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Abstract: We give various characterizations — in terms of module properties
— for Priifer domains in general, and for (locally) almost maximal Priifer
domains, in particular. A domain R is a Priifer domain if and only if pure-
injective divisible R-modules are injective. A Priifer domain R is locally
almost maximal exactly if finitely embedded HR-modules are pure-injective.
An h-local domain R is almost maximal Priifer if and only if finitely embedded
R-modules are direct sums of cocyclic R-modules.

All rings will be commutative with 1. A ring R is mazimal if it is
linearly compact in the discrete topology (this is the topology in which
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linear compactness will be considered here); R is almost mazimal if the
ring R/I is maximal for every non-zero ideal I of R. A domain R (a
ring without divisors of zero) is a valuation domain if its ideals form
a chain under inclusion; it is a Prifer domain if its finitely generated
ideals are projective, or, equivalently, its localization Rjps is a valuation
domain for every maximal ideal M of R. If all of thiese localizations Ras
are almost maximal, R is said to be locally almost mazimal (Brandal
[2, p-20]). A domain R is called h-local if (i) every non-zero prime ideal
of R is contained in exactly one maximal ideal, and (ii) every non-
zero element is contained in but a finite number of maximal ideals. By
Brandal [2, Th. 2.9], a domain is almost maximal if and only if it is an
h-local, locally almost maximal domain.

A module D over a domain R is called divisibleif rD = {rd|d € D}
is equal to D for all 0 # r € R, and h-divisible if it is an epic image
of a direct sum of copies of the field @ of quotients of R (as an R-
module). D is absulutely pure if it is pure in every R-module in which
it is contained. Megibben [8] has shown (in a more general form) that
a domain R is Priifer if and only if every divisible module is absolutely
pure. Naudé-Naudé-Pretorius [9] proved that a domain R is Priifer
exactly if all pure-injective modules are RD-injective (RD-injectivity is
defined as the injective property relative to inclusions A — B where
rA = ANrB for all »r € R; see [5, p.210]). This result will be sharpened:
it is enough to require that the pure-injective divisible modules be RD-
injective. See Theorem 5.

An R-module C is said to be cocycylic if it is an essential extension
of a simple R-module S, i.e. it is contained in the injective hull E(S) of
S. An R-module F is finitely embedded if it is an essential extension of
a finite direct sum of simple R-modules. In investigating classical rings
R (i.e. E(S) is linearly compact for every simple R-module §), Vimos
[10] identified the classical Priifer domains as those classical domains
over which the finitely embedded modules are direct sums of cocyclic
modules. We prove a similar result (Theorem 8) characterizing the h-
local domains over which such decompositions hold: these are exactly
the almost maximal Priifer domains. This is the dual of a result by
Matlis [7, Th. 5.7] which deals with the decompositions of finitely
generated modules into direct sums of cyclics. Those Priifer domains
will also be described over which the finitely embedded modules are
linearly compact (or pure-injective); see Theorem 6. A similar problem
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was investigated by Facchini [4]: he characterized the rings over which
finitely embededded modules have injective dimension < 1. (We wish
to thank Willy Brandal for calling our attention to this paper.)

For unexplained terminology we refer to standard texts or to

Fuchs-Salce [5].

1. Preliminaries

We start our discussion with lemmas on modules over arbitrary
domains R. For an R-module D and r € R, we set D[r] = {d € D|rd =
= 0}.

Lemma 1. The R-module Homg(D,*) is torsion-free whenever D 1is
a divisible R-module.

Proof. From the exact sequence 0 — D[r] — D—5D — 0 we infer that
the sequence 0 —» Hom(D, *)—+Hom(D, *) — Hom(D[r], %) is exact. {
Lemma 2. If A is a torsion-free and E is an injective R-module, then
Hompg(A, E) is divisible and pure-injective.

Proof. The pure-injectivity of Hompg(*, E) for E pure-injective is well
known (see e.g. [5, p.217]). The exact sequence 0 — E[r] - E-»E —
— 0 implies the exactness of

0 — Hom(A, E[r]) — Hom(4, E)->Hom(4, E) — Ext'(4, E[r]).

As Elr] is RD-injective (see [5,p.210]) and A is torsion-free, the last
term vanishes. Hence Hom(A4, E) is divisible. ¢

Lemma 3. The pure-injective hull of a divisible module is divisible.
Proof. If F is an injective cogenerator of the category of R-modules,
then for every R-module M, there is a pure embedding

M — Homp(Homg(M,E),E)=H

and the pure-injective hull PE(M) of M is a summand of the pure-
injective module H (see [5,p.217]). It is therefore enough to show that
if M is divisible, then so is H. By Lemma 1, if M is divisible, then
Hom(M, E) is torsion-free. Hence Lemma 2 implies H is divisible. ¢
Lemma 4. An RD-injective divisible module is injective.

Proof. By [5, p.213], an RD-injective module M decomposes as M =

= E®N where E isinjectiveand N' = [} =N = 0. If M is divisible,
0#£TER
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then necessarily N = 0, and M = E is injective. ¢

Remark. Actually, the following converse of Lemma 2 holds: if E is an
injective cogenerator of the category of R-modules, then Hompg(A, E) is
(pure-injective) divisible if and only if A is torsion-free. To see this,
consider the isomorphism [3, p.120]

Exth(B,Homg(A4, E)) & Homp(Torf(B, A), E)

which holds for all R-modules A, B and injective E. Recall that an
R-module D is divisible exactly if Extp(R/Rr,D) =0 for all » € R [5,
p.36). In view of the above isomorphism, D = Hompg( 4, E) is divisible if
and only if, for all r € R, Homg(Torf(R/Rr, A)E) = 0. This amounts
to Tor®(R/Rr,A) = 0 whenever E is an injective cogenerator. The
exact sequence 0 - R—+R — R/Rr — 0 induces the exact sequence
0 — Tor;(R/Rr,A) - R® A= AR ® A = A. This shows that
Tor;(R/Rr,A) = 0 for all » € R is equivalent to the torsion-freeness
of A.

The reader is advised to compare our remark with the well-known
fact that if E is an injective cogenerator, then the injectivity of
Hompg(A, E) is equivalent to the flatness of A. (Hence the equivalence
of (i) and (ii) in Theorem 5 can easily be derived: just recall flatness
and torsion-freeness are equivalent exactly for Priifer domains.)

2. Characterizations of Prifer domains

The next result gives various equivalent properties which charac-
terize Priifer domains among the domains. The equivalence of (i) and
(iv) is due to Megibben [8], while the equivalence of (i) and (ii) improves
on a result by Naudé-Naudé-Pretorious [9].

Theorem 5. For a domain R, the following are equvalent:

(i) R is a Prifer domain;

(ii) pure-injective divisible R-modules are injective;

(iii) pure-injective hulls of divisible R-modules are injective;

(iv) divisible R-modules are absolutely pure;

(v) h-divisible R-modules are absolutely pure.

Proof. (i) = (ii): For Priifer domains, purity and RD-property are
equivalent (see [5, p.47]). Hence Lemma 4 shows that (ii) holds for

Priifer domains.
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(ii) = (iii) is obvious in view of Lemma 3.

(iii) = (iv): Let D be a divisible module in the exact sequence
0—-D—> A— B — 0. Using the canonical embedding é6:D —
— PE(D), form the pushout diagram

0 — D -+ A - B -0
) la I
0 PED) > C - B— 0

where a is monic. By (iii), PE(D) is injective, and therefore Im « is a
summand of C. It follows that 46D is pure in C, and so D is pure in
A. Thus D is absolutely pure.

(iv) = (v) is trivial.

(v) = (i): Let L be a finitely generated ideal of R, and D an
h-divisible R-module. By (v), D is absolutely pure, thus every exten-
sion of D by a finitely presented R-module is splitting. In particular,
Ext'(R/L,D) = 0. Given an R-module M and its injective hull E, the
module D in the exact sequence 0 - M — E — D — 0 is h-divisible.
Form the commutative diagram

Hom(R, E) — Hom(R, D) — 0
! 1
Hom(L, E) — Hom(L, D) — Ext!(Z,M) — 0
o !
Ext'(R/L,E) =0 Ext'(R/L,D) =0

with exact rows and columns. The composite map Hom(R,E) —
— Hom(L, D) being surjective, Ext'(L, M) = 0 follows. This holds for
every M, so L is projective and R is Priifer. ¢

3. Locally almost maximal Priifer domains

Among the valuation domains, the almost maximal ones are dis-
tinguished by a number of attractive properties. Some of these proper-
ties carry over to almost maximal Priifer domains. We are particularly
interested in those which relate to the finitely embedded modules.
Theorem 6. For a Prifer domain R, the following are equivalent:
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(i) R is locally almost mazimal;

(i) finitely embedded R-modules are linearly compact;

(iii) finitely embedded R-modules are pure-injective;

(iv) cocyclic R-modules are pure-injective.

Proof. (i) = (ii): If Ry is an almost maximal valuation domain for
every maximal ideal M, then Q/Ra M is linearly compact for every M,
both as an Rjs- and as an R-module. A finitely embedded R-module
is a submodule of a finite direct sum of linearly compact R-modules of
the form Q/Rpr M, hence itself linearly compact.

(ii) = (iii) is clear, since linear compactness over a commutative
ring always implies pure-injectivity. ’

(iii) = (iv) is trivial.

(iv) = (i): The R-module Q/RpmM is cocyclic, and therefore
pure-injective. It is moreover, injective, since over Priifer domains di-
visible pure-injective modules are injective (cf. Theorem 5). The exact
sequence 0 — Rpr/RyM — Q/RyM — Q/Rpr — 0 implies the ex-

actness of

0 = Ext}(R/I,Q/RyM) — Exth(R/I,Q/Ru) —
— Ext%(R/I,Rp/Ru M)

for every ideal I for R. Simple modules are always RD-injective, and
hence they have injective dimension 1 [5, p.243]. If the last Ext vanishes,
then so does the middle one. This implies that @/ Rz is (an injective R-
module and so) an injective Rps-module, proving the almost maximality

4. h-local almost maximal Priifer domains

Our final goal is to find all h-local domains over which the finitely
embedded modules are direct sums of cocyclics.

Recall that a torsion module T' over an h-local domain R is the
direct sum of its localizations: Thr = Rar ®r T. Here Thy is an Rps-
module whose R- and Rjps-module structures coincide (see Brandal [1,
Lemma 2.7]).

We start with a lemma; this is the dual of a result by Matlis [7]
and Gill [6].

Lemma 7. Let R be a local domain. If every finitely embedded R-
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module is a direct sum of cocyclic R-modules, then R is a valuation
domain.

Proof. Suppose R has the stated property, but is not a valuation
domain. Choose a,b € R such that b ¢ Ra and a ¢ Rb. There is an
ideal 4 of R which is maximal with respect to the properties a € 4
and b ¢ A. Similarly, there is an ideal B of R maximal with respect
tob € B, a € B. Consider the R-module F = R/(A N B) which
is evidently a submodule of R/A @ R/B. Here R/A is subdirectly
irreducible with b + A generating its socle; thus R/A is cocyclic. The
same holds for R/B. We conclude that R/4 @ R/B and hence F is
finitely embedded. Neither a nor b is a unit of R, thus both A and
B are contained in the maximal ideal M of R. Consequently, F is
indecomposable, and hence — by hypothesis — cocyclic. But F has a
non-simple socle R(b + A) ® R(a + B), a contradiction. ¢ :

Observe that the last lemma holds for all commutative local rings.

We are now able to prove the dual of a theorem of Matlis [7, Th.
5.7]. (Since the ring is not assumed to be classical, duality arguments
can not be applied.)

Theorem 8. Let R be an h-local domain. The following are equivalent:
(a) R is an almost mazimal Prifer domain;

(b) every finitely embedded R-module is a direct sum of cocyclic R-
modules.

Proof. (a) = (b): Since Ris h-local, every finitely embedded R-module
F is a finite direct sum F = ©Fys where Fjs is a finitely embedded
Rpr-module. The R- and Rjs-module structures of Fys are identical,
thus it suffices to verify the implication for an almost maximal valuation
domain R (with maximal ideal M).

In this case, the injective hull E of a finitely embedded R-module
F is the direct sum of a finite number of copies of Q/M. Hence we
conclude that F is a submodule of a finite direct sum of uniserial R-
modules, and so it is polyserial in the sense of [5,p.190]. Polyserial
torsion modules over an almost maximal valuation domain are direct
sums of uniserials, hence (b) holds.

(b) = (a): We argue as before that it is enough to prove that a
local domain R with property (b) has to be an almost maximal valuation
domain.

That R is a valuation domain has been proved in Lemma 7. By
way of contradicition, suppose R is not almost maximal. Then there is
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a unit u in a maximal immediate extension R of R which is not in R

and whose breadth ideal
B=B(u)={rcRjug R+rR}+#0.

For every z € R\ B there is a (unit) v, € R such that v — u, € Ra.
Visibly, the family of units {u, € R|z € R\ B} satisfies

(i) uz —uy € Rz if y € Re,

(1) there is no v € R such that v —u, € Rz forall z € R\ B.

Define the fractional ideal C = B~! = {q € Q|¢B < R}; thusforr € R,
r~1 € C exactly if B < rR,i..

C= |J Rr .
rER\B

Multiplication by u, induces an automorphism a, of C/R. If y € Rz,
then u,z™! — uym_l € R shows that a,w = ayw for all w € Rz™1.
The automorphism a of C/R defined by aw = a,w for w € Rz} is
not induced by any element of R.

For some non-unit ¢ of R, consider the cocyclic uniserial R-module
V = C/Mt. There is no automorphism 6 of U which would induce «
on C/R, because of the choice of C. Using the submodule V = R/M1t
and the canonical map = : U — U/V, form the following commutative
diagram with exact rows:

=V

!

vV

0 - VvV - X —» U —20
Vi

o

7
0- V - U 5 U/V->o0

7/ lonr
7/

Since there is no automorphism 6 : U — U making the arising lower
triangle commute in either direction, neither the middle row nor the
middle column splits. Manifestly, VeV < X <U U, so X is finitely
embedded, and as such it is a direct sum X = X; ® X, where X; are
cocyclic. The proof of [5, p.190] shows that the intersection of X with
one of the U’s is pure in X. This amounts to the purity of one of
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the V’s in X. By [5, p.192], pure submodules of a finite direct sum
of uniserials are summands; consequently, either the middle row or the
middle column splits. This contradiction shows that no « € R can exist

with B(u) # 0, i.e. R is almost maximal. ¢

The characterization of rings R for which part (b) of Theorem 8

holds is an open question. The condition of R being h-local can be
weakened by demanding only that every prime # 0 in R be contained
in exactly one maximal ideal of R.
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Abstract: Arrangements of chromosomes according to Bennett’s model can
be characterized by a certain type of permutations of n objects. The number
of these permutations is determined for arbitrary even n and upper and lower
bounds are given for any odd n. As a consequence it is proved that in both
cases the relative frequency of the considered permutations converges to zero
with n increasing to infinity (which is of interest especially from the biological

point of view).

In cytogenetics the question is important whether there exists an
ordered arrangement of the n chromosomes of a haploid genome during
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metaphase (a certain stage of cell division). The best known theory
in favour of an ordered disposition of the chromosomes is Bennett’s
model (cf [1], [4], [5]). In terms of permutations the problem of the
existence of an ordered arrangement according to Bennett’s model can
be formulated as follows (cf [2]):

Given 7 € S,,, does there always exist h,p € S, such that

(1) |h(2k) — h(2k +1)| =1 for k=1,2,...,[Z]
(2) Ip(2k — 1) — p(2k)| =1 for k=1,2,...,[3]
and m = hp~17?

Here S, denotes the symmetric group on n letters, [r] indicates
the greatest integer that does not exede 7, h(n + 1) stands for h(1) and
hp~! is ment to indicate that first the inverse of p has to be performed
and than h. If 7 € S, admits a representation in the form 7 = hp™*
with h and p satisfying (1) and (2), 7 is called admissible.

The essential question now is: How many admissible permutations
exist in S,.7

Let AP, be the set of admissible permutations of S, and A(n) =

= |AP,|. For n odd an n < 11 the numbers A(n) were computed in
[3]; in particular, for n < 5 AP, = S, and for 5 < n <11 the number
A(n) does not much deviate from |S,|. The question arises whether
this is also true for an arbitrary odd n. (Some theoretical background
on finding A(n) for odd n can be found in [2].) On the other hand for
even n computations show that A(n) deviates very fast from n! with
increasing n.

In the following we will determine the exact value of A(n) for all
even n as well as lower and upper bounds for any 'odd n. As a conse-
quence, we prove that in both cases the relative frequency of admissible
permutations converges to zero.

As it was pointed out in [2] (for odd n but is analogously true
for even n), an ordered arrangement of chromosomes according to Ben-
nett’s model can also be considered as an unorientated graph G =
=< V, E > with vertex set V = {1,2,...,n} and edge set E which is
the product of two 1-factors F; and F5,i.e. G = F; X F;. We assign two
colours to the edges of G, namely colour 1 to the edges of F; and colour
2 to the edges of F>. Now, if 7 is an admissible permutation to which
the ordered arrangement represented by G belongs, and m = hp~! with
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h,p satisfying (1) and (2), then according to [2]

Fl =< Vy{[1a2]7[374],' --,[n - 1777‘]} >

(3) By =<V, {[r1,72],[n3,74],...,[r(n — 1),7n] >

for even n and

Fl :<V,{[1,2],---,[P—2,P'—1],[P+1,P+2],---,[n—1,n]}>
(4) Fr =<V/{[rl,x2],...,[r(q — 2),7(qg - 1)],
[*(¢+1),7(g+2),...,[x(n - 1), mn]} >

for odd n with p,q € {1,3,5,.. .n}.

Further G = F; X F, is a Hamiltonian circle in the even case and a
Hamiltonian path in the odd case, with edges of alternating colours in
both cases (shortly: alternating H-circle and H-path resp.). Moreover
the sequence of vertices within the alternating H-circle and H-path
resp. is given by hl,h2,...,hn, and the notation is chosen in such a
way that the first edge [h1, 2] always belongs to F. Hence, if n is
odd, hl = p and hn = wq. The same graph G' may be induced by dif-
ferent admissible permutations 7. On the other hand, G is determined
uniquely by m if n is even, but not for odd n.

The graph G = F; X F; can be defined by (3) or (4) for an arbitrary
7™ € Sn. But then in general G consists of several alternating H-circles
in the even case, of an H-path and one or more circles in the odd case.
Actually, for n even, 7 is admissible if and only if G is an alternating H-
circle. For an odd n, this is the case if p, g can be chosen appropriately
so that an alternating H-path results.

Now, for any n, let a,, = i(,ﬁ. This is the relative frequency of

admissible permutations. For odd n we define further:

Kn=2""1 (2712 = (n — 1)%(n — 3)2...22,

— Ky _ (n=1)(n—3)...2
kn = n!l T a(n—2)..-31

Remark 1. lim k&, = 0, since

=049+ ) (14 5) =
=1+(3+3+..-+1)+... 5 co.

n—1
Theorem 1. For any even n, a, = kn—1, hence ,lll_r’xg_o a, = 0.
Proof. The number of possible alternating H-circles is 2%_1(1_; - 1)L
To see this, we assume one edge of colour 1, say [1,2], in a fixed position,
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provide the edge with an orientation, which we keep also fixed, then we
count the number of permutations of the remaining edges of the same
colour and consider that each edge may be orientated in two ways.
Thus there are 27 - 5! permutations m which induce the same set of
edges {[w1,#2],...,[r(n — 1),7n]}, i.e. the same alternating H-circle.
This gives A(n) =2""1(Z2 - 1)!12 =n(n—-2)*(n—4)*...-22 = nK,_;,
therefore a, = "Kﬁl =kp1. ¢
In the odd case, the difficulty arises that an adimissible permu-

tation m may induce different alternating H-pathes trough different
choices of p and ¢ in (4). We recall that the corresponding H-path is
given by the sequence h1,h2,...,hn, where h = hp, h, p satisfy (1) and
(2), k1 = p, and pn = q. First we compute the number of admissible
permutations for fixed p, ¢, then for a fixed p with arbitrary gq.
Lemma 1. Let n be an odd number and A,(p,q) be the set of permuta-
tions ™ = hp~! € AP, with hl = p and pn = q. Then |A,(p,q)| = K,
for any p,q € (1,3,...,n}.
Proof. There are l;—l! possiblities to choose the order of the edges of
F; (or F3) in the alternating H-path and for each edge there are two
possible orientations to fit them in. Then, each H-path is induced by
25 . n-1y permutations in A4,(p, q) which gives the total number of
2 (22 =K, O
Lemma 2. Let n be odd and A—n(p) the set of allm = hp~' € AP, with
hl = p. Then |4,(p)| = 2(1 — (%)#)Kn for any p = {1,3,...,n}.
Proof. We now write F(p), Fr(q) instead of Fy, F, in (4), in order to
express theire dependence on p,q and 7. Let # = hp™' € A,(p, q¢) with
g > 3, thus F(p) x Fy(q) is an alternating H-path. Then 7 belongs to
A.(p,q — 2) if and only if F(p) x F.(g — 2) is an alternating H-path,
too, i.e. if and only if the substitution of the edge [r(g — 2),m(qg — 1)]
by [7(q — 1),mq] produces another Hamiltonian path. This is the case
if (g — 1) = hi, (g — 2) = k(2 + 1) for some i (then i = p~1(g—1) is
odd and i + 1 = p~'(q — 2) is even). If, on the contrary, p~2(g — 1) is
even, i.e. w(q — 2) = hi, m(¢ — 1) = h(: + 1) for some i, then deleting
the edge [r(g — 2),7(q — 1)] and linking (g — 1) to mq splits the path
into a path (possibly a single vertex) and a circle.
‘ For any m € An(p,q) let @' = 77141 4 » where 741 4> is the

transposition interchanging ¢ —1 with ¢ —2. Then 7' also is in 4,(p, q),
but ©' € A.(p,q —2) if and only if # ¢ A,.(p,q — 2). Thus, to any 7w €
An(p,9)NAn(p, g—2) there corresponds a ' € A,(p,q)—An(p,9—2) and
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vice-versa. Since |A,(p, q)| = |4n(p,q—2)| by Lemma 1, exactly half of
the elements of one set belong to the intersection of the two. Taking into
account that 7 and ' as above either both belong to A,,(p,r) for some
T > g or neither of them does, we infer that an analogous argument is

valid for the sets An(p,q) — U 4An(p,7) and A,(p,q—2) — U (p,7)
Cr>q r>q

Now let B, = A.(p,q) — L>J A, (p,r) for any odd ¢ < n, then
r>g

B, = An(p,n), Bn—z = An(p,n — 2) — A,(p,n), etc. Further 4,(p) =

= B, UB,_; U...U By, where these sets are pairwise disjoint, and

|By—2| = [(An(p,q—2) - l;J An(p,7)) — (4n(p;q) - L>J Aa(p,7))| =
r>q r>q

= %lAn(p, q) — L>J An(p,7)| = %]Bq]. Consequently, |A_n(p)| = |Bn|+
r>q

+|Bn—z|+...+|B1| = |An(p,n)(1+%+. . .+;i;—_1) = Kn(z—(%)’%) —
=21 - (3))Ka ©

As an immediate consequence we get the following lower bound
for the relative frequency of admissible permutations.
Theorem 2. For any odd n,a, > 2(1 — (%)ﬂzi)k,1 O
Finally we deduce an upper bound of a,, by a similar method.
Theorem 3. For any odd n, a, < 2(1 — (%)Ezu)zkn Therefore,
li_r& a, = 0.
Proof. For m € A,(p), ™ = Tp—1 p—a7 also belongs to A, (p). It suffices
to interchange the vertices p — 1 and p — 2 in a corresponding H-path.
Now let 7 € A,(n), sow € Ap(n,q) for some g € 1,2,... ,n). As in the
proof of Lemma 2, 7 € A,(n—2,q) holds if and only if [n —2,n—1] can
be substituted by [n — 1,n] so that another alternating H-path results.
This is the case if and only if h™'(p — 2) is even and A=(p — 1) is odd
(then p—2 = hi, p—1 = h(i+1) for some :). Otherwise, 7 € A,(n—2,q)
but still 7 € An(n — 2,¢') is possible for same ¢' # ¢ (it is easy to find
examples). Since w ¢ A,(n—2,q) implies 7' € A,(n—2,¢9)C
C A,(n —2), at least half of the elements of A,(n) belong also to
An(n —2). Therefore, since [A,(n) = [A(n—2)] by  Lemma 2,
A (n—2)— A—n(n)] < %l—;’l—.,:(n)l In the same way, with Cp, = A,(p)—
- U A_n(s), we infer |Cp_z| < %]Cpl. Since AP, = C,UC,_,U...UC,

8>p

with C,, = Z(n) we obtain  A(n) = |AP,| < |4.(n)|(1 + % + ...+
+—=5) = 4(1 - (%)#)ZK,,. To complete the proof, we need only

-1
2 2

n_2
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divide by n!. ¢

Remark 2. The upper bound of Theorem 3 is not strict (for small
n, we obtain values greater than 1), but it is sufficient to prove that
the relative frequency of admissible permutations converges to zero.
Compare the table below where we indicate the upper and lower bounds
of a,, according to Theorem 2 and 3 for some biologically relevant values

of n.
n lower bound upper bound
5 0.9333334 1.633334
7 0.8571429 1.607143
g9 0.7873017 1.525397
11 0.7272728 1.431818
13 0.6766568 1.342741
15 0.6340328 1.263112
17 0.5979067 1.193478
21 0.5402465 1.079985
25 0.4962781 0.992435
29 0.4614604 0.9228927
33 0.433052 0.8660973
39 0.3988169 0.7976331
45 0.3715961 0.743192
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Abstract: Given compatible semi-uniformities (or contiguities, or mero-
topies) on some subspaces of a closure space, we are looking for a common

extension of these structures.

