that ensue during sporulation is due, in large part, to the 

sequential appearance of a series of transcription factors, called sigma factors, which bind to core 

polymerase and direct it to transcribe only from specific promoters (Driks, 2002). An early and 

dramatic morphological event is the formation of the asymmetrically placed sporulation septum, 

which divides the cell into the forespore and mother cell compartments, at about the second hour 

of sporulation. The smaller compartment (the forespore) will go on to become the spore. The 

larger compartment (the mother cell) will serve to nurture the spore until its development is 

complete. After the sporulation septum is laid down, the sporulation gene expression program 

splits and two distinct programs become active, one in each of the resulting cellular 

compartments. These two divergent programs of gene expression, in the mother cell and in the 

forespore, result in the spore being built from the outside (as a result of protein synthesis in the 

mother ceil) and from the inside (as a consequence of the proteins produced in the forespore). At 

about the third hour, the edge of the septum migrates in the direction of the forespore pole of the 

cell, pinching the forespore compartment off to become a protoplast which sits free in the 

mother-cell cytoplasm and is surrounded by a double layer of membrane. After engulfment, a 

cell wall-like material is deposited between the membrane layers that surround the forespore. 



This cell wall has two layers: an inner iayer, caiied the germ ceil waii, which wiii become the 

peptidoglycan layer of the nascent cell after germination, and an outer layer, called the cortex, 

which participates in maintenance of the dehydrated state of the spore. This is followed by 

formation of the coat from proteins synthesised in the mother cell, which then assemble around 

the forespore. The coat is evident by about the fifth hour of sporulation. Two major coat layers 

can be discerned in the electron microscope: a darkly staining outer coat and a more lightly 

staining lamellar inner coat. The final step in sporulation is lysis of the mother cell and release of 

the fully formed spore. Coat assembly in B. subtilis occurs in stages that are tightly coupled to 

the well-described developmental program driving spore formation (Driks, 2002). The interior-

most compartment of the spore houses the chromosome. This compartment is surrounded by two 

membran? layers derived from the septum formed at the beginning of sporulation. A specialised 

peptidoglycan (the cortex) resides between these membranes, the outermost of which is the site 

of coat protein deposition. In B. subtilis, electron microscopy reveals a darkly staining outer 

layer (the outer coat) and a more lightly staining inner layer (the inner coat). The coat comprises 

approximately 30 protein species that do not resemble one another or, in general, any other 

proteins in the databases. In most cases, the deletion of any one coat protein in B. subtilis has 

only a subtle effect on the coat beyond the absence of that protein, suggesting that important 

functions of the coat remain undetected by current assays. Exceptions to this pattern are the 

morphogenetic proteins SpoIVA and CotE, which have especially striking effects on coat 

assembly. SpoIVA designates the spore surface as the site of all subsequent deposition of coat 

protein and connects the coat to the spore (Driks, 2002). The function of SpoIVA is more 

complex than this, however; in its absence, the thick specialised peptidoglycan residing just 

beneath the coat never accumulates to wild-type level. SpoIVA resides at the membrane 

separating the coat and the peptidoglycan, the two structures whose synthesis it co-ordinates. 

CotE forms a shell around the spore well before most coat proteins are synthesised. In its 

absence, the outer coat fails to form (Driks, 2002). Consistent with this, CotE directs the 

deposition (but not the synthesis) of at least eight proteins, most of which reside in the outer coat. 

The inner coat forms as a layer underneath the CotE shell and, like the outer coat, is not evident 

until after CotE is in place (Driks, 2002). Unlike the outer coat, however, the formation of the 

inner coat is largely CotE independent. The carboxy-terminal 28 amino acids of CotE, which 

possess a preponderance of acidic residues, are crucial for coat protein deposition (Driks, 2002). 

The amino acid differences between CotE homologues in B. subtilis, B. anthracis, B. 

stearothcrniophilus and Bacillus halodurans arc particularly pronounced in the carboxy-terminal 



28 residues. Thus, the differences in coat protein composition between these species could, to a 

large degree, be a function of sequence variation at the CotE carboxyl terminus. 

Two interacting proteins. SpoVID and SafA, also play important moqihogenetic roles in coat 

assembly. Intriguingly, like CotE, both SpoVID and SafA appear to have a carboxy-terminal 

module that varies among the spore formers (Driks, 2002). In contrast to CotE, these varying 

regions extend across the majority of the SpoVID and SafA sequences. Thus, the varying regions 

of these proteins probably comprise domains. Carbohydrates are also important components of 

spore structure. At least some of the coat proteins undergo modification of several types 

including also glycosylation. Loss of the gene products of the spore polysaccharide biosynthesis 

determinants (spsA-K) resulted in a hydrophobic spore coat. SpsA is the only well characterised 

member of the cluster. It is a glycosyltransferase implicated in the synthesis of the spore coat of 

Bacillus s.:utilis, whose homologues include cellulose synthase and many lipopolysaccharide and 

bacterial O-antigen synthases. Mutations in the cgeAB and cgeCDE operons of B. subtilis, 

produce spores with altered surface properties leading to the hypothesis that proteins encoded by 

the cge operons influence maturation of the outermost layer of the spore, most likely by 

glycosylation of coat proteins at the spore surface (Roels and Losick, 1995). 

If conditions are suitable, the spore can germinate and thereby convert back into a growing cell. 

When this occurs, first the spore core rehydrates and swells and then the coat cracks, releasing 

the nascent cell. 

2.1.2. Formation and structure of B. anthracis spores 

In spite of its importance to spore survival, germination, and pathogenesis, the spore coat 

assembly and protein composition of the B. anthracis coat has received a broader study only 

recently when gene expression during growth and sporulation was monitored with DNA 

microarrays and tandem mass spectrometry (Liu et al., 2004). The majority of what is thought to 

be true about the B. anthracis spore and how is made is based on the assumption that the large 

body of experimental data accumulated through the characterisation of sporulation in B. subtilis 

will apply to B. anthracis. The complex gcnomical and protcomical analysis revealed a similar 

cascade of sigma factor expression as it was already described in B. subtilis Furthermore, it 

seems likely that gene expression during sporulation may be mainly related to the physical 

construction of the spore rather than synthesis of eventual spore events. Comparison of the B. 

subtilis and B. anthracis genomes also shows that coat proteins with key roles in morphogenesis 

are present in both organisms and therefore, it is plausible that coat assembly follows largely the 



same program in the two species (Liu at at., 2004). Given the cuiieni understanding of coat 

assembly in B. subtilis, comparison of its genome with that of B. anthracis is particularly 

revealing. Both SpoIVA and CotE have unambiguous homologues in B. anthracis suggesting 

that coat assembly in the pathogen follows a similar overall program to that of its benign relative 

(Lai et al., 2003). This supports the view that B. anthracis possesses inner and outer coat layers, 

although the morphological distinction between them is less evident than m B. subtilis. Un the 

other hand only a small fraction of the late assembled or synthesised coat and coat-associaied 

proteins in B. subtilis have B. anthracis homologues. Thus, the major differences between these 

species could be among the outer coat proteins. For B. anthracis, as for many Bacillus species 

the spore is enclosed by a prominent, loose-fitting, balloon-like layer called the exosporium, 

which is composed of a basal layer and an external hair-like nap and serves as a primary 

permeability barrier (Gerhardt, 1967). The aforementioned comprehensive genomic study 

identified Jie CotZ and CotJ proteins also described in B. subtilis as structural components of the 

B. anthracis exosporium. 

2.1.3. Diagnostic methods for Bacillus identification 

The gram-positive soil bacterium Bacillus anthracis, the causative agent of anthrax, has been 

developed into a weapon of mass destruction by numerous foreign governments and terrorist 

groups (Turnbough, Jr., 2003). The use of B. anthracis as a biological weapon, with severe 

consequences, was demonstrated in the fall of 2001 in the United States. B. anthracis is an 

effective agent for biological warfare and terrorism primarily because it forms spores being 

resistant to extreme temperatures, noxious chemicals, desiccation, and physical damage. These 

properties make them suitable for incorporation into explosive weapons and for concealment in 

terrorist devices (Turnbough, Jr., 2003). Spores enter the body through three routes: by skin 

abrasions, Ly ingestion or inhalation. Once exposed to internal tissues, the spores germinate and 

vegetative cell growth ensues, often resulting in the death of the host within several days 

(Turnbough, Jr., 2003). Natural strains of B. anthracis are sensitive to common antibiotics that 

can be used to treat anthrax. However, to ensure a successful outcome, treatment must begin 

within a day or two after exposure to spores (Turnbough, Jr., 2003). Thus, rapid detection of B. 

anthracis spores is critical in responding to the anthrax threat. Several detection systems are 

currently used to identify B. anthracis. The most accurate systems employ either PCR-based 

assays or traditional p'henotvping of cultured bacteria (Turnbough, Jr., 2003). However, these 

methods are complex, expensive, cumbersome, and slow, typically requiring spore germination 



and outgrowth of vegetative cellb. Other systems aie based on antibody binding to spore surface 

antigens. These systems are relatively fast because they detect spores directly. However, current 

antibodv-based detectors suffer from a lack of accuracy and limited sensitivity, which result in an 

unacceptably high level ot both talse-positive and talse-negative responses, according to federal 

government trial in the United States and other, independent tests (King et al., 2003). The lack of 

accuracy a ith these systems is compounded by the normal presence m the environment 01 

Bacillus spores that resemble (and share surface antigens with) B. anthracis spores. Particularly 

problematic are spores of the opportunistic human pathogen B. cereus and the insect pathogen B. 

thuringiensis, species which, based on genome sequence comparisons, are the most similar to B. 

anthracis (Read et al., 2003). These three species, along with B. mycoides, comprise the 

phylogenetically similar B. cereus group (Tumbough, Jr., 2003). Therefore, due to the 

aforementioned limitations and deficiencies, all currently available systems for detecting B. 

anthracis are inadequate for frontline use by emergency workers and soldiers on the battlefield 

and for routine monitoring of public areas. Clearly, there is an urgent need for a better detector 

that can be used where the threat of B. anthracis spore exposure is the greatest. The desired 

detector will, in all probability, require simple and hardy ligands capable of tight and specific 

binding to B. anthracis spores. Because it is impractical to use pathogenic spores (or in some 

cases even non pathogenic variants of these spores) in the early stages of detector development, 

we constructed a model detection system involving a safe • • e a n c j a s t a n c j a r c i 

small-molecule ligand capable of binding this spore: peptide 1 b ghtly to spores of 

B. subtilis. The peptide ligands were identified by biopanninn a nbrarv of phage-displayed 

peptides against B. subtilis spores. 

2.2. AIMS OF THE STUDY 

1. Selection and identification of heptamer and dodecamer peptides or potential heptamer 

and dodecamer peptide families binding tightly to B. subtilis and B. anthracis spores with 

the utilisation of a commercially available random phagc-display library. 

2. Characterisation of selected sequences, assessment of structural criteria for binding. 

3. Development of fluorescent labelling methods for tagging the selected phage or the 

chemically synthesised peptide sequences. 

4. Improvement of flow cytometry assays suitable for discrimination of different spore 

types. 



5. Performance of sequence similarity seaiclies with the selected peptide sequcnccs to 

recognise protein sequences mimicked by the phage-displayed peptides. 

2.3. MATERIALS AND METHODS 

2.3.1. Phage display and associated methods 

2.3.1.1. Phage display libraries 

Commercially available random phage display libraries expressing heptamer and dodecamer 

peptides (Ph.D.-7 and Ph.D.-12, New England BioLabs, MA, USA) were utilised for screening 

spore ligands. The Ph.D.-7- and Ph.D.-12 libraries contain random heptamer and dodecamer 

peptides, respectively, fused to the amino terminus of the Ml 3 minor phage capsid protein pill . 

This protein is represented in five copies at one end of the filamentous phage particle. Therefore 

each phage displays five copies of an individual peptide whose sequence is encoded in the 

recombinant pi 11 gene. For propagation of eluted phage Escherichia coli strains ER2537 [FTacI^ 

A(lacZ) Ml 5 p r o A + B + / f h u A 2 supE thi A(lae-proAB) A(hsdMS-mcrB)5 (rk"mk~ McrBC")] 

(New England Biolabs) and XL1 Blue MRF' ( recAl endAl gyrA96 th-1 hsdR17 supE44 relAl 

lac [F'proAB, lacl^ ZAM15, TnlO (Tet r), Cam1"] (Stratagene) were used. Strain ER2537 was 

maintained on minimal agar (6 g/1 Na 2 HP0 4 , 3 g/1 KH 2 P0 4 , lg/1 NH4C1, 0.5 g/1 NaCl, 0.3 mg/ml 

CaCl2, 1 mM M g S 0 4 , 2g/l glucose, 0.5 mg/1 thiamine, 15 g/1 agar), strain XL1 Blue MRF ' was 

maintained on Luria-Bertani agar (10 g/1 Bacto trypton, 5 g/1 yeast extract, 5 g/1 NaCl, 15 g/1 

agar) supplemented with 20 (ig/ml tetracycline. Both strains were grown in Luria-Bertani broth 

for XL1 Blue MRF ' supplemented with tetracycline to a final concentration 20 (xg/ml. 

2.3.1.2. Biopanning 

Biopanning of spores was performed in Eppendorf tubes. 10^ spores were mixed with 

l O ^ p h a g e from the library in 1 ml of sterile Tris buffered saline-Tween 20 (TBST) [50 mM 

Tris-HCl 'pH 7.5), 150mM NaCl, 0.5% Tween 20] for 10 minutes at room temperature. Twccn 

20 was included to break non-specific interactions and being able to form a compact spore pellet. 

The spore-phage complexes were collected by centrifugation (12,000 xg) at 4°C for 10 min, and 

the supernatant was removed. Spore-phage complexes were washed ten times in 1-1 ml of TBST 

with alternating resuspension and centrifugation. After the final wash, spore-phage complexes 

were resuspended in 1 ml of elution buffer [0.2 M glycine-HCl (pH 2.2), 1 mg/ml bovine serum 

albumine (BSA)] and then mixed gently for 5 min at room temperature. This sample was 
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centrifuged as above for 5 niin. The supernatant, which contained eluted phage, was quickly 

removed and neutralised by the addition of 150 pi of 1 M Tris-HCl (pll 9.1) to prevent phage 

killing. During biopanning small fractions of the input phage, supernatants from the initial 

collection of spore-phage complexes and selected washes and cluted phage were saved for 

titering. Eluted phage were amplified by infecting E. coli strain ER2537. The resulting phage 

stock was used tor a second round ot biopanning. which was pertormed exactly as described 

above. A total of four rounds of biopanning were performed, after which the final eluted phage 

were plated to obtain single plaques. These plaques were used to prepare phage stocks, from 

which genomic DNA was extracted and the peptide-encoding region of DNA determined. 

2.3.1.3.Competitive biopanning 

Competitive biopannings were performed in a similar way as the original starter biopanning 

described in the previous section except of the following modifications: Besides the original 

library a phage stock with a unique sequence of interest was also added. This unique sequence 

represented only 0.1 % of the random library sequence, which practically meant the usage of 

1 0 ^ random phage from the library and 10^ unique sequences as input. Three rounds of 

biopanning were performed and pools of the individual eluates were sequenced after the eluate 

fractions had been propagated in the ER2537 host strain and single stranded phage DNA had 

been extracted. 

2.3.1.4. Concentration of propagated phage 

Host cell cultures (usually 20 ml) were centrifuged twice at 4000 rpm, 4°C for 10 minutes. The 

upper 80% of the supernatant was precipitated overnight with 1/6 volume of PEG/'NaCl (20% 

polyethylene-glycol 8000, 2.5 M NaCl). The precipitate was collected by centrifugation under 

the same conditions as before and the pelleted precipitate was dissolved in 1 ml of TBS and re-

precipitated in 1/6 volume of PEG/NaCl (167 pi) for an hour on ice. The formed precipitate was 

microfuged at 12,000xg at 4°C for 10 min and resuspended in 200 pi TBS-0.2% N a N 3 This 

phage stock was used for titration. 

2.3.1.5. Phage titration 

From phage stocks tenfold dilutions were made in Luria-Bertani broth. 10 pi aliquots were 

incubated with 200 pi of mid-log phase culture of either ER2537 or XL1 Blue MRF' strains for 

10 minutes at room temperature and then plated with 3 ml of Agarose Top (10 g/i Bacto-



prewarmed LB -agar plates. After overnight incubation at 37°C phage plaques were counted and 

the titre was calculated and given in pfu/ml. 

