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LIST OF ABBREVIATIONS 

 

APC allophycocyanin 

BSA bovine serum albumin 
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EVTC endovascular trophoblast cells 
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count 
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IUGR intrauterin growth retardation 

KIR killer immunoglobulin (Ig)-like receptor 

LH luteinizing hormone 
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TIMP tissue inhibitors of matrix metalloproteinases 

TNF tumor necrosis factor 

TNFR tumor necrosis factor receptor 

Treg regulatory T  

VEGF vascular endothelial growth factor 
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INTRODUCTION 

 

IMPLANTATION 

Pregnancy is a natural model of an optimal immune regulation in a graft-host 

relation. Though 50% of fetal antigens are of paternal origin, and there is ample evidence 

that these antigens are recognized, the immune system of the mother tolerates the semi-

allogeneic fetus. However, while creating a favorable environment for the fetus, the 

maternal immune system must be prepared to control possible emerging infections. 

Therefore, a delicate balance is established to satisfy contradictory interests of mother and 

fetus.  

Five-ten days after the LH surge there is a short period of time available for 

successful implantation. This is called the implantation window (1). During this interval 

cyclic secretion of estrogens and progesterone triggers morphological and physiological 

changes of the endometrium, and creates a suitable endometrial environment for embryo 

implantation and maintenance of early pregnancy.   

Blastocyst formation usually begins at day 5 after conception and implantation takes 

place approximately at day 7. The blastocyst is made up of an inner cell mass which forms 

the embryo later on, and of an outer cell mass which forms the trophoblast. Since the 

embryo does not come into direct contact with the maternal organism the trophoblast 

represents the fetal compartment of the placenta. The trophoblast consists of an inner layer 

called cytotrophoblast and of an outer layer called syncytiotrophoblast. Multinucleated 

syncytiotrophoblast cells coat the chorionic villi and are constantly bathed in maternal 
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blood flowing through the intervillous space. The extravillous cytotrophoblast is an 

invasive subpopulation that gets in direct contact with decidual cells (2, 3, 4). 

Fetal tissues are semiallogenic and paternal antigens can be recognized as foreign 

which leads to immunoactivation. While the syncytiotrophoblast and villous 

cytotrophoblast are devoid of HLA molecules (5) the extravillous cytotrophoblast expresses 

a special combination of HLA class I antigens: HLA-G, HLA-E and a small amount of 

HLA-C (6, 7, 8, 9). HLA-G and HLA-E are non-classical class I molecules, with a limited 

polymorphism and low cell surface expression (10). HLA-C is polymorphic, therefore, 

paternal specificity is also expressed at the fetomaternal interface.   

Decidualization is characterized by endometrial expansion and storage of nutrients. 

For establishing an appropriate blood supply uterine arteries develop new branches called 

spiral arteries. Trophoblast invasion of the decidua, as well as the development of spiral 

arteries are, - at least partly - controlled by the influx of maternal immune cells which 

recognize the semiallogenic fetus and contribute to the establishment of pregnancy. 

 

Immune cells and factors affecting decidualization and implantation 

 

Three relatively minor lymphocyte subpopulations are significantly enriched in the 

decidua, and play a major role in creating a favorable environment for implantation and the 

early development of the fetus. 

NK cells play diverse roles in the reproductive process. CD 56bright CD16neg and 

CD3neg granulated decidual NK cells, which constitute a dominant lymphocyte population 

in the early decidua (11) are - despite their high perforin content - not cytotoxic (12), but 



 8 

secrete an array of angiogenic factors and cytokines (13). The dynamics of the appearance 

of uterine NK cells suggests that one of their functions might be the control of placentation.  

Potential cytotoxic mechanisms exerted by NK cells can damage the trophoblast, 

induce ablation of placenta, on the other hand, TNF-α - produced by NK cells in response 

to intrauterine infections - via facilitating prostaglandin synthesis may induce uterine 

contractions and initiate preterm labor. Decreased expression of HLA-G on the trophoblast 

may result in inadequate trophoblast invasion leading to an abnormal interaction with 

decidual natural killer (NK) cells, which are believed to play a major role in these processes 

through the production of immunoregulatory cytokines and angiogenic factors (14).  

In mice, high peripheral NK activity was shown to be associated with deleterious 

effects on fetal development (15). Transfer of high NK activity spleen cells from poly (I) 

poly (C) -treated mice to pregnant Balb/c mice induces abortion (16). Normal human 

pregnancy is characterized by low peripheral NK activity (17), whereas increased NK 

activity seems to be an attribute of spontaneous abortions of unknown etiology (18, 19, 20, 

21, 22). 

γγγγ/δ δ δ δ T cells represent a minor subpopulation of peripheral T cells. They constitute 5 

percent of the peripheral T cell population and show unique features in structure, 

distribution and function. Ninety five % of peripheral blood γ/δ T cells  express the Vδ2 

chain in combination with Vγ9 (23). γ/δ T cells are enriched in mucosal surfaces of the 

respiratory, digestive and urogenital tracts, as well as in the placenta. In contrast to their 

circulating counterparts, resident γ/δ T cells preferentially express the Vδ1 chain (24, 25). 

γ/δ T cells play an important role in the elimination of several bacterial and viral infections 

and tumor-surveillance (24-26). Cytokine production by γ/δ T cells can either facilitate the 
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adaptive immune response or contribute to immunoregulation and immunosuppression 

(27).  

During pregnancy an accumulation of γ/δ T cells can be observed both in the 

peripheral blood and in the decidua (28-30) suggesting that these cells have an important 

immunomodulatory role during gestation. 