Notations. In addition to the notations and conventions introduced
in §0 (seein [1]),let A2 =Ax A4, A" =X\ A (for AC X)), if U
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is a semi-uniformity then sl denotes the collection of the symmetric
entourages contained by Y.

2. Extending a family of semi-uniformities in a
closure space

A. WITHOUT SEPARATION AXIOMS

2.1 If a family of semi-uniformities can be extended in a closure space
then the closure is necessarily symmetric; this condition will turn out to
be sufficient, too. We are going to construct the finest and the coarsest
extension.
Definitions. For a family of semi-uniformities in a closure space,

a) Let U° be these semi-uniformity on X for which the following
entourages form a subbase B:

(1) UiOZU,'U(Xz\XiZ) (’iEI, UisEUi);
2) Usp={c}2UB? (zeX, BCX, z¢c(B)).

b) Let U?! consist of the entourges U on X that satisfy the following
conditions:

(3) Uz € v(z) (z € X);
(4) UlXiEui ('iEI). &
B is a collection of symmetric entourages, and, assuming X # 0,
B is non-empty (take B = ( in (2)), so it is indeed a subbase for a
semi-uniformity. #° would not change if si{; were replaced by I; in (1).
It is straightforward to check that &' is a semi-uniformity, too.
Similarly to the convention introduced in §1 for proximities, we
shall write, if necessary, U*(c,U;), or even U¥(c,{U; : i € I}). In
particular, U¥(c) = L, U*(¢,0). (k = 0,1). Analogous notations will
be used for Riesz and Lodato semi-uniformities, as well for merotopies
and contiguities.
Theorem. A family of semi-uniformities in a symmetric closure space
always has extensions; U° is the coarsest and U the finest eztension.
Proof. 1° U° is coarser than U*. It is enough to show that B C U?.
U?:z: = X if ¢ € X; otherwise U?:z: = Uz U X7, which is clearly
a c-neighbourhood of z, since U;z € s;(z). For j € I,
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U2 X; = (Uil X3;) U (X2 \ X7) = (U;|X35) U(X2\ X2)

holds with a suitable U; € U; (by the accordance); hence U} |X; D U;,
and so U}|X; € U;. This means that U? satisfies (3) and (4), i.e.
U} e .

U.,By € v(y) for y € X; this follows from U, gz = B" for y = =z,
from U,,p = X for 2 # y € B", and from U, gy = {¢}" for y € B,
because in the last case ¢({y}) C ¢(B), « € c({y}), ¥y € c({z}). U.,B
satisfies (4), too: U, g|X; = X? if z € X7, and in case ¢ € X; we can
choose a U; € sUf; with U;z N (BN X;) =0 (as ¢ € ¢(B) D c;(BN X;)),
and then U; C UZ,B|X,'.

2° U'|X; is coarser than U;. This is evident from (4).

3° U; is coarser than U |X;. If U; € U; then U; = U?|X; € B|X; C
ciy® |Xi.

4° ¢(U?*) is coarser than c. This is clear from (3).

5° ¢ is coarser than c(U°). Observe that

(5) v(z) = {U, gz : z ¢ ¢(B)}.

6° U°® and U" are extensions. It follows from 1°, 4° and 5° that ¢/°
and Y* are compatible, respectively from 1°, 2° and 3° that & °X; =
=U; =U"|X;.

7° U° is the coarsest extension. Let U be another extension; we
have to show that B C U.

For U; € slU;, choose U € U such that U|X; = U;; now U C U?,
thus U} € U. If ¢ & ¢(B) then Uz N B = { for some U € si{, and
therefore U C U, p.

8° U! is the finest extension. If I{ is another extension then each
U € U satisfies (3), because U is compatible, and (4), because U |X; =
=U;. Hence U C U*. O

2.2 a) Formulas analogous to 1.3 (1) and (2) are valid for semi-uni-
formities (and also for merotopies and contiguities). The proofs are
essentially the same as the ones given in 1.3 for proximities. We are
going to set out the categorical background of these formulas.

Let C and D be topological categories, and F : D — C a concrete
functor. (In contrast to the situation outlined in the introduction of
Part I, it is not necessary to assume here that F' commutes with the
restriction to subsets.) We denote the C-structures by ¢, and the D-
structures by d (with indices when necessary), and use the conventions
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introduced in §0, except that a family of D-structures in a C-space is
not required to be either compatible or accordant; in particular, F(d)
will also be written as ¢(d). ¢ < ¢' denotes that ¢ is coarser than c'.
Consider a family of D-structures in a C-space. We say that the
D-structure d on X is a
00-overeztension if it is just an extension;
01-overeztension if ¢ = ¢(d) and d; < d|X; (i € I);
10-overeztension if ¢ < ¢(d) and d; = d|X; (i € I);
11-overeztension if ¢ < ¢(d) and d; < d|X; (i € I).
A pg-undereztension (p,q = 0,1) is defined in the same way, replacing
< by >.
Let now a non-empty family of D-structures in a C-space be fixed.
1° If d°[i] is the coarsest pg-overextension of {d;}, and there exists

a pg-overextension of the whole family then sup d°[i] is the coarsest pg-

overextension. (The proof is straightforward.)

2° Assume that (i) the empty family in (X, c) has a coarsest pg-
overextension d°(c) (if p = 0 then this means that d°(¢) is the coarsest
compatible structure); (ii) each {d;} has a coarsest 1g-overextension
d®*[i] with respect to the indiscrete C-structure on X; (iii) the whole
family has a pg-overextension. Then

(1) sup{d°(c), sup d*°[i]}

is the coarsest pg-overextension. (The statement is more symmetrical
than it looks to be: d°(c) is the coarsest pl-overextension if each d; is
replaced by the indiscrete D-structure on X;.)

3° The analogue of 1° is valid for pg-underextensions.

4° In the analogue of 2° for pg-underextensions, the condition
corresponding to (ii) is superfluous, since d'![i] always exists in a topo-
logical category: take the coproduct of d; and the discrete structure
on X]. (The reason for the difference is that 2° and 4° are not dual:
subspaces have not been replaced by quotient spaces.)

Observe that Definition 2.1 gives U° in the form (1), and Y* sim-
ilarly as an infimum.

b) It is possible to deduce Theorems 1.1 and 1.2 from Theorem
2.1; this will be discussed in Part III, where a result on extending semi-
uniformities in a proximity space will enable us to do the converse,
too, i.e. to partly prove Theorem 2.1 in two steps, first extending the
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proximities §(14;) in (X, ¢), and then the semi-uniformities in (X, 6°) or

(X, 6Y).

B. RIESZ SEMI-UNIFORMITIES IN A CLOSURE SPACE

2.3 If a family of semi-uniformities in a closure space has a Riesz exten-
sion then each semi-uniformity is Riesz, the closure is weakly separated,
and the trace filters are Cauchy (because the neighbourhood filters in
a Riesz semi-uniform space are Cauchy). We are going to prove that
these conditions are sufficient, too.

Definition. For a family of semi-uniformities in a closure space, let

(1) Up={UclU': AcIntU}. ¢

U}, is clearly a semi-uniformity.
Theorem. A family of semi-uniformities in a weakly separated closure
space has a Riesz extension iff the trace filters are Cauchy; if so then
U° is the coarsest and U}, the finest Riesz eztension.
Proof. Assume that the trace filters are Cauchy.

1° U° is coarser than Up. In view of 1° from the proof of Theorem
2.1, it is enough to show that A C Int U holds for each U € B.

A C Int U?, because for ¢ € X, thereis an 4 € si(z) such that
A? C U;, and then B = AUXT € v(z), thus (z,z) € Int B? and
B?* cU?.

Similarly, A C Int U, g, because for y € X, there is an 4 € v(y)
such that 4% C U, g, namely

_ | B"  if yec({z}),
A‘{{z}f if y ¢ c({z}).

(If y € ¢({z}) then, c being weakly separated, from & ¢ c(B) we have
y & ¢(B), thus B" € v(y) indeed.)

2° U}, is a Riesz extension. By 1°, the evident statement Uy C U,
and Theorem 2.1, U is an extension. The compatibility of U, implies
that it is Riesz, as Int in (1) is now the ¢(Ug) x c(U})-interior.

3° U° is Riesz, too, because it is coarser than a Riesz semi-
uniformity inducing the same closure. Given a Riesz extension U, we
have i C U' by Theorem 2.1, and the elements of & satisfy (1), thus
U C Ug. On the other hand U° C U, again by Theorem 2.1. O




24. A. Csdszér, J. Dedk

If {intX; : 1 € I} covers X and each U; is Riesz then it is not
necessary to assume that the trace filters are Cauchy: For z € X and
U; € U;, take j € I with = € intX;, and U; € Y; such that U;|X;; =
= U;|X;j. AsU; is Riesz, thereis an A € sj(z) with A? C U;. z € intX;
implies that A € v(z), thus AN X; € si(z), and (AN X;)? C Us.
Corollary. A family of Riesz-semi-uniformities in a weakly separated
closure space has a Riesz extension iff U; C Ug(c)|X: (1 € I).

Proof. Just like the proof of Corollary 1.4.

C. LODATO SEMI-UNIFORMITIES IN A CLOSURE SPACE

2.4 If a family of semi-uniformities in a closure space has a Lodato
extension then each semi-uniformity is Lodato, the closure is an S;-
topology, and the trace filters are Cauchy. A modification of Example
1.8 shows that these conditions are not sufficient: replace §, by the
Euclidean uniformity ¢y on X, and 6%(¢) by a Lodato semi-uniformity
V compatible with it (e.g. by Uk(c)); now Uy and U; = V|X; satisfy
the necessary conditions, but if they had a Lodato extension U then
the Lodato proximity §(¢{) would extend §, and §;. In Example 2.10,
we shall define Lodato semi-uniformities in a closure space that do not
- have a Lodato extension, although the Lodato proximities induced by
them do have one.

Notation. In a closure space (X, c), put
(1) Va,p = Vo,Bix = c({z})™ U e(B)™

forze X,BC X,z ¢gc(B). ¢

Lemma. If ¢ is weakly separated then V, p = Int U, g; so if U is a
compatible Lodato semi-uniformity then V; p € U.

Proof. V, p C Int U, p is evident. Conversely, let (y,2) € IntU, g. If
¥,z € c({z}) then clearly (y,2) € V, B. If, say, y € ¢({z}) then take
M,N such that y€int M,z €int Nyand M x N CU, . Nowz e M
implies N C B", thus z € ¢(B)". On the other hand, y € ¢(B)" follows
from the weak separatedness. Hence (y,2) € V, p again.

The second statement follows from the first one, using Theorem
2.1 applied to I = 0. ¢

2.5 Deflnition. For a family of Lodato semi-uniformities in an .S-
space, let
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(1) Ul = {U el :IntU e U'}.

In other words, the ¢ X c-open elements of ' form a base for U}. {
Lemma. For a family of Lodato semi-uniformities in an S;-space, U}
18 a compatible Lodato semi-uniformity; it is the finest one among those
Lodato semi-uniformities U on X that induce a closure coarser than c,
and for which U|X; is coarser than U; (i € I).

Proof. U} is clearly a semi-uniformity. Ui C U?, so it follows from
Theorem 2.1 that U] | X; is coarser than U; and c(} ) is coarser than c.

1° ¢(UL) is finer than c. It suffices to see that U, p € U} (z € X,
B C X,z ¢ c(B)). V,,pis clearly a ¢ X c-open entourage contained by
U:,B, so we have only to check that V, g € ur.

2.1 (3) is satisfied, since V, py is open for y € X.

To prove 2.1 (4), fix ani € I. If ¢({z}) N X; = 0 then X? C V, g,
thus V g|X; € U; is now evident. Otherwise, pick a point y € ¢({z})N
NX;; then (c being an S;-topology) c¢({y}) = ¢({z}) and y & ¢(B) >
D A=¢(B)NX;. As Ais c;-closed, Lemma 2.4 gives

Vyaix: = (Xi \ e:({y}))? U (X:\ 4)? € U,
Now V;,B|X; = Vy 4;x; follows from ¢;({y}) = c({y}) N X; = ¢({z})N
NX;. Thus VZ,B|X~; € U; again.

2° U] is Lodato. We have established that U} is compatible, so
it is Lodato by (1) (since c is a topology).

3° Uj is finest. Let U be another Lodato semi-uniformity with
UIX; C U; (i € I) and ¢(U) coarser than ¢; we have to show that
U C U. U C U is evident; moreover, U has a base consisting of
c(U) X c(U)-open entourages, which are then ¢ x c-open, too. {

2.6 Definition. For a family of Lodato semi-uniformities in an S;-
space, let U2 be the filter on X? generated by the subbase By, consisting
of the following sets:

Int U} (1 €I, U; € slhy);
Ve,B (BCX,z€ec(B)). ¢
The elements of By, are symmetric, thus Y} is a semi-uniformity iff
each Int U? is an entourage, i.e. iff the trace filters are Cauchy. It does
not change U} iff sl; is replaced by U; and/or V, g by c({z})"> U B™.
Observe that

(1) B ={IntU : U € B},
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{Int U € U°} is a base for YUY, and U° C U}.
Lemma. If a family of Lodato semi-uniformities is given in an S;-
space, and the trace filters are Cauchy thenUy is the coarsest one among
those compatible Lodato semi-uniformities U on X for which U|X; is
finer than U; (i € I).
Proof. Theorem 2.1 and #® C U} imply that U?|X; is finer than U;
and c(U}) is finer than c. ¢(U) is also coarser than ¢, since the elements
of the subbase By, are open; hence U} is compatible and Lodato.

Let U be another compatible Lodato semi-uniformity with U; C
C U|X;. Now U} € U, and so Int U? € U (as U is Lodato). V, g € U
by Lemma 2.4. {

2.7 Lemma. A family of Lodato semi-uniformities in an S;-space has
a Lodato eztension iff U] C U}; if so then both U} and U} are Lodato
ezlensions.

Proof. Lemmas 2.5 and 2.6, using that if Y} C U} then the elements
of U? are entourages, thus the trace filters are Cauchy. ¢

Theorem. A family of Lodato semi-uniformities in an S,-space has a
Lodato eztension iff the trace filters are Cauchy, and for any 1,5 € I,

(1) (It UY)|X; elU; (Ui € Us);

if s0 then U] is the coarsest and U} is the finest Lodato extension.
Remark. The accordance can be written in the following equivalent
form: UQ|X; € U; fori,j € I, U; € U;, of which (1) is clearly a strength-
ening. For ¢ = j, (1) is equivalent to the statement that U; is Lodato,
so it was in fact superfluous to assume that the semi-uniformities are
Lodato.

Proof. The necessity is obvious. By Lemma 2.6, the sufficiency will
also follow if we show that UQ|X; CU;,ie. that Br|X; CU;
(7 € I). For IntU?, this is just (1). V, g € U' was checked in 1° of the
proof of Lemma 2.5, so V, g|X; € U; by Theorem 2.1. The remaining
statements follow from Lemmas 2.7, 2.6 and 2.5. {

Corollary. A family of semi-uniformities in an S;-space has a Lodato
eztension iff {U;,U;} has a Lodato eztension for any i,j € I.

2.8 Corollary. A single Lodato semi-uniformity given in an S;-space
has a Lodato eztension iff the trace filters are Cauchy.

2.9 Theorem. Let a family of Lodato semi-uniformities be given in
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an Si-space. Assume that either each X; is open and the trace filters
are Cauchy or each X; 1s closed. Then there ezists a Lodato eztension.
Proof. We are going to check that if U; € U; is open then

(2) Int U? D) Illt]' (U?'Xj);

this is sufficient for 2.7 (1), because the open entourages form a base
for U; (as U; is Lodato), and the right hand side of (1) belongs to U;
(as the semi-uniformities are accordant, and i; is Lodato). Take (z,y)
from the right hand side of (1).

1° Let X; be closed. If z,y € X;; then, U; being open, we can
pick c-open sets A 5 z and B 3 y such that (4 x B)|X; C U;, which
implies that A x B C U?; thus (z,y) € IntU}. If, say, = € X; \ X; then
(z,y) € XT x X, which is a ¢ X c-open set contained by U}.

2° If X; is open then there are c-open sets A 3 ¢ and B 3 y such
that A,BC X;and Ax BCU|X; CU?. ¢

The analogue of Theorem 1.13 is not valid for semi-uniformities
(although it holds for merotopies and contiguities, see Theorems 3.8
and 4.5), not even under the stronger assumption

(2) X\ X;)Ne(X;\Xi)=0 (i, jel):
Example. Let H =]0,1[, T = {0} U {1/n:n € N},
X = (TU[2,3]) x H,Xo = X\ ({0} x H),X; = X \ (]2,3[xH).

Let ¢ be the Euclidean topology on X, and {Uj(¢) : € > 0} a base for
U; on X; (i =0,1), where, with P ® @ denoting (P x Q) U (@ x P),

Us(e) = U(e)| Xo U LEJN(({l/n}X]O,E[) ® ([2,2 + 1/n[x]0,e])),
Ui(e) = U(e)| X1 U ((T'x]0, €]) ® ({2} x]0,¢[)),

and, for z,y € X, z U(¢)y iff the Euclidean distance of ¢ and y is < e.
{Up, U1} is a family of Lodato semi-uniformities in (X,c), the trace
filters are Cauchy, and (2) holds. But there is no Lodato extension: 2.7
(1) fails for 2 = 0, j = 1, U; = Up(1), since

((0,€/2),(2,€/2)) € Ur(e) \ (Int Us (1)°)1X1.

2.10 By Theorem 1.13, the induced proximities have a Lodato ex-
tension in the above example. We can give, however, a much simpler
example with this property:

Example. With X, X, X; and ¢ as in Example 1.8, let /; be the
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Euclidean uniformity on X;, Uy the precompact uniformity compatible
with the Euclidean proximity on X,. Now the trace filters are Cauchy,
and the induced proximities have a Lodato extension (namely the Eu-
clidean proximity on X), but Uy and ¢; do not have one, since 2.7 (1)
fails fori =1 and j =0.

2.11 Concerning extensions of a single uniformity, see [6], [5], [7], [2]
85, [3], [4] §2. The same can be said about simultaneous extensions of
uniformities as in the case of Efremovich proximities, cf. 1.16; see [4]
Remark 1.13 c¢) and Example 1.13 b) for details.

3. Extending a family of merotopies in a closure
space

A. WITHOUT SEPARATION AXIOMS

3.1 If a family of merotopies can be extended in a closure space then
the closure is symmetric; this condition will be proved to be sufficient,
too. Definitions, results and proofs are very similar to those in §2.
Definitions. For a family of merotopies in a closure space,

a) Let M® be the merotopy on X for which the following covers
form a subbase B:

(1) C,?Z{C.?=C,'UX{:C{EC1'} (iEI,C,;EM-;);
(2) ¢z, = {{z}",B"} (B C X,z € ¢(B)).

b) Let M' consist of the covers ¢ of X that satisfy the following
conditions:

(3) St (z,c) € v(z) (z € X);
(4) c|X; € M; (z€I) .

Theorem. A family of merotopies in a symmetric closure space always
has eztensions; M® is the coarsest and M? the finest eztension.
Proof. 1° M° is coarser than M*. It is enough to show that B ¢ M®.
If z € X7 then St(z,c}) = X € v(z);  otherwise  St(z,c}) =
= St(z,c;) U X] € v(z), since St(z,¢;) € s;(z). It follows easily from
the accordance that c? satisfies (4), too. Thus ¢! € M.
St(y,cz,B) is equal to BT if y = z, to X if ¢ # y € BT, and to
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{z}" if y € B; thus it belongs to v(y), in the last case by the symmetry
of c. ¢, p satisfies (4), too: if ¢ € X[ then {X;} € ¢z B|Xi; otherwise
pick ¢; € M; with St(z,¢;) N B = 0, and then c; refines ¢, g|X;.

2° M and M! are extensions. Just like in the proof of Theorem
2.1, replacing 2.1 (5) by

(5) v(z) = {St(z,c,B) : ¢ & c(B)}.

3° M® is coarsest, M! is finest. Check that if M is an extension

then B C M, and, on the other hand, each ¢ € M satisfies (3) and (4). ¢

B. RIESZ MEROTOPIES IN A CLOSURE SPACE

3.2 If a family of merotopies in a closure space has a Riesz extension
then the merotopies are Riesz, the closure is weakly separated, and the
trace filters are Cauchy. These conditions are also sufficient.
Definition. For a family of merotopies in a closure space, let

(1) My = {c € M' :intc is a cover of X}.
Observe that
(2) int ez, g = {c({z})",c(B)"}.

Theorem. A family of merotopies in a weakly separated closure space
has a Riesz eztension iff the trace filters are Cauchy; if so then M® is
the coarsest and M}q the finest Riesz extension.
Proof. Assume that the trace filters are Cauchy.

1° M? is coarser than M. By M® ¢ M*, it is enough to show that
int ¢ is a cover for ¢ € B.

int ¢? is a cover, because the trace filters are Cauchy. int ¢, g is
also a cover, since ¢ is weakly separated, and so ¢({z}) N ¢(B) = 0.

2° The remaining statements can be proved in the same way as in
2° and 3° in the proof of Theorem 2.3, replacing entourages by covers
and Int by int. {
Corollary. A family of Riesz merotopies in a weakly separated closure
space has a Riesz extension iff M; C My(c)|X: (i € I). ¢

C. LODATO MEROTOPIES IN A CLOSURE SPACE

3.3 If a family of merotopies in a closure space has a Lodato extension
then the merotopies are Lodato, the closure is an S;-topology, and the
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trace filters are Cauchy. Example 1.8 can be modified for merotopies in
the same way as for semi-uniformities (cf. 2.4) showing that the above
conditions are not sufficient; a better example will be given in 3.8.
Notation. d, g =d, g,x =intc, g for BC X and z € ¢(B)" (cf. 3.2
(2)). ¢

Lemma. If M is a compatible Lodato merotopy then d, g € M. {

3.4 Definition. For a family of Lodato merotopies in an S;-space, let
Mi ={ce M!:intcec M'}.

In other words, the open covers contained by M? form a base for Mi. O
Lemma. For a family of Lodato merotopies in an S;-space, M} is a
compatible Lodato merotopy; it is the finest one among those Lodato
merotopies M on X that induce a closure coarser than c, and for which
M|X; is coarser than M; (i € I).
Proof. The argument runs along the same lines as the proof of Lemma
2.5, therefore we confine ourselves to showing that ¢(M}) is finer than
c. It is enough to see that d; B € M!, because then cz,B € M7, and 3.1
(5) can be applied. 3.1 (3) is satisfied, since d, p is an open cover.