2.3.2. Bacillus strains and growth conditions 

2.3.2.1. Bacillus strains 

The following Bacillus strains were used: B. subtilis (irpC2) 1 A700 (originally designated 168), 

B. amylolujuefaciens 10A1 (originally H), R. licheniformis 5A36 (originally ATCC 14580), B. 

pumilus 8A3 (originally ATCC 7061) from the Bacillus Genetic Stock Center, Ohio State 

University, Columbus, OH, USA. B. globigii (also called atrophaeus and subtilis variety „niger") 

B. thuringiensis subsp. kurstaki, B. thuringiensis B8, B. cereus T and non-enapsulated Sterne 

(pX02~) and non-toxigenic AAmes (pXOl ) strains of B. anthracis were from the U.S. Army 

Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA. B. 

thuringiensis A1 Hakum, B. thuringiensis 3A FRI-41, B. thuringiensis USDA HD-571, B. cereus 

ATCC 4342, B. cereus F l -15 FRI-43, B. cereus D17 FRI-13, and B. cereus S2-8 FRI-42 from 

Los Alamos National Laboratory, NM, USA. B. mycoides ATCC 10206 and B. megaterium 

ATCC 14581 were from the American Type Culture Collection, Manassas, VA, USA. 

2.3.2.2. Sporulation 

Spores were produced except for B. pumilus using the medium exhaustion method by cells 

grown in liquid Difco sporulation medium (DSM) at 37°C (8 g/1 Difco nutrient broth, 2.5 g/1 

M g S 0 4 . 7 H 2 0 , 1 g/1 KC1, 0.01 mM MnCl2 , 0.001 mM FeS0 4 , and 10 m M CaCl2, pH 7.1) with 

shaking at 150 rpm or on solid DSM (1.5%) agar until sporulation was essentially complete, 

usually in 48-72 hours. B. pumilus spores were prepared by growing cells on solid DSM at 30°C. 

Spores were collected and washed with cold, sterile, distilled water by centrifugation and 

purified by sedimentation through two-step gradient of 20% and 50% Renographin 60 (Bracco 

Diagnostics, NJ, USA) and then washed again extensively in cold, sterile, distilled water. Spores 

were stored protected from light in sterile distilled water at 4°C and washed every other week to 

prevent germination. Then they were quantitated microscopically using a Petroff-Hauser 

counting chamber (Sigma, NJ, USA) and were checked for the absence of germinating spores. 

Only freshly prepared spores of B. globigii were used in the studies shown because these spores 

gradually loose their capacity for peptide binding over several months. AAmes spores of B. 

anthracis were prepared by Dr. Joanie Jackman at USAMRIID and killed by gamma irradiation 

before use. 



2.3.3. Fluorescent labelling techniques and How cytometry 

2.3.3.1. Fluorescent labelling of anti M13 antibody 

1 mg batches of monoclonal anti M13 (anti pVIII) antibodies (Amersham Biosciences, USA) 

were labelled with the amine-reactive Alexa 488 Protein Labelling Kit (Molecular Probes, IJ.SA) 

according to the instructions of the supplier. Concentration of the antibody-dye conjugate was 

determined by the lollowing equation: protein concentration (M) =[A2^n- (A.io.ix0.1 1)|/ dilution 

factor /20J 000 where 203,U00 cm !M ! is the molar extinction coefficient of a typical IgG and 

0.11 is a correction factor to account for absorption of the dye at 280 nm. Degree of labelling 

was calculated with the following equation: moles dye per mole protein = A^m* dilution 

factor/[71,000 xprotein concentration (M)] where 71,000 cirf 'M"' is the approximate molar 

extinction coefficient of the Alexa Fluor 488 dye at 494 nm. 

2.3.3.2. Fluorescent labelling of M13 phage 

Samples of M l 3 phage displaying a particular peptide were labelled using Alexia Fluor" 488 

Protein Labelling Kit (Molecular Probes, OR, USA) as well. Labelling conditions were those 

essentially provided by Molecular Probes except that 4 * 1 0 ^ phage particles were labelled 

instead of 1-mg protein sample. This amount of phage corresponds to l m g of protein based on 

the known molecular weight of viral capsid proteins. Labelled phage were precipitated from the 

reaction mixture by adding 1/6 volume of PEG/NaCl, mixed thoroughly and allowing the sample 

to stand for 1 hour at room temperature. The labelled phages were collected by centrifugation 

(10,600 g) at 4°C for 15 minutes, and the supernatant was removed. The phage pellet was 

suspended in lml of PBS (phosphate buffer saline - 135 mM NaCl, 2.68 mM KC1, 10 mM 

N a 2 H P 0 4 , 1.76 mM K H 2 P 0 4 pH 7.4), and the phage were precipitated again with PEG/NaCl 

for 20 minutes and collected as above. The phage were resuspended in 0.4 ml of PBS and stored 

in the dark at 4°C. The phage concentration and the degree of labelling were determined by 

measuring the absorbance of a diluted labelled phage sample at 494 nm and at 280 nm and 

employing conversion factors equivalent to those provided by Molecular Probes. Phage/ml= 

^ 2 8 0 ~ ^ 4 9 4 x ( ^ ' ' ^ x dilution factorx (5x 1 o '~phage/ml) . Dye molecules/phage 

=A_494XcHltition factorx ( 8 . 5 * 1 0 ^ molecules/ml)/ (phage/ml). 

2.3.3.3. Fluorescent labelling of synthetic peptide 

Peptides were chemically synthesised with a three-glycine-spacer and a C-terminal cysteine 



group to allow conjugation to the fluoiochronie R-phycoerythi ine (Molecular Piobcs, OR, USA) 

through a crosslinkcr molecule and purified by HPLC (UAB Peptide Synthesis Core Facility, 

AL. USA). Peptide molecules were attached to R-phvcoerythrin (RPE) (Prozyme, CA, USA) by 

using the hetcrobintunctional crosslinkcr sulfosuccinimidyl-4- (N-maleimidomcthyl)-

cyclohexane-l-carboxylate (SMCC) (Pierce) following the manufacturer 's instructions. SMCC is 

able to bind lysine residues ot RPh through its reactive N-hydroxy-succimimide-ester group and 

the C-terminal free SH-groups of the peptides through its reactive maleimide group. 

2.3.4. Flow cytometry 

107 spores were mixed cither with unlabelled (for fluorescently labelled anti M13 labelling) or 

Alexa 488-labelled M13 phage (10 1 U or 10 1 1 ) or with a peptide-RPE conjugate in various 

concentrations [4, 40 400 and 4000 nM for testing B. anthracis binders, 0.135 mg/ml (»500 nM) 

for B. subtilis binders] in 20 |.U of PBS and incubated at room temperature for 1 hour to ensure 

complete binding. Unbound conjugate molecules were removed by washing spores three times in 

PBST (0.: % Tween 20). Spores were collected after each wash by centrifugation at 820xg for 5 

min at 4°C. In case of using fluorescently labelled antibodies spore-phage conjugates were 

resuspended in 0.5 |ag/ml solution of fluorescently labelled anti Ml 3 antibody and incubated for 

one more hour at room temperature. Unbound antibodies were removed by centrifugation as 

desribed above. Spore conjugate complexes were resuspended in 200 (il of PBS and fluorescence 

was measured using a BD FACSCalibur instrument and analysed with CellQuest Pro software 

(Beckton Dickinson Biosciences, CA, USA). Spores were identified by their light-scattering 

properties, and 20,000 spores were analysed for associated fluorescence. 

2.3. 5.Molecular biological methods 

2.3.5.1. Extraction of single-stranded phage DNA, sequencing 

Single-stranded phage DNA was extracted either from the concentrated phage stocks or from the 

supernatant of the propagated host cell cultures because these fractions contain mature phage 

particles. F or DNA-extraction steps of the QIAGEN M13 Spin Kit (QIAGEN, CA, USA) 

bulletin were followed. The DNA concentration was estimated either spectrophotometrically and 

samples were sequenced using the dideoxy-chain termination method either manually or 

automatically using the -28 gill or the -96gIII primers (provided by New England BioLabs), 

respectively. Manual sequencing was done with labelling after the instruction of the 
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Sequenase Version 2.0 DNA Sequencing Kit (Ainershani Biosciences, N.!, USA) and run on 

polyacryhnnide gels with 6% urea to detect ladders. 

2.3.5.2. Construction of recombinant phage 

To construct recombinant M l 3 phage displaying a specific peptide, we prepared the double-

stranded Rf ot the genomic DNA. which can be treated as a medium-copy number plasmid and 

therefore can be extracted from the pelleted host cells of a propagated host culture. For this 

purpose a QUIAGEN Plasmid Purification Kit (QIAGEN, CA, USA) was used. The peptide-

encoding Kpn\-Eag\ (New England BioLabs, MA, USA) fragment in the RF DNA of the library 

phage was excised and replaced with synthetic and annealed oligonucleotides (synthesised by 

UAB Oligonucleotide Core Facility, AL, USA) encoding the specified peptides. These primers 

also bear respective ends suitable for ligation into the cut RF form. The recombinant M13 RF 

DNA was transformed into E. coli strain ER2537 and plated with 3 ml of Top agarose to produce 

phage plaques. Plaques were propagated in host cell cultures, single-stranded DNA was 

extracted and sequenced as described at 2.3.5.1. 

Oligonucleotide sequences used for recombinant phage cloning are listed in Table 1. 



Table I. i i:!. of oligonucleotides used for phage cloning. 

Sequence of oligonucleotide Name 

5^CTTTCT ATT CTC ACT CTA ATC ATI" TTC IT ggT ggA ggT TC-3' Tctramer-dowi 

Fx pressed peptid 

NII1T 

5'-ggC CgA ACC TCC ACC AAg AAA ATg ATT AgA g'l g AgA ATA 

gAA Agg TAC-3' 

I etramei -up NHI-L 

5'-C'l I 1(1 A l l CTC ACT CIA ATC ATI' TTC I K C I g gTg gAg 

gTT C-3 

Pentamer-dowr NHFLP 

5'-ggC CgA ACC TCC ACC Agg AAg AAA ATg ATT AgA gTg AgA ATA 

gAA Agg TAC-31 

Pentamer-up NHFLP 

5'-CTT TCT ATT CTC ACT CTA Tgg TgC AgA AgA ggA ATC ATT TTC 

TTC C T e e l m i A e i i T T C-3' 

M-decamer-do\ MVQKRNHFLP 

5'-ggC CgA ACC TCC ACC Agg AAG AAA ATg ATT CCT CTT CTg CAC 

CAT AgA gTg AgA ATA gAA Agg TAC-3' 

M-decamer-up MVQKRNHFLP 

5'-CTT TCT ATT CTC ACT CTA ggA ATC ATT TTC TTC CTT ATT CTT 

TgC Cgg gTg gAg gTT C-3' 

R-decamer-dow RNHFLPYSLP 

5'-ggC CgA ACC TCC ACC Cgg CAA AgA ATA Agg AAg AAA ATg ATT 

CCT AgA gTg AgA ATA gAA Agg TAC-3' 

R-decamer-up RNHFLPYSLP 

5'-CTT TCT ATT CTC ACT CTA ATC ATT TTC TTC CTT ATT CTT TgC 

Cgt Tgg gTg gAg gTT C-3' 

V-decamer-dow NHFLPYSLPL 

5'-ggC CgA ACC TCC ACC CAA Cgg CAA AgA ATA Agg AAg AAA ATC} 

ATT AgA gTg AgA ATA gAA Agg TAC-3' 

N-decamer-up NHFLPYSLPL 

2.4. RESULTS 

2.4.1. Biopanning results 

2.4.1.1. Signs of sequence enrichment and selection during biopanning of Bacillus subtilis 

and Bacillus anthracis spores 

A total of four rounds of biopanning were performed with both the heptamer and the dodecamer 

libraries. Samples of input phage, initial supernatants, supernatants of selected washes, and 



eluted phage weie titeied ia each peifoimed biopanning (data not shown). Emergence of tight-

binders was indicated by a titre increase in the elution fractions, which was 10 fold for Bacillus 

subtilis (from 1()4 eluted phage to 10s) and 200 fold (from 104 to 2x10") for Bacillus anthracis 

AAmes strain, and by a twofold decrease ol the supernatant fraction revealing that after some 

rounds more members of the input phage population stay bound to the spore surface 

2.4.1.2. Nature of the selected B. subtilis tight-hinder sequences 

We used a sample of the eluted phage from the fourth round of biopanning to purify plaques of 

individual phage, thirty of which were used to prepare genomic DNA for sequence analysis of 

the peptide-encoding regions. The results showed that these phage genomes encoded 13 unique 

peptide sequences. (Table 2A) Phage displaying the same peptide also contained the same 

peptide-encoding genomic DNA sequence, indicating that they were probably siblings. All of the 

peptides contained the sequence Asn-His-Phe-Leu-Pro at the amino terminus. Although the 

sequences at positions 5 through 7 were not identical, there were clear preferences for amino 

acids. For example, 6 of 13 (46%) position 5 residues and 12 of 39 (31%) position 5-7 residues 

were Pro. In addition, 10 of 39 (26%) position 5-7 residues were basic amino acids, while no 

acidic amino acids were found at these positions. We also biopanned a Ph.D.-12 phage display 

library (containing 2 .7x l0 9 different sequences) for dodecamer peptides that bind spores of B. 

subtilis as described for the Ph.D.-7 library. Ten plaques from the 4th round eluate were used to 

determine peptide-encoding genomic sequences. Eight unique peptide sequences were found and 

again they contained the sequence Asn-His-Phe-Leu at the amino terminus (Table 2B). Also, the 

Oamino acids found at positions 5-7 were similar to those of the heptamer peptides (Table 2A), 

with at least one Pro residue found in this region in all but 1 sequence. The latter sequence had a 

Pro residue at position 8. One dodecamer sequence included Glu at position 6 (between 2 Pro 

residues), the only acidic residue found in positions 5-7 of a spore-binding peptide. The 

sequences in positions 8-12 were not highly restricted. The failure to find the Asn-His-Phe-Leu 

sequence internally in the dodecamer (or heptamer) peptides strongly indicated that this 

sequence must be present at the amino terminus of the peptide to permit spore binding. 