Invariant NKT (iNKT) cells carry - in addition to natural killer cell receptors-  the 

strongly restricted Vα24JαQ TCRα chain combined with limited TCRβ chains, usually 

with Vβ11 (31). iNKT cells recognize antigens presented by the monomorphic CD1d MHC 

class I like molecule (32-34). Although their natural ligand has yet to be identified, they can 

be activated with a glycolipid, α-galactosylceramide (α-GalCer) derived from a marine 

sponge (35, 36). Once they get activated, iNKT cells can act cytolytic via the 

perforin/granzyme B pathway or by expression of the Fas ligand inducing apoptosis of 

target cells (37- 39). On the other hand, upon CD1d restricted activation, iNKT cells 

quickly release cytokines of both Th1 and Th2 type leading to stimulation, activation and 

proliferation of T cells, B cells, or NK cells (40-42).  

Fetal extravillous cytotrophoblast express CD1d and maternal iNKT cells are 

enriched in decidual tissue, indicating the possible role of iNKT cells in the immunological 

changes observed during implantation and later on during the time of pregnancy (34). 

NK cells, γ/δ T cells and iNKT cells have many features in common: 

- All of them are able to recognize antigens in a non-MHC restricted way.  

- They represent a link between the innate and the acquired immune system since 

they are capable of carrying out both immunoregulatory and cytotoxic functions 

(43-45).  
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- All three cell types show a specific tissue distribution profile, with significant 

accumulation of NK cells in the early decidua, of γ/δ T cells on mucosal surfaces as 

well as the decidua, and of iNKT cells in the liver, the bone marrow and the decidua 

(34, 46, 47). 

- They kill target cells by using secretory (perforin/granzyme mediated) and non-

secretory mechanisms (Fas-ligand) (48, 49).  

- All of them express NK inhibitory and activating receptors.  

Cytotoxic activity is the result of inhibitory and activating signals, due to the 

interaction of cell surface activating and inhibitory receptors with ligands expressed on the 

surface of the target cell (50-52). Three major superfamilies of NK receptors have been 

described: the killer immunoglobulin (Ig)-like receptor (KIR) superfamily which 

recognizes classical MHC class I molecules, the C-type lectin superfamily recognizing non-

classical MHC class I or class I-like molecules, and the natural cytotoxicity receptors (53). 

Killer immunoglobulin-like receptors (KIR) are classified by the length of their 

cytoplasmic tails. The long tail KIRs (KIR2DL and KIR3DL) mediate an inhibitory signal 

via their immunoreceptor tyrosine-based inhibition motifs (ITIM), while the short tail 

receptors (KIR2DS and KIR3DS) are associated with adaptor proteins bearing 

immunoreceptor tyrosine-based activating motifs (ITAM) and mediate activating signals. 

KIR2DL1 and KIR2DL2 as well as their activating counterpart KIR2DS1, and KIR2DS2 

recognize epitopes shared by alleles of the group 1 or group 2 HLA-C allotypes 

respectively 54). KIR2DL4 (a receptor without a short counterpart) recognizes the 

nonclassical MHC class I allele HLA G (55). Ligation of this receptor induces IFN-γ 

production, but no lytic activity. 
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C-type lectin receptors are composed of a common subunit (CD94) and a C-type 

lectin NKG2, which determines the functional specificity of the receptor (56). The 

inhibitory receptor CD94/NKG2A/B specifically binds the nonclassical class I molecule 

HLA-E (57-60). HLA-E is also bound by the activating receptor CD94/NKG2C, although 

with a lower affinity (61). NKG2D is an activating C-type lectin receptor, which does not 

associate with CD94 but is expressed as a homodimer, and signals through association with 

an adaptor protein DAP10 and phosphatidylinositol (PI)-3 kinase (62). Ligands for NKG2D 

include the polymorphic MHC class I chain-related (MIC) peptides, MICA and MICB (63, 

64) and the human cytomegalovirus UL16 binding proteins (ULBPs) (65). These are not 

expressed on normal cells, but are induced by “stress” or neoplastic transformation. The 

expression of these ligands may, therefore, be signals of “danger” to the NK cells.  

Natural cytotoxicity receptors are Ig-like activating receptors that have been 

implicated in the recognition and lysis of tumor cells by human NK cells (66, 67). Three 

natural cytotoxicity receptors have been described, of which two (NKp46 and NKp30) are 

constitutively expressed on all peripheral blood NK cells but not other immune cells, while 

the third, NKp44, is expressed only on IL-2-activated NK cells. The ligands for these 

receptors are unknown.  

Activated lymphocytes from healthy pregnant women express progesterone 

receptors and produce a mediator protein named the Progesterone Induced Blocking 

Factor (PIBF) (68-70). PIBF plays a role in the maintenance of pregnancy by inducing a 

Th2 dominant cytokine production and by inhibiting NK activity (71). The 

immunomodulatory functions of PIBF appear to be essential for successful pregnancy, 

since neutralizing endogenous PIBF in pregnant mice results in fetal resorptions (72). 



 12 

IMPLANTATION DISORDERS 

After apposition of the blastocyst, the trophoblast starts to produce 

metalloproteinases and invades the decidua. Trophoblast invasion is strictly controlled both 

in space and time. The decidua secretes extracellular matrix molecules, e.g., collagen IV, 

laminin, heparan sulphate, and hydrates the tissue during the implantation window, which 

also promotes invasiveness of trophoblast. At the same time factors that limit trophoblast 

invasion are also produced. Among others, transforming growth factor (TGF) β inhibits 

trophoblast cell proliferation and induces the expression of TIMPs (tissue inhibitors of 

matrix metalloproteinases).  

Decidual recognition of fetal HLA antigens expressed by the trophoblast contributes 

to the control of invasion. Interaction of uterine NK cells, iNKT cells and γ/δ T cells with 

the non-polymorphic HLA-G and HLA-E usually induces the secretion of Th-2 type 

cytokines (e. g.: IL-10, TGF-β). On the other hand, recognition of paternal HLA-C 

molecules expressed on the trophoblast results in a classical inflammatory response (73-

75), which by loosening the tissue facilitates trophoblast invasion. Additionally, IFN-γ 

produced during inflammation promotes vascular remodeling (76).  