If c({z}) NX; = 0 then {X.L} € dz,BlX-i thus dz1B|X1‘ e M;.
Otherwise, pick a point y € ¢({z}) N X;. Now ¢({z}) = ¢({y}), thus
d. B =dy . But

dy,B|X:i = dy (5| Xi = dy,c(Bynxisx; € M
by Lemma 3.3. So d, 5|X; € M; again, i.e. 3.1 (4) is fullfilled, too. ¢

3.5 Definition. Given a family of Lodato merotopies in an Si-space
such that the trace filters are Cauchy, let M} be the merotopy on X
for which the following covers form a subbase By,:

int ¢! (1€ I,c; € My);
d:.B (BC X,z €c(B)). ¢

By isindeed a subbase for a merotopy (intc! is a cover, because the
trace filters are Cauchy; this condition could be dropped as in Definition
2.6, but then the notion of a subbase had to be generalized from covers
to arbitrary collections). We have By = {intc:c € B}. {intc:c e M°}
is a base for M}.

Lemma. If a family of Lodato merotopies is given in an Si-space, and
the trace filters are Cauchy then M% 1s the coarsest one among those
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compatible Lodato merotopies M on X for which M|X; is finer than M;
(e I). :
Proof. Similar to the proof of Lemma 2.6. $

3.6 Lemma. A family of Lodato merotopies in an S;-space has a
Lodato extension iff the trace filters are Cauchy and M} C ML; if so
then both M% and M}, are Lodato extensions.

Theorem. A family of Lodato merotopies in an Sy-space has a Lodato
eztension iff the trace filters are Cauchy, and, for any 1,7 € I,

(1) (int C?)|Xj € M; (Ci e M;);

if s0 then MY is the coarsest and M7 is the finest Lodato eztension.
Remark. The accordance of merotopies can be written in the following
form: ¢!|X; € M;.

Proof. Similar to the proof of Theorem 2.7, using that d; g € M' was
established in the proof of Lemma 3.4. $

Corollary. A family of merotopies in an S,-space has a Lodato ezten-
sion iff {M;,M;} has a Lodato eztension for any i,5 € I. &

3.7 Corollary. A single Lodato merotopy in an S;-space has a Lodato
eztension iff the trace filters are Cauchy.

3.8 Theorem. Let a family of Lodato merotopies be given in an S-
space, assume that the trace filters are Cauchy, and

(1) (XN\X)N(X\ X)) =0 (5,5 €l).

Then there ezists a Lodato eztension.
Proof. To prove 3.6 (1), it is enough to show that if ¢; € M; is open
(which may be assumed, as M; is Lodato) then int; (c?|X;) is a refine-
ment of (intc!)|X;, because the former belongs to M; by the accordance
and the Lodato property of M;. The above statement is a consequence
of
(2) int; (G N X;) C int G},
where GG; is c;-open. '

For the proof of (2), take a point z from the left hand side of it.
If z € X;; then z € Gy, implying ¢ € int G}. If z € X; \ X; then pick
a c-open set H such that z € H and H N X; C G?; we may assume by
(1) that H N (X; \ X;) =0, thus HN X; C GY, implying H C GY. ¢

Corollary. Let a family of Lodato merotopies be given in an S;-space.
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Assume that either each X; is open and the trace fileters are Cauchy or
each X; is closed. Then there ezists a Lodato extension.

Example. Take S = {1/n:n €N}, X = S x ({0}US), Xo =S x {0},
X; = X[. Let c be the Euclidean topology (inherited from ]Rz) on X,
and My the merotopy on X, that consists of all the covers containing
at least one cofinite set. For € > 0, consider the cover

(3)  ale)={(p.p+elxlgg+e)NX;:0<p<1, 0<qg<1}U
- U{({1/n}x]0,e) N X; : n € N},

and let {c;(¢) : € > 0} form a base for the merotopy M; on X;. Both
merotopies are compatible and Lodato; they are evidently accordant;
the trace filters are Cauchy by the second line of (3). U(My) and U(M,)
‘have a common extension, namely the Euclidean uniformity on X. Let
M be the Euclidean merotopy on X, which means that {c(¢) : € > 0}
is a base for M, where

c(e) ={(p,p+elxlg,g+e[)N X : p,q €R}.

Now I‘(M) is an extension of I'(My) and I'(M;). And yet, My and M,
cannot be extended, as 3.6 (1) is not fulfilled for ¢ = 1, 7 = 0 and
;i =c¢(1). ¢ : ‘

4. Extending a family of contiguities in a closure
space

A. WITHOUT SEPARATION AXIOMS

4.1 The exact counterparts of the results from §3 hold for contiguities.
It is in fact possible to do the proofs all over again, inserting the word
"finite” in appropriate places; it will be, however, simpler to deduce
the results for contiguities from those for merotopies. We shall need
some elementary (and well-known) facts about the connexion between
contiguities and merotopies (the special case for I = (} of an extension
problem to be discussed in Part IV):

- Each contiguity I' can be induced by a coarsest merotopy MO(F),
for which T' (or-any base for I') is a base; a merotopy of this form
(i.e. omne that has a base consisting of finite covers) is called contigual.
I is Riesz or Lodato iff M?(T") has the same property. The function
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' — M°(T") gives a one-to-one correspondence between contiguities and
contigual merotopies, keeps the relation finer/coarser, and commutes
with the restriction to a subset as well as with taking the induced
closure.

If a family of contiguities can be extended in a closure space then
the closure is symmetric; similarly to the case of merotopies (and other
structures), this condition is sufficient, too.

Definitions. For a family of contiguities in a closure space,

a) Let I'® be the contiguity on X for which the covers f} (z €
€l,f;el;)andc, p (B C X,z € ¢(B)") form a subbase.

b) Let I'! consist of the finite covers f of z that satisfy the following
conditions: St(z,f) € v(z) (z € X) and f|X; e I; (1 € I). O

In other words
(1) Ik = F(Mk(c, MO(Pt))) (k= 0,1).

Theorem. A family of contiguities in a symmetric closure space always
has eztensions; T'C is the coarsest and T the finest extension.

Proof. It follows from (1) and the foregoing observations that I'’ and
I'" are extensions. If I' is an extension then M°(T) is an extension of
the merotopies M°(T;), thus

M°(e, M*(T;)) € M°(T) € M*(¢, M(T;)),
implying I'° c T c T ¢

B. RIESZ CONTIGUITIES IN A CLOSURE SPACE

4.2 If a family of contiguities in a closure space has a Riesz extension
then the contiguities are Riesz, the closure is weakly separated, and the
trace filters are Cauchy. These conditions are also sufficient.
Definition. For a family of contiguities in a closure space, let

'L ={feTI!:intfis a cover of X}. ¢
This means that I'};, = T(M%x(c, M*(T%))).

Theorem. A family of contiguities in a weakly separated closure space
has a Riesz eztension iff the trace filters are Cauchy; if so then I'" is
the coarsest and I'}, the finest Riesz eztension.

Proof. I';-Cauchy means the same as M°(T';)-Cauchy. ¢
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C. LODATO CONTIGUITIES IN A CLOSURE SPACE

4.3 If a family of contiguities in a closure space has a Lodato extension
then the contiguities are Lodato, the closure is an S;-topology, and the
trace filters are Cauchy. These conditions are not sufficient: modify
again Example 1.8, or see 4.5 for a better example.
Definitions. For a family of Lodato contiguities in an S;-space,

a) Let I't = {feT'?!:intfe I''}.

b) Assuming that the trace filters are Cauchy, let T'Y be the con-
tiguity on X for which {intf:f € I'} is a base. {

Observe that T'¥ = I'(M% (¢, M%(T;))) (k = 0,1).
Lemma. A family of Lodato contiguities in an S;-space has a Lodato
eztension iff the trace filters are Cauchy and T'Y C I'}; if so then both
I'Y and I'} are Lodato eztensions.
Theorem. A family of Lodato contiguities in an S1-space has a Lodato
extension iff the trace filters are Cauchy, and, for any 1,7 € I,

(1) (1ntff)[XJ € Fj (f-,, € Fi);

if so then '} is the coarsest and I'L the finest Lodato eztension.
Corollary. A family of contiguities in an S;-space has a Lodato ezten-
sion iff {I';,T';} has a Lodato eztension for any 1,5 € I. {

4.4 Corollary. A single Lodato contiguily given in an S;-space has a
Lodato eztension iff the trace filters are Cauchy.

4.5 Theorem. Let a family of Lodato contiguities be given in an S;-
space, assume that the trace filters are Cauchy, and 3.8 (1) holds. Then
there exists a Lodato extension. O
Corollary. Let a family of Lodato contiguities be given in an S, -space.
Assume that either each X; is open and the trace filters are Cauchy or
each X; is closed. Then there ezists a Lodato eztension.
Example. Let X, Xy, X1,c and Mg be as in Example 3.8. Take I'y =
=T'(My), and let {f;(k): & € N} be a subbase for I'; on X;, where
fi(k) = {{(1/m,1/n) : m,n > k,m # (mod3)}: p =0,1,2}U
U{{({1/m,1/n):n >k} : m < k}U
U{{(1/m,1/n) :m >k} :n < k}U
U{{(1/m,1/n)} : m,n < k}.

Now {T'y,I';} is a family of Lodato contiguities, the trace filters are
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Cauchy, theinduced proximities have a Lodato extension (the Euclidean
one on X), but I'y and I'; do not have one, as 4.3 (1) fails for i = 1,
j == 0, f.i - f]_(l) <>
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Abstract: Let N= C(A, G) be a centralizer near-ring determined by a group
A of automorphisms of the group G such that the identity of N is the sum of
a finite number of mutually orthogonal primitive idempotents, e;. A group
M is called an SE-grcup for Nif N acts as a semigroup of endomorphisms on
M with an aditional ”strong” property for the idempotents, e;. In this paper
we investigate the structure of the centralizer near-ring C(N,M) and as an

application obtain a near-ring analogue to a well known matrix theory result.

1. Introduction

Let R be a ring with 1. Then R forms a left unital R-module
rR and a right unital R-module Rg. With each of these R-modules
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we have the ring Endr(gR) of R-endomorphisms of gR and the ring
Endgr(RRg) of R-endomorphisms of Rg. It is easy to see that Endgr(rR)
is anti-isomorphic to R and Endg(Rpg) is isomorphic to R.

This left-right duality for rings fails for near-rings. Let N be a
(right) zero-symmetric near-ring with 1 which does not satisfy the left
distributive law. Then yN is a left unital N-module (see Pilz [6] or
Meldrum [4] for near-ring terminology and basic facts). However, since
N does not satisfy the left distributive law, there exist elements ny,n,
and ng in N such that n;(n; 4+ n3) # niny + nins, violating a right
N-module axiom.

The near-ring analogy to Endgr(rR) is the set Mapy(nN) con-
sisting of all maps f from N into N such that f(nm) = nf(m) for
all n in N and all m in yN. As in the ring case Mappy(nN) consists
precisely of right multiplication maps by elements of N, but if N does
not satisfy the left distributive law then, under function addition and
function composition, Mapy (V) does not form a near-ring since it is
not closed under addition.

Using Ny we see that Mapy(Nn) consists of left multipliation
maps by elements of N and it forms a (right) near-ring under function
addition and function composition. The near-ring N acts on Ny as a
semigroup (under function composition) of endomorphisms of the group
(Nn,+). Forif ny,ny arein Ny andnisin N then (n;+mny)n=
= nin + nzn. Since the left multiplication maps Mapy(Nn) are pre-
cisely the functions on N that commute with the right multiplication
maps so Mapy(Ny) is the centralizer near-ring C(N, Ny) where N
acts on Ny as a semigroup of endomorphisms via right multiplication.
(See [2] for details about centralizer near-rings C(S,G) where S is a
semigroup of endomorphisms of the group G.)

The prototype of a finite-ring is the centralizer near-ring C(A4, G)
where G is a finite group and A is a group of automorphisms of G (see
[2]). If N = C(4,G) then the identity 1 of N is the sum of mutually
orthogonal primitive idempotents, 1 = e; + e3 + - - - + e;. Moreover we
have, for every ¢,j with i # j,n(e; + €;) = ne; + ne; for all n in N,
and e; + e; = e; + ;. This implies that if n belongs to N such that
ne; = 0 for every 7 then n = 0. With this in mind we have the following
definition where N = C(4, G).

Definition. If N = C(4,G) with 1 = e; + ez + -+ - + e; as above, then
a group (M, +) is an SE-group (strong endomorphism group) for N if
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here is a composition M x N to M such that

a) (my + my)n = myn + myn for every my,my in M and n in N,
b) (mny)ny = m(nin,) for every m in M and ny,n, in N,

c) ml = m for every m in M,

d) m0 = 0 for every m in M, and

e) if m in M is sucht that me; = 0 for all 7, then m = 0.

Thus, when M is an SE-group for N = C(4,@), the first four
axioms require that N acts as a semigroup of endomorphisms on M
with 1 acting as the identity map and 0 as the zero map, while the
"strong” property (e) leads to m(e; + e;) = me; + me; for all ¢,7 with

We note that if M; and M, are SE-groupsfor N then so is
My + M,. Also if R is a right ideal of N then R is an SE-group for N.
In particular, Ny is an SE-group for N. Moreover, with each SE-group
M for N we have the corresponding centralizer near-ring C(N, M).

It is the purpose of this article to investigate the structure of the
near-ring C(N, M) where N is a finite centralizer near-ring of the type
C(A,G), A is a group of automorphisms of G and M is an SE-group for
N. In the next section we focus on the case where N = C(4, G)isa
simple near-ring. In section 3 we present two general results and in the
final section we use a theorem of A.P.J. van der Walt ([8]) to obtain a
near-ring analogue of a well-known matrix theory result.

t
(
(
(
(
(

2. Structure of C(N,M),N simple

In this section NV represents a finite centralizer near-ring C(4, Q)
where A is a group of automorphisms of the finite group G and 1=
= e1 + ez + --- + e; where the e;’s are mutually orthogonal primitive
idempotents. We recall that if N is simple then there exists a group G
and a fixed point free group A of automorphisms of G such that N is
isomorphic to C(4, G).

Lemma 1. Let N = CA,G) withl=-¢e; +e3+---+e; and let M be
an SE-group for N. If f belongs to C(N, M) then

(a) f(Me;) is a subset of Me; for every i and

(b) f(mie1 +maeg +--- +mie;) = f(mier) + f(maex) +-- -+ f(mqe,)
for allm; in M.
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Proof. (a) For m in M, f(me;) = f(me;e;) = f(me;)e; which is in
Me;. .

(b) f(mie1+maea+---+mie:) = f(mier+maes+- - +myes)(er+
tezt--ter) = f(miey +maes+- -+ myer)es + f(moe; +mpep +-- -+
+myes)ey + - -+ + f(mies + maey + -+ muey)es = f(mey) + f(meg)+
+ o 4 f(me). &

Lemma 2. If N is simple with N = C(A,G) where A is fized point
free then f in C(N,M) is completely determined by its action on the
set Me;. :

Proof. For ¢ # 1 there exist elements e;; and e;; in N such that
€i1€1; = €;, €15€;1 = €1, €;1€1 = e;; and ej;e; = e;;. We have Me; =
= Mejiei; and so f(me;) = f(meier;) = f(meir)ei;. Since mej
belongs to Me; so f(me;;) is known and f is determined on Me;.
Since M is a sum of the Me;’s, f is determined on M by Lemma 1,
part (b). We note that the extension of f is unique, for if f(Me;) = {0}
then f(me;) = f(me;1)e1; = 0 and so f is the zero map. ¢

Our first theorem characterizes C(N, M) when N is simple.

Theorem 1. Let N = C(A4,G) be a finite simple near-ring where
A is a fized point free group of automorphisms of G. Let M be an
SE-group for N. Then C(N,M) is isomorphic to C(Ny},,Me;) where
N{, is the set of nonzero elements in ey Ne; and acts on Me, by right
multiplication.
Proof. Define ¢ from C(N, M) to C(N{,, Me;1) by ¥(f) = f restricted
to the set Me;. By Lemma 1, 9(f) is a function on the group Me;.
Since f belongs to C(N, M), f(me;)ni; = f(me;ny;) where nqy is in
N{,. This means 9 (f) belongs to C(N;;, Me;). The function 1 is one-
to-one by Lemma 3. That 1 preserves sums and products in C(N, M)
is easily checked.

It remains to show that i) is onto. To this end, select g in
C(N{y,Me;). The function g is already defined on Me; and we need to
- extend g to all of M. Define g on Me; as follows: g(me;) = g(me;y)e;.
We show that g is well defined. For suppose mje; = mye;,m;, ms in
M. Then (mje; — mae;;)er; = 0. Hence (miea — myei)e; = 0 and
since (me;; —mgeiy)e; = 0for j =2,...,t, we have mie;; —maesn = 0
by property (e) of the definitionn of SE-group. Extend g to all of M
additively, that is g(m)=g(me; +me, +.--+ me;) = g(mey )+
+g(mez)+- -+ g(me;). It remains to show that the extended function
g belongs to C(N, M), i.e. that g(mn) = g(m)n for every m in M and
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n in N. We have g(mn) = g(mne;) + g(mnez) + - - + g(mne;) and
g(m)n = g(m)ne; + g(m)ney + --- + g(m)nes, so it suffices to show
that g(mne;) = g(m)ne; for each i. Since N is a centralizer near-ring,
ne; = ejne; for some index j (which depends on n). So we have

g(mne;) = g(me;ne;)
= g(mejl eljneilelz’)
= g(meji(e1jne;))ers (definition of g)
= g(me;1(e1;nei )(ney; (g belongs to C(N{y, Mey))
= g(mej1)(e1jne;)
= g(mejie;j)ne; (definition of g on M;)
= g(me;)ne;
= [g(me;) + g(mez) + - - + g(me;)]ne; (since ne; = e;ne; and
g(me;) belongs to Me; for each j)
= g(m)ne;. &

We remark that since centralizer near-rings are zero-symmetric,
C(Ny;,Me;) = C(e1Ney,Me;). In the sequel we will often use this
observation.

By specialzing M we obtain several applications of Theorem 1.
Our first application is obtained by letting M = Ny.

Lemma 3. Let N be the finite simple near-ring C(A, G) where A is a

fized point free group of automorphisms of G and 1 = e; +e3+ -+ + ey,

mutually orthogonal primitive idempotents. Then

(a) Ny, is a multiplicative group anti-isomorphic to A,

(b) Ne;y is an additive group isomorphic to G,

(c) Nj, acts on Ney by right multiplication as a fized point free group
of automorphisms, and

(d) C(Ny1,Nei) is isomorphic to C(4,QG).

Proof. (a) Let v; be a nonzero element in G sucht that e;(v1) = v;.

Then v; belongs to Av; and NJ; = {f in N|f(v;) belongs to Av; and

f(w) = 0 for all w not in Av;}. Since A is fixed point free it follows that

for every o in A there exists a unique f in N/, such that f(v;) = ov;.

Define 9 from Ny, to A by ¢¥(f) = o where f(v;) = ov;. If f,g are

in Nj; with f(v1) = ov; and g(vi) = o'vy then (gf)(v1) = g(ov1) =

og(vi) = co'vi. So¥(gf) = oo’ = ¥(f)¢¥(g). The function 1 is clearly

one-to-one and onto.
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(b) Since A is fixed point free, if 0 # 1 belongs to A and if v
is nonzero in G then o(v) # v. This implies (see [2]) that if v; is as
in part (a) then for every w in G there exists a function f in N such
that f(v,) = w and f(v) = 0 for all v not Av;. Moreover f is unique
with this property and f belongs to Ne;. Define ¢ from Ne; to G by
©(f) = w. Now ¢ is easily seen to be an isomorphism of Ne; onto G.

(c) If n1; belongs to Ny, then define the map R,,, from Ne; to
Ne; by R,,,(ne1) = neini;. The map R,,, is clearly an endomor-
phism of the group (Nej,+). Moreover it is an automorphism, for if
R,,,(ne; = 0 then nejni; = 0. But N}, is a group with identity e;
under multiplication so ny; has an inverse 'nl_l1 and 0= 0"1_11 =
= (nelnn)nl_ll = me;p, which implies R, , is one-to-one. Since Ne; is
finite the map is onto.

To show N{; acts fixed point freely on Ne; suppose R,,,(ne;) =
= ne; # 0. Then ne; = ne;n;;. We have ne; = ejne; for some j.
Since N is simple there exists m;; in exNe; such that mi;ne; = e;.
This means e; = m;jne; = mijneiny;, and R,,, = R, which is the
identity map on Nq;.

The correspondence R,,, to ni; is an anti-isomorphic of { R,,,, [n11
belongs to Ny, } with N} and since the latter is anti-isomorphic to A4,
{Rn,,|n11 belongs to N} is isomorphic to A.

(d) To show C(Ny;,Ne;) and C(4,G) are isomorphic it suffices
to show that the pair (N, Ne;) is isomorphic to the pair (4,G) by
way of a semi-linear transformation ¢ from Ne; onto G (see Maxson
and Smith [3] or Ramakotaiah [7]). (Here N7, is identified with the
right multiplication maps by elements of the set N;j.) Let ¥ be the
isomorphism from Ne; to G defined as in (b) and let 8 from {R,,, |n1;
belongs to Nf;} to A be the isomorphism as developed in (c). Then
Y(Bny, f) = ¥(fnu) = fou(vi) = f(nuv) = f(Bvr) = BF(v1) =
= ?,11¢( f), and v is our desired one-to-one semi-linear transforma-
tion.

This leads to the following application of Theorem 1.

Corollary 1. Let N be a finite simple near-ring with N = C(4,G)
where A is fized point free. Then C(N,Ny) is isomorphic to N.
Proof. By Theorem 1, C(N, Ny) is isomorphic to C(N;;, Ne;) which
is isomorphic to N by Lemma 3. ¢

Corollary 2. Let N be a finite simple near-ring with N = C(4,G)
where A is fized point free. If k is a  positive integer let NF =
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=NON@---®N (k direct summands). Then C'(N, Nk) 18 tsomorphic
to C(A,G*). In particular C(N,N*) is simple.

Proof. By Theorem 1, C(N, N*) is isomorphic to C(N},, N*e;). Asin
the proof of Lemma 3, N¥e; is isomorphic to G* and N}, acts on NFe,;
fixed point freely by right multiplication. Also as in the proof of Lemma
1 the pairs (N{;, N*e;) and (4, G*) are isomorphic via a semi-linear
transformation. So C(N, N*) is isomorphic to C(4,G*) and since A
acts fixed point freely on G*, C(N, N¥) is simple. ¢

If N=C(A,G) and if R is a right ideal of N then M = R is an
SE-group for N. Our next application of Theorem 1 deals with this
situation. First we describe the right ideals in the simple near-ring
N =0(4,Q).

Lemma 4. Let N be a finite simple near-ring with N = C(A,G) where
A is fized point free. A nonempty subset R of N is a right ideal of N
if and only if there ezists an A-invariant subgroup H of G such that
R = ey N where ey in N is the idempotent map on G which is the
identity on H and zero off H.

Proof. If H is an A-invariant subgroup of G and if R = ey N it is
easily verified that R is a right ideal on N.