Table 2. Peptide sequences of phage (Voni the fourth lound eluate using a heptanier (A) or a 

dodecamer (B) library. Numbers in parentheses indicate the number of phage with the given 

peptide sequence. (A) 

Sequence # 1 2 3 4 5 6 7 

1(6) Asn His Phc Leu lie Lys Pro 

2 (3) Asn His Phe Leu Arg Ser Pro 

3 (3) Asn His Phc Leu Pro Arg Trp 

4 (8 ) Asn His Phe Leu Pro Lys Val 

5 Asn His Phe Leu Leu Pro Pro 

6 Asn His Phe Leu Pro Pro Arg 

7 Asn His Phe Leu Pro Thr Gly 

8 Asn His Phe Leu Met Pro Lys 

9 Asn His Phe Leu Lys Gly Thr 

10 Asn His Phe Leu Pro Gin Asn 

11 Asn His Phe Leu Leu Trp Arg 

12(2) Asn His Phe Leu lie Lys Arg 

13 Asn His Phe Leu 

(B) 

Pro Thr Ala 

Sequence # 1 2 3 4 5 6 7 8 9 10 11 12 

1(2) Asn His Phe Leu Lys Ser Gin Pro Gly Val Val Thr 

2 Asn His Phe Leu Asn Arg Pro Ala Gin Ser Gin Val 

3 Asn His Phe Leu Pro Pro Lys Met Gly Pro Thr Asp 

4 Asn His Phe Leu Pro Gli Pro Arg Leu Val Met Pro 

5 (2) Asn His Phe Leu Ala Pro Gin Pro Pro Val Lys Pro 

6 Asn His Phe Leu Met Pro Asn Pro Leu Leu Ala Met 

7 Asn His Phe Leu lie Pro Pro Glu Pro Leu Arg Glu 

8 Asn His Phe Leu Pro Leu Asn Pro Pro Ala Pro lie 

2.4.1.3. Confirmation of the high affinity of a characteristic tight binder sequence 

To confirm that this family of peptides bound to B. subtilis spores and did not arise because of 

preferential amplification of phage displaying these peptides, we examined phage enrichment 

without amplification. A phage mixture was prepared containing 99.9% phage from the Ph.D.-7 

library and 0.1% phage displaying peptide #4 (Asn-His-Phe-Leu-Pro-Lys-Val). A sample of this 



mixtuie containing 10m total phage was mixed with !()'' spoies and a single lound of biopanning 

was performed. The eluted phage were plaque purified and ten plaques were used to determine 

the sequences of peptide-encoding genomic DNA. Seven of the ten phage examined contained 

the sequence lor peptide #4, indicating a /UU-lold enrichment ot the peptide ft4 phage, i his large 

enrichment was almost certainly due to binding of peptide #4 to spores 

2.4.1.4. Nature of B. anthracis tight-binders 

27 plaques were amplified and sequenced from the fourth round eluate and 11 different peptide 

sequences were identified as listed in Table 3. Three peptide sequences were repeated several 

times. The most common peptide, sequence #4 (Thr-Ser-Gln-Asn-Val-Arg-Thr) was represented 

thirteen times. However because the peptide was encoded by the same codons in each isolate it is 

possible that this sequence emerged due its excellent growth properties and not because of 

expressing a motif with high affinity. Two of the repeated sequences, peptide #5 (Thr-Tyr-Pro-

Ile-Pro-Ile-Arg) and peptide #6 (Thr-Tyr-Pro-Ile-Pro-Phe-Arg) along with the single sequence 

#9 (Thr-Tyr-Pro-Val-Pro-His-Arg) formed a family of peptides with the consensus of Thr-Tyr-

Pro-X-Pro-X-Arg. Biopanning of Sterne spores also yielded similar sequences: Thr-Tyr-Pro-

Leu-Pro-Ile-Arg 11 times from 35 sequences and the single sequence Thr-Tyr-Pro-Pro-Pro-Thr-

Arg. Thr-Tyr-Pro-Leu-Pro-Ile-Arg was encoded by two different nucleotide sequences as 

permitted by the degeneracy of the genetic code. Although the Thr-Tyr-Pro consensus sequence 

was variable at positions 4 and 6, the residues at these positions were typically similar. For 

example, apolar amino acids, Leu, lie, or Val occupied position 4 in all but one unique peptide 



Table 3. Sequence of tight-bindei peptides from the Bacillus anthracis AAmes spuie biopanning. 

Consensus labelled with bold letters. Numbers in parentheses indicate the number of phage with 

the given peptide sequence. 

Sequence 1 

1 Asn 

2 Lys 

3 Ser 

4 ( 1 3 ) Thr 

5 ( 3 ) Thr 

6 ( 3 ) Thr 

7 Ser 

8 Phe 

9 Thr 

10 Arg 

11 Phe 

Ser Va! 

Pro Arg 

Thr Pro 

Ser Gin 

Tyr Pro 

Tvr Pro 

Tyr Pro 

Thr Gly 

Tyr Pro 

Thr Pro 

Ser Val 

4 5 

1 hi- Leu 

Gln Pro 

Ala Trp 

Asn Val 

lie Pro 

lie Pro 

His Gly 

Thr Leu 

Val Pro 

Ser Leu 

Pro Arg 

Glu Pro 

Gly Leu 

Leu Ser 

Arg Thr 

lie Arg 

Phe Arg 

Gin lie 

Asn Pro 

His Arg 

Ser Pro 

Met Pro 

2.4.2. Peptide sequence requirements for B. subtilis spore binding 

2.4.2.1. Comparison of binding affinities of tight-binder heptamer sequences 

To identify the tightest binding heptamer peptide(s) listed in Table 2A, we performed a 

competitive biopanning experiment. A phage pool containing equal amounts of each of the 13 

phage displaying a unique heptamer peptide sequence was prepared, and its approximate 

composition was confirmed by DNA sequence analysis of 33 plaques from the pool. A sample of 

the phage pool containing a total of 1.3 x 10'2 phages was mixed with 10s B. subtilis spores, and 

this mixture was used in a first round of biopanning following the standard protocol in Materials 

and Methods. The eluted phage were amplified, and 1.3 xlO12 of these phage were mixed with 

108 spores for a second round of biopanning. Two more rounds (3 and 4) of biopanning were 

performed following this procedure. Eluted phage from round 4 were plaque purified, and 31 

plaques were used to analyse peptide-encoding genomic sequences for phage identification. 

Comparing frequencies of phage appearance (Table 4) in the original phage pool with those in 

the round 4 eluted phage, there were no statistically significant differences for 10 of the unique 

phage. Phage displaying peptides #5, #7, and #9 were not detected in the final eluted phage, 

although 2 or 3 copies of each were present m the 33 phage identified m the original pool. 

Statistically, this result may not be meaningful, and inspection of the missing peptide sequences 
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did nol reveal a common feature. Taken logel'nei, these lesults indicate that 'die spore binding 

properties of most (and perhaps all) of the 13 unique peptides are similar under the conditions 

examined here. In addition, repeated washing of complexes of spores and phage displaying the 

spore-binding peptides were highly resistant to repeated washing, indicating tight binding. 

Table 4. ( ^mpanson ot sequence frequencies between the lirst round input and the tourth round 

eluate fractions in a competitive biopanning experiment with tight-binder heptamers of R. 

subtilis. 

Serial number of Number of plaques in the input fraction of Number of plaques in the eluate 

tight-binder first round of biopanning fraction of the fourth round of 

heptamer phage biopanning 

1 

2 3 

2 

3 2 6 

4 5 8 

5 2 0 

6 1 2 

7 3 0 

9 3 0 

10 5 1 

11 2 3 

12 1 1 

13 3 2 

2: 33 31 

2.4.2.2. Analysis of binding affinities of shorter (consensus) sequences 

To determine whether shorter peptides can efficiently bind B. subtilis spores we constructed two 

recombinants that display either the tetrapeptide Asn-His-Phe-Leu or the pentapeptide Asn-His-

Phe-Leu-Pro instead of a heptamer sequence. (Note that the same linker sequence, Gly-Gly-Gly-

Ser, follows the tetramer, pentamer, and heptamer sequences.) We then performed two 

competitive biopanning experiments using a phage mixture containing 99.9% phage from the 

Ph.D.-7 library' and 0.1% phage displaying cither the tetramer or pentamer peptide. A sample of 

this mixture containing 1010 total phage was mixed with 108 spores for the first round of 

45 



biopanning. Amplified eiuled phage (10 ") were mixed with 10^ spores for two additional rounds 

of biopanning. Amplified eluted phage from each round were analysed as a mixture (i.e., no 

plaque purification). Genomic DNA was extracted from the eluted phage mixtures (each round 

separately), and the sequences of the peptide-encoding regions were examined as an aggregate. 

In the sequencing ladder of each round (Figure 3), it was possible to identify and roughly 

quantitate (within the mixed sequences) phage displaying different length peptides and also to 

identify dominant phage species. In the case of the Ph.D-7/tetramer phage mixture, the results 

showed that phage displaying the shorter peptide were undetectable in round 1 (i.e., only random 

heptamer sequences were observed). In rounds 2 and 3, phage displaying heptamer peptides with 

the sequence Asn-His-Phe-Leu- (Pro- or Xxx) emerged as major species, with no indication of 

tetramer phage. Thus, it appeared that phage displaying only the Asn-LIis-Phc-Leu sequence 

were relatively poor ligands. The results with the Ph.D-heptamer/pentamer phage mixture were 

strikingly different. After round 1, eluted phage contained a mixture of phage displaying the 

pentamer peptide and random heptamer sequences. After rounds 2 and 3 phage displaying the 

pentamer were the predominant or only phage species. Therefore, the Asn-His-Phe-Leu-Pro 

peptide appeared to bind spores as well as a heptamer containing the Asn-His-Phe-Leu- (Proxx 

or Xxx) sequence. 



Figure 3. Emergence of heptamer peptides and a pentamer peptide from competitive biopannings wit] 

random heptamers and tetramers or random heptamers and pentamers respectively. Sequencing ladder 

of eluate mixtures are shown. Peptide displaying regions are labelled with line. 



N-terminus of SpsC Protein: MVQKRNHFLPYSLPLIGKEE... 

c/j i (Ui 
W J ' i 
X I .!•!; i 
O 80 i | 60-1 i f 

j N H F I P Y S I P I ] , 

40 ! ' 

101 10 2 10^ t o 4 101 102 103 104 

FLUORESCENCE (log scale) 

Figure 4. Phage expressing the segment NHFI.P show a strong association with B. subtilis 

spores only if the amino acid string is at the very N-terminns of the peptide 

2.4.2.3. Spore-binding peptides as a developmental targeting sequence 

Conceivably, the spore-binding peptide sequences identified in this study could be used to direct 

mother cell proteins to a receptor on the surface of the developing lbrespore. To test this 

hypothesis, we used the sequence Asn-His-Phe-Leu-Pro as a probe to search the sequenced B. 

subtilis genome for exact or close matches within known or possible spore surface proteins. The 

most interesting hits were a perfect match in the SpsC protein and close matches in the SpsA 

(Asn-His-Phe-Tyr-Pro) and CotA (Thr-His-Pro-Leu-Pro) proteins. The SpsC and SpsA proteins 

are reported to be spore coat proteins involved in polysaccharide biosynthesis, and CotA is a 

pigmented outer spore coat protein with copper-dependent laccase activity. A problem with these 

matches, however, is that the putative spore binding sequence is not present at the amino 

terminus of the proteins—a requirement indicated by our biopanning results. This is a 

particularly serious problem for SpsA and CotA. where the putative spore binding sequence is 

located near the carboxy terminus of the protein. In the case of SpsC. the Asn-His-Phe-I en-Pro 

sequence is located near the amino terminus, at positions 6 to 10 Interestingly, this sequence is 

preceded by a basic amino acid (actually two. Lys-Arg). a possible cleavage site for a trypsin-

like protease. If cleavage occurred between residues 5 and 6. perhaps as a timing event during 

spore formation, then presumably the truncated SpsC protein could bind the spore surface and 

participate in polysaccharide synthesis. To examine more directly the requirements for SpsC 
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binding lo die B. subtilis spore suilace, we constructed three recombinant M13 phage displaying 

either SpsC residues 1 to 10 (Met-Val-Gln-Lys-Arg-Asn-His-Phe-Leu-Pro), 5 to 14 (Arg-Asn-

His-Phe-Leu-Pro-Tyr-Ser-Leu-Pro), or 6 to 15 on coat protein piII (Asn-His-Phe-Leu-Pro-Tyr-

Ser-Leu-Pro-Lcu). these phages were labelled equally with the tluorochrome Aiexa 488 and 

used to measure spore binding by FACS under standard assay conditions This assay measures 

the increase in spore-associated fluorescence caused by ligand binding. Phages displaying 

residues 1 to lo and 5 to 14 failed to bind spores, while phage displaying residues 6 to 15 (with 

an amino terminal Asn-His-Phe-Leu-Pro) readily bound spores. Only results for phages 

displaying residues 5 to 14 and 6 to 15 are shown. These results confirm that the Asn-His-Phe-

Leu-Pro sequence must be present at the amino terminus of a peptide or protein for spore 

binding. The results also support the hypothesis that SpsC is proteolytically processed prior to 

participating in spore maturation. Figure 4 shows the fluorescence shift of Bacillus subtilis 

spores detectable in the presence of the fluorescently labelled tight-binder ligand Asn-His-Phe-

Leu-Pro-Tyr-Ser-Leu-Pro-Leu on the right side. In the presence of the protected Asn-His-Phe-

Leu-Pro segment (Arg-Asn-His-Phe-Leu- Pro-Tyr-Ser-Leu-Pro) spores display only their usual 

weak autofluorescence as it is demonstrated on the left side. 

2.4.3. Discriminatory power of B. subtilis tight-binder. 

To determine the spore specificity of peptide binding, we first fluorescently labelled M13 phage 

displaying either heptamer peptide #4 (Asn-His-Phe-Leu-Pro-Lys-Val) or a control peptide (i.e., 

Asp-Pro-Leu-Lys-Val-His-Glu). Both phage contained approximately 500 molecules of the 

fluorochrome Alexa 488 per phage particle. Under standard conditions for assaying peptide 

binding, spores of B. subtilis and nine other phylogenetically similar Bacillus species were 

individually mixed with fluorescently labelled phage for 10 min, unbound phage were removed 

by washirg. and the spores were analysed by FACS. The results show that peptide 4 binds well 

to spores of B. subtilis, nearly as well to spores of B. amyloliquefaciens, and somewhat weaker to 

spores of B. globigii (Figure 5, left panels). No binding of peptide 4 was detected with spores of 

selected strains of B. lichcniformis, B. pumilus, B. thuringiensis, B. cereus, B. anthracis, B. 

mycoides, and B. megaterium (Figure 5, left side; only B. licheniformis and B. pumilus results are 

shown). 

No binding of the phage displaying the control peptide was detected with any spore species 

(Figure 5, left side, and data not shown). In addition, phage displaying peptide 4 did not bind to 

vegetative cells ot B. subtilis (data not shown). Binding of peptide 4 appears to be restricted to 

spores of species that occupy a single, three-member branch of the Bacillus phylogenetic tree 
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(Figure 6). To demonstrate thai peptide binding was independent of I'ne attached fluoiochromc 

(i.e., Alexa-labelled M13), we prepared conjugates of peptide 4 or control peptides (e.g., Lcu-

Phe-Asn-Lys-His-Val-Pro) with phveoerythrin. Each peptide included a (Glyh-Cys carboxy-

tenninal extension, and approximately 10 peptide molecules were attached through the carboxy-

terminal Cys residue to the e-amino groups of dispersed lysine residues on one molecule of 

phveoerythrin (240 kDa). Under standard assay conditions, spores ot B. subtilis and seven other 

Bacillus species (i.e., all of the species described above except B. anthracis and B. mycoides) 

were individually mixed with a peptide-phycoerythrin conjugate for 60 min, unbound conjugate 

molecules were removed by washing, and the spores were analysed by FACS. The results show 

that peptide #4 binds equally well to spores of B. subtilis and B. amyloliquefacicns and 

somewhat weaker to spores of B. globigii (Figure 5, right panels). No binding of peptide 4 was 

detected with spores of B. licheniformis, B. pumilus, and B. megaterium (Figure 5, right side; 

only B. licheniformis results arc shown). No binding of the phage displaying the control peptide 

was detected with spores of B.subtilis, B. amyloliquefaciens, B. globigii, B. licheniformis, 

B.pumilus, or B. megaterium (Figure 5, right side, and data not shown). Spores of B. 

thuringiensis and B. cereus showed slight and equal binding of the peptide 4 and control peptide 

conjugates, indicating non specific association (Figure 5, right side; only B. cereus results are 

shown). This non specific binding appears to be related to the prominent exosporium present on 

spores of 3. thuringiensis and B. cereus. Selective removal of the exosporium from these spores 

by passage through a French press essentially eliminates this nonspecific binding (data not 

shown). A longer binding time (i.e., 60 min) was used with peptide-phycoerythrin conjugates to 

enhance labelling of spores. Approximately five times more peptide 4 conjugate bound at 60 min 

than at 10 min of incubation with B. subtilis, B. amyloliquefaciens, and B. globigii spores. The 

longer incubation time had no effect on the spores. The large and small peaks seen in the 

histograms of peptide 4 conjugate binding to B. subtilis and B. amyloliquefaciens spores (Figure 

5 right side) apparently represent single spores and pairs (or small aggregates) of spores, 

respectively, as judged by light-scattering properties analysed by FACS. 