During the first trimester, trophoblast cells penetrate the maternal decidual spiral 

arteries (endovascular trophoblast cells, EVTC). Until the 9th week of gestation, the 

decidual capillaries remain obstructed by trophoblast plugs which act like filters enabling 

maternal blood plasma diffusion and controlling oxygen tension (77). This process is called 

the first vascular invasion by the cytotrophoblast.  

After the 9th week, fetal growth and development accelerate requiring a better 

supply of oxygen and nutrients. This is warranted by recanalization and remodelling of the 
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uteroplacental arteries. Endovascular trophoblast cells are built in the wall and in the 

interstitium of the maternal arteries resulting in dilated vessels (78). The second vascular 

invasion by the cytotrophoblast is completed by the 13th week of gestation. 

Disturbances of implantation may manifest as early asymptomatic fetal loss, or they 

can also result in the development of obstetric syndromes, where pregnancy is normally 

established, but later on clinical symptoms develop. Impaired implantation has been 

identified as the underlying pathology of recurrent spontaneous abortion, pre-eclampsia and 

intrauterine growth retardation. 

 

Recurrent miscarriage  

Recurrent miscarriage (RM) (defined as three or more consecutive pregnancy 

losses) affects 0.5 to 1% of couples (79). The pathophysiology of RM is complex. The 

suggested causes include anatomical, genetic and molecular abnormalities, endocrine 

disorders, thrombophilias and anti-phospholipid syndrome. In approximately 50% of the 

cases neither of the above can be identified (79-81).   

Most of the latter are thought to have had implantation disorders caused by 

inappropriate maternal immune response. During the luteal phase of the ovarian cycle, the 

immune response is shifted toward the Th2-type (82). Several studies confirmed a 

pathological activation of decidual lymphocytes in RM (83-85). Women with RM have 

been shown to have a Th1-dominant cytokine profile (86-90). In a prospective study, Kruse 

et al. (2003) found generally lower Th1/Th2 cytokine ratios in RM patients with high serum 

progesterone levels than in those with low serum progesterone levels, suggesting that serum 

progesterone might have an influence on cytokine production (91).  It has been recently 

demonstrated that endometrial interleukin-18, -15, and -12 levels correlate negatively with 
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uterine receptivity (92). Potential cytotoxic mechanisms exerted by NK cells can damage 

the trophoblast, and induce ablation of placenta. In spite of their high perforin content, 

decidual NK cells show low spontaneous cytotoxic activity during normal pregnancy (93).  

RM is associated with an increased number of endometrial NK cells (94), and 

decidual lymphocytes from failed pregnancies contain less perforin than those from normal 

pregnancy deciduas (95), suggesting that an increased rate of degranulation takes place in 

the former case. Furthermore, a dominant population of TGF-β-producing NK3 type cells 

in normal decidua is significantly reduced in deciduas from women with RM (96). 

Immunological alterations also affect the acquired immunity: the percentage of systemic 

CD4+ T lymphocytes, CD8+ T cytotoxic cells and CD5+ B lymphocytes is significantly 

higher in patients with recurrent spontaneous abortion compared to healthy women (79).  

 

Pre-eclampsia 

Pre-eclampsia which affects approximately 10% of pregnancies (97), is a severe and 

dangerous obstetrical disease characterized by high blood pressure (>140/90 Hgmm) and 

proteinuria (>100 mg/dl), which might result in edema (98). Several organic complications 

(e.g. hepatic involvement, renal failure) may associate with the syndrome and contribute to 

the development of eclampsia, characterized by convulsions. HELLP (haemolytic anaemia, 

elevated liver enzymes, low platelet count) syndrome is also considered to be a potential 

manifestation of pre-eclampsia. Since there is no prevention and effective therapy of the 

syndrome, screening of pregnant women and - in case of need - induction of the delivery, 

are the only possibilities managing pre-eclampsia.  
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The precipitating factor in pre-eclampsia is the pathological development of the 

placenta. Clinical symptoms develop after the 20th week and are present as long the 

placenta persists in the uterus. 

It is generally agreed that pre-eclampsia develops in two stages. Pre-clinical stage 1 

occurs at time of implantation when insufficient trophoblast invasion leads to poor 

placentation resulting in placental hypoxia. Recent data suggest that fetal antigens fail to 

properly activate the decidual lymphocytes, resulting in insufficient production of 

angiogenetic factors and the lack of a local inflammatory reaction (78, 99). The absence of 

the above – owing to insufficient invasion of endovascular trophoblast - leads to impaired 

placental development (100). Since there are no symptoms of pre-eclampsia during stage-1, 

it is impossible to predict and thoroughly investigate the disease at that early timepoint. 

The limited uteroplacental circulation becomes functionally insufficient at the 20th 

week when fetal growth accelerates. Stage 2 pre-eclampsia is a systemic disease.  An 

oxidatively stressed placenta releases factors (e.g. soluble receptor for vascular endothelial 

growth factor (VEGF) 1, neurokinin B, syncytiotrophoblast membrane microparticles) into 

the maternal circulation, which cause a systemic inflammatory response and endothelial 

dysfunction that manifest in the clinical signs of pre-eclampsia (101).  