Now assume R is a right ideal of N. Let H = {w in G| there is
awvin G and an f in R with f(v) = w}. To show H is an A-invariant
subgroup of G select w # 0in H. Then there exists av # 0in G and an
fin R such that f(v) = w. For §in A we have f(Gv) = Bf(v) = fw,
an element of H. So H is A-invariant. Since N is simple and A4 is
fixed point free, it follows that for every v # 0 in G and any u in G
there exists an n in N such that n(v) = u. So if w belongs to H with
g(u) = w where g is in R then g(u) = gn(v) = w and gn belongs to R
since R is a right ideal. This means H = Rv for every nonzero v in G.
But Rwv is clearly a group, so H is a subgroup of G.

Let ey be the idempotent in N which is the identity on H and 0
off H. We show now that ey belongs to R. For h # 0 in H let e, be
the idempotent in N which is the identity on Ah and 0 elsewhere. Since
Rh = h and ep(h) = h we have Reph = H. The elements (maps) of
Rey, are all 0 off Ak, so there exists an rej in Rep, such that reg(h) = h
and rep, is 0 off Ah. This means re, = e, and e, belongs to R. Since
er belongs to R for all nonzero h in H and since H is finite, ey belongs
to R (ey is the sum of e}’s, one h for each nonzero A-orbit in H).
Corollary 2. Let N be a finite simple near-ring with N = C(4,G)
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where A is a fized point free group of automorphisms. Let R = eg N be
a right ideal of N. Then C(N,R) is isomorphic to C(N7,, Re1) which
in turn is isomorphic to C(A,h), a simple near-ring.

Proof. That C(N, R) is isomorphic to C(N;, Re;) is clear from The-
orem 1. To see that Nj, acts fixed point freely on the group Re; by
right multiplication it is enough to use Lemma 3, part (c) since Re; is
a subset of Nej.

We have Re; isomorphic to H and as in the proof of Lemma 3,
part (d) the pairs (N7, Re1) and (A, H) are isomorphic via a semi-linear
transformation. So the simple near-ring C(N{;, Re;) is isomorphic to
C(A,H). ¢ _

Corollary 4. Let N be a finite simple near-ring with N = C(4,G)
where A is fized point free. If R = eg N is a right ideal of N then for
any positive integer k, C(N, RF) is isomorphic to C(Ny,,(Re1)*) which
in turn is isomorphic to C(A, H*), a simple near-ring.

Proof. Similarly to that of Corollary 2. {

Corollary 5. Let N be a finite simple near-ring with N = C(4,G)
where A is fized point free. If R = egN is a right ideal of N such
that (R,+) is a normal subgroup of (N,+), then N acts on N/R by
(a + R)n = an + R and C(N,N/R) is isomorphic to C(Ny;,(N/R)e1)
which in turn is isomorphic to the near-ring C(A,G/H). Moreover
C(A,G/H) is simple.

Proof. The first isomorphism is from Theorem 1. Since (R,+) is
normal in (N, +) so H is normal in G. One checks that (N7, (N/R)e;)
and (A4,G/H) are isomorphic via a semi-linear transformation.

To see that C(A,G/H) is simple it suffices to see that A acts

fixed point freely on G/H. Suppose § # 1 belongs to A and that
B(v+ H) = v + H. This means —v + Sv belongs to H. We recall (see
[1]) that a fixed point free automorphism § on a finite group G has
the property that every z in G has the unique form —z + fz. Since
B acts fixed point freely on H and since —v + v belongs to H we
have —v + fv = —w + Pw for some w in H. This implies v = w and
v+ H = H,i.e. v+ H is the identity element of G/H. {
Corollary 6. Let N be a finite simple near-ring with N = C(A,G)
where A 1s fized point free. If R = egN is a right ideal of N such
that (R, +) is a normal subgroup of (N,+) and if k is a positive integer
then C(N,(N/R)*) is isomorphic to C(Ny,,(N/R)¥) which in turn is
isomorphic to C(A,(G/H)¥).
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Proof. Similar to that of Corollary 2. ¢

If N is simple and if M is an SE-group then C(N, M) need not
be simple as the following example shows.
Example. Let N be GF(4), the finite field with 4 elements. The
field N is clearly a simple near-ring and N = C(4, G) where G is the
group (GF(4),+) and A is the fixed point free automorphism group on
G F(4) consisting of the right multiplication maps by the three nonzero
elements of GF(4).

Let N = {0,1,a,a’}, then A = {1,R,,R,2}. Let M = Sj, the
symmetric group on three elements. Define the action of N on M as
follows: if # is in S5 then

Ba =(123)715(123)
Ba? = (132)714(132).

So right multiplication by 0 is the zero endomorphism of S3, by 1 is the
identity map, by a is the automorphism which is conjugation by (123),
and by a? is the automorphism which is conjugation by (132). With
this action of N on M, M forms an SE-group for N. But C(N,M) =
= C(N*,S3) is not simple since (123) in M = S3 is fixed by all the
nonzero elements N* in N and (12) is not (so there is stabilizer con-
tainment, see [2]). ‘
Let N be a finite near-ring with N = C(4,G) where A is a fixed
point free group of automorphisms of G. In N we have 1 =e; + ez +
+ ---+e, where the e;’s are mutually orthogonal primitive idempotents.
- Suppose the positive integer s is a proper divisor of u, say u = ts. Let

flzel+82+'.o'+68
fa=€sy1+esq2+ -+ a5

ft = e@—1)st1 + €(t—1)at2 + -+ + €ts,

then 1 = fi + fo + --- + fi where the f;’s are mutually orthogonal
idempotents. If M is an SE-group for N and if m is any element in M
thenm = m(fy+fa+- -+ fi) = mfi+mfo+---+mfy. (Forif m belongs
to M, then for each i,(m(fi+fa+- -+ fi)—mfi—---—mfa—mfi)e; = 0.
Since M is an SE-group, m{fi + fa+ -+ ft) —mfr — -+ —mfa—
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Theorem 2. If N and M are as above then C(N, M) is isomorphic to
O(.leflaMfl)-

Proof. Since N is simple and 4 is fixed point free then for every i, j
such that 7 # j there exist elements ei; in e;Ne; such that e;je;; = e;.
The proof of Theorem 2 is the same as that of Theorem 1 replacing e;
with f;, and replacing ej;e;; by

fri = e ictyer1 + e (ic1yat2 + o + €5 s,
fit = et 1)at1,0 T €lic1)st22 + - + €isa,

where we have fi;fi = f1 and fii fii = fi. ¢

We mention two special situations for Theorem 2.

(a) Let M = N, then C(N,Npy) is isomorphic to each of the
following: C(e1Ney, Nei), C(fiNfi,Nfi) and N.

(b) Let M = N* (k, a positive integer), then C(N,N*) is isomor-
phic to each of the following: C(e1Ney,(Ne1)*) and C(fiN fi, (N f1)).

3. Structure of C(N,M),N not simple

Assume N is a finite semisimple near-ring where N = N, @ N,®
®---® N, (direct sum) with each N; simple. If f; is the identity of NV,
for each i then 1=f; + f,+---+ f, in N. Let M be an SE-group for
N. Then if m is in M we have m=m(fi+ 2+ -+ f:) =mfi+
+mf2 nall +mf3-

Theorem 3. If N and M are as above then C(N,M)=C(N.,Mf1)®
®C(Ny, Mfo)®--- & C(N,,Mf,) (direct sum).

Note. Since each N; is simple, it follows that if the conditions of
Theorem 1 are satisfied (which will be the case if N; is not a ring)
then C(N;, M f;) is isomorphic to C(efNiel, Mfel) = C(e;N;el, Mel)
wherein N;, fi = el +e2 +.-. + ef" (primitive idempotents).

Proof of Theorem 3. Clearly M = Mfi & Mfo ®---® MF, (direct
sum). If g belongs to C(N, M) then g(Mf;) is a subset of M f; and
g(mfi+mfa+---+mf,) = gmfy + gmfy + - + gmf,. The map ¢
from C(N, M) to C(N1, M f1)®C(N2, M £2)®---@C(N,, M f,) defined
by ¢(g) = g1 +g2 + -+ + g, is our isomorphism where g; is ¢ restricted
to Mf.,, <>
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The following is valid for an arbitrary finite centralizer near-ring of the
form C(A, G) where A is a group of automorphisms of G.

Theorem 4. Let N be the finite centralizer near-ring C(A,G). If H
is an A-invariant subgroup of G let R = {f in N|f(G) is a subset of
H}. Then C(N, R) is isomorphic to R.

Proof. R is easily seen to be a right ideal of N. If ey is the idempotent
in N which is the identity on H and 0 off H then R = ey N. We have

C(N,R) = {f|f(rn) = f(r)nfor all 7 in R and n in N}
= {f|f(exn) = f(eg)n for all n in N}
= {L,|r is in R} (where L, is the left multiplication
map by r on R) which is ismorphic to R. ¢

4. Applications to matrix near-rings

J.D.P. Meldrum and A.P.J. van der Walt have introduced the
concept of a matrix near-ring (see [5]) which we now recall. Let N be
a near-ring with 1 and let ¢ be a positive integer. For an element = in
N and for integers 7,j with 1 <1, j <t define the function ;;on N as
follows:

L(nay, ..y, ymg, .00, ne) = (0,00, 705,...,0,...,0)
(where rn; is in the ith position). The ¢ x ¢ matrix near-ring over
N, My(N), is the subnearring of Map(N?) generated by {f5lrisin N
and 1 <4, j < t}. We note that f7; belongs to C(N,N*). Therefore
M;(N) is a subnearring of C(N, N*). The following result was proven
by van der Walt in [8].

Theorem (van der Walt). Let N be a finite simple near-ring such
that N = C(A,G) where A is a fized point free group of automorphisms
on G. Then My(N) is isomorphic to C(4,G?).

Our information on SE-groups for a finite simple near-ring N can
be used together with van der Walt’s theorem to prove a near-ring
analogue to a familiar matrix ring result in ring theory.

Theorem 5. Let N be a finite simple near-ring with N = C(4,G)

where A is a fized point free group of automorphisms on G. Let s and
t be positive integers. Then C(C(N,N*),C(N,N*)!) is isomorphic to




48

C.J. Mazson, K.C. Smith

C(N,N*).

Proof. Since N is simple we have seen that C(N,N*) is a simple
near-ring and C(N, N*) is isomorphic to C(4,G*). Using Corollary 2,
C(C(N,N*), C(N,N*)) is isomorphic ot C(4,(G*)*) which is isomor-
phic to C(4, G*?) and therefore isomorphic to C(N, N**). &
Corollary 7. If N is a finite simple near-ring with N = C(A, G) where
A is a fized point free group of automorphisms on G then My(M,(N))
is isomorphic to M, (N).

Proof. From van der Walt’s theorem C(A,G*) is isomorphic to
M,(N) and M;(C(A, G?) is isomorphic to My(M,(N)). ¢
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tions having one and two real characteristics, respectively are treated. Here
a nonlinear problem for a nonlinear system of three equations is studied by
utilizing a method from the theory of elliptic systems (see e.g. [3],[4]) based on
Schauder imbedding. The case of three equations is important in particular
because every elliptic second order equation in two independent variables may

be reduced to a first order composite type system of three equations.

1. Formulation of the initial and boundary value
problem

In this paper, we consider the nonlinear system of first order com-
posite type equations

(11) le; = F(Z,UJ,LUZ,S),
F = Qiw, + Q2037 + Ajw + A, + Ags + Ag,

(1.2) 8y = G(z,w,s),
G = Blw -+ B25-|- B38 + B4,

in a bounded simply connected domain D, where

QJ' = Qj(z1wawza3): .7 = 112, A] = Aj (Z,wws):
szBj(z,w,s), j:1,...,4,

and w(z),Q;,A4;,B;(j =1,2), A4 are complex valued functions, By =

= By, s(z), As, B;(j = 3,4) are real valued functions. For the sake

of convenience, we may assume that D is the unit disk and the lower

boundary of D is v = {|z| = 1, y < 0}. We suppose that system (1.1)

and (1.2) satisfy the following condition.

Condition C

(1) Qj(z,w,U,s),7 = 1,2, A;(2,w,s), = 1,...,4 are measurable in
z € D for all continuous functions w(z), s(z) and all measurable
functions U(z) on D, satisfying

LP[AJ'(Z"‘J(ZLS(Z))’E] Sky < oo, j= 1,2,4,

O3 L la(se(a),5(2), D) < &,
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where p(> 2), ko(> 0) and e(> 0) are positive constants.

(2) The above mentioned functions are continuous in w € € (the com-
plex plane) and s € R (the real axis) for almost every point z € D
and U € C.

(3) The complex equation (1.1) satisfies the uniform ellipticity condi-
tion

(1.4) |F(z,w,U1,8) — F(z,w,Us,38)| < qo|U1s — Ual,

for almost every point z € D and w,U;,Uz € C, s € R, in which
go(< 1) is a non-negative constant.

(4) Bj(z,w,s) (j = 1,...,4), G(z,w,s) are continuous for z € D for
a.ll Holder continuous functions w_.,(z) s;(z) € Ca(D) (j = 1,2)

satisfying
Cﬂ[BJ'(Zawlvsl)a_D_] < kp<oo, j=1,...,4,
(1.5) G(z,w1,81) — G(z,w2,82) = Bf(wy — wy) + B3 (wy; —w3)+
+B;(31 _32)1

in which Cp[B},D] < ko,8(0 < § < 1) is real, for j =1,2,3.
For system (1.1) and (1.2) we discuss the following nonlinear initial
and boundary value problem.

Problem A
(1.6) Re[mw(t)] = P(t,w,s)t,e I' = 0D,
(1.7) a()s(t) = Qt,w,s),t € 7.

Here A(t), P(t,w,s) are Holder continuous functions, |A(f)| = 1, and
A(t), Po(t) = P(t,0,0), P (t,w, s) satisfy

Ca[A[t (0], L] < ko, Co[Po[t()], L] < k1, L=((T),
(1.8) CalP (t({),w1,81) — P(t((),w2,82), L] <
< E{Ca[wl —w21L] + Oa[sl - 321£]}’£ = C(7)’

for all w;[t(¢)] € Ca(L),s;(t) € Ca(f), j = 1,2, where ((z) is the
homeomorphic solution to the Beltrami equation Cz = ¢q(z)(; with a
proper ¢(|g(z)] < go < 1) which maps D onto the unit disk H such
that ¢ (0) = 0, ¢ (1) = 1;z(¢) is the inverse function of {(z), k1 and
¢ are positive constants. Moreover, |a(t)| =1, Qo (t) = @ (¢,0,0) and
Q (t,w, s) satisfy '
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‘ Cp[Qo (1),7] < ks,
(19) Cﬂ[Q(tawhsl)“"Q(taw2152),7] <
< szﬁ (wl - ““’217) + Ecﬁ (31 - 3277)7
in which k; is a positive constant. Obviously Problem 4 is not neces-

sarily solvable. Hence we consider the modified initial-boundary value
problem (Problem B) where (1.6) is replaced by

(1.10) Re [A(t) w (t)] = P(t,w,s) + h(t), t €T,
with
if K > K= At
(1.11) h(t):{O,tEF, 1f{(K:10, . —2WAparg (),
ho +Red . = (h}, +ih;)t™, te T, if K <0,

where ho,hL (m =1,...,-K — 1) are unknown real constants to be
determined appropriately. If K > 0, we assume that the solution w (z)
to Problem A satisfies the side conditions

(1.12) Im[A(a;)w(a;)] =b;, j=1,...,2K +1,

where a; (j =1,...,2K + 1) are distinct points on T, and bi(7 =
=1,...,2K +1) are real constants with the condition |b;]| < k;.

In the following, we first give an a priori estimate of solutions
to Problem B. Afterwards, we prove Problem B and Problem A to be
solvable by using the Schauder fized-point theorem. Under some more
restrictions, we can discuss the uniqueness of the solution to Problem B.

2. A propri estimate of solutions to the initial and
boundary value problem

First of all, we discuss the system of first order composite type
equations

(2.1) : wE:F*(z’w’wZ’s),
F* = Qlwz + sz}‘+ Alw + Azm + A,

5y = G*(z,w, s),
(22) {G* = Bjs -l—B,
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together with the following linear initial and boundary value problem.
Problem B¥*

(2.3) Re[A (t)w (t)] = Po (t) + h (), t €T,
(2.4) Im[X(aj)w(a;)] =bj, i =1,...,2K +1, K >0,
(2.5) a(t)s(t) = Qo (t), t €7,

where Q;,A; (7 = 1,2), Bs, A, Po,h,bj,a,Qq are defined as in 1, and
A = A(z,w,s), B = B(z,w,s) are similar to A4, By, but satisfsying the
conditions

(2'6) LP[A’_E] < k37Cﬁ[B7E] < ks,

for any w (z),s (z) € Cg(D), in which ks, k4 are non-negative constants.
Lemma 2.1. If [w(z),s(z)] is a solution to Problem B* for the system
(1.1), (2.2), then [w(2), s (2)] satisfies the estimates

(2.7)  Cplw, D) < Mi(k1 + k3), Ly [lwz| + lwzl, D] < My (ks + ks),
(2'8) CE[S,E] = Cﬁ[sv—D—] + C[‘S!HD_] < Ms (kz + k4),

where M; = M; (go,po, ko, 0, k, K), 7 =1,2,3, k = (k1,k2,ks3,ks), B =
= min(a, 1- p%)v Po = min(?; i—i;)

Proof. Substituting the solution |w, s] to Problem B* into the complex

system (2.1), (2.2), and assuming that k' = max(ks,k3)>0,k" =
= max (ka,ks) > 0, we put

(2.9) W (z) = 42 5(z) = 22,

It is clear that W(z) is a solution to the boundary value problem

(2.10) Ws=QiW, + Q. Wz + AW + A, W + %,
EWY Py(t)+h(

(2.11) ReA(}) W (1)) = Reltlth(®) "y e 1

(2.12) Im[A(a;)W (a;)] = %,, j=1,...,2K+1,K >0.
Noting that
(2.13) L, [#,D] <1,Ca B4 1] <1, |3I<,

and according to Theorem 5.6 of Chaﬁter 5 in [3] or Theorem 4.3 of
Chapter 2 in [4], we know that W (z) satisfies the estimate

(2.14) Cp[W, D] < My, Ly, [|Wz| + |W,|, D] < M.
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Moreover, S (z) is a solution to the initial value problem

(2.15) Sy =BsS+ &,
(2.16) a(t)S(t) =28, t ¢,

where Cp [75—,,5] <1,Cpg [%#, 'y] < 1. On the basis of Theorem 2.4 in
[2], S(z) can be seen to satisfy the estimate

(2.17) C3 (S, D] < M.

From (2.14), (2.17) it follows that (2.7), (2.8) for &' > 0, k" > 0 are
true. If k' =0 or k" = 0, then (2.7), (2.8) for k' = e >0o0r k" =¢ >0
hold. Letting € tend to 0, we obtain (2.7), (2.8) for ¥’ =0 or k" = 0. ¢
Theorem 2.2. Let the complez system (1.1) and (1.2) satisfy Condi-
tion C and the constant € in (1.3), (1.8) and (1.9) be small enough.
Then the solution [w(z),s(z)] to Problem B for (1.1), (1.2) satisfies
the estimate

(2.18) U = Cglw, D] + Ly, [|lwz| + |ws|, D] < Ma,
(2.19) V =Cj[s, D] < Ms,

where M; = M; (qo,po, ko, a,k,K), j = 4,5.

Proof. Let the solution [w(z),s(z)] be inserted into the complex sys-
tem (1.1), (1.2), the boundary condition (1.10), the side condition (1.12)
and the initial condition (1.7). We see that A= Azs+ Ay,
B = Biw + Byw + By, P (t,w,s), Q(t,w,s),b; satisfy

(2.20) L,[A,D] < eC[s, D] + L,[A4, D] < eC[s, D] + kq,

(2.21) Cg[B, D] < Cy[Byw + Byw, D) + C[By, D] < 2kCplw, D] + ko,

Ca[Pa L] < Ca[PO(t(C))7L] + Ca[P[t(C)awv 3] - PO[t(C)]’L] <

2.22

(2:22) < ks + e{Culw, L] + Cols, 4},

(2.23) | Ib;| < ki, j=1,...,2K +1,K >0,

3g  0PlQS OplQu (7] + keCilonn] + <Ol <

< k3 + k2Cslw, D] + €Cpls, D).
Using (2.7) and (2.8) we have '
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U < (Ml + M2){EC[S7-D—] + kO + kl + E[Ca (w’L) + Ca[S,E]} <
(2.25) < (M1 + Mz)[ko + ky + ECﬁ (w,ﬁ) + 60;«)(8,5)] <
< (Mi+ M) (ko + k1 + €U +€V),

V < Ms[2koCp (w,D) + ko + ks + k2 Cp (wD) + eCpg (s,D] <
< Mslko + k2 + (2ko + k2) U + €V
Choosing the constant € so small that
(My + My)e < 5, Ms[142(2ko + ko) (My + Mp)]e < 1,
one can show

Mi+Mj)(ko+ki1+eV
(227) U < MapMalobhiteV) < o (My + Ma) (ko + by + V),

(2.26)

V < Mslko + k2 + 2(2ko + k2) (M1 4 M3) (ko + k1 + eV) +eV] <
M;lko + kz + 2 (2ko + ka) (ko + k1) (M; + M) <

1 — Ms[1l+2(2ko + ko) (M1 + M;)] e -
< 2Mjslko + k2 + 2 (2ko + k2) (ko + k1) (M7 + M,)] = Ms,

(2.28) <

3. Solvability of the initial and boundary value
problem

First we prove the existence of solutions to Problem B for the
system

(3 1) {wE:F(vaawz), F:Q1w2+QZU_J§+A1W+AzG+A3,
. QJ :Qj(z7wz), .7:1727AJ :Aj(z)7 j:172737

and (1.2) by using the parameter extension method, and then verify
the existence of solutions to Problem B for the system (1.1) and (1.2)
by using Theorem 2.2 and the Schauder fized point theorem. Finally,
we give conditions for Problem 4 for (1.1), (1.2) to be solvable.
Theorem 3.1. Let the system (3.1), (1.2) satisfy Condition C and the
constant € be small enough. Then Problem B for (3.1), (1.2) is solvable.
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Proof. We consider the following initial boundary value problem with
parameter ¢ (0 <t < 1).

Problem B’

(3.2) wz = tF (z,w,w,) + A(2) in D, A € L,(D),

(3.3) Re[A(z)w(2)] =tP (2,w,8) +p(2) +h(2), on T,p € Cu(T),
(34)  Im[A(ej)w(e;)]=b; j=1,...,2K+1,K >0,
(3.5) sy =tG(z,w,s) + B(z)in D, B € C3(D),

(3.6) a(2)s () = tQ (z,w,5) + 4(2) on 7,4 € Cs(7).

When t = 0, Problem B’ has a unique solution [w (z),s(z)] with w €
€ Cg (D), s € C5(D) - see [2], [3] and [4].

Assuming that Problem B' for ¢y (0 <ty < 1) is solvable, we will prove
that there exists a positive constant § such that Problem B’ on

(3.7) E={tt—t| <60<t<1}

for any A € L,, (D), B € Cs(D), p € Cp(l') and ¢ € Cp(7) has a
unique solution [w(z),s(z)], w € Cg (D) N W , (D), s € C5 (D).

We rewrite (3.2) — (3.6) as

(3.8) ws — toF (z,w,w,) = (t — 1) F (z,w,w,) + 4 (2),

(3.9) Re[A(2)w (2)] — toP (2,w,5) = (t —to) P (2,w,8) + p(2) + h(z),
(3.10) ImA(aj)w(e;)] =b;, j=1,...,2K +1,K >0,
(3.11) sy — t0G (z,w,8) = (t — ty) G (z,w,s) + B (z),

(3.12) a(z)s(z) —tQ (z,w,5) = (t — t0) Q (2, w, s) + g (2).