50 



(Figure 6). To demonstrate that peptide binding was independent of the attached Piuoiochiomc 

(i.e., Alexa-labelled Ml3) , we prepared conjugates of peptide 4 or control peptides (e.g., Leu-

Phe-Asn-Lys-His-Val-Pro) with phycoervthrin. Fach peptide included a (Glvh-Cvs carboxy-

tenninal extension, and approximately 10 peptide molecules were attached through the carboxy-

terminal Cys residue to the c-amino groups of dispersed lysine residues on one molecule of 

phycoervthrin (240 kDa). Under standard assay conditions, spores ol H subtilis and seven other 

Bacillus spccics (i.e.. all of the species described above except B. anthracis and B. mycoulcs) 

were individually mixed with a peptide-phycoerythrin conjugate for 60 min, unbound conjugate 

molecules were removed by washing, and the spores were analysed by FACS. The results show 

that peptide #4 binds equally well to spores of B. subtilis and B. amyloliquefaciens and 

somewhat weaker to spores of B. globigii (Figure 5, right panels). No binding of peptide 4 was 

detected with spores of B. licheniformis, B. pumilus, and B. megaterium (Figure 5, right side; 

only B. licheniformis results are shown). No binding of the phage displaying the control peptide 

was detected with spores of B.subtilis, B. amyloliquefaciens, B. globigii, B. licheniformis, 

B.pumilus, or B. megaterium (Figure 5, right side, and data not shown). Spores of B. 

thuringiensis and B. cereus showed slight and equal binding of the peptide 4 and control peptide 

conjugates, indicating non specific association (Figure 5, right side; only B. cereus results are 

shown). This non specific binding appears to be related to the prominent exosporium present on 

spores of B. thuringiensis and B. cereus. Selective removal of the exosporium from these spores 

by passage through a French press essentially eliminates this nonspecific binding (data not 

shown). A longer binding time (i.e., 60 min) was used with peptide-phycoerythrin conjugates to 

enhance labelling of spores. Approximately five times more peptide 4 conjugate bound at 60 min 

than at 10 min of incubation with B. subtilis, B. amyloliquefaciens, and B. globigii spores. The 

longer incubation time had no effect on the spores. The large and small peaks seen in the 

histograms of peptide 4 conjugate binding to B. subtilis and B. amyloliquefaciens spores (Figure 

5 right side) apparently represent single spores and pairs (or small aggregates) of spores, 

respectively, as judged by light-scattering properties analysed by FACS. 



rinally, the peptide 4-phycoer>thrin conjugate was shown to bind germinated spores 

subtilis prior to outgrowth but not to vegetative cells of B. subtilis (data not shown). 

Phage-Peptide Phycoerythrin-Peptide 

FLUORESCENCE (log scale) 
Spores only — Control Peptide — NHFLPKV -

Figure 5. Species-specific binding of fluorescently labelled affinity selected peptide 

NHFLPKV. Binding was assessed both by using fluorescently labelled phage expressing 

NHFLPKV and random control phage (left side) and fluorescently labelled synthetic synthetic 

peptides. 
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Figure 6. Phylogenic tree of group 1 (of five) members of the genus Bacillus based on 16S 

rRNA sequence analysis. Species of spores that were examined for binding by the Asn-His-

Phe-Leu-Pro-Lys-Val peptide are coloured (red- or blue-), and those that showed peptide 

binding are displayed in red. 
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Figure 7. Selective binding of B. anthracis tight-binder TYPILPR to B. anthracis, B. cereus 

T and B. thuringiensis kurstaki strains (A) Selectivity was improved by attaching a single 

alanine residue to the N-terminus of the peptide (B) hence the modified peptide bound 

uniquely to B. anthracis spores. 



2.4.4. Binding requirements of B. anthracis spores and discriminatory power of tight-

binder ligands 

To this end we chemically synthesised a representative TYP peptide with the sequence 

J YPLPIRGOCL; the GGGC extension was included as a carboxy-termmai iinker for 

fluorochrome attachment. Approximately 10 peptide molecules were then attached (using a 

cross-linker) through their terminal cysteine residues to the c-amino groups ol dispersed lysine 

residues on one molecule of PF., a 240-kDa highly fluorescein protein. Peptide binding to II 

anthracis (Sterne and AAmes) spores was then measured by incubating spores with from 4 to 

4,000 nM peptide-PE conjugate, removing unbound conjugate by washing, and analysing spore-

peptide complexes by FACS. The results showed essentially identical, concentration-dependent 

binding of the peptide-PE conjugate to spores of the Sterne and AAmes strains (Figure 7, first 

panels on the left and right side). To examine the specificity of peptide binding, we measured (as 

described above) the binding of the TYPLPIRGGGC-PE conjugate to spores of 17 other Bacillus 

strains, including 6 strains of B. cereus (T, ATCC 4342, D17/FRI-13, 3A/FRI-41, S2-8/FRI-42, 

and F1-15/FRI-43), 4 strains of B. thuringiensis (subsp. kurstaki, B8, Al Hakum, and USDA 

HD-571), and 1 strain each of B. mycoides, B. pumilus, B. globigii, B. amyloliquefaciens, B. 

subtilis, B. licheniformis, and B. megaterium. These strains were all members of Bacillus group 1 

(of 5), within which B. anthracis, B. cereus, B, thuringiensis, and B. mycoides comprise the 

closely related B. cereus group. Seven of these strains—i.e., B. thuringiensis strains Al Hakum 

and USDA HD-57 and all B. cereus strains except T—are human pathogens and nearest 

neighbours to B. anthracis as determined by amplified fragment length polymorphism analysis. 

The binding assays showed that the peptide-PE conjugate did not bind to 15 of the other Bacillus 

strains (Figure 7). Minimal binding at a conjugate concentration of 4,000 nM was due to non-

specific entrapment. Peptide binding was detected for spores of B. cereus T and B. thuringiensis 

subsp. kurstaki, but this binding was weaker (or less extensive) than that observed with B. 

anthracis Sterne and AAmes spores. These results indicated a high degree of specificity in 

TYPLPIR binding to spores but revealed that binding was not absolutely restricted to B. 

anthracis spores. 

To control for non-specific binding in each experiment shown in Figure 7A, several dissimilar 

unidccamcr peptides (for example, HWHHIIGIIGGGC and ILPRPYTGGGC, the latter being a 

scrambled version of a TYP peptide) were attached to PE as described above. These conjugates 

were tested for spore binding and no significant binding was detected. In a related control 

experiment, we showed that binding of the TYPLPIRGGGCPE conjugate to B. anthracis spores 

was not inhibited by inclusion of bovine serum albumin at 10 mg/ml in the binding and wash 



buffers, F.uthcrmore, we demonstrated that the TYPLPIRGGGC-PC conjugate did not bind to 

vegetative cells of the Sterne and AAmes strains (data not shown). 

When analysing the binding requirements of B. subtilis we have shown that they require an N-

terminai NHFLP consensus for spore attachement. Hence it was reasonable to test the B. 

anthracis ligands for N-terminus requirements. When a single alanine was present at the N-

termmus m tront ol the threonine moiety it was demonstrated tiiai a peptide ugand with 

improved species discriminatory power was developed (Figure 7B). 

2.5. DISCUSSION 

Phage display is a popular method in biotechnology and suitable for a broad range of application. 

However its role in microbiological diagnostics has not yet been shown. In this project we 

worked on the development of a fast, non-nucleic acid based method for the identification of 

Bacillus spores. As a model system first we developed a phage-display-based assay for the 

detection j . ' harmless B. subtilis spores. From a random phage display library, we identified a 

family of short heptamer and dodecamer peptides that bind tightly to spores of B. subtilis. These 

peptides contain the consensus sequence Asn-His-Phe-Leu-Pro and displayed a similar binding 

affinity as it was confirmed by a competitive biopanning experiment. Using a representative 

peptide, we demonstrated that binding was restricted to spores of three Bacillus species. Wre 

observed nearly equal binding to spores of B. subtilis and its most closely related species, B. 

amyloliquefaciens, and slightly weaker binding to spores of the closely related species B. 

globigii. These three species comprise one branch on the Bacillus phylogenetic tree. The 

representative peptide did not bind to spores of several Bacillus species located on adjacent and 

nearby branches of the phylogenetic tree or to vegetative cells of B.subtilis. Proper presentation 

of the peptide on a large carrier as a phage or large fluorchrome molecule was essential for being 

able to collect such data. Conjugation to small molecular weight fluorochromes caused a non 

specific entrapment. These results show that short peptides can be used as species-specific 

ligands ai u suggest that other short peptides can be isolated as specific ligands for different 

spore species and perhaps for any cell type. Theoretically, the binding site for such ligands can 

be a fortuitous or physiological receptor on the cell surface. Our approach of reiteratively 

biopanning a phage display peptide library yielded a single consensus sequence, presumably the 

best binding peptide under the conditions employed. Possibly, a different peptide could be 

recovered by employing different biopanning conditions (e.g., buffer, number of washes, etc.), or 

by using a iibrarv displaying peptides in a different context (e.g., on the M l 3 major coat protein, 

pVIII) (Smith and Petrenko, 1997). For all of the peptides isolated in our study, the Asn-His-
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Phe-Leu sequence is located at the amino terminus, and this location was shown to be essential 

for spore binding. Typically, the spore-binding heptamer peptides contain at least one Pro 

residue at positions 5 to 7. In addition, extension of the non-binding Asn-His-Phe-Leu peptide by 

a single Pro residue (when displayed on pill ot phage Ml J) enables tight spore binding, these 

results indicate an important but somewhat flexible role for the Pro residue in spore binding 

Because ot its unique ability to limit polypeptide chain rotation, the Pro residue may stabilise or 

allow a peptide conformation that permits proper orientation of the four amino-terminal residues 

with respect to the spore surface receptor. In the case of B. subtilis, the Asn-His-Phe-Leu-Pro 

peptide apparently binds to a receptor on the outer surface of the spore. This location for the 

receptor is based on the fact that molecules as large as the peptide-fluorochrome conjugates used 

in this study do not penetrate the outer coat of the spore. In addition, this receptor may have a 

physiological role in spore development. This possibility is indicated by the discovery that the 

spore surface protein SpsC contains the Asn-His- Phe-Leu-Pro sequence near its amino terminus, 

and this sequence is immediately preceded by a possible cleavage site for a trypsin-like protease. 

Indeed, trvpsin-like proteolytic activity is apparently involved in the temporal processing and 

activation of mother cell proteins (e.g., the coat proteins CotF and CotT) during the latter stages 

of sporulation (Bourne, FitzJames, and Aronson, 1991 ;Cutting, Zheng, and Losick, 1991). Such 

a processing event would enable the SpsC protein, directed by its amino-terminal Asn-His-Phe-

Leu-Pro sequence, to bind to its forespore receptor at the appropriate time during spore 

formation and maturation. Once bound to the forespore, the SpsC protein would participate in 

the synthesis of surface polysaccharides, which gives B. subtilis spores their hydrophilic 

character (Koshikawa et al., 1989). Identification of the receptor still needs to be accomplished 

however serious efforts were made to find the receptor. Utilising UV-crosslinking experiments 

between the peptide ligand and the spore coat along with a biotinylated heterobifunctional, 

reducable crosslinker followed by the extraction of the spore coat proteins and search for a 

biotinylated signal on Western blots did not give any useful results. It was probably due to the 

non-specific binding of the tight-binder peptide ligand when it was coupled to a low-molecular-

weight molecule as it was detected in flow cytometry experiments applying Alexa-488-peptide 

conjugates. It is also possible that the receptor is a modified glycoprotein and therefore a 

different strategy should be employed for the identification. 

A family of heptamer peptides expressing the TYPXPXR consensus sequence was identified 

with a similar phage display of the avirulent B. anthracis strains Sterne (pX02~) and AAmes 

(pXUI ). I hey lack virulence piasmids whose products are unlikely to be involved in the 

formation of the spore surface (Read et al., 2003) therefore these strains might suitably mimic 
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the wild-type B. anthracis. There is a superficial difference in the length of the hair-like nap on 

the spore surface (Kramer and Roth, 1968), (Mikesell et al., 1983), (Sylvestre, Couture-Tosi, and 

Mock, 2003). B. anthracis strains are highly monomorphic as well, with genes from different 

isolates typically having greater than 99% nucleotide sequence identity (Price et aL, 199V). 

Performing FACS-analysis with a representative member of the consensus-bearing family on a 

spore set ol ditlerent Bacillus species the labelled peptide bound to B. cereus 1 and B. 

thuringiensis kurstaki, closely related to B. anthracis as well. Attachement of a single alanine 

residue to the N-terminus of the peptide in front of threonine increased the discriminatory power 

of the system. The modified peptide bound well exclusively to B. anthracis, with the exception 

of weaker binding to spores of an apparently small subset of the B. cereus group. Apparently, 

spores of this group contain species-specific surface features (e.g., peptide receptors), which may 

reflect the different ecological niches and/or hosts of these species (Read et al., 2003) 

B. anthracis specific peptides however have a probable lower affinity than the B. subtilis binders 

because FACS-analysis did not work well when peptides were displayed and presented on the 

bacteriophage but only when used in a much higher copy number of synthetic, fluorochrome-

conjugated peptides. The sites on the B. anthracis spore surface to which ATYP and TYP 

peptides bind have not yet been identified. However, the most likely binding sites are 

components of the exosporium, a prominent, loose-fitting, balloon-like layer that encloses the 

spores of B. cereus group strains. The exosporium, which is composed of a basal layer and an 

external hair-like nap, serves as a primary permeability barrier that would exclude the M l 3 

phage (Gerhardt, 1967). 

If the peptides identified in this study are indeed generally useful in identifying B. anthracis 

spores, they offer several advantages in detector design. They bind directly to the spore, 

eliminating the need for extracting spore components or for growing vegetative cells. They can 

be easily incorporated, covalently if necessary into detectors presently employing antibodies or 

into detection platforms that cannot accommodate antibodies because of size limitations or 

denaturing conditions. They can be easily and differentially labelled with assayable tags, such as 

luminescent quantum dots that provide a signal sufficient to detect a single spore. They can be 

produced rapidly and inexpensively. Finally, the use of two peptides should eliminate or greatly 

reduce the incidence of false-positive signals. We expect that the peptides for B. anthracis spores 

can be utilised in simple, inexpensive, and portable detectors based on an assortment of 

analytica1 platforms. In our study we employed assays based on increased fluorescence, but 

binding of peptides to spores can aiso be detected by many other analytical techniques 

(Turnbough, Jr., 2003) 



2.6. NEW RESULTS PRESENTED IN CHAPTER 2 

1. Identification of thirteen heptamer and eight dodecamer tight-binder peptides for 

Baai'lus subiilis expressing a consensus NHFL(P) terminus. 

2. Determination of sequence requirements for binding: 

assessment ot similar al 1 initios ot heptamer sequences with competitive 

biopanning 

• assessment of binding capacities of truncated pentamer (NHFLP) and tetramer 

(NHFL) sequences: NHFLP is a minimum necessary sequence for successful 

binding. 

• Peptides need the N-terminal presence of the consensus sequence: similarity 

searches revealed a homology with the N-terminus of the SpsC protein. 

Expression of the SpsC N-teminal amino acids yielded binding ligands only 

when the N6H7F8L9P10.. . .L15 string of amino acids were displayed on the 

phage surface. 

3. Development and adjustment of flow cytometry assays with fluorescent anti-M13 

antibody and phage labelling. Involvement in the development of peptide-labelling. 

4. Identification a TYPXPXR consensus sharing family of tight-binders peptide ligands 

to Sacillus anthracis AAmes spores. 

5. Outlining of a simple and quick flow cytometry test for detection of B. anthracis 

spores. 
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3. MAPPING OF THE LAMININ BINDING SITE OF YERSINIA PESTIS 

PLASMINOGEN ACTIVATOR 

3.1. INTRODUCTION 

3.11- Structure of mammalian tissue harriers and strategies of pathogenic bacteria to cross them 

Within the mammalian body, tissue barriers are mainly tormed by extracellular matrices (hLM) 

(Bosnian and Stamenkovic, 2003). In electron micrograph the two main domains of the 

extracellular matrix are clearly identifiable: the basement membrane, a condensed matrix layer 

that is formed adjacent to epithelial cells, covering cell sheets (mesothelium, meningothelium, 

and synovia), muscle and Schwann cells, adipocytes, and the interstitial matrix. The main 

characteristic these two domains have in common is that their basic structure is defined by a 

collagen scaffold, although the collagens that make up the scaffold are different, as are their 

three-dimensional architecture. Adhesive glycoproteins, including laminin and tenascin, and 

proteoglycans adhere to the scaffold and interact with the cells in or adjacent to the matrix. 