The two stages of pre-eclampsia involve the innate immune system in different 

ways. In the first stage, there is an important element localized to the placental bed. In the 

second stage, a diffuse systemic response predominates similarly to rejection mechanisms.  
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Intrauterine growth retardation (IUGR) 

The clinical findings of stage 1 of pre-eclampsia can manifest as either a maternal-

or a fetal syndrome. Intrauterine growth retardation occurs when placental deficiency 

decelerates fetal development leading to births of neonates with small size for gestational 

age (102). 
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AIMS OF THE STUDY AND RESULTS 

 

The successful implantation of the embryo into the uterus is a pivotal event in 

human development which defines not only the future of the pregnancy but of the 

individual itself. Implantation failure (infertility) and miscarriage affect one in six couples 

(103), with physical, emotional and financial consequences. Poor implantation may result 

in intrauterine growth retardation and/or pre-eclampsia which are the major causes of fetal 

handicap and fetal and maternal death in Europe, and have long-term economic costs. 

Furthermore, it is now becoming apparent that both babies and mothers from pre-eclamptic 

pregnancies are much more likely to develop cardiovascular disease and diabetes in later 

life (104, 105), imposing a heavy burden on health care systems. It is therefore vital to 

identify the mechanisms that affect implantation for the diagnosis of implantation failure, 

miscarriage and pre-eclampsia. 

The study of normal and pathological implantation raises several problems. The 

availability of normal human placentae is restricted. Pregnant mice have proved themselves 

to be excellent models for studying implantation failures by allowing the use of 

manipulative techniques (76, 106). However, the mouse model has its limitations. Because 

of the anatomical differences from the human, and a lower level of complexity in the 

murine implantation process (106, 107), data from animal experiments cannot be directly 

extrapolated to the human situation.  The analysis of isolated decidual lymphocytes from 

elective abortion material of healthy pregnant women allows comparative studies of 

decidual and peripheral immunological processes at 6-12 weeks of gestation. However, the 
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study of late consequences of human implantation disorders is restricted to the examination 

of peripheral blood lymphocytes.  

The aim of this study was to compare peripheral immune responses of women 

with different clinical manifestations of implantation disorders to those of healthy 

pregnant women and non-pregnant individuals.  

Altogether 251 subjects were involved in the study. These included 124 healthy 

pregnant women, 24 women at risk for premature pregnancy termination, 41 women with 

severe pre-eclampsia and 62 non pregnant women. Clinical data of the patients are 

summarized in Table 1.   

Table 1. 

Clinical data of patients included in the study 

 
Groups Normal 

pregnancy 
(n=124) 

Pre-
eclampsia 

(n=41) 

Premature 
labor   
(n=24) 

Non-
pregnant 
women  
(n=62) 

Age (mean) 28.16 26.3 27.8 29,6 

Gestational age 
(mean±SEM) 

32.43 (24-41) 35.2 (29-41) 30.33 (24-37) - 

Parity 
(mean±SEM) 

0.85 (0-3) 0.30 (0-2) 0.21 (0-1) - 

No. of previous 
miscarriages 
(mean±SEM) 

0.30 (0-3) 0.11 (0-1) 0.47 (0-4) - 

 

In the first study we determined the ratio of different γ/δ T cell subsets in peripheral 

blood of pregnant women with or without the risk of premature pregnancy termination. 

Furthermore, in a longitudinal study we determined the V chain usage of circulating γ/δ T 
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cells from 23 healthy pregnant women at the 33–39th week of gestation, and that in the 

same women during labor. The interval between the two samplings was 4–6 weeks on the 

average. 

Due to the lack of classical HLA antigens on most classes of the trophoblast, the 

majority of fetal antigens are presented in a non-MHC-restricted way. Therefore, decidual 

γ/δ T cells are the likely candidates for recognizing these antigens. There is an increased 

presence of activated γ/δ T cells in the decidua (108) and these cells preferentially use the 

Vδ1 chain (109). Findings by Mincheva-Nilsson et al. (110) suggest that the human early 

decidua is a transient site for extrathymic maturation. Earlier data from our laboratory 

revealed an increased rate of activated γ/δ T cells in peripheral blood of healthy pregnant 

women (111). These cells similarly to decidual γ/δ T cells preferentially use the Vδ1 chain 

(111, 112), which allows the hypothesis that these lymphocytes are of decidual origin. In 

healthy non-pregnant individuals 95 % of circulating γ/δ T cells express the Vγ9/Vδ2 chain 

combination (113). These cells are cytotoxic and play an important role in the elimination 

of several bacterial and viral infections and tumor-surveillance (24-26), while normal 

pregnancy is characterized by an expansion of the circulating non-cytotoxic Vδ1+ chain 

expressing subpopulation. 

Our study revealed a significant increase of the potentially cytotoxic Vγ9/Vδ2 

positive T cell population during labor, together with a decrease of the non-cytotoxic 

Vγ4/Vδ1 T-cell population.  

Next we analyzed the ratio of circulating Vδ2+ and Vδ1+ T cells in normal 

pregnancy, in women at risk for premature pregnancy termination and in non-pregnant 
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controls. Compared to the controls, both γ/δ T cell subsets were significantly increased in 

the peripheral blood of pregnant women. The percentage of Vδ2+ T cells was significantly 

higher, whereas the ratio of Vδ1+ T cells was significantly lower in pregnant women at risk 

for premature pregnancy termination than in normal pregnancy.  These findings confirm 

our earlier data on accumulation of γ/δ T cells in the peripheral blood of pregnant women. 

The increased ratio of Vδ2+/Vδ1+ T cells observed in women at risk for premature 

pregnancy termination may contribute to the unfavorable immunological conditions leading 

to the cessation of pregnancy. . 

Cytotoxic activity depends on the balance of inhibitory and activating signals, 

following the interaction of cell surface activating and inhibitory receptors with ligands 

expressed by the target cell (50-52).   

NKG2A, the inhibitory NK cell receptor belongs to the C-type lectin superfamily. 