Choosing arbitrary functions wy € Cg (D) N W, (D), s0 € 0) (D), for
instance wo (2) = 0, s9(2) = 0, we substltute wo (2), s0 (2 ) into the
corresponding positions of the rlght hand sides in (3.8) — (3.12). By
assumption, for ¢y the initial-boundary value problem (3.8) - (3.12) has
a unique solution [w; (2),s1 (2)], w1 € Cg (D) N W} (D),s; € C3 (D).
Let us substitute w; (2), s; (2) into the right hand 51des of (3 8) - (3 12)
and find unique solution [w, (2), 3 (2)],w2 € Cg (D) N W, (D), 55 €
€ Cj (D) to this system. Thus, we obtain wn(2),8.(2),n =1,2,...,
satisfying ’

(313) Wnt1z — tOF(zawn-{—l, Wnt1 z) = (t - tO)F(Z)wnawnz) + A(Z)a
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Re[Awni1] — toP (2,Wnt1, 8nt1) =
= (t —t0) P (z,wnsn) + p(2) + h(2),
(3.15) Im[X (a;) wnyi(a;)] =bj, 5 =1,...,2K +1,K > 0,
(8.16)  Spt1y — t0G (2,Wnt1,8n+1) = (t — to) G (2,wn, 8n) + B(z),
(3.17) a(2)snt+1 —t0Q (2, Wnt1,8n41) = (t — o) @ (2,wn, 3a) + ¢ (2).

Setting Wn+1 = Wnpt1 — Wy, Sn+1 = 8n+41 — 8n from (313) - (317), we
have

(3.14)

Wit1z — to [F (z, Wata, Wn+17.) - F("",Wm an)] =

(818) = (¢~ 10)IF (2, Wi, W) = F(2, W1, Wa1,)],

Re [XW.,H_]_] - tU[P (z,wn+1,5n+1) — P(z,wn,sn)] =

(3.19) = (t — t0)[P(2,Wn, 82) — P(2,wn—1,8n1)] + h(2),

(320)  Im[N(a})Wara(a;)] = 0,5 =1,...,2K +1,K >0,
(3.21) Sﬂ-+1y —1p [G (Za“"n+1: 3n+1) -G (Zawnasn)] =

= (t — 1) [G (Zawm sn) -G (Z,wn—lv-’n—l]a
(3.22) a(2)Snt1 — t0[Q (2,Wnt1,8n+1) — Q (2,Wn, 8n)] =
=(t—10)[Q (z,wWn,82) — Q(2,wn-1,5n-1)].

By Condition C

LPU[F (Z’W'"-’W"z) - F(Z1Wn—1,Wn—1z)1D] <
< Lpy[Whnz, D] + 2keCp [Wy, D],
Caf{P[z ({),wn (2(()); 3n(2 ({))]-
(3.24) —P[z((),wn-1(2(¢)),8n-1 (2 ()], L <
< e{Ca[Wn(2({) Il + CalSn (2(€)), £}
Cﬂ[G (z7wn73n) - G(Zawn—hsn—l),—] < ‘
< 2kgC3[Wa, D] + koCj[Sn, D],

(3.23)

| (3.25)
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Cﬂ[Q (z7wn73n) - (Z Wy — 1’311.—1)77]

3.26
( ) < szﬁ[ -n,,’)'] + ECﬁ[Sﬂd 7]

can be obtained.
According to the method in the proof of Theorem 2.2, we can conclude
that '

Unt1: = Cg[Wai1, D] + Ly [[Wai1z| + [ W1 |, D] <

3.27
( ) < |t —to| MgUsy,

(328) Vn+1 = CE [Sn+1,ﬁ] S |t - tol MGVn,

where Mg = Mg (g0, Po, ko, k, K,€) > 0.
Choosing § = m, then for |t —1| <6, 0<t<1, and =n>
> N +1 > 1, we can derive the inequality

Unt1 < 3Un < 3501, Voy1 < 5% V1.
Moreover, if n,m > N + 1, then

Cﬁ [wﬂ wva] + Lpo[l""n wm) | + |("'-’n - “’m)zlvﬁ] <
(3-30) > 2N EJ =0 2_1 Ul 2Nl—lU17 .
C'ﬁ[ — 8m, D] < 2N—ICE [s1,D].

This shows that Cglwn — Wm, D] + Ly, [|[(wn — wm)z| + [(wn — wim)al,
D] -0, Chlsn — 8m,D] = 0,if n,m — co. Hence there exist w, €
€ Cp (D) N 1}0 (D), s« € 0 (D), such that Cslw, —w.,D]+
+Lg [|(6n = w2)3] + |(@n — )21, D] — 0, Cfsn — 8, D] 0, as m. —
— 00, and [wy, (2), 8 (2)] is just a solution to Problem B' on E for (3.2)
— (3.6). Thus, we know that when ¢ = 0,1,...,(3]6,1, Problem B' for
(3.2) — (3.6) is solvable. In particular, whent =1, 4 =0,p =0, B =0,
g =0, Problem B'i. e. Problem B for (3.1), (1.2) is solvable. ¢
Theorem 3.2. Under the same hypotheses as in Theorem 2.2, Problem
B for (1.1), (1.2) has a solution.

Proof. We intioduce a bounded and closed convex set Bjs in the Ba-
nach space C' (D) x C (D), the elements of which are vectors of functions
w = [w, 8] satisfying the condition

(3.31) Cw,D] < M,,Cl[s,D] < Ms,
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where My, M5 are the constants stated in (2.18), (2.19). We choose an
arbitrary vector of functions } = [W, S] € B and insert W (2), S (z)
into the appropiate positions of the complex equation (1.1). Following
Theorem 3.1, there exists a solution [w (z), s (z)] to the initial boundary
value Problem B':

wz-_—.f(Z,w,VV,S,wz),
(332) f:Ql (Z7Waw375)wz+Q2 (Z,VV,UJZ,S)E;—}—
+ Ay (2, W,8)w + Az (2, W,8)w + A3 (2, W, 8),

and (1.2), (1.6), (1.10), (1.12), (1.7). -
According to Theorem 2.2, the solution [w(z),s(z)] satisfies the esti-
mates (2.18) and (2.19), obviously w = [w,s] € Bp. Denoting this
mapping from ) € Bys onto w by w = § [1], it is clear that § is an
operator which maps Bj; onto a compact set in Bjyy.

To prove that § is continuous in Bas, we select a sequence of vectors

[Wh, Snl(n =0,1,2,...) satisfying the condition

(3.33) C [Wy — Wo,D] — 0,C[Sp — S0,D] — 0 as n — oo

and consider the difference wy, — wy = S (2,) — § (). We have
(3.34) [wn — wolz = f (2,wn, Wa,wnz) — f(2,w0, Wo,woz),

(3.35) Re[A () (wn — wo)] = P (2,wn, 8n) — P (2,w0,80) + h(t),t € T,
(3.36)  Tm[M(a3) (wn (a5) —wo (2;))] =0, G =1,...,2K +1,K >0,
(3.37)  (sn—0)y = G (2,wn,5n) — G (2, w0, 50),

(3.38) a(t)[sn — s0] = Q (t,wn, 5n) — Q (¢, w0,50), T € 7.

The complex equation (3.34) can be written as

[w‘n. - wO]E - [f(z7wn7Wn)wnZ) - f(z7w01W‘n-7w02)] = Cn,
cn = f(z,wo, Wa,woz) — f(z,wo, Wo,wp).
Using the method in the proof of Theorem 2.2 of Chapter 4 in (3] or

Theorem 2.6 of Chapter 2 in [4], we can verify that L, [cn,D] — 0 as
n — oo. Hence, applying the method used in the proof of Theorem 2.1,

(3.40) Cplwn — wo, D], Cglsn — 50, D] < My Ly, [¢n, D]

(3.39)

can be concluded where My is a non-negative constant. If n — oo, then
Clwp—wy, D] — 0, C[s, —s9,D] — 0. Hence, w = S(Q) is a continuous
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mapping from Bps onto a compact set in Bps. On the basis of the
Schauder fized point theorem, there exists a vector w = [w, s8] € Bay, so
that w = § (w), and w = [w, s] is just a solution to Problem B for the
system (1.1) and (1.2). ¢

Theorem 3.3. Suppose that the system (1.1), (1.2) satisfies the same
conditions as in Theorem 2.2, then the following statement holds

(1) If K > 0, Problem A for (1.1), (1.2) is solvable.

(2) If K < 0, there are —2K —1 conditions for Problem A to be solvable.
Proof. Let us substitute the solution [w(z),s(z)] to Problem B into
the boundary condition (1.10). If h(z) = 0,z € T, then [w(z),s(2)] is
also a solution to Problem A for (1.1), (1.2). The total number of real
equalities in h(z) = 0 is just the total number of conditions stated in
the theorem. ¢

Finally, in order to discuss the uniqueness of the solution to Problem B
and Problem A for (1.1), (1.2) the following additional condition is
imposed.

There exist A}, A} € L,,(D), with L, [43, D] small enough, such that
(3.41) F(Z,LU]_,U,S]_) - F(Z,U)z,U,Sz) = AT (wl — U)z) + A;(Sl — Sz),

for any functions w;,s; € Cg(D),j = 1,2, and U € L,, (D) (2 < py <
< p).

Theorem 3.4. (1.1), (1.2) satisfies Condition C and (3.41), and the
constant € in (1.3), (1.8), (1.9) is small enough, then the solutions to
Problem B are unique. '

Proof. Let [w; (2),81 (2)], [w2 (2), 52 (2)] be two solutions to Problem
B for (1.1), (1.2). It is clear that [w,s] = [w1 — wa, 81 — 2] is a solution
to the initial-boundary value problem

wz = Qw, + Ajw + A3s,

F(z,wy,w1:,81)—F (z,w1,w2;,82)
Q — { wy y Wz ?é 01
0, w,=0;

sy = Bfw + B;w + Bgs,
Re[A(t)w (t)] = P(t,w1,81) — P(t,ws,82) + h(t),t €T,

Im[A(e;)w(e;)]=0,7=1,2,...,2K +1(0 < K);

a(t)s(t) = Q(t,wy,s1) — Q (t,ws,s2),t € 4.
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With the method used in the proof of Theorem 2.2, we can show

Cplw, D] + Ly, [lwz| + |w.|, D] = 0,
CE(&,D) =0,

so that w(z) = 0,8(2) =0, i.e. wy (2) = wy (2)s1(2) = s2(2) in D.
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Abstract: We show that every finite Cayley graph of degree at least two has

a cycle double cover.

All graphs in this note are finite. Lovasz ([4], Problem 11) conjec-
tured that every connected vertex-transitive graph has a Hamilton path.
One well-studied class of vertex-transitive graphs is the class of Cayley
graphs. Tarsi [5] and Goddyn (1) proved that every 2-edge-connected
graph with a Hamilton path has a cycle double cover. Combining these
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ideas led the authors to consider cycle double covers in Cayley graphs.

We prove that every Cayley graph of degree at least two has a
cycle double cover.

Lemma 1. Let G be a graph whose edge set can be decomposed into a
collection of 1-factors and 2-factors, where the number of 1-factors is
not 1. Then G has a cycle double cover.

Proof. This is virtually trivial. We have a decomposition of the edge
set of G into a set of cycles C and a set of 1-factors F3, Fy, ..., Fi. Each
of the graphs induced by F; U F;,;,: = 1,...,k (addition modulo n)
is a 2-factor F; of G. The collection of cycles in the F; together with
two copies of each of the cycles in C, constitutes a cycle double cover
of G. ¢

Now suppose that I' is a group, and S C I', where

(i)  dégS§,

(ii) veES=>v1€S, and

(iii) S generates I

We write Cay(T', S) for the Cayley graph of I' with respect to this set
of generators. Cay(T',S) has vertex set I', and its edge set is {(g,gs) :
geTl,se S}

Theorem. If G = Cay(T',S), with |S| > 2, then G has a cycle double
cover.

Proof. Each element g of S corresponds to a set of edges Eg of G. If
order(g) = 2, then E, is a 1-factor of G. If order(g) # 2, then E; is a
2-factor of G.

Case 1. If every element of S has order greater than two, or if at least
two elements of S have order two, then Lemma 1 applies.

Case 2. If order(z) = 2, for exactly one z € §, then there is some
y € S with order(y) > 2. The sets E;, g € S' = § — {z,y,y '},
correspond to 2-factors of G. We note that G — U{E; : g € 5’} may
not be connected, and may consist of several disjoint copies of Cay(<z,
¥, ¥~ 1>,{z,y,¥7}). Thus, we need only consider the case in which
|S] = 3. If T is abelian, then G has a Hamilton cycle (see Holsztynski
and Strube [2]) and therefore a cycle double cover. Thus, we may
assume that I' is non-abelian.

Since {z,y} generates I, {y,zy} generates I'.  Suppose  that
y(zy)? = id, for some j. Then y = (zy)~?, and {zy} generates T,
contradicting the assumption that I' is non-abelian. Therefore, we may
assume that y(zy)? # id, for any j. Similarly, we may assume that
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z(yz)? # id, for any j.
We now describe a cycle double cover of G. For g € T, let

Cy = 909192 - - - §2k—190,

denote the closed trail of G with vertices gz; = g(zy)?, g2i41 = gaiz,

0 <i < k = order(zy). We claim that C, is, in fact, a cycle of G. If

Cy is not a cycle, then g, = gg, for some «, 3, where, without loss of

generality, 0 < a < f < 2k. We consider four cases depending on the

parities of a and S.

(i) If @ and G are both even, then (zy)#~*)/2 = id, which contradicts
order(zy) = k.

(ii) If o and B are both odd, then got1 = gg+1, and case (i) apphes

(iii) If @ is odd and 3 is even, then y(zy)#~=1)/2 = id, contradicting
the fact that y(zy)? # z'd, for any j.

(iv) If @ is even and £ is odd, then y(yz)(F~*~1/2 = id, contradicting
the fact that z(yz)’ # id, for any j.

Therefore, C; must be a cycle. We note that the cycles Cy and Cy,y

are really the same cycle, and thus that each cycle has k names.

Let g and h be adjacent vertices in Cay(< z,y,y" ! >,{z,y,57'}).
Thus, h = gz or h = gy or h = gy~ '. If h = gz, the edge (g,h)
is contained in the cycles Cy and C},. If h = gy, the edge (g,h) is
contained in the cycle Cy; and in E,. If h = gy™!, the edge (g,h) is
contained in the cycle Ch, and in E,. We also note that every vertex g
is on exactly two of the cycles of the form Cy, specifically, Cy and Cy,.

Thus the set C = {C, : g € '} UE, is a cycle double cover of G. {

We leave open the question of whether or not every vertex-tran-
sitive graph has a cycle double cover. There have been many papers
establishing that certain classes of vertex-transitive graphs have Hamil-
ton paths. We mention only one such result. Lipman [3] proves that
every graph with a transitive nilpotent automorphism group, and
every vertex-transitive graph on a prime power number of vertices must
have a Hamilton path. Thus, by [1,5], each of these graphs has a cycle
double cover. It is easy to see that if | S| is even, then the Cayley graph
has a cycle cover.
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Abstract: Let Bf be the Bernstein polynomial of a function f such that its
first derivatives satisfy the Lipschitz condition of order 1 on the unit square
or on the standard triangle. It is shown that the approximation-error of the
function f by the polynomial Bf does not exceed a quantity depending on the
Lipschitz constants and the degree of Bf only. This way it is the full analogue
to the one-dimensional case observed first by A.O. Geldfond.
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1. One-dimensional case. Gelfond has shown [1] that
maxo<z<i1 |Baf(2) — f(2)| < ;L

for every function f € Cio,1> such that its derivative f' satisfies the
Lipschitz condition of degree 1 and constant L. Here B, f stands for
the classical Bernstein polynomial of degree n built for a function f,
i.e. Bpf(z):= X7, (1) pn,j(z), where p, ;j(z) = (’J.‘):cj(l —z)™7 and
z€e<0,1>.

2. Approximation on the unit square. In 1933 Hildebrandt
and Schoenberg have extended the notion of Bernstein polynomial to
the case when a function f being approximated is defined on the unit
square

K :={(z,y) €R?: 0 < z,y < 1}.
They set
Bm,nf(z, y) = Zm=o ZZ:D f (#7 %) pm,j(z)pn,k(y)

and they proved that B,, ,f tends to the function f uniformly in the
space Ck (of all functions continuous on the domain K) as m and n
increase to the infinity.

The polynomials By, ,f have been investigated a.o. by Butzer
and Aramd (for details on bibliography see [2]). In the fifties they have
proved the analogues of the classical one-dimensional cases (concerning
the approximations of the derivatives of the function f by the deriva-
tives of the polynomial B,, , f and the preserving of the convexity of the
function f by its polynomial By, ,f, respectively). Here we complete
these analogues, namely we give the analogue to the Gelfond’s result
listed in Part 1, that is we show that there holds the following
Theorem 1. Let f; and f, be the first derivatives (with respect to the
first and the second argument, respectively) of a function f € Cy and
let Ly, Ly be the positive constants such that

(*) fi(z,y) = f(s,8)] < L1l — s| + Loy — |

for j =1,2 and for every points (z,y),(s,t) € K (we assume here that
|z — 3|, |y — t| <1, naturally). Then

|Bm,nf(z,y) — f(z,9)| < 2 (2L, + 1 L,).
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Proof. We will use the identities
m . '
Y (LY pmile)=2”  for  r=0,1
=0

and the following form of the Mean Value Theorem

f(zay) - f(37t) = f1(0'7y)(z - 3) + fz(z,T)(y - t)a

where o and 7 are the points laying somewhere in the intervals
(z—|z—s|,z+|z—s|) and (y—|y—1|, y+|y—t|), respectively. Applying
the above and the Lipschitz condition (*) we obtain

|f(z’y) - f(sat) - fl(sat)(m - 8) - fZ(sat)(y - t)l <
< Li(z — 8)% + La(y — t)2.

Therefore the remainder R := B, »f(2z,y) — f(2,y) can be estimated
as follows

B < S A ) ~ Ao e L1t

§=0 k=0

FIR(L ) = Aol )l 1y = =3P s(2)ps(y) <
<L1M+L2ggk_) 1(1L1+_L2) <>

- m n 4 'm

3. Approximation on the standard simplex. Now we investi-
gate the case when a function f is defined on the standard simple

T :={(e,y) eR*: 0< z,y,z +y < 1},

On this triangle there are defined the Steffensen polynomials p,, ; «

Pm,j k(T Y) = <TJn) (mk_ j> oIyt (1— ¢ — y)™ Ik,

Making use of them one can define (see [3]) the following polynomials
Smf,
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Smf(z,y) = ZJ ozk f(mam)Pm,J, (z,9)-

These polynomials, called the Bernstein polynomials on the triangle
T, were investigated a.o. by Stancu (1960) and Lupag (1974) whose
obtained the analogical theorems to Butzer’s and Arama’s results. That
analogues can be completed (comp. Theorem 1) by the following
Theorem 2. If f € Ck and if the Lipschitz condition (x) holds true
for j =1,2 on the whole triangle T, then

1S f(2,y) — f(z,9)| < g (L1 + L2).-

Proof goes similarly to the proof of Theorem 1, one has only use the
identities

Yo Zm—_j Pm,jk(2,y) =1,
Z] OZk 0 mpm,J, Kz,y) = =,
ZJ OZkOum,J,( y)=y. ¢

4. Multidimensional cases. Using the same technique as in Part
2 and Part 3 one can easily obtain the multidimensional analogues of

" the Theorems 1 and 2 concerning the Bernstein approximation on the
cubes

{(z1,22,...,24):0<z; <1 for j=1,2,...,d}
and on the simplexes

{(z1,22,...,24): 0<2; <1 for j=1,2,...,d andz z; <1}

j=1
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Abstract: It is proved that the set of all iterates of continous functions are

not dense in C.

Let C denote the set of continuous functions mapping [0, 1] into
itself endowed with the sup norm. Denot by f* the k** iterate of the
continuous function f. The structure of the set W* = {f* : f € C}
was examined by M. Laczkovich and P.D. Humke. They proved in [1]
and [2] that W? is not everywhere dense in C' and W* is an analytic
non-Borel subset of C. The author of this paper proved in (3], [4] that

the set (J W* of iterates of continuous functions is a first category
k>1

set and W? is nowhere dense. The aim of this paper is to prove the
following

Theorem. The set |J W* of iterates of continuous functions is not
k>1
everywhere dense in C.

In other words: there ezists an open ball B (see Figure 1) such
that B does not contain any iterates of any continuous function.
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The centre of the ball B is the continuous function g which is
linear on [0, 1], [3,1] and g(0) = 0.03, g(3) = 0.99, g(1) = 0.03 and the
radius of the ball » = 0.01.

We introduce the fol- «;
lowing notations. We %2
denote the lower
boundary of B by
g1(z) = g(=) — 0.01
and the upper one by
g2(z) = g(z) + 0.01. "

Putu; =sup ¢i1(z) = i

z€[0,1] i
= 098, u, = inf ::
{9:1(2)|g2(z) > u1} = f
= 1U —2r = 0.96,11«3 = :i
= ga(uz) and uy= h
=g2(us).us <g; (3). 1

Both g; and g; have 4 I
only one fixed point, 4, 1
say T1, T2 respective- TiyT2 TJ
ly; put D = [ry,7r2]. It U3 Figure 1 D w2
is clear that for every f € B Fix(f) C D holds, where Fix(f)=
— {olf(s) = 2. ~

For every H C [0,1] we denote by H the complement of H. Let
A,B C [0,1] we shall write A < Bif a < b for every a € A and b € B.

Proof of the Theorem. Assume that there exists f € BN |J W*
k>1
say f = ¢™ for p € C and n > 1. We define I = {z|g2(z) > u1}.

We choose a, b such that I = (a,b). It is easy to see that us < a. For
every y € I ¢(y) # p(3) since p(y) = ¢(3) implies f(y) = f(3) which
contradicts the definition of I.

There are four cases to consider:
Case 1. (i)  o(3) < (D),
Case 2. (i)  o([0,a]) > o(3) > w([b,1]),
Case 3. (iil) ([0,a]) < p(3) <([b,1])
Case 4. (iv) (3) > o(I).
We prove that each of them leads to a contradiction.
Case 1: (i) holds. Now ¢(3) > a since otherwise Fix(¢)N[0,5] # @ and
thus Fix(f) N [0,b] # 0 which is impossible since Fix(f) C D. Hence

g2
g1

)
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o(I) > (,o(%) > a and, in particular, ¢(a) > a. On the other hand,
f([0,1]) N [0,a) # @ and hence there is y with ¢(y) < I. Then y € I
and p(y) < y. It follows that Fix(¢) NI # 0. Therefore Fix(f) NI # 0
which is impossible since Fix(f) C D and DNI=0. $

Case 2: (ii) holds. First we prove

(1) ([0, us]) N [u1,1] # 0.
It is clear that (ii) implies

2 i < i .
(2) ,in p(z) Do p(z)

We also know that »([0,1])N[u1,1] # 0, hence by (ii), ¢([0,b])N[uy,1] #
# 0. Thus if (1) doesn’t hold then

3

(3) (max p(e) > max ¢(z)

must hold. From (2) and (3) we get ¢([0,u3]) C ¢([us,b]) and thus
)

F([0,us]) C f([us,b]) which is false and (1) follows. Pick =z, €
€ ¢ 1 ([u1,1]) N [0,u3). Then

(4) p(f(z0)) = fle(zo)) <us

holds by the definition of us. Since f(z¢) < us (implied by z¢ € [0,u3])
from (4) we have
min <
,Din p(z) < us

and further (1) implies max ¢(z) > u;. Thus Fix(e) C ¢([0,u4])
z€

1lg

since Fix(¢) C D C [ug,uq]. Hence f([0,us]) N Fix(f) # 0 which
contradicts f € B. ¢
Case 3: (iii) holds. Let d = max Fix(¢). First, we show

(5) #([0,d]) < uy.

Suppose instead that
(6) Im < d such that ¢(m) > u;.