Interaction with these cells is conducted through matrix receptors, of which the integrins 

constitute the most important class. The extracellular matrix is not static: it is remodelled 

constantly, which implies constant breakdown by proteases, notably the family of matrix 

metalloproteases. Collagens are ubiquitous proteins responsible for maintaining the structural 

integrity of vertebrates and many other organisms. More than 20 genetically distinct collagens 

have been identified (Bosman and Stamenkovic, 2003). In tissues that have to resist shear, 

tensile, or pressure forces, such as tendons, bone, cartilage, and skin, collagen is arranged in 

fibrils, with a characteristic axial periodicity providing tensile strength. Only collagen types I, II, 

III, V, and XI self-assemble into fibrils consisting a triple helix of approximately 300 nm in 

length ana 1.5 nm in diameter. Some collagens form networks (types IV, VIII, and X). A typical 

example of such a network is the basement membrane, which is mostly made of collagen IV. 

Collagens are mostly synthesised by the cells comprising the extracellular matrix: fibroblasts, 

myofibroblasts, osteoblasts, and chondrocytes. Some collagens are also synthesised by adjacent 

parenchymal or covering (epithelial, endothelial, mesothelial) cells. A typical example is type IV 

collagen, which is synthesised in a cooperative effort between the stromal cell and the 

parcnchymal/covcring cell. 

Laminin, together with type IV collagen, nidogen and perlecan, is one of the main components 

ofthe basement membrane(Bosman and Stamenkovic, 2003). What is now known as laminin was 

first discovered over 20 years ago in the matrix formed in a murine sarcoma (the mouse 

Engelbreth-Holm-Schwarm sarcoma). The molecule appeared to be between 200 and 400 kDa, 
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was composed of three disulphide linked chains, and had a characteristic cross shape. Molecular 

cloning of the three chains (now known as a l , (33, and y 2) of laminin led to the discovery of a 

variety of homologues. As yet, five a chains, three (3 chains and three y chains have been 

identified(Loiognato and Yurchenco, 2000). Not all possible combinations of the three chains 

appear lo be used: 12 distinct laminin isofonns have been isolated. Al! laminin chains have 

certain structural leatures m common. I hey share small globular domains. One ol them is 

involved in chain polymerisation. They also have common epidermal growth factor-like repeats 

which host the nidogen binding site. Nidogen links laminin to type IV collagen. Some structures 

are more chain specific: a chains have a large C-terminal globular domain, which hosts many of 

the binding sites for integrins. Laminin isofonns are synthesised by a wide variety of cells in a 

tissue-specific manner. Notably, virtually all epithelial cells synthesise laminin, as do smooth, 

skeletal, and cardiac muscle, nerves, endothelial cells, bone marrow cells, and the neuroretina. 

Epithelial cells express a l , u3, (33, and y 2 chains. The pattern of expression of a5, (31, (32, and y 

1 chains is less specific. The synthesising cells deposit laminin mostly but not exclusively in 

basement membranes. Laminins have a variety of effects on adjacent cells, including cell 

adhesion, cell migration, and cell differentiation. They exert their effects mostly through 

integrins, many of which recognise laminins, the integrin binding domain residing predominantly 

in the a chain. The primary role of laminins is mediating the interaction between cells and the 

basement membrane. This pleiotropic function is dependent on proteolytic processing of laminin 

by plasmin or matrix metalloproteinases. Given the wide range of roles laminins play in tissue 

structure and cell function, it is not surprising that laminins are significantly involved in a variety 

of disease processes. Disregulation of the interaction between cancer cells and the extracellular 

matrix is accompanied by aberrant synthesis, chain composition, and proteolytic modification of 

laminins. Proteoglycans have a protein core which is richly decorated with glycosaminoglycans. 

They function as organisers of collagen networks, are involved in signal transduction through the 

EGF receptor, which participates in modulation and differentiation of epithelial and endothelial 

cells (Borman and Stamenkovic, 2003). 

The ECM is subject to constant remodelling, a process that involves breakdown of existing, and 

synthesis and deposition of new ECM proteins. Numerous classes of proteolytic enzymes are 

believed to participate in ECM degradation, but one class that appears to play a dominant role is 

that of matrix metalloproteinases (MMPs) (Bosnian and Stamenkovic, 2003). MMPs play an 

essential role in physiological events, including development, hormone-dependent tissue 

remodelling, and tissue repair. However, they also play a key role in pathological conditions 

such as inflammation, tumour invasion, and metastasis. MMPs promote normal and malignant 



cell invaHon of the ECM and participate in contiolling normal and turnout cell (espouses to 

growth factors, cytokines, and chcmokines, as well as cell -cell and cell ECM interactions. 

Invasive bacteria must penetrate the ECM in order to reach the circulation (Lahteenmaki, 

Kuuseia, and Korhonen, 2UUI). Degradation of and penetration through these barriers represents 

a major problem in migration of bacterial and cukaryotic cells Production of FCM-degrading 

proteases is, however, limited to a restricted number ot bacterial pathogens and intectious 

diseases. Degradation of collagens, elastin, and fibronectin by secreted bacterial proteases leads 

to massive tissue destruction seen in diseases like corneal keratitis (caused by Serratia 

mareescens or Pseudomonas aeruginosa), periodontitis (Porphyromonas gingival is), cystic 

fibrosis (P. aeruginosa) and gangrene (Clostridium perfringens). Most enteric bacteria as well as 

major agents causing bacterial meningitis (Neisseria meningitidis, Streptococcus pneumoniae, 

Haemophilus influenzae, Escherichia coli K l ) produce low level of proteinases (Lahteenmaki, 

Kuuseia, and Korhonen, 2001). Some of these bacteria are intracellular pathogens and their 

penetration through cellular layers apparently involves an intracellular phase. However, a 

number of invasive bacteria are extracellular pathogens that obviously must rely on other 

mechanisms for invasiveness. Pathogenic bacteria are known to interact with proteinase-

dependent cascade systems of the hosts, including coagulation, fibrinolyis, complement 

activation, phagocytosis and the kallikrein-kinin cascade (Lahteenmaki, Kuuseia, and Korhonen, 

2001). These pathways are tightly regulated by host protein activators or inhibitors. Bacteria may 

activate or inactivate these cascades directly through their proteases or other surface components, 

or indirectly by causing release of effector molecules from epithelial or endothelial cells or 

proteolytic enzymes or their precursors from phagocytic cells. Some of these protease-dependent 

pathways can be utilised by bacteria to ensure growth or spread within the host. 

3.1.2. Physiological roles of the plasminogen-plasmin system and its connections to 

mammalian barriers 

Due to the high concentration of the serine protease precursor plasminogen (Pig) in plasma and 

the broad proteolytic activity of the enzymatic form plasmin, the mammalian Pig system offers a 

highly potential proteolytic system that could be utilised by pathogenic bacteria (Lahteenmaki, 

Kuuseia, and Korhonen, 2001). Plasmin has been proposed to play a role in several physiological 

processes in mammals: it is a key enzyme in fibrinolysis, degrades various ECM components 

due to the activation of procollagenases as well as latent macrophage elastase and is involved in 

activation of certain prohormones and growth factors as well as in tumor cell 

metastasis(Lahteenmaki, Kuuseia, and Korhonen, 2001). Bacteria interact with the Pig system in 



various ways (Lahtecnmaki, Kuusela, and Korhonen, 2001). They have been found to produce 

Pig activators (PAs) or Pig receptors (PlgRs), they influence the production of host PAs and 

their inhibitors and also might have an effect on the host plasmin inhibitors. Bacterial PAs can be 

divided in two functional groups (Lahteenmaki, Kuusela, and Korhonen, 2001). 1.) Streptokinase 

(SK) (pro.heed by Streptococcus pyogenes) and staphvlokinase (produced by Staphylococcus 

aureus) ( S A M are not enzymes themselves but torm 1:1 complexes with Pig and plasmin, 

leading to changes in conformation and specificity of plasmin(ogen). In contrast to plasmin 

alone, the SK-plasmin and SAK-plasmin complexes acquire a remarkable efficiency to activate 

Pig. SK and SAK share a little sequence homology but their crystal structures reveal that they 

have adopted a similar fold. The mechanism of Pig activation BY SAK and SK is basically 

similar but differs in some essential aspects, such as the fibrin dependence of the activation in 

human plasma. 2.) The Pla surface protease of Yersinia pestis resembles the mammalian PAs in 

function and activates Pig by limited proteolysis at the same Arg^o-Val^i bond as do the tissue-

type plasminogen activator (tPA) and the urokinase-type plasminogen activator (uPA). 

3.1.3. The plasminogen activator of Yersinia pestis. 

The genus Yersinia comprises three human pathogenic species, Yersinia pestis, Yersinia 

enterocoli'ica, and Yersinia pseudotuberculosis. Y. pestis is the causative agent of plague 

responsible for three large pandemics in the past and recent endemics in Africa, Middle Asia, 

Latin-America, and the Southern states of the USA. The last epidemic was reported from Surat, 

India, in 1994. Y. enterocolitica and Y. pseudotuberculosis trigger much milder gastroenteritis, 

pseudoappendicitis and several connective tissue sequelae (e.g., reactive arthritis). The three 

species show a high degree of chromosomal homology, and share a 70 kbp plasmid required for 

expression of virulence (Ben Gurion and Shafferman, 1981). Despite its highly invasive 

character Y. pestis expresses neither the inv gene product (Simonet et al., 1996) nor the YadA 

outer membrane protein (Skurnik and Wolf-Watz, 1989) described in the other two human 

pathogenic Yersinia species as important factors of invasiveness and mediators of matrix protein 

binding (Emody et al., 1989). On the other hand, Y. pestis harbours two unique plasmids not 

present in the enteropathogenic Yersiniae (Ferber and Brubaker, 1981). The 110-kbp pFra 

plasmid encodes a phospholipasc D required for Y. pestis survival in the flea midgut 

(Hinneburch et al., 2002) and the F1 antiphagocytic capsule protein (Cavanaugh and Randall. 

1959). The small, 9.5-kb plasmid (pPCPl) codes for a plasminogen activator (Pla) protein 

(Sodeinde and Goguen. 1988), which behaves as a fibrinolysin at 37°C and as a weak coaguiase 

of rabbit plasma at 25°C presumably due to temperature induced conformational changes 
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(McDonough and Talkow, 1989). The role of Pla in invasiveness was first realised when it was 

shown that Pla" Y. pestis mutants injected into mice subcutaneously presented with a million 

mutants remained localised to the site of injection being unable to spread to the liver and spleen. 

intravenously. Pla may be involved in several virulence functions like eukarvotic cell adhesion 

(Kienle et al., 1992) and invasion (Lahteenmaki, Kukkonen, and Korhonen, 2001) (Cowan et al., 

2000), and matrix protein binding (Kienle et al., 1992) (Lahteenmaki et al., 1998). Effective 

plasmin formation by the action of Pla enables bacterial spread through tissue barriers like basal 

membranes since plasmin is a multi-substrate protease and able to degrade non collagenous 

extracellular matrix proteins (Lahteenmaki et al., 1998), and to activate latent procollagenases. 

The active site involved in plasminogen activation has been determined but it is still not known 

which parts of the molecule are responsible for matrix protein binding. Laminin is the best 

known member of a family of basement membrane proteins being able to affect also adhesion 

and colonisation of bacteria. Therefore it is of particular interest to characterise how it interacts 

with Pla. It is also worth investigating whether the same regions are also involved in 

internalisation into eukaryotic cells. Localisation of binding site(s) may perspectively initiate 

studies on selection of specific peptides being utilised as antigenic determinants for active 

immunisation to prevent plague. 

3.2. AIMS OF THE STUDY 

1. Affinity selection of peptide sequences binding to laminin with a random heptamer 

peptide library for biopanning. 

2. Assessing the ability of selected phage to interfere with Pla-mediated laminin binding 

of a Pla-positive E. coli K-12 strain TBI . 

3. Confirmation of laminin binding by the phage, which caused interference in Pla 

mediated bacterial laminin binding. 

4. Performance of sequence similarity searches between Pla and the interfering peptide 

sequences. 

5. Localisation of consensus peptide patterns in the three-dimensional model of Pla. 

6. investigation of interference with Pla-mediated bacterial laminin binding by synthetic 

peptides. 
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7. Performing alanine-scanning mutagenesis at the defined homologous sites and 

determination of its effect on laminin binding. 

8. Studying Pla mediated E. coli internalisation into HeLa cells with the utilisation of 

several signal transcduction inhibitors, actin staining and its potential inhibition by the 

selected phage sequences. 

3.3. MATERIALS AND METHODS 

3.3.1. Phage display related methods. 

3.3.1.1. Biopanning against laminin 

Four rounds of biopanning were performed against laminin from Engelbreth-Holm-Schwarm 

murine sarcoma tumor (Sigma) on a microtiter plate (Nalge Nunc International, Denmark) with a 

random heptamer Ph.D. 7- library (New England BioLabs, MA, USA). Four rounds of 

biopanning were performed using approximately 10" input phages in 100 jal volume per round. 

In each round a well of a microtiter plate (Nalge Nunc International, Denmark) was sensitised 

overnight at 4°C with 100 of 20 jig/ml laminin in lOOmM N a H C 0 3 (pH 8.6). Next day the 

well was washed three times with TBST [Tris buffered saline (TBS) (50 mM Tris, pH 7.5, 150 

mM NaC') pH 7.5 supplemented with 0.5% Tween 20 to increase stringency]. It was blocked 

with 2% BSA for two hours at room temperature and then washed six times with 100 ju.1-100 

TBST. Laminin and phages were incubated for ten minutes at room temperature with gentle 

rocking. Then the liquid was removed and labelled as a supernatant fraction. Ten washes 

followed in TBST (100 |il volumes). Supernatant and wash fractions were kept in microfuge 

tubes at 4°C till usage. Tight-binder phages were eluted with 100 (il 0.2 M glycine pH 2.2 for 5 

min at room temperature and then neutralised by the addition of 150 |.il of 1 M Tris-HCl (pH 9.1) 

to prevent phage killing. 98 p.1 from the neutralised eluate was used for the next round of 

amplification. Instead of the ER2738 E. coli strain, XLl -Blue MRF (Kay et al., 1996) was used 

as F+ host of coliphages. From each round of biopanning inputs, eluates, supernatants, first, fifth 

and tenth washes were titered. 

3.3.1.2. Phage titration, propagation and concentration 

Phage titration, propagation and concentration were performed as described in sections 2.3.1.4. 

and 2.3.1.5. except that E. coli XL1 Blue MRF was used as host cell. 
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In each round a well of a microtiter plate (Nalge Nunc International, Denmark) was sensitised 

overnight at 4°C with 100 pi of 20 pg/ml laminin in lOOmM N a H C 0 3 (pH 8.6). Next day the 
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min at room temperature and then neutralised by the addition of 150 pi of 1 M Tris-HCl (pH 9.1) 

to prevent phage killing. 98 pi from the neutralised eluate was used for the next round of 
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as F+ host of coliphages. From each round of biopanning inputs, eluates, supernatants, first, fifth 
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3.3.1.2. Phage titration, propagation and concentration 

Phage titration, propagation and concentration were performed as described in sections 2.3.1.4. 

and 2.3.1.5. except that E. coli XL1 Blue MRF was used as host cell. 



3.3.1.3. Phage DNA extraction and sequencing 

From phage stocks single stranded DNA was extracted once with equal volumes of phenol: 

chloroform: isoamyl-alcohol (25:24:1) (Sigma, Germany). After spinning in microcentrifuge 

with l2,(J0(Jxg at 4UC for 5 min the aqueous upper phase was transferred into a new tube and 

extracted with an equal volume of chloroform. Spinning followed as before, and the upper phase 

was transferred into a new tube and precipitated with 2.5 volume of 95"/,, ethanol plus 0.1 

volume of 3 M Na-acetate pH 5.2. After keeping at 70°C for 20 minutes the mixture was 

centrifuged at 12,000x g, 4°C for 10 minutes, and the precipitate was washed once in 1 ml of 

70% ethanol. The pellet was dried in vacuum and dissolved in 20 pi of sterile ddH 2 0 . The DNA 

content was checked on 1% agarose gel and the sequence was determined using the dideoxy-

chain-termination method with an ABI Prism 310 Genetic Analyser (Applied Biosystems, USA). 