The ligand of NKG2A is the non-classical Class I MHC product; HLA-E, expressed by the 

trophoblast.  The majority of decidual γ/δ T cells express the CD94/NKG2A complex (114, 

115). Analyzing the NKG2A expression on peripheral blood Vδ2+ T cells, we found a 

significantly lower expression on those of women at risk of premature pregnancy 

termination and of non-pregnant subjects than on Vδ2+ T cells from healthy pregnant 

women. This data suggest that Vδ2+ T cells of women at risk for premature pregnancy 

termination are less capable of recognizing HLA-E, thus they are less likely to receive the 

inhibitory signals that would prevent cell activation than Vδ2+ T cells of healthy pregnant 

women. 

Viability of lymphocytes determines the duration of effector mechanisms. When 

expressed on the cell surface, annexins promote pro-apoptotic mechanisms, or alternatively, 
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the removal of cells that have undergone apoptosis. Therefore, we determined the 

expression of Annexin V on circulating Vδ2+ T cells. The percentage of Annexin V+ Vδ2+ 

T cells was significantly lower in patients at risk for premature pregnancy termination than 

in healthy pregnant women indicating reduced tendency for apoptosis and a longer lifespan 

of cytotoxic Vδ2+ T cells in this condition. Annexin is also known as lipocortin. 

Lipocortins suppress phospholipase A2. This is the mechanism by which glucocorticoids 

inhibit inflammation, but since activation of phospholipase A2 is needed for the liberation 

of arachidonic acid, annexins also interfere with prostaglandin production. Increased 

production of annexin by inhibiting the activity of phospholipase A2, will block 

prostaglandin production, thus delay the induction of labor. (116) 

Taken together the above data suggest the possible role of γ/δ T cells in the 

pathogenesis of threatened premature pregnancy termination. The dominance of the 

potentially cytotoxic Vδ2+ subset, with decreased NKG2A expression and reduced 

apoptotic capacity might contribute to the lack of a Th2 shift and to the pathophysiology of 

high risk pregnancy.  (Paper 1) 

Improper implantation and poor placentation usually result in early pregnancy loss, 

yet in a part of the cases pregnancy proceeds normally, till the beginning of the third 

trimester, when the limited utero-placental circulation cannot further comply with the 

requirements of the fetus.  Th1-type responses turn to be dominant; the mild inflammatory 

response associated with normal implantation becomes systemic and exaggerated, and 

finally clinical symptoms appear.  

Next we focused on the role γ/δ T cells and immunoregulatory mechanisms in stage 

2 pre-eclampsia.  
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Cell-mediated cytotoxicity takes place either via the perforin/granzyme-mediated 

secretory/necrotic killing or the TNF family ligand-mediated apoptotic killing. In the first 

case; following target-cell recognition, the contents of the cytotoxic granule are released 

into the immunological synapse formed between the killer cell and its target. Cytotoxic 

granules contain two membrane-perturbing proteins, perforin and granulysin and a group 

of serine proteases called granzymes (117-120). Perforin, a Ca2+-dependent pore-forming 

protein shows homology with complement components.  Perforin monomers are inserted 

into the plasma membrane of target cells and polymerize into pore-forming aggregates 

(121), which leads to granzyme entry and lysis. In the cytoplasm granzymes activate a 

cascade of caspases, leading to activation of DNAse, and resulting in apoptosis. 

Granulysin inserts into cell membranes, inducing ion fluxes and the induction of apoptosis 

(122, 123).  

The intracellular expression of perforin and IFN-γ by Vδ2+ T cells was 

significantly higher both in pre-eclamptic patients and in non-pregnant individuals than in 

healthy pregnant women, suggesting an enhanced cytotoxic capacity of the Vδ2+ cell 

population from pre-eclamptic women. 

Apoptosis is an important immunoregulatory mechanism that occurs in a wide 

variety of physiological and pathological situations, since the viability of lymphocytes 

determines the duration time of effector mechanisms. Two important apoptosis-inducing 

pathways include the TNF-induced and the Fas-Fas ligand -mediated mechanisms, both 

involving members of the TNF receptor (TNFR) family. The Fas/FasL pathway is 

important in many cellular events including the induction of apoptotic cell death and 

inflammation. Fas ligand (FasL), a Type II transmembrane protein is a member of the TNF 
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family.  FasL is stored in specialized secretory lysosomes of the cytotoxic cells and is only 

delivered to the cell surface upon recognition of Fas on the target cell. Membrane bound 

FasL triggers apoptosis of the Fas-expressing cell (124). We found a decreased Fas (CD95) 

expression on Vδ2+ cells of pre-eclamptic women, which suggests an impaired apoptotic 

potential of these cells.  

Analyzing inhibitory and activating NK cell receptor expression we found that the 

expression of the inhibitory receptor NKG2A by Vδ2+ T cells of pre-eclamptic patients 

was significantly lower, than by those of healthy pregnant- or non-pregnant women. 

CD94/NKG2C is the activating counterpart of CD95/NKG2A. Vδ2+ T cells of pre-

eclamptic women expressed significantly more NKG2C than those of women with normal 

pregnancy or those of non-pregnant controls. The rate of co-expression of the two receptors 

(NKG2A/NKG2C) on Vδ2+ T cells of pregnant women with pre-eclampsia was 

significantly lower than on those of women with normal pregnancies or of non-pregnant 

women.  

The expansion and differentiation of Th precursor populations into Th1 or Th2 

pathways regulate immune responses to bacteria, viruses, autoantigens and alloantigens. 

The magnitude of T cell responses is influenced by cytokines and a group of accessory 

molecules including immunoglobulin superfamily members. TIM-3 (T cell 

immunoglobulin mucin 3) - an immunoglobulin superfamily member - has recently been 

identified as a negative regulator of tissue destructive immune responses. TIM-3 is 

preferentially expressed by Th1 cells (125, 126). Expression of this molecule by Th1 cells 

provides a key checkpoint that serves to dampen pro-inflammatory Th1-dependent T cell 

responses and limit the associated tissue injury. We found significantly decreased 
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expression of TIM-3 by Vδ2+T cells of pre-eclamptic women, which could account for the 

increased inflammatory property of these cells. TIM-3 exerts a direct inhibitory signal to 

the Th1 cells, thus increased frequency of perforin and IFN-γ producing Vδ2+ T cells in 

pre-eclamptic patients could simply be due to the lack of the TIM-3 mediated regulatory 

effect.  