Since
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(7) p(z) <z for every = > d,

we have ¢([d,u;]) < u;. From the assumptions (6) and (iii) it follows
that @([a,m]) D ¢([d,u1]) and thus f([a,m]) D f([d,u1]) which contra-
dicts f € B. Thus (5) holds. Choose m such that ¢(m) > u;. From (5)
and (7) we have m > u; whence f(m) < ug. Thus 30 < j <n —1 for
which [p?(m)pit1(m)] N Fix(p) = 0. Let z be an arbitrary element of
the set [p7(m), 771 (m)] N Fix(p). Then z € @?([p(m), m]) and hence

z=¢"(2) € f(lp(m),m]) C f([u1,1])

which is impossible as z € D.

Case 4: (iv) holds. Assume first that n > 3. We need 3 Lemmas.
Lemma 1. Put j = min{z € [a,b]lp(z) > u1}. (It follows from (iv)
that such a j ezists.) Then the following inequalities hold:

(8) o(£(3)) < us,
(9) w(£2(5)) < ua-

Proof. The relations ¢(j) > u; and f([uq,1]) <us imply that
f(¢(4)) = ¢(f(j)) < us which proves (8), while (9) follows from the
definition of u4:

e(F2(5)) = F(e(9)) = F(f(2(4))) € £([0,us]) <uq. O

Lemma 2.  ¢([u,,1]) < 7.
Proof. Assume that ¢([uz,1]) < j doesn’t hold. It follows from (8)
that
min_p(z) <uz <J
z:E[uz,l]
thus Jzg € [ua,1] such that ¢(zo) = j. Hence
(10) *(z0) 2 us-

On the other hand: ¢([0,u3]) N Fix(p) = 0 since otherwise f([0,u3])N
NFix(f) # 0 would hold which is impossible. Thus from f2(j) € [0,us)
and from (9) we have min ¢([0,us]) < Fix(yp). Using (8) we find

P2 (£(4)) = (e(£(4))) € ([0, us}) < Fix(p).
From this and (10) we get

. 2 Fi < 2
in ¢ (2) <Fix(p) <wi < max ¢ (),
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thus ¢?([uz,1]) D Fix(yp), that is f([uz,1]) N Fix(f) # 0 contradicting
fE€B. ¢

Since f(j) > w1 and f?(j) < us, it follows from (9) that ¢([0,us])N
N[0, u4] # 0. On the other hand, ¢(j) > u; > j and, as uz < ug < j, it
follows that there is a v, < 7 such that ¢(vg) = j.
Lemma 3. ¢ (vy)N(0,5) # 0.
Proof. We first show that ug < vy. Assume that vy < us. Then

(11) ¢((0,24]) D [us, 7]

since p(vy) = j and ¢(f%(5)) < us. Purther ([0, u4]) < Fix(p), since
otherwise Fix(f) N f([0,u4]) # 0 which is impossible. Now by (11)
?([0,u4]) D @([us,5]) D [p(us), ¢(5)] D Fix() but this implies

F([0,ue]) NFix(f) # 0,

a contradiction. Thusus < v;. We know that o( f2(5)) € [0,u4] so using
(8) and the definition of v, we get a point z such that min f2(j) < z < v,
and ¢(z) = v2. Thus ¢~} (v2) N (0,5) # 0. &

Choose v; € ¢~ 1(v3) N (0,7); the action of the first 3 iterates on
v1 is shown bellow:

U1 :‘g Vo 2%] :‘& (P(]) € [ul,l].

Then ¢*(v1) > u; and by Lemma 2 ¢*(ip3) = p(v3(p1)) < j. Thus we
get

(12) ¢*([v1,v2]) D [7,w].
But ¢(7) > u; and it follows from Lemma 2 that p(u1) < j whence
(13) o(7,u1]) D [5,wa].

From (12) and (13) we get
f([vl,’vz]) = 90"_3(903[711,”2]) 2 80"—3([9',1111]) 2
D™ ([hwal) O D [yual

and it follows from the definition of I that [v;,v,] NI # 0, whence
vy € I. Thus

©([v2,4]) D [p(v2),(5)] D Fix(e)
and further [vz,j] D I since v, € I. Thus we get f(I)N Fix(f) # 0

which is a contradiction.
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It remains to consider Case 4 with n = 2. We keep the definition
of j from Lemma 1. We have

(14) o(j) € [ua,1] and p(p(4)) € [u2,1].

Whence o([uz,1]) N [uz,1] # 0 but o(f(5)) = f((s)) < us shows that
o([uz,1]) N [0,us] # @ and hence f([uz,1]) N Fix(f) # @ which is a

contradiction. ¢
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Abstract: The theory of Hamilton geometry (k=1) has been developed by
R. MIRON ([15], {16]). In this paper we study the theory of kHamilton
geometry (k>1) using Miron’s theory of Hamilton geometry as a pattern.
First we show the reasons for undertaking this work and the previous results

in the theory of k-Lagrange geometry ([8], [9], [14]). Next, we consider the
k

vector bundle { = (@ T*M,n*, M) and describe the geometry of the total
1

k
space B* = @ T*M called k-Hamilton geometry.
1

1. Introduction

It is well-known that parameter-invariant problems (i.e. homoge-
neous cases) in the calculus of variations lend themselves well to geo-
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metrical interpretation and this has given rise to metric differential
geometries such as that of Finsler and its special cases: Riemannian
and Minkowskian geometry. But it is also known from the classical
calculus of variations (c.f. [3], [17], [18]) that there exist several prob-
lems for which the fundamental integral is dependent on the choice of
the parameter. This dependence implies that the Lagrangian cannot
possess certain homogenity properties.

It was J. Kern [6] who introduced the term Lagrange geometry
with a regular Lagrangian but without homogenity condition. It is
obvious that this geometry is more general than the Finslerian.

Although the introduction of the notion of Lagrange geometry
belongs to J. Kern, the whole theory of Lagrange geometry has been
developed by Romanian geometers led by R. Miron (c.f. [1], [2], [11],
[12], [13]). In the models for Lagrange geometry the basic manifold is
the total space T'M of the tangent bundle to a manifold M.

In a series of papers ([8], [9], [14]) we have constructed a geometri-
cal model for variational problems of multiple integrals called k- Lagrange
geometry. The formulation of variational problems of multiple integrals
(cf. [19] [20]) suggests that a geometrzcal model could be the fotal space

E = @ TM of the vector bundle @ ™™ — M.

We note that this vector bundle was used by C. Giinther [5] too.
Our theory, on the contrary, is based on the study of a metric which is
derived from the Lagrangian. We have used as a pattern the geometry
of the total space of a vector bundle as it was developed by R. Miron
[10].

We have described differential structures, nonlinear connections,
d-connections and metrical structures on E = @ T'M. We have pointed

out that E carries several tensorial struc‘cures:l and studied conditions
for their integrability. Furthermore we have given an application of k-
Langrange geometry considering the Moér equivalence problem ([17],
[18]) in the calculus of variations of multiple integrals.

In the papers [15] and [16] R. Miron has introduced a new concept:
Hamilton geometry which corresponds to the notion of Lagrange geo-
metry under the duality of the tangent (I'M — M) and the cotangent
(T*M — M) bundles. He studied also its applications in theoretical
physics.
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This article has been inspired by R. Miron’s papers mentioned
above and by the theory of k-Lagrange geometry.

Let us consider the 1-jet bundle Jl(IRk,TM) — M together with
the 1-cojet bundle Jl(TM,IRk) — M. The 1-jet bundle has typical
fiber L(]Rk,IRn) while the 1-cojet bundle has typical fiber L(]Rn,IRk).
We recall that J* (IR}“,TM) ~ Hom (]Rk,TM) ~TM® ORk)* as vector
bundles ([5], [8]). Moreover we have J!(TM,R*) ~ Hom (TM,R*) ~
~ T*M ® RF as vector bundles too. Here Hom (]Rk,TM) denotes the
total space of the vector bundle defined by all linear maps RF —
— TqM,q € M. Since there exist the isomorphisms Hom (IRk,TM) o~

k k
~ @ TM and Hom (TM,le) ~ P T*M, it follows that Hom(TM,]Rk)
1 1
is the dual of Hom (]Rk,TM). We shall use these isomorphisms in the
k
sequel. Let 7* be the projection on M,i.e. #* : @ T*M — M. We shall
1

k
consider the vector bundle (* = (@ T*M, n*, M) and the geometry of
1

k
the total space E* = @ T*M.
1

First we describe differential structures and nonlinear connections
on E*. We define tensorial structures on E* and give conditions for
their integrability.

Moreover, we shall study d-connections, metrical structures on E*
and the Legendre transformation between E and E*.
Acknowledgement. The author wishes to express her gratitude to
Professors Radu Miron and Mihai Anastasiei for their valuable com-
ments and suggestions. She would like to thank also Professor Hans
Sachs for his advice.

k
2. Differential structure on E* = 1*M
1

Let (U,%) be a local chart on M. Then (U,ga*,IRk") is a bundle
chart of the vector bundle (* where

(2.1) e* : () (U) —» U x RF™




80 M. Sz. Kirkovits

k _
and for(f)q €ePT;M (g€ M,a=1,k) we have
a 1

(2.2) " (Ear---2€a) = (PF)-
We can see that
(2.3) {q =pPidg =pPdg’ +... +prdg”

(x

which is a linear form for every a.

Puttig (¢*) = ¥(q) we define

(a) h*: () (U) - $(U) x R

29 (6) B*(Eqyeeesfa) = (65)

then we get the canonical coordinates (¢*,p%) on (7*)(U). The set of
k

charts ((7*)}(U), h*) defines a differentiable atlas on E* = @ T* M.
1

The transition maps on E* are as follows:

(2) T=7a(q"r0")
(b) ¢ =(0ig’)p§
where 8; = 3/3@‘ The transformation law shows that (p$*) can be

considered as a covariant vector. (In the following we denote p$* by p,
where (':) := a and use a shorter notation a,b,c... instead of double

(2.5)

covariant indices (‘:‘) or contravariant indices (;) if the computation
allows it for us.)

A local natural basis of the tangent space Ty« (E*) in u* € E* is
(6;,6) = (6;,0%) where 6; := 8/0; and &}, := 8/0pF. Its dual basis
is (dg*,dp?) := (dg*,dp,). Under a change of coordinates in (2.5) we
obtain

(2.6) i . ¢
; (b) 6, = 0;4°95 (8, := 8/0pF)

an

(2.7) (a) d7 = 8;7 d¢’

(b) dpf = py8;0;9*Brg’ dg" + ;97 dp?,
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respectively.

Hence we have a generalization of a result given by R. Miron in
the case k =1 in [15]:
Proposition 2.1. Setiing
k

(2.8) B=(p,---»p)

we get an R*-valued 1-form on E* whose components

p = pldg’ (a=1,k)
will be called fundamental forms.

The differential of p is obtained by differentiating its components.
So we have the following R*-valued 2-form on E*:

(2.9) w:=dp
where
210) (a) w=(b0r),

(b) w=dpfAdg' (a=T1,k)
Any 2-form @ is nondegenerate and dw = 0, hence
(2.11) dw = (dw, ..., dw) = 0.

This means that the R*-valued 2-form w is closed. Therefore w is
a polysymplectic form and (E*,w) is a polysymplectic manifold in C.
Giinther’s sense [5].

k
3. Nonlinear connections on E* =@ T'M

1

The kernel of D=* (the differential of 7*) is a subbundle of the
cotangent bundle @ T*M — M. It will be denoted by VE* — E* and

will be called the vertlcal bundle. A map u* — V,.(E*) where v* € E*
and V,,.(E*) is the fiber of the vertical bundle, defines a distribution V

k
on E* = @ T*M which will be called the vertical distribution.
1
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Definition 3.1. A nonlinear connection on E* is a distribution IN:
u* € E* — Ny« C Ty-(E*) which is supplementary to the vertical
distribution V, i.e.

(3.1) Ty (E*) = Ny» ® Vir

holds for any u* € E*. _

The vertical subspaces Vy» (E*) are spanned by (9,) = (8*). The
horizontal distribution N is locally determined by
(3.2) §f = 8;+ N3i(q,p)0] (87 :=6/67").

1

Hence (67, 67,) = (6%,8%) is a local frame, adapted to the decomposition

of T« (E*). The real functions N$i(g,p) defined on (7*) ™' (U) are called
the local coeflicients of the nonlinear connection IN and characterize it.

The dual frame is (dg*, 6*p%) = (dg*, 6*p,) where

(3.3) 6*ps = dps — Najdg’.

Under a change of coordinates in (2.5) we get their transformation laws:
a) &% = 0;q¢'6; b) 8% = 8;3'0?

(34) ( ) 7 Jq 1 ( ) o .‘lq [»3

(c) di' =8;3dg’  (d) 6'5F =g’ 65

With respect to the transformation (2.5) the coefficients N$(q°,p?) of
a nonlinear connection N have the following transformation law:

(3.5) N3(3,p) = 0;4*0:a" N3, (a,p) + py0;0:q*
for every a.
A direct calculation gives

(a) [65,67] = (6] Naj — 87 Nai)0*

(3.6) (b) [6F,8°] = —(8°Ny;)d®
(c) {aa1ab} = 0.

We can associate to a nonlinear connection on E* the following
geometrical objects:

(a)  Tia = Nig — Na; (a:= (".‘)),

(-7 (b)  Rauij=6Naj—6Nui (a:= (715))-

They give us antisymmetric d-tensor fields in ¢ and j. Moreover we
obtain
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Proposition 3.1. The horizontal distribution N is integrable iff R,:; =
=0.

The decomposition of the tangent space Ty,-(E*) at the point u* €
€ E* is the following

(3.8) Ty (E*) = Hye (E*) @ Ve (E*).

This decomposition defines a decomposition of the cotangent space

T (E*)in u* € E*:
(3.9) T (E*) = HL (E*) ® VA (E*).

The coframe (dg*,6*p%) is adapted to this decomposition.

The elements of Hx (E*) are 1-forms which vanish for vertical
vector fields and the element of V. x(E*) are also 1-forms which vanish
for horizontal vector fields.

An easy computation shows that d¢* are horizontal I-forms and
8*p, are vertical 1-forms.

By using §*p¢ we find that
(3.11) wt =1r8dg' Ndg' + 6*pF Adg'  (a=1,k)

which is compatible with the decomposition (3.9). This formula intro-
duces the 2-forms

(3.12) 0 = 6*p* A dgt (a=1,k)
considered by R. Miron [15] in the case k = 1.

The R¥-valued 2-form © = (61), ceny é) defines an almost polysym-
plectic structure on E*. As we have seen above this is a polysymplectic
form if 75; = 0 for every a. In this case the nonlinear connection N(Nj})
is symmetric.

As in the case of Hamilton geometry (for k¥ = 1) we have the
following relations between the adapted frames on Ty« (E*) and T, (E*)
respectively:

(a) <dg',6f>=6 (b) <&pf,6f>=0
(c) <d¢',8i>=0 (d) 6% ps ,51 = 6185 .

(3.13)

We can associate to N an almost product structure P on E* defined
as follows:

(3.14) (a) P(65) =8  (b) P(8L)=—dL.
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It is easy to check that

o

(3.15) O(PX,PY)=-0(X,Y) (a=1k)

for any X,Y € X(E*). This can be written as

(3.16) O(PX,PY) = -0(X,Y)

k

where © = (é, ..., 0). We shall call (0,P) almost hyperbolic structure

on E*,.

k
4. Tensorial structures on E* = @ "M
1

If we set

(4.1) (a) F(61)=—85 (b) F(8) =6 (c) F(8)=0,(V8+#aq)

we obtain k f-structures for which
(4.2) P34 F =0 (a=T1,k).
Analogously, we can define as in the case of k-Lagrange geometry [8/

the following tensorial structures é(a =1,k)

(4.3) (a) Q(6) =085 (b) Q8L =6 (c) Q(8))=0 (V6 +#a)

and we obtain

a

(4.4) Q*-Q =0 (a=1k).

Moreover we have

(a) O(FX,FY)=
a p__ B

) 6(6x,6) =

for any a,f and any X,Y € X(E*).

Now we study the integrability of the structures F and 63 respec-
tively.

X,Y),
X,Y)

(4.5) ?(
O
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We have the following conditions

a) ran Py = n < nk
(4.6) ) k“’? - (k>1)
(b) rank(Q)=n <nk

It is easy to see that F; = _F? and F, = F? + I are two supple-

mentary projectors associated to F. Tt is said that F is integrable if
the distributions associated to Fy and F, are integrable. As V. Duc [4]
proved these distributions are integrable iff Ng, = 0 where N g, means

the Nijenhuis tensor field of F? (a =1,k).

Further we associate with @ the set of projectors @; = I — Q?,
Q2 =
= 1(Q + Q% and Q3 = %(—Q + Q?). Let D;(i = 1,2,3) be the
distributions defined by these projectors. The structure @ is said to be
integrable if the distributions D; and D;+D;(j = 1,2, 3) are integrable.

V. Duc [4] proved that é is integrable iff Ng = O where Ng is the
Nijenhuis tensor field of é(a =1,k).

Using the definition of F' we get
(4.7) (a) F2(87)=—6; (b) F2(8i)=—0%

(c) F2(0p) =0 (B+# ).
The relation (4.2) implies that
Ft=—F2.

Hence we have
(49)  Ng.(X,Y) = [F2X, F?Y]+ FAX,Y] - F2[F?X,Y]-
_F[X,F?Y] = [F2X, F?Y) - F2[X,Y] - F?[F?X,Y] - F2[X, F2Y].
To find conditions for the integrability of F which are equivalent to

V. Duc’s conditions we shall compute N g, in the adapted frame (61,8%)
using the relations (3.6) and (3.7) (b). We obtain for fixed a

(a) Ng.(8%,65) = R85 (summing over 8 # a)
(b) Ng,(63,8%) = —0k(NE)B,  (summing over § # a)

(410)  (c) Npa(8f,85)=0 (8 # a)
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(d) Npa(04,05) =0

(e) Np.(85,85) =0 (B # o)
(f) Nga(85,0%) =0 (B #a, v#a)

Theorem 4.1. F is integrable iff

(411) (a) R, =0 (VB#a), (b) 85(NE)=0 (VB +# a).

Corollary 4.1. All Fa =1,k) are integrable iff R%, vanish and N

depend only on (pf)(a = 1,k).
Remark. Condition (4.11) (a) shows that integrability of the ho-
rizontal distribution is a necessary and sufficient condition for the inte-
grability of F. N

Now we proceed similarly for Q using its definition. In general we
have

-QIX,QY], X,Y € X(E*),
hence for the adapted frame we obtain

(a) N (85,6;) = R85 — S (0ENG — 05N g )8}
(not summing over a)

(b) Ng (670%) = DLN8, ~ OENGO, — Y R, 81 =

1] o
= OLN}O% — S RE,6! (14 )
(414) () Ny (55, 08) = = 2(GENS)S! (8 # )
(4) N (03, 05) = RJ,,05 + S2(0ENG — 94N3)6;

R

a? Yo ik

(not summing over a)
(©) N3 (04,05 = SohNgs (84 )
() Ng05,05)=0 (B#0,79#a)

So we have proved
Theorem 4.2. Q is integrable iff
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(a) By = 0 (i-e. the horizontal distribution is integrable)
iy MO0 (e

(c) BENG = BLNG

(d) 5NE =0 (B # a).
Corollary 4.2. All Q(a =T1,k) are integrable iff
(4.16) (a) B =

(b) N{: depends only on (pf')(a is fized).
We can see that the condition (4.14) (c) is equivalent to (4.15) (a)
and the condition (4.15) (d) follows from (4.15) (b) and (c).

Corollary 4.3. If Q is integrable then F' 1is integrable. If all é are
integrable then all F' are integrable.

k
5. d-connections on E* = @T*M
1

A distinguished connection — shortly d-connection — on E*, en-
dowed with a nonlinear connection, is a linear connection D on E*
which preserves by parallel displacements the horizontal and the verti-
cal distributions.

Now we are interested in its local representation. We put as
usual:

(5.1) (a) DY =DuxY (b) D% =D.,xY (X,Y € X(E"))
and with respect to the adapted frame (67, 8%,) we set

1) o

652) (2) D65 = L}, (b) Dy 85 = L85
' (c) Dys;=Ci'gsi  (d) Dydi=Cegdl.

Hence we have obtained a set of functions
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(5.3) I'D = (Li(g,2), L33 (a,p), C;ik(a,p), C%(q,p))-

The set L‘k cha,nges like the components of a linear connection on M

and the set LJ ix changes like the components of a linear connection in

':‘) as contravariant and covariant

indices ([8]). The é i k and éf" * change like the components of the
d-tensor fields on E*

The set I'D characterizes a d-linear connection, i.e. if I'Dis given,
’&here exists a unique d-connection such that its local coefﬁments are just
rD.

Now the h- and v-covariant derivatives can also be considered with
respect to I'D. Since later we need the h- and v-covariant derivatives
of a double covariant tensor field g = g;;(g,p)dg' ® dg’ on M and of a

a vector bundle if we consider (ﬁ), (

double contravariant tensor field § = gljﬂ(q,p)5*P? ® 5*p? on E* now
we give them

* *

(a)  gijk = 659i5 — Lirgsi — L‘J"kgia,
( ) gz]a akgzj Cskgn - Caagun

* 3]

(c) gaﬁk = 5k9aﬁ + Lamkg‘yﬁ + Lﬁmkga'y’

(@) ghjk = Bhai]+ Criboim + ki,
The vector field Z = pfd?, which is globally defined on E* will be
called the Liouwille vector field on E*.

A d-connection is of Cartan type if

(5.5) Dz =0, DyZ=X (VX € X(E")).

(5.4)

Expressing locally this condition we obtain:
Theorem 5.1. A d-connection is of Cartan type iff

(5.6) &= pﬂLﬁzk +N% =0, C‘:’)‘Z; =0.

The tensor field DS, is called h-deflection tensor field associated
to D. (cf. [15]).

The torsions of D are defined as usual. Their local coefficients are
the following:
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(@) Thi=Lij—=Lix  (b) R'-Jk =61 (N%) — 8(N5;)
(B.7) (c) Cjif . (d) PLji=08iN% - Lix,
aik ajk aki .
(C) Sr:/]ﬁ C‘l‘:ﬂ C“ﬂ‘:

k
6. Metrical structures on E* =@ T*M

Definition 6.1. A functlon H: G}T*M — ]R is called a Hamzlton

function (or a Hamiltonian). If H : ( ¢, p%) — H(q ,P5) and the ma.tnx
with the elements :

(6.1) : gaﬂ =& Bﬂ (gaﬂ = gﬂa)

is nondegenerate, i.e. its rank is nk, then the Hamiltonian H will be
called regular.

Theorem 6.1. Any regular Hamzltoman H(q,p) deﬁnes a metrical
structure called Hamilton structure in the vertical bundle VE* -
Proof. Define the map

(a) gus : Vur(E*) X Vir (B*) >R (u* € E) as
(6.2) (b) gu-(X, Y)= gaJXaYﬂ where
() X=X20, and Y = Yf(’)},

are vertical vector fields. This map is well-defined and obviously linear

with respect to X and Y. By Definition 6.1. it is nondegenerate. ¢
Now if g= g¢:;(¢,p)dq* ® dg’ is a tensor field on E* such that

det||g;;|| # 0 the following metrical structure can be considered on E*:

(6.3) G = g:;(¢,)dq" ® d¢’ + g5} (a,0)6* 12 ® 6*FF.

As usual we say that a d-connection is metrical with respect to G if
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(6.4) DxG =0
for any X € A(E™*). This condition is equivalent to the following: (6.5)
giie =0, gi*=0, g.3,=0, g.5l5=0.

We can prove by direct calculation using (5.4) and the symmetric
property of the Hamilton structure:
Theorem 6.2. The following d-connection 1s metrical and it torsions
T and § vanish:
(6.3)

(a) Li, = %g"’”(ﬁ’-‘gkm + 859im — 67.95k)

(b) Li% = B3NS + 9“1(5?2 ghy — 05(N5 gl — 07 (N5 )als)
( ) C~. 8= iguaﬁ(g]a)

(d) C’f;’; lgw (87ghr + Ofgin — Og ).