3.3.1.4. Phage-ELISA tests for laminin binding 

A microtitre plate was sensitised with 100 |il aliquots of 100 (ig/ml laminin in phosphate 

buffered saline (PBS) (135 mM NaCl, 2.68 mM KC1, 10 mM Na 2 HP0 4 , 1.76 mM KH 2 P0 4 ) , pH 

7.4 overnight at 4°C. Next day wells were washed three times with 200 |il of PBST (PBS. 0.5% 

Tween 20) and blocked with 100 |il of 2% BSA for 2 hours at room temperature. BSA was 

removed and three washes followed in PBST. 1010 phage particles were added in PBST for 1.5 

hours at 37°C or at 25°C. After four washes in PBST the wells were incubated with 100 jLtl of 

1:5000 diluted horseradish peroxidase (HRPO) labelled monoclonal anti-M13 antibody (AP 

Biotech, CA, USA). The plate was then incubated for 1 hour at room temperature. Unbound 

antibody was removed with three washes in PBST, and 150 |il ortho-phenylene-diamine (OPD)-

reagent (Fluka AG, Germany) was added. Colour development was stopped by addition 50 pi of 

4 M H 2 S0 4 . A4y2 values were determined on an automated plate reader (Metertech, Taiwan). 

Phage samples were tested in triplicates and random phages were applied as negative control. 

Wells with laminin, anti-M13 antibody and OPD-reagent without phages served as blank. 

3.3.2. Bacterial strains and plasmids used in laminin-Pla interaction study 

E. coli XL 1-Blue MRF (Stratagene, USA) (recAl endAl gyrA96 th-1 hsdR17 supE44 relAl lac 

[F' proAB, lacIqZAM15, TnlO (Tetr), Cam'] was used as phage host strain. It was grown in Luria 

Bertani broth (LB broth) complemented with 20 |ag/ml tetracycline for keeping it F-pilus 

positive. E. coli TBI pC4006 is a derivative of E. coli TBI harbouring the pUC19 plasmid with 

cloned determinants for Y. pestis plasminogen activator (Kienle et al., 1992) E. coli TBI pUC19 



served as control strain. These two strains were cultivated also in Luria Bertani broth 

supplemented with 100 pg/ml ampicillin. TBI pC4004 (Kienle et al., 1992) and the low-copy-

number vector pACYC177 (MBI Fermentas, Lithuania) was utilised for site-directed 

mutagenesis. TBI pC4004 was a pK18 derivative and grown also in Luna-Beiluni biotli 

supplemented with 50 ug/ml kanamycin. TBI Inv bore the plasmid pJS-1-pUC6.2. expressing 

I erst nut pseudotuberculosis invasin liiai was a giu of Pi of. Dr. Dr. .iuigen i iceseiuaiiii, Luuvwg-

Maximilians-University. Faculty of Medicine, Max von Pettenkofer-lnstitute for Hygiene and 

Medical Microbiology, Department of Bacteriology, Munich, Germany. 

3.3.3. Assaying of Pla mediated laminin binding of bacteria 

For laminin binding experiments overnight cultures of E. coli TBI pC4006 and E. coli TBI 

pUC19 w ere spun down on a Hettich centrifuge (Hettich, Germany) at 4000 rpm, 4°C for 10 

minutes and washed once with an equal volume of PBS. Concentration of the suspension was 

adjusted to 109/ml in PBS (with a spectrophotometer at A 6 Q 0 (Spekol, Gemany) and 100 pi 

aliqots of the suspension (10^ bacteria) were added to microtiter plates (Nalge Nunc 

International, Denmark). Plates were first sensitised overnight at 4 °C with 20 pg/ml of laminin 

in PBS. Wells were then washed three times with PBST and blocked with 2% BSA for two hours 

at room temperature. BSA was removed and wells were washed again with PBST. 10^ bacterial 

cells were added to the wells and the plates were incubated for 1.5 hours at 37°C or at 25°C. 

Wells were washed then four times in PBST. Adhered bacteria were fixed with PBS containing 

2% formalin. Wells were washed once again with PBST and stained with 0.13% crystal violet 

(Reanal, Hungary) solution. Unbound stain was then removed and wells were washed three times 

in PBST. Adhered bacterial cells were lysed with 1% SDS-solution and the A 5 9 5 absorbance of 

the released crystal violet was measured on an automated plate reader (Metertech, Taiwan). 

Samples were tested in triplicates at least two times. 

3.3.4. Phage mediated inhibition of laminin binding 

The test was performed basically in the same way as described for assaying Pla-mediated 

bacterial laminin binding except of the following modifications: 1 0 ^ phages were co-incubated 

with bacterial cells on the laminin-coated plate at 37°C for 1.5 hours. Random phages were 

added as negative control. After this incubation the number of adhered bacteria was determined 

not by staining but by detaching bacterial cells from the wells with Triton-Trypsin solution (0.1 
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colonics were counted on the next day. 

3.3.5. Peptide mediated inhibition of bacterial laminin binding 

Twofold serial dilutions of peptides were prepared in PBST (0.1% Tween 20) with a starting 

concentration ol 2mM. Aliquots were added to a microiitre piale which had previously been 

sensitised overnight at 4CC with 100-100 |.il 10 pg/inl laminin in PBS and blocked for two hours 

at room temperature with 150-150 pi 3% BSA. After 90 minute incubation at 37°C peptides 

were removed and 10' bacteria were added to each well. After another 90-minute-long 

incubation at 37°C unbound bacteria were removed and 1:2000 dilution of a polyclonal anti-TBl 

antibody raised in rabbit was added in PBST (0.1% Tween 20) for another 1.5 hours at 37°C. 

After removal 1:1000 dilution of anti-rabbit immunoglobulin G conjugated to horse-radish 

peroxidase (Dako, Germany) was incubated on the wells for 35 minutes at 37°C. Secondary 

antibodies were discarded and the TMB /tetra-methyl-benzidine) chromogen substrate (Pierce, 

USA) was added to the wells. Colour development was stopped after 2 minutes by the addition 

of 2 M H 2 S 0 4 and absorbance was read at X=450 nm with an automated plate reader (Multiscan 

Ascent, Thermo Labsystems, Finland). After each step wells were washed three times in PBST 

(0.5 % Tween 20) except after peptide pre-incubation when wells were washed only once in 

PBST (0.5% Tween 20). Two rows were used as positive control preincubated only with PBST. 

One row was used as negative control, when neither peptides nor bacteria were added to the 

wells. Test was performed in duplicates and repeated three times. Inhibition was tested for both 

the Pla+ and the Pla" vector control strain. The A450 values of the control strain were subtracted 

from the ones of the PlaT strain. The percentage of inhibition was determined as follows: {1-

[ (A 4 5 0 of the test well- A450 of the negative control well)/(A450 of the positive control well-A4so of 

the negative control well)] }x 100. 

3.3.6. Peptide pattern search and homology modelling 

Peptide patterns of the two inhibitory phages were compared to the amino acid order of Pla. 

Similarities were identified with the program PattinProt constructed and supplied by the Institute 

of Protein Biology and Chemistry at the University Claude-Bernard. Lyon. France at the Expasy 

website of the Swiss Institute of Bioinformatics, Geneva. Three-dimensional modelling was 

performed with the Swiss PDB Viewer/ DeepView program, another free software created and 

distribute;.', by Glaxo-Smith-Kline R&D on the Expasy website. The structure of Pla was 

modelled basing on its closest homologuc OmpT and the two structures were also superimposed. 
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3.3.7. Site-directed mutagenesis of Yersinia pestis plasminogen activator 

For introducing mutations into the proposed laminin binding sites the pla gene was subcloned 

pACYC177. Transformants resistant to ampicillin but sensitive to kanamycin due to the 

kanamycin cassette disruption appearing along with the integration of the pla gene were selected 

and sequenced. Primers for mutagenesis ( fable 5) were from Sigma-Genosys, UK. and were all 

phosphorylated. In each case a single polymerase chain-reaction was performed by the utilisation 

of the KlenTaqu Long Accuracy Polymerase (Sigma, Germany). Mutant L65AT66AL67A was 

created with primers Pla LTL and Pla LTL reverse, mutant G178A with primers Pla GA and Pla 

GL reverse, mutant L179A with primers Pla LA and Pla GL reverse and mutant G178AL179A 

with Pla GL and Pla GL reverse. The whole pACYC177 plasmid construct was used as template. 

Reaction conditions in an Eppendorf Thermocycler (Mastercycler Personal) were the following: 

After a two-minute initial denaturation at 95°C 35 cycles of amplification were carried as 

follows: denaturation at 95°C for 30 sec. annealing at 58°C for 45 sec. extension at 68°C for 5 

min. Then a final elongation step at 68°C for 10 min was performed. Reaction mixtures had a 

total volume of 50 pi containing the template DNA, 10 pmol of each primer, 200 pM dNTP, 5 pi 

of 10 x KlenTaqu LA buffer and 2.5 U of KlenTaqu LA Polymerase. After finishing the PCR, 

the total reaction mixture was loaded onto a 1% agarose gel, run, stained with 0.1 % ethidium-

bromide and the PCR product was cut and eluted into d d H 2 0 with QIAQuick Gel Purification 

Kit (QIAGEN, Germany). The eluted fragment was treated with T4 Polymerase (MBI 

Fennentas, Lithuania) to produce blunt ends and methylated template strands were removed with 

Dpn I (MBI Fennentas, Lithuania) digestion. The final product was self-ligated with T4 Ligase 

(MBI Fermentas, Lithuania) for overnight at 16°C and then transformed into competent TBI 

cells. Plasmid DNA from transformants were extracted with the alkali-lysis method, cleaned up 

on QIAGEN columns and sequenced with an ABI Prism 310 Genetic Analyser (Applied 

Biosystems, USA) using either the GL reverse primer or the Pla LTL mutagenic primer. PCR 

reactions were performed with several primer pairs. The primer pairs were constructed in such a 

way that the whole plasmid of TBI pC4006 encoding the Pla gene could be amplified through 

the PCR reaction (Table 5). PCR products were run on 1% agarose gel and isolated with 

QIAquick Spin Kit. Fragments were treated with T4 polymerase to produce blunt ends for self-

ligation and with Dpnl to remove template strands. Ligation was performed overnight at room 

temperature and inactivated ligation mixes were transformed into competent TBI cells. 

Transformant clones were tested for protein expression with a simple fibrinolytic assay because 
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mutations should not affect this activity of Pla. Clones vveie inoculated into a fibrin film 

composeo of 0.5 % fibrinogen and 50 U/ml thrombin, and fibrinolytic activity was checked after 

incubation at 37 °C for 4 hours. 

Table 5. Primers tor alanine-scannmg mutagenesis 

Sequence of primer 

5 ' -TCC Tgg gAT CCA TAC TCA T I T gCT gCC gCg AAT A 

5 ' -TAT ATC ACC TTT CAg gAT AgC gAC-3' 

5--CCA TAT ATT gCT CTT gCA ggC CAg TAT CgC-3' 

5"-CA 1 - AgA AAA gCg CTg gTT-ATA A-3' 

5"-CCA TAT ATT ggA gCT gCA ggC CAg TAT CgC-3' 

5'-( AT-AgA AAA gCg CTg gl I ATA A-.V 

5 ' -CCA TAT ATT gCT gCT GCA ggC CAg TAT CgC-3' 

5 ' -CAT-AgA AAA gCg CTg GTT ATA A-3' 

3.3.8. Plasminogen activation 

Kinetic measurement of plasminogen activation was performed in a similar way as described by 

(Kukkonen et al., 2001) with some modifications. 8x 106 bacteria and 4 pg Glu-plasminogen 

(Sigma, Germany) were used per well on a microtitre plate in 200 pi of PBS and 45 pi from the 

1.65 mg/ml stock of the chromogen substrate S-2251 (Chromogenix, Germany) was added to 

them and incubated at 37°C for 3.5 hours. At different time-points the absorbance was measured 

at ^=405 nm with an ELISA-reader (Multiscan Ascent, Thermo Labsystems, Finland). Control 

wells contained no Glu-plasminogen but only bacteria and substrate. Samples were tested in 

duplicates and experiments repeated three times. 

3.3.9. SDS-polyacrylamide gelelectrophoresis 

Total protein extracts of the strains TBI pUC19 and TBI pC4006 were run on a 12% denaturing 

nolynrrylamide gel at 200 V for 45 minutes. 1 04 bacteria from an overnight culture were boiled 

in 32 pi 5xsample buffer [60mM Tris-HCl (pH 6.8), 2%SDS, 14.4 mM 2-mcrcaptocthanol, 0.1% 

,gg ggg Tgg ACg-: 

Introduced mutation 

r L65AT66AL67A 
: L65AT66AL67A 

G178A 

G178A 

;LI 79A 

LI 79A 

Gl 78AL179A 

G178 A L1 79 A 



brornophcnol blue, 25% glycerol] for 10 minutes, spun briefly and 8 pi fractions of the 

supernatant corresponding to 2.5x10' bacteria were loaded on the gel. After running the gel was 

stained for 40 minutes in Coomassie blue and destained in Coomassie destaining solution for 

overnight. 

3.3.11). Cell culture conditions 

HeLa cells were grown in RPMI lt>40 medium (Gibco BRL, UK) (pH 7.1) supplemented with 1 

mM N a H C 0 3 and 10% foetal calf serum (Gibco BRL, UK). Cells were seeded a day before the 

experiments in 35x10 mm Petri dishes (Greiner, Germany) to reach either confluency (1*10^ 

cells/dish1* or semiconfluency (3x10^ cells/dish) by next day. For fluorescent staining HeLa cells 

were seeded onto 22 mm glass coverslips (Biocoat1M , BD Biosciences, Becton Dickinson, USA) 

in 12-well tissue culture plates (Greiner. Germany) to reach semiconfluency ( l x l O^cells /well) 

by next day. 

3.3.11. Preparation of signal transduction inhibitors and cytochalasin D 

Signal transduction inhibitors were all dissolved in dimethyl-sulfoxide (Sigma, Germany) except 

of the C3 exoenzyme, which was dissolved in ddH20 at the following concentrations: 

wortmannin (Sigma, Germany) 10 mM, genistein (Sigma, Germany) 100 mM, 

nordihydroguaretic acid (NDGA) (Sigma, Germany) 100 mg/ml, staurosporin (Sigma, Germany) 

10 mM, cytochalasin D (Sigma, Germany) 1 mg/ml, C3 exoenzyme (Sigma, Germany) 0.5 

mg/ml. For the experiments stocks were diluted in RPMI 1640 (Gibco BRL, UK) to the 

following working concentrations: wortmannin 10, 25, 50 and 100 nM, genistein 250 pM, 

NDGA l.T 'ig/'ml, staurosporin 0.5 pM, cytochalasin D 0.5, 1, 2 and 5 pg/ml, C3 exoenzyme: 5 

3.3.12. Adhesion assays 

3.3.12.1. Microscopic assay 

Overnight LB cultures of bacterial strains were washed in phosphate buffered saline (PBS), pH 

7.4. Suspensions of Pla positive and Pla negative isogenic strains were spectrophotometrically 

adjusted to a concentration of 10^cclls/ml in PBS. The suspensions were diluted 1:1 in PBS, 

washed once, and resuspended in an equal volume of RPMI 1640 (Gibco BRL, UK) 

supplemented with 1 mM NaHCO^. Semiconfluent HeLa cell cultures were infected with 2 ml 



aliquots of the suspensions and incubated at 37nC foi 3 huuis in 5% C 0 2 . Previously, wc 

checkcd that keeping bacteria in RPMI medium for three hours did not significantly increase the 

number of bacterial cells. After incubation unbound bacteria were removed with eight washes in 

PBS. HeLa celis were fixed with methanol lor 1 minute, washed once in PBS and stained for 25 

minutes with Giemsa stain at room temperature. The dye was removed then with three washes in 

dd H t U , and cell cultures were examined bv light microscopy using a Zeiss Axioskop 4w (Zeiss, 

Germany) apparatus. Tests were prepared in triplicates and repeated at least twice. 

3.3.12.2. Quantitative adhesion assay 

In a l t e r n a t e experiments the number of cell associated bacteria was evaluated on confluent cell 

cultures as follows: after removing unbound bacteria with eight washes HeLa cells were lysed 

with Triton-Trypsin [0.1% Triton X-100 (Sigma, Germany), 0.25%, Trypsin (Difco, USA)] 

solution. This treatment had no influence on bacterial viability. 10 pi aliquots of serial dilutions 

of the lvsates were plated onto LB agar supplemented with 100 pg/ml ampicillin. Plates were 

incubated overnight at 37°C and colony forming units were counted. Tests were prepared in 

triplicates and repeated at least twice. Pla-positive and negative bacteria were also added to HeLa 

cell free Petri dishes to assess the level of binding of bacteria to the plastic surface. 