Regulatory T cells (CD4+CD25bright T cells) play a central role in the maintenance 

of self tolerance as well as in the long-term acceptance of allogenic transplants (127, 128). 

Sanches-Fueyo et al. demonstrated that the TIM-3-dependent pathway is involved in the 

CD4+CD25+ T cell-dependent immunoregulation (129). Among CD4+CD25+T cells those 

with high fluorescence intensity of CD25 have been identified as the ones that exert 

regulatory functions (130), while expression of low levels of CD25 by CD4+ T cells 

appears to indicate T cell activation. Inadequate tolerance induction increases the risk of 

pre-eclampsia.  Recent data have shown that CD4+CD25+ Treg cells are essential in the 

maintenance of allo-pregnancy in mice (131). Furthermore, decreased levels of Treg cells 

have been observed in the peripheral blood of patients with spontaneous abortion (132).  In 

our expreiments, the percentage of CD4+CD25bright T cells of gated lymphocytes was 

significantly lower in pre-eclamptic pregnant women than in non-pregnant controls, but the 

difference from healthy pregnant women did not reach the level of statistical significance. 

Following activation, T cells begin to induce the expression of Cytotoxic T 

lymphocyte antigen-4 (CTLA-4), which shows a high sequence homology with CD28, and 

competes with CD28 for B7 molecules (127). CD28 is one of the molecules expressed on T 

cells that provide the co-stimulatory signals, which are required for T cell activation. CD28 

is constitutively expressed on naïve T cells and serves as the receptor for B7 molecules 
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expressed by antigen presenting cells. B7 expression is upregulated in activated antigen 

presenting cells. Stimulation through CD28 in addition to the TCR can provide a potent co-

stimulatory signal to T cells for the production of various cytokines. The percentage of 

CD4+CD25bright T cells among gated lymphocytes was significantly lower, while the 

percentage of CTLA-4 expressing cells among CD4+CD25bright T cells was significantly 

higher in pre-eclamptic pregnant women than in non-pregnant controls, and healthy 

pregnant women. This observation indicates that though present at a lower frequency, a 

higher percentage of CD4+CD25bright T cells is activated in pre-eclamptic patients than in 

healthy individuals.  

Our data indicate that Vδ2+T cells of pre-eclamptic patients demonstrate an 

increased perforin and IFN-γ expression, which could be explained by dysregulation of NK 

cell receptor expression. These Th1 polarized cells were less susceptible to apoptosis than 

Vδ2+ T cells from healthy pregnant women. Activated Vδ2+ T cells of pre-eclamptic 

women have an increased cytotoxic potential, which may be explained by the altered 

expression of NK cell inhibitory and activating receptors. Taken together, this series of 

observations suggest the role of multiple pathways in generating an exaggerated systemic 

inflammatory response observed in the 2nd, clinical phase of pre-eclampsia. (Paper 2) 

Invariant NKT (iNKT) cells serve as a link between the innate and the acquired 

immune system. Depending upon the circumstances, they are able both to exert cytotoxicity 

and to regulate the function of other cells by secreting cytokines. iNKT cells are 

significantly enriched in the decidua (34), thus these cells might also have a role in 

regulating local immune responses during pregnancy, and if so, an altered function of iNKT 

cells could also play a part in the development of pathologies. In order to test whether 
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altered iNKT cell function might contribute to the pathogenesis of pre-eclampsia, we 

compared the percentage of activated-, perforin containing- as well as IFN-γ-producing- 

and apoptotic iNKT cells of pre-eclamptic patients to those of healthy pregnant women and 

non-pregnant individuals.  

First, we determined the activation rate of iNKT cells by measuring the expression 

of CD69. The percentage of CD69 positive activated iNKT cells was significantly higher in 

pre-eclamptic patients than in healthy pregnant or non-pregnant women.  

In pre-eclamptic patients, the percentage of potentially cytotoxic, perforin 

expressing iNKT cells was found to be significantly higher compared to healthy pregnant 

women. Similar elevation of perforin expression by iNKT cells was found in non-pregnant 

individuals, compared to healthy pregnant women. In line with this, in pre-eclamptic 

patients and in non pregnant women the percentage of circulating IFN-γ expressing iNKT 

cells was significantly higher than in healthy pregnant woman. These data suggest, that 

activated iNKT cells functionally contribute to the enhanced inflammatory immune 

response observed in pre-eclampsia.  

Apoptotic potential of iNKT cells was determined by measuring Fas (CD95) 

expression. We found that in healthy pregnant women significantly more iNKT cells 

express CD95, than in either pre-eclamptic patients or non-pregnant individuals predicting 

a longer lifespan of activated, cytotoxic iNKT cells in pre-eclampsia. 

The observed activation and Th1 profile of iNKT cells in pre-eclamptic patients 

may be induced by signals transmitted by different NK cell receptors on their surface. 

Hence, we investigated the distribution of NK cell activating and inhibitory receptors on 

these cells. There was no difference in the expression of the activating NKG2D receptor by 
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iNKT cells among the groups, whereas the percentages of iNKT cells expressing the 

inhibitory receptor NKG2A as well as of those co-expressing NKG2A and NKG2D were 

significantly lower in pre-eclamptic patients than in healthy pregnant women. The 

percentage of NKG2A expression on NKG2D+ iNKT cells was also significantly lower in 

pre-eclamptic patients than in healthy pregnant women or in non-pregnant women. Altered 

NK cell receptor expression may lead to restricted inhibitory signal transduction, and 

contribute to the development of activated, Th1 type iNKT cells, seen in pre-eclamptic 

patients. (Paper 3) 

These data suggest that among others, several minor lymphocyte subsets, including 

γ/δ T cells, regulatory T cells and invariant NKT cells play a role in the development of 

poor implantation-related pregnancy pathologies.  