Here g*/ is the inverse of g;; and gi) is the inverse of g;nﬁj ie.
979k =65 and g"Zg:},] = 6:’5ﬁ = 51%7

hold.

An interesting particular case is obtained when g;; do not de-
pend on p. In such a case g;;(g) can be thought as defining a metrical
structure on M and we have

*i 1 im( c* * *
(2) Lix = 597 (85 9km + 619m — 67.91¢)

(b) C. ’ﬂ =0
(6.7) ) .
(C) Lﬁzk - a;-?N + Py 171(62 é'y aé( :k)ge-y am( :k)geé
a L. Qe kr jr r J
Furthermore taklng into account the Hamilton metric in (6.1) we get
Sajk _ 1 _ae _&H
(6'8) ‘ Cryﬂ - 2g1. 1‘6?18}, 6?1-

and so the contravariant part of 8,
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(6.9) Clmk .- gpigiek 1 __o'H

Y68 vif 2 9ps, 8;7;.7 api

is symmetric in the indices (fy), (’g‘), (;)

Remark. C’?ﬁk corresponds to the tensor C™* from the Hamilton
geometry (k =1).

7. Legendre transformation

k *
Let us consider FE =J'(R*TM)~@TM-">M and E =
1

k *
= JY(TM,R*) ~ @T*M">M. A Lagrangian L is a real-valued

function on F (c.f. 1[14]). The vertical derivative of L is written as
d,L|, = d(LIE,(u)) where d means differential of functions. This is
a vertical 1-form because LIEr(u) means locally that (z',...,z") are
fixed so d(L|E,,(u)) = 0%Ldy’, i.e. an element 07 (L) of E* is obtained.
Hence a map £ : E — E* can be defined as follows:

(7.1) L(z*y%) = (¢, pF = 08L(z,y))  ((2%) = (¢') € M).

The map L is called Legendre map. Generally it is not a bundle mor-
phism but it preserves the fibers.
Definition 7.1. The Lagrangian L is said to be regular if £ is a local
diffeomorphism and it is said to be hyperregular if £ is a global diffeo-
morphism. In the latter case £ will be called Legendre transformation.
By (7.1) L is regular iff the matrix (g5 ) (6°‘BﬁL) is nondegen-
erate in any system of coordinates, i.e. the second order differential of
LIE,(,‘) is nondegenerate for every u € E.
Let us put the relation between a Hamiltonian and a Lagrangian
under the Legendre transformation £:

(7.2) H =y} - L.

We prove:

Proposition 7.1. The inverse L' of the Legrende transformation
L s
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(7.3) L7Y(g",pf) = (2*,ya = 0uH(=,p)).
Proof. We shall show that £~ oL = id|g and conversely, LoL™! =
id|g-. Consider the Defintion 7.1. Since L(z,y) does not depend on
7L we get by direct calculation
i iy £ o " H
( 7ya)_)(q ,P,, 8 L)—)(:B 7ya = aa )
= (2*,8(yL — L)/8(87L)) = (<*,8585y5 — 0) = (=, ).

Conversely, since L = @yj — H and the function H does not depend
y ;v p

(7.4)

on 8., H we directly obtain
(15)  (¢5p) (et vk = BLH)S(g, OL|6(9LH)) =
= (¢, (¢85 H — H)/8(8.H)) = (', ;6165 — 0) = (¢',pF). O

If LT and (£L7)7T are the tangent maps to £ and L™, then we
have

(a) L7(8:) =0+ 60 (L)oh

(b) L7(3) = g5/ 0 (5i - a1aq*'>
(c) (L7178 =8;+.04(H)og 8; := 0|0z’
(d) (£71)7(8%) = OLB5(H)S] = 9,405

(7.6)

By using these formulae we shall prove
k
Theorem 7.1. IfL is a hyperregular Lagrangian on E = @ TM (i.e.

1
the Legendre morphism associated to it is global diffeomorphism), then
k
L carries a nonlinear connection N on E = @ TM into a nonlinear
1

connection N on E = é T*M. If Ni(a,y) are the local coefficients of
Nand N%(g,p) are the local coefficients of N, then we have

(7.7) N%(g,p) = (050 ;(H) + N};)gis

Proof. From (7.6) (a) and (b) we deduce that

(7.8)  LT(8:) = LT(8: — NL05) = B+ 8:0°(L)8s — Ni,g2P o) =

aivj

=01+ (B:05 (L) — Nig3l)0h.
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Moreover, from the defintion of H in (7.2) induced by L it follows
(a) 8;H=-5L
(7.9) (b) 8:0°(L) = 8°(8;L) = —82(8 :H) = _aga(g)agpg =
= —8i8;(H)0295L = —0i0;(H)gas (¢ =4').
Hence for the local basis adapted to the horizontal distribution N on
E ((8]) we get

(7.10) LT(6:) =8 : +(—058 i(H) — Ni,)g2h0%.
Putting
(711) N = (858 (H) + NZ)g3f

we have obtained that LT maps {4;} to the local basis {‘5} adapted to

N on E and the formula (7.7) holds. &
Remark 7.1. If L is only regular then Theorem 7.1. is valid only

locally, i.e. on an open set of @ TM for which L is diffeomorphism.
Remark 7.2 Even though L i 1s only a local diffeomorphism the coef-

ficients N fi define a global nonlinear connection since they satisfy the
usual transformation law as it can be seen by a long calculation.
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Abstract: A Galilean space (73 is a three-dimensional affine space with an
absolute {w, f, J}, where f is a line in the plane of infinity w and J an
elliptic involution on f. A cyclide in G'3 is an algebraic surface of order 4
that has f as double-line. In this paper we investigate all cyclides, generated

by an euclidean rotation in (3.

Zykliden des dreidimensionalen euklidischen Raumes E3 sind nach
G. Darboux [1] algebraische Flichen 4. Ordnung, die den absoluten
Kegelschnitt als Doppelkurve enthalten. Analog definiert man Zykliden
des einfach isotropen Raumes I3 als algebraische Flichen 4. Ordnung,
welche das absolute Geradenpaar dieses Raumes als Doppelgeraden be-
sitzen (H. Sachs [11] — [14]; D. Palman [2] - [6]).

Im galileischen Raum G5 koénnen wir analog Zykliden als jene al-
gebraischen Flichen 4. Ordnung definieren, welche die absolute Gerade
f als Doppelgerade enthalten und keine weiteren Fernpunkte besitzen.

In dieser Arbeit werden wir jene Zykliden des galileischen Raumes
G5 betrachten, die durch eine euklidische Drehung erzeugt werden kon-
nen.
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1. Im reellen dreidimensionalen projektiven Raum P;(R), in dem
wir die Punkte wie iiblich durch reelle homogene Koordinaten

(1) (zo:z1:22:23) # (0:0:0:0)

beschreiben, zeichnen wir eine reelle Ebene w(zg = 0) und in dieser
Ebene w eine reelle Gerade f(zg = z; = 0) aus. Auflerdem definieren
wir auf der Geraden f durch

(2) J: {0:0:z2:z3)—+(0:0:m3:—m2)

eine elliptische Involution J.

v Mit der so definierten Absolutfigur [w, f,J] wird auf bekannte
Weise ein galileischer Raum G eingefithrt (0. Réschel [9]). Die pro-
jektive Automorphismengruppe von [w, f, J] ist achtparametrig und
enthélt eine ausgezeichnete sechsparametrige Untergruppe Bg, die man
als Bewegungsgruppe des galileischen Raumes bezeichnet ([9,6]). Alle
if. beniitzten Resultate aus der Geometrie des galileischen Raumes Gs
konnen in [9] nachgelesen werden.

Hier sei nun angemerkt, da8 man in G5 zwei Typen eigentlicher Ebenen
unterscheidet: Euklidische Ebenen (dies sind Ebenen, die f enthalten)
und isotrope Ebenen (dies sind Ebenen, die f nicht enthalten). Die von
Bg in einer euklidischen Ebene induzierte Metrik ist euklidisch, die in
einer isotropen Ebene induzierte Geometrie ist isotrop (H. Sachs [11]).
Als Punktkugeln des galileischen Raumes G5 bezeichnen wir jene para-
bolischen Zylinder, welche die Fernebene langs der absoluten Geraden
[ beriihren. Die Gleichung dieser Kugeln ist von der Form

(3) Az?+ Bz —2Cy—2Dz+E =0, (A#0, C?+ D2 +£0).

Die Spitze einer solchen Punktkugel liegt im Punkt § (0:0:D:
: —C) auf der absoluten Geraden f.

Im galileischen Raum G existieren zwei verschiedene Arten von
Kreisen:

1. Euklidische Kreise: Das sind Kegelschnitte, die in euklidischen
Ebenen liegen und die beiden konjugiert-komplexen Doppelpunkte (0:
:0:1: i) der absoluten Involution J enthalten.

2. Isotrope Kreise: Dies sind Parabeln in isotropen Ebenen. Die
isotropen Kreise beriihren die Fernebene in einem Punkt der absoluten

Geraden f. ‘
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Die Gruppe Bg enthilt 2 Typen von Drehungsgruppen als Unter-
gruppen: :
1. Euklidische Drehungen mit der Normalform
z(t) = zo
(4) y(t) = yo cost + zpsint
2(t) = —yp sint + zg cost.

Die Drehachse ist hier die z-Achse (Fixpunktgerade). Die Bahnkurven
sind euklidische Kreise in euklidischen Ebenen.

2. Isolrope Drehungen mit der Normalform

z(t) = zo + bt
(5) y(t) = yo + ot + b’
Z(t) = 2.

Die Bahnkurven dieser Gruppe sind isotrope Kreise vom Radius b in
isotropen Ebenen.

2. In dieser Arbeit werden wir nur jene Flichen untersuchen, die
sich durch euklidische Drehung (4) eines isotropen Kreises £ um die
z-Achse erzeugen lassen. Je nach der Lage von x konnen wir einige
Falle unterscheiden. Der einfachste Fall liegt vor, wenn k ein Kreis in
einer Meridianebene, d.h. einer Ebene durch die z-Achse ist. Man kann
dann k ohne Einschrinkung der Allgemeinheit in z = 0 mittels

T =7
(6) K ... y=2p'u2+A
z=10

ansetzen. Unterwirft man ihn der euklidischen Drehung (4), so erhalt
man eine Fliche 4. Ordnung der Gestalt

(7 y? + 22 = (2pz? + A)2.

Dies ist offensichtlich eine Zyklide, deren Meridiankurven isotrope
Kreise sind, also eine Torusflache des galileischen Raumes G3. Solche
Torusflichen wurden von O. Roschel in [10] ausfiihrlich untersucht.

3. Wir betrachten weiter einen isotropen Kreis mit der Parame-
terdarstellung
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T =17
(8) K ... y:2p'vz+A
z = kv.

Dieser isotrope Kreis liegt in der Ebene
9 . p ... z=ke,

die ersichtlich keine Meridianebene ist.
Unterwirft man den Kreis & (8) der euklidischen Drehung (4), so
erhilt man eine Fliche ® mit der Gleichung

(10) ® ... y?+ 22 =(2pz? + A)? + k%22,

Das ist offensichtlich eine Drehzyklide ®. Die Zyklide ® (10) be-
sitzt die absolute Gerade f als Doppelgerade und die konjugiert kom-
plezen absoluten Punkte (0:0:1: +%) als uniplanare Knotenpunkte.

Die Meridiankurve in der Meridianebenen z = 0 ist durch

(11) B ooy = (2p2% + A)? + E?2® baw.

(12) dp*z? + (k? +4pA)a® —y* + A2 =0

gegeben. Dies ist eine (beziiglich der z-Achse) axialsymmetrische, voll-
stindig zirkulire Kurve 4. Ordnung in der isotropen Ebenen z = 0 vom
Typus (2,2) (vgl. [8]). Die Gleichung (12) 18t sich auch in der Form

(13) (2pa? —y + E224)(9pg? 4y 4 tied)
(ij.G.;pEA) +A2 -0

schreiben. Die Meridiankurve (13) hat daher zwei isotrope asymptoti-
sche Kreise

(14) K1,Kg ...2pz? j:y—i—m 0,

die keinen eigentlichen Punkt mit der Kurve (13) gemeinsam haben. Die
Radien der asymptotischen Kreise sind p bzw. —p. Die Kreise liegen
symmetrisch beziiglich der z-Achse. Weiters hat die Mendlankurve (13)
einen Selbstberithrungspunkt im absoluten Punkt.

Da die Zyklide ¢ (10) auch durch Drehung der Meridiankurve
(13) erzeugt werden kann, folgt, da8 die Drehzyklide ® (10) sich ldngs
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der absoluten Geraden f selbst bertihrt und gleichzeitig die Fernebene
w berdhrt.

Nach (13) 1Bt sich die Gleichung der Zyklide (10) in der Form
(15) y? + 22 = (2pe? + kz-i;:gA)z _ (k’t:gA)z + A2

schreiben. Andererseits erhilt man durch Drehung der asymptotischen
Kreise (14) der Meridiankurve (13) eine galileische Torusfliche 7 mit
der Gleichung

2
(16) ...y 4+t = (2p:l:2 + F4ipa -:: A)z.

Aus (15) ist ersichtlich, dafl die Torusfliche 7 (16) keinen eigentlichen
Punkt mit der Drehzyklide ® (10) gemeinsam hat, d.h. wir kdnnen
die Torusfliche T (16) als asymptotischen Torus der Drehzyklide & (10)
bezeichnen.

4. Wir wollen nun untersuchen, welche Kreise auf der Drehzyklide
® (10) liegen.

Betrachten wir zunichst den erzeugenden isotropen Kreis & (8)
in der Ebene p (9). Die Ebene p schneidet die Drehzyklide & (10)
in noch einem weiteren isotropen Kreis K, der zum Kreis k besziiglich
der zz-Ebene symmetrisch liegt. Bei Drehung der Ebene p umhiillen
diese Ebenen einen Drehkegel und die Kreise £ und & beschreiben zwei
Systeme von isotropen Kreisen der Drehzyklide @ (10). Diese beiden
Systeme bezeichnen wir mit Ky und K,. Die Kreise der beiden Systeme
liegen in den Tangentialebenen des erwahnten Drehkegels.

Man sieht leicht, daB durch jeden Punkt der Zyklide @ je ein
isotroper Kreis beider Systeme K, und K, hindurchgeht.

Betrachten wir weiter die Ebene

(1n o ...y=+k?+8pAc

und schneiden wir die Drehzyklide @ (10) mit dieser Ebene. Durch
Einsetzen von (17) in (10) erhalten wir die Projektion der Schnittkurve
auf die zz-Ebene in der Form

(18) 2% = (2pz? + A)%

Das sind zwei isotrope Kreise, und die Ebene o ist eine Dop-
peltangentialebene der Zyklide ®. Durch Drehung der Ebene o um die
z-Achse erhalten wir zwei Systeme von isotropen Kreisen in Ebenen,
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die wieder einen Kegel umbhiillen. Dieser Kegel beriihrt die Drehzyklide
® (10) lings zweier euklidischer Parallelkreise. Diese beiden Kreissys-
teme bezeichnen wir mit L, und L,. Daraus schliet man leicht, dafl
durch jeden Punkt der Zyklide je ein Kreis beider Systeme L, und L,
hindurchgeht. Die isotropen Kreise der beiden Systeme L; und Ly der
Drehzyklide ® (10) sind das Analogon zu den Villarceauschen Kreisen
der Torusfliche (vgl. [10]). Zusammenfassend gilt der

Satz 1. Durch einen allgemeinen Punkt P der Drehzyklide & (10) des
galileischen Raumes Gy geht ein euklidischer Kreis (Parallelkreis der
Drehzyklide ®) und je ein isotroper Kreis der vier Kreissysteme K,
Kz, L1 und Lz.

5. Die Kreise der betrachteten Kreissysteme konnen auch nicht
reell sein. Wir betrachten im folgenden verschiedene Fille betreffend
die Realitit der erzeugenden Kreise der Zyklide & (10). Dabei werden
die Koeflizienten p, A und k stets als reell vorausgesetzt.

1. Bei der Drehzyklide ¢ mit der Gleichung (10) handelt es sich
um eine Fliche, bei der alle vier Kreissysteme K, K,, L,, L, reell sind.
Die asymptotische Torusfliche ist ebenfalls reell.

2. Bei der durch

(19) y? + 2% = 4p?a? — (k? — 4pA)z?

gegebenen Drehzyklide sind die Kreise der Systeme K; und K, ima-
ginir. Diese Kreise haben reelle Projektionen in die zy-Ebene, liegen
aber in imaginaren Ebenen.

3. Bei der durch
(20) 4p*z* — (k? —4pA)z? 4+ y2 + A2 =0

gegebenen Drehzyklide sind die Kreise der Systeme K; und K, konju-
giert-komplex, liegen aber stets in reellen Ebenen.

6. Bei unseren bisherigen Betrachtungen war die Lage des erzeu-
genden Kreises & (8) nicht ganz allgemein. Man kann leicht beweisen,
dafl ein isotroper Kreis des galileischen Raumes, der allgemeine Lage
besitzt, sich stets in der Normalform

z=v
(21) k... y=2pv+ 4
z=kv+1
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darstellen 1aBt. Dies gelingt stets durch Anwendung einer geeigneten
euklidischen Drehung (4). Unterwirft man den Kreis & (21) der euk-
lidischen Drehung (4), so erhdlt man wieder eine Drehzyklide, deren
Gleichung

(22) $ ... y%+ 22 = (2pz? + A)? + (kz +1)?

lautet. Die Gleichung einer allgemeinen Drehzyklide des galileischen
Raumes, die durch euklidische Drehung eines isotropen Kreises entsteht,
kann man somit immer auf die Form (22) transformieren. Was die
Kreissysteme einer solchen Fliche betrifft, gilt der Satz 1 in analoger
Weise.

7. Es liegt nun die Frage nahe, ob durch (22) alle euklidischen
Drehzykliden des galileischen Raumes erfaflt werden, oder ob es noch
andere gibt. Um diese Frage zu beantworten, wollen wir die Gleichung
einer allgemeinen Zyklide ® des galileischen Raumes G5 betrachten.
Dabei mufl man, bezugnehmend auf die Definition einer Zyklide des
G, die drei folgenden Punkte beachten:

1. Die Zyklide @ besitzt aufler der absoluten Ferngeraden f (Fern-
gerade der Ebene ¢ = 0) keine weiteren Fernpunkt, d.h. die Gleichung
der Zyklide ® kann nur ein Glied vierten Grades nimlich z* enthalten.

2. Da die Ferngerade f Doppelgerade der Fliche ® ist, schneidet
jede Ebene z = const. die Zyklide ® (aufler in f) nach einer Kurve
2. Ordnung, d.h., wenn man in der Gleichung der Zyklide z = const.
setzt, so mufl eine Gleichung zweiten Grades in y und z ibrig bleiben.

Zieht man dies alles in Betracht, so lautet die Gleichung einer
allgemeinen Zyklide

(23) z* + az® + 2pi(y, 2) + 2pi(y,2) + Pi(y,2) = 0,

wo die p? Polynome n-ten Grades bezeichnen und a € R gilt. Sucht
man nun die Gleichung einer allgemeinen euklidischen Drehzyklide ®
des galileischen Raumes G35, d.h. einer Zyklide, die durch euklidische
Drehung um die z-Achse entsteht, so mul man noch folgendes beachten:

3. Schneidet man eine solche Drehzyklide ® mit einer Ebene o
mit der Gleichung = = const., so ist der Schnitt ein euklidischer Kreis
mit dem Mittelpunkt im Schnittpunkt der z-Achse mit der Ebene o.
Hieraus folgt durch eine einfache Rechnung, dafl sich die euklidischen
Drehzykliden des G3 in der Gestalt
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(24) & ... (Az+B)(¥* + %) +q*(z) =0

schreiben lassen.
Man kann hier zwei Typen von euklidischen Drehzykliden unter-
scheiden:

Typl: A=0
Die Gleichung der euklidischen Drehzyklide lautet dann
(25) ®r ... Y2+ 22+ r4(z)=0.

Durch Vergleich mit der Gleichung (22) und nach den bisheri-
gen Betrachtungen erkennt man, dafl die Drehzykliden & (25) alle
jene Drehzykliden sind, die durch euklidische Drehung eines isotropen
Kreises um z-Achse erzeugbar sind.

Die Drehzykliden @1 besitzen eine Selbsberihrung langs der abso-
luten Geraden f und haben in den absoluten Punkten Iy,I; zwei uni-
planare Knotenpunkte.

TypIL 4 #0
Die Gleichung (24) kann man dann in der Form
(26) ®rr ... (Az+B) (2 +22)+¢%(2)+5=0

schreiben. Daraus entnimmt man unmittelbar, dal zur Drehzyklide
® ;s eine euklidische Ebene 7 mit der Gleichung

(27) ; T ... Az + B =0,

existiert, die keinen eigentlichen Punkt mit der Drehzyklide ®;5 (26)
gemeinsam hat. 7 kénnte man als asymptotische Ebene bezeichnen.
Man erhalt (27) auch dadurch, dal man die Flichengleichung (26) par-
tiell nach z differenziert, und die entstehende Gleichung gleich Null
setzt. Somit ist (27) die zu (26) gehorige Hauptachsenfliche ¥*, wie sie
von H. SACHS in [14] eingefiihrt wurde und bei der Klassifikation der
Zykliden des Flaggenraumes bentitzt wurde.

Es existiert hier weiter eine Fliache 3. Ordnung mit der Gleichung

(28) Y ...yt + 22 +43%(2) =0,

welche die absolute Gerade f als einfache Gerade enthélt, und auflerdem
keine weiteren uneigentlichen Punkte trigt. Man kann diese Fliche
Y als euklidische Drehzyklide 3. Ordnung bezeichnen. Die Fliche ¥
beriihrt und schneidet gleichzeitig die Fernebene lings der absoluten
Geraden f. Wir bezeichnen diese Fliche ¥ (28) als asymptotische
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Flache der Drehzyklide ¥ (26). Die Zykliden 3. Ordnung des Flaggen-
raumes wurden von H. SACHS in [15] vollstindig klassifiziert. GemaR
dieser Klassifikation gehort (28) zum ersten Haupttyp, Unterklasse IA,
elliptischer Fall. ‘

Die Fliache ¥ (28) ist eine Drehfliche (euklidische Drehung um

z-Achse) mit der Meridiankurve
(29) ¥ +4%(z) =0

in der zy-Ebene. Dies ist eine divergente Parabel (vgl. [7]). Die asymp-
totische Drehfliche X entsteht somit durch euklidische Drehung einer
divergenten Parabel um z-Achse.

Die Meridiankurve

(30) (Az + B)ly* + ¢*(=)] + § =0
der Drehzyklide ®;; (26) ist eine vollstindig zirkulire Kurve 4. Ord-

nung; sie besitzt eine asymptotische Gerade (Az + B = 0) und eine
asymptotische, divergente Parabel. Demnach ist sie vom Typus (1,3);
(vel. [8]).

Die Drehzyklide ®r (26) beriihrt und schneidet die Fernebene w
langs der absoluten Geraden f, und schneidet die Fernebene w nochmals
laings f. Wir fassen zusammen im
SATZ 2. Im galileischen Raum Gs ezistieren 2 Typen von euklidi-
schen Drehzykliden, die sich durch die Normalformen (25) bzw. (26)
beschreiben lassen. Die Drehzykliden vom Typ II (26) besitzen eine
euklidische Drehzyklide §. Ordnung als asymptotische Flache. Auf
den Drehzykliden (26) ezistieren aufer den euklidischen Parallelkreisen
keine weiteren Kreise.
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Abstract: The generalized modus ponens inference rule is examined in a for-
mal way and a characterization of the [0,1]2-[0,1] mappings, especially fuzzy
implication operators, is given according to their behaviour with respect to the
sup-triangular norm inference rule. The analogies between triangular norms
and their dual triangular conorms on the one hand, and fuzzy implication
operators on the other hand are described. Finally it is proven that a fuzzy
implication operator that is an extension of the classical formula (NOT P) OR
Q in the sense that the negation is replaced by a strict complement operator
and the disjunction by a triangular conorm, never satisfies the sup-minimum

inference rule.