3.3.13. HeLa cell invasion assay 

Principally the gentamicin protection assay (Isberg and Falkow, 1985) was applied to kill cell 

associated but not internalised bacteria. Steps of the experiment were the same as in the adhesion 

assay but after removing unbound bacteria the dishes were incubated with 100 pg/ml gentamicin 

in RPMI for one hour at 37°C in 5%o C 0 2 . Then cells were washed three times in PBS, lysed by 

Triton-Trypsin, and the number of internalised bacteria was determined as described in section 

3.3.13.2. 

3.3.14. Inhibitor assays 

First we checked whether the inhibitors exhibited a harmful effect on bacteria or HeLa cells. 

Bacteria were incubated for four hours (time interval of the presence of inhibitors in the assays) 

with the signal transduction inhibitors diluted in RPMI to working concentration. Bacterial 

counts were determined by plating and colony counting before and after the four-hour incubation 

period. 



they were washed eight times carefully with PBS, and stained with Trypane blue to detect 

exclusion. 

In the inhibition assays confluent HeLa cell cultures were pre-treated for an hour with the 

inhibitor diluted to working concentration in RPMI (without foetal calf serum since it might 

inhibit invasion) al 57'C in 5% CC 2 atmosphere, i lie oniy exception was Hie pieiieaiineiii vviiii 

the slowly diffusible C3 exoen/yme. when HeLa cells were incubated with the exoenzyme for 24 

hours before starting bacterial invasion. Control cultures were preincubated with RPMI alone. 

Then cultures were washed once in PBS and bacteria were added. During the three-hour-long 

bacterial incubation RPMI media was supplemented with the inhibitors at the same concentration 

as used for pre-treatment. Bacterial adhesion and invasion were evaluated as described above. 

Due to the highly reversible nature of genistein, this inhibitor was also present during the 

gentamicin treatment in the cell culture medium. 

3.3.15. Fluorescence staining 

Strains TBI pUC19 and TBI pC4006 were used throughout the experiment. 5x10 bacteria in 

RPMI were incubated on semiconfluent HeLa cultures for 4 hours at 37°C, 5% CO2. The 

invasion was stopped at several time points: every seven minutes during the first hour and then at 

the end of each hour bacteria were removed with eight washes in PBS. Cells were then fixed for 

20 minutes with 4% paraformaldehyde (in PBS) at room temperature. Thereafter they were 

washed three times in PBS and permeabilised with 0.1%Triton X-100 (in PBS) for 30 minutes at 

room temperature. Cells were washed again three times with PBS and stained for lhour at room 

temperature with 0.65 pg/ml TRITC-phalloidin (Sigma, Germany). Coverslips were washed then 

three times in PBS and three times in ddH 2 0 . Finally they were mounted with glycerol-PBS 

(9:1), covered with glass slips and closed with nail polish. Staining was always performed in 

duplicates. Specimens were examined under an Olympus BX 61 epifluorescence microscope 

(Olympus Japan) equipped with the following filter set: excitation: 557 nm, emission: 576 nm 

and analysed with the AnalySIS software (Soft Imaging System, Germany). Cell cultures 

without bacteria were also stained in the same way and used as negative control. 

3.3.16. Studying the effect of inhibitory phage on Pla mediated internalisation 

In these tests phage #5, #14 and random phage were either coincubated or preincubated with the 

Pla'recombinant strain TBI pC4006 and with the negative control strain TBI pUC19 on 

semiconfluent or confluent HeLa cell cultures. Preincubation was an hour long at 37°C, 5% C0 2 . 



Phages were added in RPMI. Following three washes in PBS a regular uiree-houi-long invasion 

assay was performed. In case of coincubation phage and bacteria were added together in RPMI 

onto the HeLa cell cultures for a three- hour-incubation at 37°C. 5% CCK Additional steps were 

performed as described in sections 3.3.12. and 3.3.13. 1 he cltcct of 5 X 1 0 : : , 10 : : and i>><10!" 

phage pari,cles was tested 

3.4. RESULTS 

3.4.1. Biopanning against laminin 

Four rounds of biopanning were performed against immobilised laminin with a library of 

recombinant random heptamer peptides expressed as a fusion with M l 3 minor coat protein 

gpIII. The titre of eluates increased thirty fold by the end of the fourth round (data not shown) 

demonstrating selection and enrichment of tight-binder peptide sequences to laminin. Twenty 

plaques were isolated and sequenced (Table 6). Two of them, NSELTTA and FKNYEQP 

occurred twice. Among the eighteen different sequences only NSELTTA and WSLLTPA 

showed a conserved motif. 

Table 6. Peptide sequence of phage were isolated from the fourth round eluate from a 

biopanning against laminin with a random heptamer phage display library. Consensus 

sequences with Pla are given in bold. 



3.4.2. Pla-mediatcd laminin binding 

Involvement of Pla in laminin binding was investigated both at the body temperature of the 

mammalian host and at ambient temperature present in the arthropod vector. Our data indicate 

(Figure 8) t v i laminin binding by bacteria is 50% less effective at room temperature (25°C) than 

at 37°C for both control and test strains. In the presence of Pla laminin binding increases about 

ten times at 37°C and almost twenty times at 25°C. 

• TBI pUC19 
0,346 | i 

• TBI pC4006j 

37°C 25°C 

Figure 8. Pla enhances the laminin binding of non-adherent E. coli tenfold at 37°C and 

twentyfold at room temperature. 

3.4.3. Phage mediated inhibition of laminin binding 

Two phage sequences (WSLLTPA and YPYIPTL) interfered strongly with Pla mediated laminin 

binding of E. coli (Figure 9). They decreased laminin binding by the Pla' E. coli strain TBI 

pC4006 to the level of the background vector control, which means a complete interference. This 

effect shoul \ be due to a competition of the phage and Pla for the same binding site(s) on laminin 

since the random phage and all the other sequences exerted no significant effect on the 
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bacterium-laminin interaction. Though WSLLTPA and NSELTTA show homology only 

WSLLTPA but not NSELTTA was able to inhibit the Pla-mediated laminin binding. This might 

mean that not only the consensus motif accounts but also the neighbouring amino acids might 

ha \e an influence on the interaction site. In the third position the non polar leucine of WSLLTPA 

and the acidic glutamate of NSELTTA, and in the sixth position the non polar proline and the 

polar threonine of the peptides respectively, have a different side-chain character. 

Figure 9. Interference with Pla-mediated laminin binding of recombinant E. coli. Number of 

bound bacteria is expressed as relative percentage of the bacterial binding without phage (second 

column). Phage #5 and phage #14 completely inhibited Pla mediated laminin binding back to the 

level of the background strain TBI pUC19. 

3.4.4. Laminin binding ELISA with inhibitory phage 

To disprove that inhibition of bacterial laminin binding might be due to any kind of non-specific 

interactions of phage and the plasminogen activator molecule we needed to verify that selected 

phages inhibiting Pla mediated laminin binding of E. coli efficiently bind themselves to laminin. 

The laminin binding capacity of these phagec was tested in an ELISA assay using horseradish 
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peroxidase (HRPO)-eonjugated monoclonal anti-M13 antibody. Phage WSLLTPA bound about 

seventeen times and phage YPYIPTL about thirteen times stronger to laminin than the random 

phage used as negative control (Figure 10). These results also suggest that inhibitory phage and 

Pla compete for the same binding site on laminin. 

Figure 10. Laminin binding capacitites of the two eluted phage sequences, which were able to 

interfere with Pla mediated laminin binding. Adhered phages were detected with HRPO-labelled 

monoclonal anti M l 3 phage and OPD-substrate at >.=492 nm. Phage #5 bound seventeen times 

stronger, phage #14 thirteen times stronger than the random phage control. 

3.4.5. Inhibition of Pla mediated laminin binding with synthetic peptides 

The inhibitory effcct of synthetic peptides WSLLTPA and YPYIPTL was investigated with 

using serially diluted fractions of them. The highest tested concentration was 2 mM due to the 

poor water solubility of peptide WSLLTPA. They showed a more moderate inhibition than the 

respective phages displaying these sequences. While WSLLTPA showed a maximum of 55% 

inhibition YPYIPTL reached only a 33% maximal interference (Figure 11) Peptide YPYIAAA 

random phage phage # 5 phage #14 

phages 

phage# 14 
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served as negative control displaying an inhibitory capacity around zero. 

Figure 11. Inhibition of Pla mediated laminin binding by synthetic peptides. A moderate but gradual 

inhibition was detectable with peptides showing a marked inhibitory capacity when displayed on the 

phage surface. Peptide YPYIAAA was used as negative control showing no or a very limited 

inhibition. 

3.4.6. Localisation of the laminin binding motifs 

For localisation of the two inhibitory peptide sequences we used two programs available at the 

ExPASy Molecular Biological Server. PATTINPROT was created at the Institute of Protein 
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Biology and Chemistry of the University Claude-Bernard, Lyon. It enables searching for peptide 

motifs wit! several degrees of similarity inside shorter and longer protein sequences. We 

compared the amino acid sequence of Pla from the SWISSPROT database (accession number: 

P17S11) with the ones of the two inhibitory phages WSLLTPA and YPYIPTL. Figure 12 show;, 

the phage sequences and their localisation inside the amino acid sequence of Pla along with the 

pair wise alignment of Pla with F. coli OmpT. This latter protein shows a 60% homology with Pla 

(Sodeinde and Goguen, 1989) and its crystal structure has been determined (Vandeputte-Rutten et 

al., 2001). We found the S-X-L-T motif of peptide WSLLTPA at amino acids S63, L65 and T66 

(numbering reveals the position of the amino acids in the mature protein). The whole string 

aligned to the heptamer is . . .YSFLTLN.. . Comparing the two patterns it is obvious that the first 

and the last amino acids are non-conservatively substituted. Both tryptophane and tyrosine have 

aromatic side chains, however tryptophane has an apolar but tyrosine a polar side-chain character. 

The last leucine residue of the peptide has an apolar, and the last asparagine residue of the protein 

fragment has a polar side chain. The five inner amino acids either show identity or similarity by 

conservativ substitutions in the character of the side-chain. WSLLTPA represents another 

pattern, S-X-L-X-A, which is localised at amino acids S3, L5, and P7. These three and the 

neighbouring amino acids are arranged in the string SSQLIPN. The P-Y-I pattern of peptide 

YPYIPTL was localised at P175, Y176, and 1177 of Pla. The whole corresponding amino acid 

environment was . . .MPYIGLA. . . . Comparing to YPYIPTL two non-conservative differences in 

the amino acid characters are apparent. Tyrosine and methionine in the first position, threonine 

and leucine in the sixth position bear distinct features. In the pairwise alignment surface-exposed 

loops and periplasmic turns of OmpT were also indicated based on the structure provided by 

Kramer et al. (2001). Motifs were also positioned in the three-dimensional model of Pla. The 

model was built with the help of the DeepView program provided by Glaxo SmithKline R&D 

Geneva based on the already determined crystal structure of OmpT. Considering the high degree 

of homology with OmpT Pla also has an assumed beta-barrel structure like OmpT (Kukkonen et 

al., 2001). The localisation of peptide patterns is labelled on different views of modelled Pla 

(Figure 13, The two WSLLTPA patterns localise periplasmically, SXLXP close to the N-

terminus, SXLT at the first turn. PYI is close to loop 3, and this string appears also in OmpT. 
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3.4.7. Investigation of protein expression, laminin binding and plasminogen activation of 

recombinant mutagenic Pla 

Pla expression of mutagenic clones was detected on a 12% denaturing polyacrylamide gel 

with Coomassie blue staining. A strong band corresponding io Pla was detected also in the 

mutagenic strains whereas no band was visible in the extract of the negative vector control 

strain, 1 til pAL Y L 1 / / (Figure i4A). 

Laminin binding capacity was assessed by counting the adhered bacteria after removing them 

with 0.1% Triton X-100 from the microtitre plate. Wild type Pla bound more than ten times 

stronger than the negative vector control in accordance with the previously presented data 

with TBI pC4006. The triple mutant L65AT66AL67A, and the double mutant G178AL179A 

showed a decreased laminin binding: about half as many bacteria adhered to laminin as in the 

wild-type strain. The single mutants G178A and L179A displayed an affinity comparable to 

the wild-type strain (Figure 14B). 

Plasminogen activation was detected by the colour development of the chromogenic plasmin 

substrate S-2251 at \ = 405 nm after the addition of Glu-plasminogen. The introduced alanine 

substitutions did not substantially alter the plasminogen activating ability of Pla (Figure 14C). 
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3.4.8. Light-microscopy of Pla mediated adhesion 

On scmicu.f luent HeLa cell cultures the Pla negative TBI pUC19 strain exhibited practically 

no visible adhesion as shown by light microscopy (Figure 15A). On the other hand the Pla 

expressing recombinant TBi pC40uo strain heaviiy colonised the HeLa ceils (Figure 15B). 

The absence of microbes at the HeLa cell free areas of the semiconfluent culture points to a 

real bactenum-HeLa cell interaction. 

A B 

Figure 15. Investigation of Pla-mediated adherence by E. coli TBI on semiconfluent HeLa 

cell cultures. Pla-positive (TBI pC4006) and Pla-negative (TBI pUC19) E. coli strains were 

incubated with HeLa cultures for three hours. Unbound bacteria were removed by thorough 

washes. Cells were then fixed with methanol, stained by Giemsa and visualised by light 

microscopy using a Zeiss Axioskop 40 at a magnification of 400x. (A) Numerous Pla+ 

bacteria attach to the surface of HeLa cell. (B) No adherence is detectable for the Pla- strain. 

3.4.9. Time-course of Pla mediated adhesion and invasion 

In a four-hour experiment we determined the dynamics of Pla mediated bacterial adhesion 

(Figure 16A) and internalisation (Figure 16B) on confluent HeLa cell cultures. Throughout 

the experiments TBI pC4006, a recombinant E. coli strain expressing Pla, and TBI pUC19 as 

negative vector control have been used. There were considerable changes detectable already 

by the end of the first hour. Approximately 2x l0 7 Pla-positive bacteria adhered to the ceii 

layer by the end of the first hour and about 2.5x1 (f (1%) of them also entered the HeLa cells. 

During the next three hours there was a slight 1.5 fold increase in cell-association and a 

fourfold increase in internalisation revealing the relative time-dependency of the latter event. 

On the other hand the Pla-negative control strain (TBI pUC19) showed a forty times weaker 

adhesion and no internalisation at all. Addition of 108 or 10v bacteria did not substantially 
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change the dynamics of adhesion and invasion or the number of adhered and internalised 

bacteria. Results also reveal that cloned Pla rendered the originally non-adhesive E. coil K-12 

strain adhesive and invasive on epithelial cells. Adhesion of TBI pC4006 and TBI pUC19 

did not show any difference when background binding was assessed by adding them to iieLa 

cell free Petri dishes. 

Eigurc 16. Time-course of Pla-mcdiatcd cell-association (A) and intcrnalisation (B). Pla+ and 

Pla" strains were incubated on confluent HeLa cell cultures for 4 hours. Unbound bacteria 

were removed by washes. Eukaryotic cells were lysed and cell-associated bacteria plated for 



3.4.12. Effect of cytochalasin D and C3 exoenzniye of C. botulinum on Pla mediated 

invasion '»y E. coli 

Cytochalasin D, which disrupts actin filaments, was tested in different concentrations. 

Concentrations 0.3 and 1 (.ig/ml did not interfere with cell-association or invasion. Higher 

concentrations elicited a thirty-fold decrease in invasion of Heal cells by the Pal-positive 

strain but did not affect bacterial adhesion ( f igure I 7B). I he etlect was not dose dependent as 

increasing amounts of cytochalasin D (2 and 5 (.ig/ml) exhibited the same level of interference 

(data not shown). C3 exoenzytne of C. botulinum is a specific ADP-ribosylating inhibitor of 

the small Rho GTPase RhoA and its isoforms. Treatment of cells with 5 jag/ml C3 exoenzymc 

did not affect Pla mediated adhesion but decreased the internalisation to 20% (Figure 17B). 