In addition to the relative dominance of the cytotoxic population of γ/δ T cells, 

owing to an imbalance of NK activating and inhibitory receptors, all three lymphocyte 

populations gain a cytotoxic function, and contribute to exaggerated systemic inflammatory 

responses, that are characteristic of pregnancy termination as well as of the late stage of 

pre-eclampsia.   
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THESES 

 

In women at risk for premature pregnancy termination: 

1. Circulating Vδ2+ T lymphocytes are increased in number indicating their possible 

role in this pathological condition. 

2. The percentage of Vδ1+ T cells is significantly lower than in healthy pregnant 

women resulting in reduced production of γ/δ T cell-derived Th2 type cytokines.  

3. The ratio of Vδ2+ / Vδ1+ T cells is significantly higher than in healthy pregnant 

women suggesting the dominance of the potentially cytotoxic Vδ2+ T cell 

population over Vδ1+ T lymphocytes. 

4. Circulating Vδ2 TCR + cells express less NKG2A than those of healthy pregnant 

women resulting in a reduced capacity of transducing inhibitory signals. 

5. The number of apoptotic Vδ2+ T cells is significantly decreased compared to 

healthy pregnant controls. This phenomenon may explain the increased number of 

Vδ2+ T cells observed in the pathological condition. 

 

In peripheral blood of women with pre-eclampsia: 

6. Intracellular expression of perforin by Vδ2+ T cells is significantly higher than in 

those with normal pregnancy or non-pregnant individuals. 

7. The expression of the IFN-γ by Vδ2+ T cells is significantly higher than in healthy 

pregnant women. 
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8. CD95 expression by Vδ2+ T cells is significantly lower than in non-pregnant 

women indicating reduced apoptotic potential. 

9. The expression of the NK inhibitory receptor NKG2A by Vδ2+ T cells is found to 

be significantly lower in than in those with normal pregnancy or non-pregnant 

women. 

10. NKG2C expression by Vδ2+ T cells is significantly higher than in normal 

pregnancy or non-pregnant women. Therefore, activating signals could be 

transmitted more efficiently in these cells. 

11. In pre-eclampsia, the NKG2A/NKG2C co-expression by Vδ2+ T cells is 

significantly reduced compared to those with normal pregnancy or non-pregnant 

women. 

12. The percentage of Vδ2+ cells expressing NKG2A together with NKG2C is 

significantly lower than in healthy pregnant women, indicating a reduced inhibitory 

capacity of the NK activating receptor positive cells. 

13. TIM-3 expression on Vδ2+T cells is significantly decreased compared to healthy 

pregnant women. These finding suggest a failure to control the tissue destructive 

immune responses observed in pre-eclampsia. 

14. The frequency of peripheral blood CD4+CD25bright cells is lower than in healthy 

pregnant or non-pregnant women contributing to an impaired management of 

systemic inflammation. 

15. The percentage of CTLA-4 expressing cells among CD4+CD25bright T cells is 

significantly higher than that in healthy pregnant or in non-pregnant women, 

suggesting an enhanced activation of this cell population in pre-eclampsia. 
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16. There is a significantly higher percentage of activated iNKT cells than in healthy 

pregnant women. 

17. The number of peripheral perforin producing iNKT cells is significantly increased 

compared to healthy pregnant controls suggesting a potential cytolytic activity of 

these cells. 

18. IFN-γ expression by iNKT cells is significantly higher than in healthy pregnant 

woman, indicating a Th1 profile of iNKT cells. 

19. Apoptotic capacity of peripheral iNKT cells is significantly reduced compared to 

healthy pregnant women, suggesting a longer lifespan of these cells. 

20. The percentage of iNKT cells expressing the inhibitory receptor NKG2A as well as 

of those co-expressing NKG2A and NKG2D are significantly reduced. These 

results confirm that iNKT cells show an altered NK cell receptor expression pattern 

compared to those in normal pregnancy, and consequently inhibitory signals might 

be transmitted less efficiently. 
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MATERIALS AND METHODS  

 

Separation of peripheral blood lymphocytes 

Lymphocytes were isolated from heparinized peripheral blood on Ficoll Paque 

gradient, washed twice with RPMI 1640 medium and adjusted to a cell count of 1x106/ml. 

The cells were incubated with appropriate concentrations of different monoclonal 

antibodies or conjugated to target cells. 

 

Monoclonal antibodies 

The following mAbs were used:   

Origin Specificity of antibody Clone Manufacturer 

Surface staining 

mouse anti-human TCR Vδ2 clone 15D T-cell Diagnostic Inc., 

Woburn, MA, USA 

mouse anti-human TCR Vδ2 – 

FITC 

clone B6.1 BD Pharmingen, Soft Flow 

Hungary Kft., Hungary 

mouse anti-human TCR Vδ1-

FITC 

clone TS8.2 T-cell Diagnostic Inc., 

Woburn, MA, USA 

mouse anti-human CD 69-APC clone FN50 BD Pharmingen, Soft Flow 

Hungary Kft., Hungary 

mouse anti-human invariant 

NKT-FITC 

clone 6B11 BD Pharmingen, Soft Flow 

Hungary Kft., Hungary 

mouse anti-human CD95-PE clone DX2 BD Pharmingen, Soft Flow 
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Hungary Kft., Hungary 

mouse anti-human NKG2A-PE clone Z199 Immunotech, Csertex Kft, 

Hungary 

mouse anti-human NKG2A-APC clone 131411 R&D Systems, Biomedica 

Hungária Kft. 