1. Introduction

The compositional rule of inference was introduced by L. A. Zadeh
[17] as an extension of the classical reasoning scheme “modus ponens”.
Its main purpose is to infer a possibility distribution, given a rela-
tionship between two linguistic variables modelled as possibility dis-
tributions on their respective universes of discourse and a possibility
distribution which represents the vague knowledge about the matching
of the antecedent. This inference rule can be represented as

zis A=>yis B

zis A’

yis B'.

Here, A and A’ are possibility distributions on a universe of discourse
U, B and the derived distribution B’ are possibility distributions on a
universe V. The distribution B’ is calculated as

B':V —[0,1]:v - Z‘é{’,min(A'(u),f(A(u),B(v))),

where F is a [0,1]?*-[0,1] mapping representing the relationship be-
tween A and B. This generalized inference scheme is very powerful as
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it is able to deduce knowledge from incomplete and uncertain infor-
mation [15,18]. As mentioned in [4] and [7] the formalism for deriving
the distribution B' can be easily generalized by replacing the mini-
mum operator by a general triangular norm T (Definition 1.2, [14]).
When F is a fuzzy implication operator (Definition 1.1) the proposed
inference scheme is an extension of the classical "modus ponens” infer-
ence scheme. In [7,8,9] extensive case studies are presented by Martin-
Clouaire and Mizumoto where the minimum operator is replaced by
a general t-norm and F is a fuzzy implication operator. The results
of these studies and the idea of modus ponens generating functions by
Trillas and Valverde [15] suggest a strong connection between the choice
of the fuzzy implication operator used to model the linguistic rule and
fuzzy relation "IF z is A THEN y is B” and the triangular norm in
the generalized modus ponens inference rule or compositional rule of
inference. With regard to other inference schemes like “modus tollens”
and “syllogism” the same remark can be made. In the sequel a for-
mal treatment of the properties of [0,1]?-[0, 1] mappings and especially
fuzzy implication operators, w.r.t. their relationship with the trian-
gular norm in the sup-triangular norm generalized inference scheme is
presented. The family of equations

(Vy € [0,1])(y = sup T(z,F(z,y)))

z€[0,1

is examined and the mapping F is characterized w.r.t. the triangular
norm in the sup-triangular norm inference rule. In every example F
is a fuzzy implication operator. This section is mainly concerned with
definitions and notations. In section 2 some properties of [0,1]?—[0,1]
mappings, based on properties of fuzzy implication operators are pre-
sented. In section 3, the restrictions for the modus ponens inference
rule yield three possible classes of mappings. Section 4 deals with the
properties of one of these classes. Section 5 deals with the similarities of
triangular conorms and the properties of the fuzzy implication opera-
tor, and in section 6 it is proven that the classical formula (NOT P)
OR Q cannot be generalized without loss of the sup-min modus ponens
inference rule.

Definition 1.1. A [0,1]®-[0,1] mapping I satisfying the boundary

conditions

7(0,0) = Z(0,1) = Z(1,1) = 1 and Z(1,0) = 0
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is a fuzzy implication operator.

Definition 1.1 of a fuzzy implication operator is weaker than Weber’s
definition [16]. These conditions are the weakest that can be imposed: a
fuzzy implication operator is a [0,1]2-[0, 1] mapping that is an extension
of the material, binary implication operator.

Definition 1.2. [14]. A [0,1]?-[0,1] mapping T satisfying

(T1) boundary conditions:

(Vz € [0,1])(T(1,z) = ),
(T2) symmetry property:
(V(z,y) € [0, 1] )(T(2,y) = T(y,)),
(T3) associative property:
(V(2,y,2) € [0, 1 N(T(x, T(y,2)) = T(T(=,y),2)),
(T4) monotonicity:

(V(z,y) € [0,1]*)(Y(=',y') € [0,1]*)
(e <2')A(y <y') = T(=2,y) < T(',9")),
is a triangular norm (shortly t-norm).
Definition 1.3. A [0,1]2-[0,1] mapping S satisfying
(T1’) boundary conditions:

(Ve € [0,1])(5(0,2) = =)

and (T2)—(T4) is a triangular conorm (shortly t-conorm).

Definition 1.4. A [0,1]-[0,1] mapping C that is strictly decreasing and
involutive and satisfies C(0) = 1 and C(1) = 0 is a strict complement
operator.

Remark. The following two well-known properties can be easily proved
[3]:
1. If T is a t-norm and C a strict complement operator then S is a
t-conorm, where

§7 (0,12 = [0,1] : (z,9) = C(T(C(x), C(y)))-

2. if S is a t-conorm and C is a strict complement operator then 7%
is a t-norm, where

75 :[0,1* = [0,1] : (=,y) = C(S(C(2), C()))-
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Definition 1.5. Let T be a t-norm and F a [0,1]%2-[0,1] mapping then
F satisfies the sup-T' modus ponens inference rule iff

(Vy € [0’ 1])('!/ = Zl[]bpl] T("’,f(zvy)))

This definition is a natural extension of the sup-min modus ponens
inference rule.

Definition 1.6. Let f and g be two [0,1]2 —[0,1] mappings then f < g
iff (V(z,y) € [0,1*)(f(=,) < 9(=,9)).

2. Potential properties of the fuzzy implication
operator

Let 7 be a fuzzy implication operator and C a strict complement
operator. The following potential properties for 7 are defined [6].
Definition 2.1. T satisfies the contrapositive symmetry iff

(V(z,y) € [0,11*)(Z(=z,y) = Z(C(y), C(2)))-
Definition 2.2. 7 satisfies the ezchange principle iff

(V(z,y,2) € [0,1]*)(Z(=, I(y, 2)) = Z(y, (=, 2))))-
Definition 2.3. T is hybrid monotonous [2,6] iff

((z,v) € [071]2) (V(=',y') € [0’1]2)
(s < o) Ay > 9/) = Z(e,) > I(&",9").

Although the definition of the hybrid monotonicity of Z seems
rather strange, it satisfies the intuitive idea that the less the antecedent
is true and the more the consequence is true, the more the implication
should be true. The following property is easily verified.

Property 2.1. If T is a hybrid monotonous fuzzy implication operator
then
(V2 € [0, 1)(Z(0,2) = 1).

Definition 2.4. 7 satisfies the neutrality principle iff
(Vz € [0,1])(Z(1,2) = =).

Remark. Obviously these definitions can be extended to general
[0,1]2-[0, 1] mappings.
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3. Natural restrictions for the generalized modus
ponens inference rule

In this section some natural restrictions on the mapping

supT :{0,1] - [0,1] : y — sup T(z,F(z,y))
z€[0,1]

are introduced, where T', F respectively, is a t-norm, a [0,1]?-[0,1]
mapping respectively. These restrictions generate three disjoint classes
of mappings that are examined to determine whether or not these map-
pings satisfy the generalized modus ponens.
Property 3.1. If F is a [0,1]2-[0,1] mapping and T a t-norm then

(Vy € [0,1])(F(1,y) < sup T(z,F(z,y)) < sup min(z, F(z,y))).

. zg[0,1] z€[0,1]

Proof. As (Vy € [0,1])(F(1,y) = T(1,F(1,¥))) and T < min for every
t-norm T the result is immediately obtained. ¢

Considering Property 3.1 three disjoint classes of mappings can be de-
fined:

Class I: (Vy € [0,1])(F(1,y) = ), i.e. F satisfies the neutrality princi-
ple,
Class II: (Vy € [0,1])(F(1,y) < y) and (Fyo € [0,1])(F(1,%0) < o),
Class III: (3y, € [0,1)}(F(1,90) > yo)-
Remarks.
1. The three disjoint classes are a partition of the set of the [0,1]%—
—[0,1] mappings.
2. For the mappings of classes I and II the following property is easily
proven:

Property 3.2. Let T,T; and Ty be t-norms. If F satisfies the sup-T}
and the sup-T, modus ponens inference rule and if Ty < T < Ty then
F satisfies the sup-T" modus ponens inference rule.

Proof.
(M(z,y) € [0,1]*)(T1(z, F(2,y)) < T(z, F(z,y)) < Ta(z, F(z,y)))
and thus

(Vy € [0,1])( sup Ti(z, F(z,y)) < sup T(z,F(z,y)) <
z€[0,1] z€[0,1]
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< sup Ti(z, F(=,y)))-¢
z€[0,1]
3. From Property 3.1 it follows that the mappings of class III never
satisfy the generalized modus ponens.
In section 4 some results on mappings satisfying the neutrality
principle are presented.

4. [0,1]>—[0,1] mappings satisfying the neutrality
principle

In this section T is an arbitrary t-norm and F a [0,1]?-[0, 1] map-
ping that satisfies the neutrality principle.
Definition 4.1 ([4,16}):

o7 1 [0,1)% — [0,1] : (2,5) — sup{z | T(2, 2) < g}

The following theorem is based on some theorems proved by Du-
bois and Prade [3,4] and deals with the existence of a maximal solution
F of the family of equations

(Vy € [0,1])(y = sup T(=,F(z,y)))
z€fo,1
it gives a sufficient and necessary condition to determine whether or not
F, satisfying the neutrality principle, is a solution of the above family
of equations.
Theorem 4.1. Let T be a t-norm such that every partial mapping of
T is infra-semicontinuous and F a [0,1]2-[0,1] mapping satisfying the
neutrality principle. F satisfies the sup-T' modus ponens inference rule
’l.ﬁ F S D.
Proof.l. If F satisfies the sup-T' modus ponens then F < >p [4].
2. pr is a solution of the family of equations
(Vy € [0,1])(y = sup T(=,F(z,y))).
z€[0,1]
Although this has already been proven for a continuous t-norm T this
property holds for every t-norm which has infra-semicontinuous partial

mappings. The proof is entirely based on the exchange of supremum
and T. This property is proven in the Appendix.
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3. It has already been proven that if F satisfies the generalized
sup-T' modus ponens then F < pg. The reverse implication is estab-
lished now. Let F be a mapping that satisfies the condition F < g
and T a t-norm with infra-semicontinuous partial mappings then

(Vy € [0,1])(F(1,y) < sup T(=,F(z,y)) < sup T(z,z>ry))
z€f0,1] z€[0,1)
or
(Vy € [0,1])(y < sup T(z,7(z,y)) < 9)-0
z€[0,1
Remarks.
1. If the partial mappings of T' are not infra-semicontinuous Theorem
4.1 cannot be generalized. Counterexample: let T' be Z then

15 V((B,y)E[O,l[X[O,l]

DZ:[0,1]2—+[0,1]:(Z,3/)'_’{y : 2 =1.

It is easily verified that sup Z(z,zpgzye) = 1 or the sup-Z modus
z€f0,1]
ponens inference rule does not hold when F = vg.
2. Consider for a €]0,1] the mapping

0 ;  if max(z,y) <a

. 2 .
Ta . [07 1] - [071] . (z?y) = {mln(z,y) ; e].SCWhel'e-

Then every partial mapping of T, is infra-semicontinuous and T,
is a t-norm. Hence, there exists t-norms that are not continuous
and that have infra-semicontinuous partial mappings.
Corollary 4.1. If T is an arbitrary t-norm and F satisfies the sup-T
modus ponens then F < bp.
Proof. This is an immediate consequence of the first part of the proof
of Theorem 4.1. {
Corollary 4.2. If F is a [0,1]2-[0, 1] mapping satisfying the neutrality
principle and the sup-min modus ponens then F satisfies the sup-T
modus ponens inference rule, where T 1s an arbitrary t-norm.
Proof. Obvious considering Property 3.1. {
Corollary 4.3. Let Ty and T, be arbitrary t-norms then T, satisfies
the sup-T; modus ponens inference rule.
Proof. For every t-norm T3 the inequality 75 < min < bpy;, holds. As
(Vz € [0,1])(T2(1,z) = =) considering Theorem 4.1 and Corollary 4.2,
T, satisfies the sup-T7 modus ponens. ¢



Characterizations of binary operations 113

Example 4.1. In the examples only [0,1]2-[0,1] mappings that are
implication operators are considered. Let T be W (Lucasiewicz t-norm
[14]) or explicitly

W :[0,1]* — [0,1] : (z,y) — max(0,z +y — 1)
and F be the Kleene-Dienes implication operator[13]
F:[0,1]2 = [0,1] : (z,y) — max(1l — z,y).

Considering Theorem 4.1 and the inequality F < by, F satisfies the
sup-W modus ponens inference rule. ‘
Example 4.2. Let T be the well-known algebraic product x, then by

is the operator G43 of [1,5,13]:

oo 0,1 = [0,1): 2,9) -~ {
Consider as defined in F [10]

F 110,17 —[0,1]: (2,3) > max(min(z,y),1 o).
Let g = 1/3 and yo = 1/8 then F(zo,y0) = 2/3 and >y (z0,y0) = 3/8.

Considering Theorem 4.1 F does not satisfy the sup-x modus ponens
inference rule.

Example 4.3. Let T be any t-norm, then define

1 ; i z<y
y/z ; elsewhere.

(0,0) = 1
Tr:[0,1]> = [0,1]: { (0,1) > 1
(z,y) —» T(z,y) ; elsewhere.

Obviously T7 is a fuzzy implication operator that satisfies every sup-T'
modus ponens inference rule, whatever T is (Theorem 4.1 and Corollary

4.2).

5. On the extension of the classical formula

(NOT P) OR Q

The properties of the mappings that are extensions of the classical
formula (NOT P) OR Q are examined. The negation is fuzzified by a
strict complement operator C' and the disjunction by a t-conorm S.
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These extensions are the implication operators of type I of Dubois and
Prade [3].

Definition 5.1. Let S be a t-conorm and C a strict complement
operator. The mapping ZS is defined as

7§ - [0,1]2 = [0,1] : (=, y) — S(C(=),y).

Obviously the mapping Z§ is a fuzzy implication.
Properties 5.1.

1. IS satisfies the contrapositive symmetry,

2. IS satisfies the ezchange principle,

3. IS is hybrid monotonous,

4. Ig satisfies the neutrality principle,

5. If § is continuous then IS is continuous.
Proof. Immediate from the symmetric and associative properties, the
monotonicity and the boundary conditions of S and the involutive prop-
erty of C. Property 5. is proven by the chain rule for continuous func-
tions. ¢
Definition 5.2. Let 7 be a fuzzy implication operator and C a strict
complement operator. The mapping Sf is defined by

Slc" : [071]2 — [0,1] : (z,y) = I(C(=),y)-

It is easily proven that SC is an extension of the classical union
operator; i.e. §¢ {0,132 is the classical union operator U.
Properties 5.2.
1. if T satisfies the contrapositive symmetry then Sf 18 symmetric,
2. if T salisfies the ezchange principle and the contrapositive symme-
try then SY is associative,
3. if T is monotonous then S2 is increasing,
4. if T satisfies the neutrality principle then S¢ satisfies the condition

(Vy € [0,1])(5£(0,y) = v),

5. if T is continuous then SZ is continuous.
Proof. As an example 1. is proved. Let (z,y) € [0,1]? then

57 (2,y) = I(C(=),y)
and as C is involutive and 7 satisfies the contrapositive symmetry

I(C(=),y) = I(C(y), C(C(2))) = Z(C(y), ) = SZ(y,2)¢
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Corollary 5.1. Let S be a t-conorm and T a fuzzy implication operator
then

c _ . c .
$G =S i I%=T.

Corollary 5.2.

1. SS is a t-conorm iff T satisfies the contrapositive symmetry, the
ezchange principle and neutrality principle and I is hybrid mono-
tonous;

2. SS is continuous iff T is continuous.

Proof. Straightforward taking into account Properties 5.1, 5.2 and
Corollary 5.1. ¢ '

6. A special case : the sup-min modus ponens
inference rule

In this section the special case of the sup-min modus ponens infe-
rence rule is considered. As minimum is a continuous mapping Theorem
4.1 assures us that if F satisfies the neutrality principle then F satisfies
the sup-min modus ponens inference rule iff 7 < bpi, where bpjy, is the
Godel implication [4,5,7,13,16]]. The condition F < bnj, can be easily
transformed into the formula of Theorem 6.1.

Theorem 6.1. If F is [0,1]>-[0,1] mapping satisfying the neutrality
principle then F satisfies the sup-min modus ponens inference rule iff

(Y(=,y) € [0,1]*)(= > y = F(z,y) < y)

Proof. Obvious considering Theorem 4.1 and the definition of the
Godel implication. ¢
Example 6.1. Let F be by then

F:[0,1]2 = [0,1] : (z,y) —> min(1,1 — 2z +y).

Let 2o = 0.9 and yp = 0.8 then F(zq,%0) > yo. Considering Theorem
6.1 the sup-min modus ponens inference rule does not hold for >y .
Example 6.2. Let F be the Kleene-Dienes implication operator [13]:

F:[0,1]%2 — [0,1] : (z,y) — max(l —z,y).
Let zo = 0.5 and yo = 0.3 then F(z¢,yo) > yo. Considering Theorem
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6.1 the sup-min modus ponens inference rule does not hold for this

implication operator.
Theorem 6.2. If F is a [0,1]?-[0,1] mapping satisfying

(Vy € [0,1])(?(1,’_1/) S y) and (ayo € [011])(f(11y0) < yO)
then the sup-min modus ponens inference rule holds iff
(V(z,y) €[0,1]*)((z >y = F(=,y) < y) and

( sup min(z, F(z,y)) =y or sup min(z, F(z,y)) = y)).
0<z<y y<z<

Proof. Considering Corollary 4.1, the inequality

(Y(=,y) € [0,1*)(= > y = F(z,y) < y)

is immediately obtained as F < by, should be satisfied. The second
part of the conjunction is proven as follows. Suppose

(3yo € [0, 1])( sup min(z, F(z,y0)) # Yo and

<z<Lyo
sup min(z, F(z,%0)) # Yo)
yo<z<1
then
sup min(z,F(z,y)) = max( sup min(z,F(z,30)),
0<z<1 0<z<yo
sup min(z, F(z,y0))) # Yo
yo<z<1

or the sup-min modus ponens inference rule does not hold, which is
clearly a contradiction.

The reverse implication is obtained in a similar way. ¢

Example 6.3. Let F be I, of [9] or explicitly

Tq : (0,11 > [0,1[: (2,) "*{ o (12455) 1 Vew o1 1)

; elsewhere.

If 2o = 0.5 and yo = 0.5 then To(zo,%) = 1 > yo so sup-min modus
ponens inference rule does not hold for Z,.
Example 6.4. Let
1 s e <
. 2 . i )
F:[0,1] = [0,1] : (z,3) = {min(l —z,y) ; elsewhere.
By definition
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(V(z,y) € [0,11*)(= > y = F(=,9) <)
holds and sup min(z,F(z,y)) = y and thus the sup-min modus po-
0<z<y
nens inference rule holds although F does not satisfy the neutrality
principle.
Theorem 6.3. Let S be a t-conorm and C a strict complement operator
then IS never satisfies the sup-min modus ponens inference rule.

Proof.
1. As C is a continuous, strictly decreasing [0,1]-[0,1] mapping and

c(0) =1, (1) =0,
(3o €]0,1[)(C(po) = po)-
2. Let yy < ¢ < po, then py < C(zy) < C(yo) and hence
(3(zo,%0) € [0,1]*)(=0 > yo A C(20) > o)
3. § is a t-conorm, hence
S(C(z0),y0) = max(C(zo),y0) = C(zo).

4. Combining (2) and (3) yields

(3(=0,30) € [0,1]%)(20 > yo and Z§ (20,¥0) > ¥o).

By Theorem 6.1, IS does not satisfy the sup-min modus ponens infer-
ence rule. $

Corollary 6.1. If T is a fuzzy implication operator satisfying the
exchange principle, neutrality principle, contrapositive symmetry and
which is hybrid monotonous then I does not satisfy the sup-min modus
ponens inference rule.

Proof. Immediate from Theorem 6.3 and Corollary 5.1. ¢

7. Conclusion

The interaction between [0, 1]2-[0,1] mappings F and, as special
cases the fuzzy implication operators, and the generalized sup-T modus
ponens inference rule have been investigated. As indicated in the intro-
duction there is a very strong connection between F, in practice a fuzzy
implication operator, and the t-norm T' of the inference rule. Several
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authors already suggested this connection [2,3,7,15].

Weber [16] considers a [0,1]2-[0,1] mapping as a fuzzy implica-
tion operator iff there is some relationship with a t-norm or conorm
and a strict complement operator and if the mapping is an extension
of the binary, material implication. Theorem 6.3 proves that this rela-
tionship cannot be the fuzzification of the classical formula (NOT P)
OR Q without loss of the sup-min modus ponens inference rule when
negation and disjunction are fuzzified by a strict complement operator
respectively a t-conorm.

Whenever T has infra-semicontinuous partial mappings, a map-
ping F that satisfies the neutrality principle and the inequality F < by
satisfies the sup-T modus ponens inference rule : this is a remarkable
fact since F should not even be an extension of the binary implication.

8. Appendix

Let F be a [0,1] — [0,1] mapping then F is infra-semicontinuous
iff
(Vzo € [0,1])(Ve > 0)(36 > 0)(Vz € [0,1])(| & — 2 |[< 6 =
S F(zs) - ¢ < F(z).

Theorem Al. Let T be a t-norm, then T is completely distributive
w.r.l. supremum iff every partial mapping of T is infra-semicontinuous.
Proof.

1. The ”if” part is established now for t-norms with infra-semicon-
tinuous partial mappings. Let T be a t-norm with infra-semicontinuous
partial mappings. First the inequality

sup T(z;,y) < T(supzj,y) ; Vye€[0,1]
jeJ jeJ
is proved, (#;)jcs being a family in [0,1] and J an arbitrary index set.
From z; < supz; and the non-decreasingness of T'(-,y) it follows that
jeJ
(Vi € J)(T(2s,9) < T(%lelr; z;,9))
i

and hence
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sup T'(z;,y) < T(supz;,y).
ieJ jed

To prove the equality, suppose T(supz;,y) > supT(z;,y) and let
jed jed

g0 = T(supz;,y) —sup T'(z;,y) > 0.
jed j€J

The infra-semicontinuity of T'(-,y) in sup z; implies for € = €
jedJ

(360 > 0)(Vz € [0,1])(sup z; — b <z <supzj+ bo =
j€eJ jeJ

= supT(z;,y) < T(z,y)).
jeJ
From the characterization of supremum it is deduced that supz; — 6o

JjE€J
is no lower an upper bound for (z;);es and hence

(Fio € J)(supz;j — 6o < @i, < supz; + 6o)
jeJ jeJ

and so

sup T(z;,y) < T(zi,,),
jedJ

a contradiction.

2. The reverse implication is proven now. Suppose the partial
mapping T'(-,yo) is not infra-semicontinuous in zg.

(Jeo > 0)(V6 > 0)(Fz € [0,1])(] 2 —z0o |< & and
T(mayﬁ) S T(Eo,yo) e 50)-
Choose g¢ > 0 and let §, = 1/n; Vn € N*. From the previous formula

it follows that for each §,, there exists an z, satisfying the condition
| 2n — 2o |< 1/nand T(zn,v0) < T(z0,Y0)—€o. Obviously lim z, =
n—oo

= 9. From the monotonicity of T it is deduced that
(Vn e N*)(zpn < o)
and hence

limy oo Zn = sup =, = 2o
nelN*

and
(Vn e N*Y(T(2n,90) < T(20,%0) — €0)
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séle‘ T(l‘myo) S T(:BO)yO) — Ep < T(:BO) yO)-

Thus sup T'(z,,y0) # T( sup z,,9). ¢
nelN*

neN*
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