Figure 17. Effect of several signal transduction inhibitors on the cell association and internalisation of 

recombinant, Pla expressing E.coli TBI pC4006 on confluent HeLa cell cultures. The number of cell-associated 

and internalised bacteria was expressed as a relative percentage of the untreated control tests. (A) shows the 

strong inhibitory activity of 15 |.ig/ml NDGA and the 50% internalisation decrease induced by wortmannin at 100 

nM and at the differentiating 50 nM concentration. (B) displays internalisation inhibition initiated by 0.5 (.iM 

staurosporin, 5 (ig/ml C3 exotoxin and 2 fxg/ml cytochalasin D. (C) compares the inhibitory activity of 250 (.iM 

genistein on Pla (TBI pC4006) and invasin (TBI Inv) mediated internalisation. 
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3.4.13. Effect of phage inhibiting Pla mediated laminin binding on Pla mediated 

adhesion and internalisation into HeLa cells 

Co- or preincubating Pla-expressing bacteria with phage #5 and #14 did not affect either Pla-

mediated internalisation oi adhesion in the tested phage concentrations. There was no 

difference in the number of colony forming units regained after HeLa cell lysis or in the 

Gienisa stained preparates. (.data not shown;. 

3.4.14. Fluorescence staining 

During a time course-experiment we were able to detect punctuate accumulation of actin 

(Figure 18B) after 42 minutes in the case of the Pla+ recombinant E. coli strain TBI pC4006. 

The changes were most dramatic after one hour and less intense after the further hours of 

incubation. This is in accordance with the quantitative time-course assay showing the most 

dynamic increase of internalisation during the first hour of incubation. We have not detected 

any cytoskeletal change with the incubation of the negative control strain TBI pUC19 (Figure 

18A). 

Figure 18. Pla induced actin rearrangement in HeLa cells. The reaction was monitored in a 

time-course experiment when the Pla+ (TBI pC4006) and the Pla" strain (TBI pUC19) 

were incubated for four hours on semiconfluent HeLa cell cultures. The invasion process 

was interrupted at several time points: every seven minutes in the first hour and then at the 

end of each hour. Unbound bacteria were removed, HeLa cells were fixed, permeabilised 

and actin was stained with TRITC-phalloidin. Infection with TBI pUC19 showed a regular 

pattern of cellular actin during the whole infection (A) whereas a punctuate accumulation 

of actin was detectable from the 42nd minute of infection with TBI pC4006 (B). 

Accumulation was most intense after the first hour but was still visible during the entire 

infection (data not shown). 
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3.5. DISCUSSION 

Yersinia pe.,iis plasminogen activator (Pla) is a unique outer membrane protein with protease 

activitv characteristic for this species. Being responsible for several virulence functions this 

molecule might be a major determinant of the highly invasive character of the plague bacillus 

(Sodeinde et al., 1992) In our phage-display study we focused on the identification of the binding 

site of Pla to laminin, one of the matrix proteins which is also a major constituent of basal 

membranes separating several human tissue compartments. Plasmin, the product of plasminogen 

activation is a protease of wide substrate specificity including the capability to degrade 

extracellular matrix proteins (Lahteenmaki et al., 1998). Hence Pla is able to activate an enzyme 

involved in bacterial dissemination. Pla is not the only example of bacterial products being able 

to capture plasminogen and laminin. Invasive enterobacteria express laminin-binding fimbriae 

functioning also as plasminogen receptors (Kukkonen et al., 1998) (Parkkinen, Hacker, and 

Korhonen. 1991) 

Amino acid motifs involved in plasminogen activation by Pla have been determined (Kukkonen 

et al., 2001), nonetheless the timing of plasminogen activation and laminin binding, and the 

laminin binding site of Pla have not been clarified yet. It is a question whether different active 

sites are responsible for these two different actions. 

We applied a phage display assay to identify the possible motifs of Pla involved in laminin 

binding. All the eighteen different phage yielded by the fourth round eluate of biopanning were 

checked for their ability to prevent Pla mediated laminin binding of E. coli TBI pC4006. Phage 

with WSLLTPA or YPYIPTL heptapeptides showed complete blocking of Pla mediated laminin 

binding, and in addition these phage themselves exhibited a strong laminin binding capacity in an 

enzyme-linked immunosorbent assay. Using synthetic heptamer peptides we were able to show a 

relatively moderate 50% and 33% inhibition with WSLLTPA and YPYIPTL respectively. Due to 

the bad solubility of WSLLTPA a 2mM maximum concentration was utilised. From these results 

we assumed that the two phage compete with Pla for the same binding site in lammin and they 

might mimic the region of Pla being involved in capturing of laminin. (McDonough and Falkow. 

1989) prop, sed that the coagulase activity at 25°C and the fibrinolytic activity at 37°C of Pla 

were due to posttranslational conformational changes. On the other hand, our results support the 

idea that these conformational changes do not basically affcct the lamina binding site(s) as assays 

for Pal mediated bacterial lamina binding, and binding of the two inhibitory phase to lamina 
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yielded comparable results when performed at both temperatures. Pal-mediated lamina binding at 

environmental temperature might have a physiological role in colonisation of the flea midget 

However. (Hinnebusch, Fischer, and Schwan, 1998)) did not find any difference in the course of 

flea infection by wild type and pPCPl plasmid cured Y. pcslis strains. 

Pla shows a high degree of homology with the F. coli outer membrane protein OmpT whose 

crystal structure has been resolved by (Vandcputte-Ruttcn ct al., 2001). OmpT is a ten-stranded, 

vase-shaped, anti-parallel B-barrel containing long, flexible surface-exposed loops at the 

extracellular part, and short turns at the periplasmic site. Proposing a similar model for Pla 

(Kukkonen et al., 2001) demonstrated that certain amino acid motifs located in the surface 

exposed loops had a key role in plasminogen activation. 

We localise J the peptide patterns expressed by phage inhibiting Pla mediated bacterial laminin 

binding in the amino acid sequence and in the three-dimensional model of Pla. Patterns displayed 

by phage WSLLTPA (S63-L65-T66) are situated periplasmically at the N-terminus and at the 

first turn, respectively. Amino acids of the S63-L65-T66 string show conservative substitutions 

except of W>Y and A>N. The YPYIPTL pattern PI 75-Y176-1177 is close to loop 3, however 

this string is also represented in OmpT whose role in laminin binding has not yet been proved. 

Nonetheless, the last amino acid in the motif has a different character in OmpT (T, polar) than in 

the YPYIPTL peptide (L, apolar) or in Pla (A, apolar). The peptides WSLLTPA and YPYIPTL 

share the common string of three amino acids in opposite order: proline, threonine and leucine. 

We performed alanine-scanning mutagenesis with amino acids of the Pla molecule, which are 

corresponding to the LTP/PTL motif following the peptide/protein alignment. Four mutants were 

created: a triple mutant changing the L65T66L67 string to A65A66A67, two single mutants 

changing G178 and LI 79 to alanine and a double mutant, which is the combination of the latter 

two. While Ihe triple mutant displayed a 50% decrease in laminin binding, the double mutant 

showed a 40% decrease in laminin binding compared to the wild-type strain. The two single 

mutants did not change substantially the laminin binding ability of Pla. On the other hand 

plasminogen activation was only slightly affected by the introduced mutations. This indicates that 

the conformational change induced by the mutations slightly affected the active site organisation 

of Pla. Due to the absence of an exact crystal structure of Pla it is complicate to explain these 

data. (Kukkonen et al., 2004) showed that the lack of O-antigen is a prerequisite of Pla mediated 

matrix-protein adhesion, which indicates that amino acid motifs involved also in laminin binding 
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are hidden from laminin in the presence of O-antigen. The motifs we localised are not surface-

exposed and the SMPYGLA motif might be better exposed in the absence of O-antigcn Neither 

the triple nor the double alanine-change caused a complete loss in laminin binding, which might 

indicate that other regions of the molecule also might be involved in the interaction. It is also 

possible that the proposed regions support the optimal structure (especially the periplasmically 

involved motifs of WSLLTPA) of Pla for sufficient laminin binding, however the efficient 

laminin binding of the two phage sequences, which interfered with Pla mediated laminin binding 

contradicts this assumption. The localisation of laminin during the interaction is also a remaining 

question because Pla is possibly not a porine - l ike outer membrane protein. It is related to OmpT, 

which is monomeric and its inner polar core forms a hydrogen bonding network (Vandeputte-

Rutten et a' , 2001). Consequently, it still remains a question how these motifs form a binding site 

and interact with laminin. 

Another unique function of Pla is its ability to mediate adhesion and internalisation into 

eukaryotic cells (Kienle et al., 1992) (Lahteenmaki, Kukkonen, and Korhonen, 2001). Motifs of 

Pla involved in this interaction have not yet been identified. Therefore after studying some 

aspects of Pla mediated adhesion and internalisation into HeLa cells we tested the ability of 

phage #5 (WSLLTPA) and phage #14 (YPYIPTL) to interfere with these processes. Entry of 

bacteria into mammalian cells usually involves exploitation of existing signal transduction 

pathways whose major outcome is the rearrangement of the actin cytoskeleton with consequent 

remodelling of the host cell surface (Ireton and Cossart, 1998). First we analysed cell adhesion 

and invasion conferred on the non-invasive E. coli K-12 strain TBI by the cloned Pla 

determinant. As expected the background strain presented with a low level of adhesive capacity, 

as the bacterial counts practically did not differ in tissue culture dishes with or without HeLa cells 

and no bacteria could be visualised on the Giemsa stained preparations either. The above data 

point to the role of Pla in the complicated series of events involved in cell adherence and invasion 

by Y. pestis. To characterise signalling pathways involved in Pla mediated invasion we examined 

the activity of several signal transduction inhibitors whose inhibitory effect on Y. 

pseudotuberculosis and Y. enterocolitica invasion has already been described. Since bacterial and 

HeLa cell viability was not affected by the concentration of inhibitors used we were able to 

conclude on exploitation of signalling pathways. Our studies applying different concentrations of 

wortmannin enabled us to discriminate between the effects of specific enzymes, which are 
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inhibited by this agent (Mecsas, Raupach, and Falkow, 1998). The non-differentiating 100 nM 

concentration of wortmannin elicited a 50% decrease in invasion but did not alter bacterial 

adhesion. Consecutively, when differentiating concentrations were used on HeLa cell cultures 

only 50 nM but not lower concentrations of wortmannin evoked an cffcct comparable to the 

potency of 100 nM concentration. From these results we assume a partial involvement of Ptln 4-

kinase in i.ilernalisation. Staurosporin and genistein treatment is known to block invasion of 

enteropathogenic Yersiniae (Rosenshine, Duronio, and Finlay, 1992) hence it seemed worth 

studying whether they had an influence also on Pla mediated internalisation. Similarly to 

wortmannin staurosporin and genistein did not affect adherence of the Pla-positive derivative but 

staurosporin at 0.5 pM concentration decreased the invasion rate to 14% and genistein to 50%o of 

that of the non-treated control. This might imply that internalisation exploits the action of several 

protein kinase classes like PKC, cAMP-dependent PK and also TPKs, specifically inhibited by 

genistein. These kinases play a major role in transducing extracellular signals into eukaryotic 

cells. They are also involved in cytoskeletal rearrangements localised at the site of bacterial 

attachment. PKC and TPKs are able to activate guanine nucleotide exchange factors (GEFs) 

which induce formation of active Rho guanosine-triphosphatases, central organisers of 

cytoskeletal rearrangement (Schoenwaelder and Burridge, 1999). Rac, Rho and Cdc 42 belong to 

this family of enzymes having a central role in cytoskeletal rearrangement (Schoenwaelder and 

Burridge, 1 ^ 9 ) . 

Involvement of RhoGTPases was further and more exactly proved with the utilisation of NDGA 

and C3 exoenzyme as inhibitors. NDGA inhibits 5-lipoxygenase, which converts arachidonic 

acid into leukotrienes after Rac activation. Leukotrienes induce stress fibre formation by 

activating Rho protein (Peppelenbosch et al., 1995). Inhibition of Pla mediated internalisation 

indicates that Rho activation and concomitant actin stress fibre formation play a role in the 

invasion process. The role of Rho in Pla mediated invasion is further supported by the finding 

that the Rho specific inhibitor, C. botulinum exoenzyme C3 (Wilde and Aktories, 2001) also 

inhibited the internalisation process fivefold. 

The contribution of actin rearrangement was confirmed by treating cells with several 

concentrations of cytochalasin D. Although no change was detected when 0.5 or 1 pg/ml 

concentrations were applied, higher concentrations of cytochalasin D decreased Pla mediated 

invasion thirty fold. On the other hand adhesion of bacteria was unaffected by the treatment. 
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(Cowan et al., 2000) found that epitheloid cell invasion by Y. pestis was strongly inhibited by 

cytochalasin D. As Pla negative Y. pestis preserved a portion of its invasive capacity it remained 

a question whether the inhibitory action of cytochalasin D was completely directed on the Pla 

associated component of internalisation. Our findings with isogenic E. coli derivatives strongly 

suggest that cytoskeletal reorganisation is a major event in Pla mediated epithelial cell invasion. 

We proved the involvement of Pla in cytoskeletal rearrangement also with fluorescencc 

microscopy. Experiments were conducted to visualise polymerised actin by fluorescent labelling 

with TRITC-phalloidin. We detected punctuate actin accumulation in HeLa cells first after 42 

minutes of Pla mediated internalisation of recombinant E. coli. Changes were most dramatic after 

one-hour-incubation and turned to be less intense later on. This seems to be in concert with the 

quantitative time-course experiment revealing the most intense invasion during the first hour of 

incubation. 

We studied whether the two phage, which presented strong inhibition of Pla mediated laminin 

binding are also able to interfere with Pla mediated adhesion and internalisation of E. coli. We 

were not able to detect any kind of disturbance of these processes in the used phage concentration 

(maximum of 2.5x1012 phage/ml). Steric hindrance due to the large phage size might be excluded 

with using purified peptides for inhibition in future experiments but it is also possible that these 

two different functions of Pla do not share a common epitope at all. The eukaryotic receptor for 

Pla has not yet been identified but it is known that Pla has a lectin-like behaviour. It binds to 

glycolipid extracts from several cell lines as well as neutral extracts from cells rich in globo 

tetraosylceramide (globoside) and to purified globoside (Kienle et al., 1992). Utilisation of a 

random phage display library might help in mapping the involved amino acids of Pla by adding 

random input phage to HeLa cells and eluting them in a competitive way with Pla-expressing 

recombinant bacteria. This would also demonstrate the widespread employment of phage display 

libraries in microbiological studies. 

3.6. New results presented in chapter 3 

1. Selection of 18 different heptamer sequences after performing a biopanning with a 

random phage display library. 

2. Development of a simple in vitro assay to measure Pla mediated laminin binding in 

recombinant E. coli. Collected data reveal a twenty fold and ten fold increase in binding 
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capacity of non-adhesive E. coli in the presence of Pla at room temperature and at 37°C, 

respectively. 

3. Investigation of the potential interference of the selected heptamer peptides with Pla-

mcdiated laminin binding. Two sequences: WSLLTPA and YPYIPTL displayed complete 

inhibition. 

4. Development of a simple ELISA-test for checking the laminin binding of phage. 

WSLLTPA showed a 17-fold, YPYIPTL a 13-fold stronger binding than random phage. 

5. Demonstrating interference with Pla mediated laminin binding by the utilisation of 

synthetic peptides. Inhibition was moderate and gradual with a maximum of 55% using 

WSLLTPA and 33% using YPYIPTL. 

6. Following alignment of peptides and the Pla protein alanine-scanning mutagenesis was 

performed to examine the effect of mutations on the laminin binding capacitites of Pla. A 

triple mutation of the amino acids L65T66L67 and a double mutation of amino acids 

G178L179 decreased the laminin binding capacity of Pla about twofold. This indicates 

the involvement of the mutagenised amino acids in laminin binding. 

7. On the other hand mutations did not substantially affect the plasminogen activation 

function of Pla revealing a possible dissection of the two different functions. 

8. Phage WSLLTPA and YPYIPTL had no effect on Pla-mediated adhesion and 

internalisation, indicating the involvement of a different protein region in these functions. 

9. Pla-mediated internalisation of non-invasive E.coli exploits the host HeLa cell 's signal 

transduction system by utilisation of protein kinases including tyrosine protein kinases, 

the small Rho GTP-ases, RhoA and Rac, the phosphatidyl-inositol-4-kinasc and 

consecutive rearrangement of the actin cytoskeleton. 
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