mouse anti-human NKG2D-APC clone 149810 R&D Systems, Biomedica 

Hungária Kft. 

mouse anti-human NKG2C-PE clone 134591 R&D Systems, Biomedica 

Hungária Kft. 

mouse anti-human CD4 -FITC clone-RPA-T4 BD Pharmingen, Soft Flow 

Hungary Kft., Hungary 

mouse anti-human CD25-FITC clone-M-A251 BD Pharmingen, Soft Flow 

Hungary Kft., Hungary 

mouse anti-human TIM-3  clone 344823 R&D Systems, Biomedica 

Hungária Kft. 

mouse anti-human CTLA-4 - 

PECy5 

clone-BNI3 BD Pharmingen, Soft Flow 

Hungary Kft., Hungary 

goat anti-FITC IgG Microbeads  Miltenyi Biotec, Frank 

Diagnosztika, Hungary 

goat anti-mouse biotin  Amersham-Pharmacia 

Biotech, Hungary 
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Intracellular staining 

mouse anti-human perforin-PE clone 27-35 BD Pharmingen, Soft Flow 

Hungary Kft., Hungary 

mouse anti-human IL-10-APC clone JES3-19F1 BD Pharmingen, Soft Flow 

Hungary Kft., Hungary 

mouse anti-human IFN-γ-APC clone B27 BD Pharmingen, Soft Flow 

Hungary Kft., Hungary 

 
 

Control antibodies included isotype-matched unlabeled, furthermore, PE-

conjugated, APC-conjugated, FITC-conjugated and PECy5-conjugated mouse antibodies 

(BD Pharmingen, Soft Flow Hungary Kft. Hungary). 

 

MiniMACS γδ γδ γδ γδ T cell separation 

Vδ2+ T cells were separated using MiniMACS immunomagnetic beads, following 

the instructions of the manufacturer (Miltenyi Biotec, Frank Diagnosztika, Hungary). 

Briefly, cells were washed with PBS and resuspended at a cell count of 1x107/ml in PBS 

containing 0,5% BSA (Sigma Aldrich Kft., Hungary) and 2 mM of EDTA. Ten million 

cells were incubated for 10 minutes at 4°C with 10 µg anti-Vδ2 mAb. After incubation, 

lymphocytes were washed twice and resuspended in 80 µl buffer and 20 µl of Goat anti-

Mouse IgG Microbeads (Miltenyi Biotec, Frank Diagnosztika, Hungary) were added. Cells 

were incubated for 15 minutes at 4°C, and then washed. Pelleted cells were resuspended in 

500 µl buffer and applied to a MiniMACS column fitted to a magnet. The column was 

washed six times and then removed from the magnetic separator. The magnetic adherent 
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cells were flushed out of the column into a fresh tube using a plunger included in the 

MiniMACS Kit. Magnetic adherent cells were washed and 105 cells were incubated with an 

appropriate dilution of FITC conjugated anti-Vδ2 mAb for 30 minutes. During incubation, 

samples were protected from light. After washing, the cells were resuspended in 250 µl 

FACS buffer containing 1% paraformaldehyde and stored at 4°C, in dark, to be processed 

for FACS analysis the following day. The purity of the resulting cell suspension was 

checked by FACS analysis. Usually a 75 to 80 % enrichment of Vδ2 TCR positive cells 

was obtained. 

 

Labeling of lymphocytes and flow cytometric analysis 

50 µl heparinized venous blood; diluted with an equal volume of 10% FCS 

containing RPMI 1640 was incubated for 30 minutes at room temperature with the 

fluorochrome-labeled monoclonal antibodies.  

After surface staining, the cells were incubated with 1:10 diluted FACS Lysing Solution 

(BD Pharmingen, Soft Flow Hungary Kft. Hungary) for 10 minutes and washed twice with 

PBS buffer. Finally the cells were resuspended in 300 µl PBS containing 1% 

paraformaldehyde, and stored at 4 oC in dark until FACS analysis.  

For detecting perforin positive cells, after surface labeling the cells were incubated 

with 1:10 diluted FACS Permeabilizing Solution (BD Pharmingen, Soft Flow Hungary Kft. 

Hungary) for 10 minutes and then washed with PBS. The cells were then incubated with 

PE-conjugated mouse anti-human perforin for 30 minutes at room temperature, washed 

with PBS and fixed with PBS containing 1% paraformaldehyde.  
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For detecting cytokine positive cells, 500 µl heparinized venous blood was diluted 

1:1 with RPMI1640 containing 10% FCS and 10 µg brefeldin A, 25 ng phorbol myristyl 

acetate and 1 µg ionomycin (all from Sigma-Aldrich Kft., Hungary). The samples were 

incubated for 4 hours at 37 oC in 5% CO2. After stimulation the cells were labeled by 

surface staining. After surface labeling the cells were incubated with 1:10 diluted FACS 

Permeabilizing Solution (BD Pharmingen, Soft Flow Hungary Kft. Hungary) for 10 

minutes and then washed with PBS. The cells were then incubated with the labeled anti-

human cytokine antibody for 30 minutes at room temperature, washed with PBS and fixed 

with PBS containing 1% paraformaldehyde. 

Labeled cells were analyzed with a FACSCalibur flow cytometer (Becton 

Dickinson Immunocytometry Systems) equipped with the CellQuest software program 

(Becton Dickinson) for data acquisition and analysis.  

 

Apoptosis of Vδδδδ2+ T cells by annexin V staining 

Magnetic bead-separated Vδ2+ lymphocytes were adjusted to a concentration of 

1x105/mL of annexin-binding buffer, and 1-ml aliquots were centrifuged in FACS tubes. 

The cells were labeled for 15 minutes at room temperature in 100 µl annexin binding buffer 

with 10 µl biotinilated annexin V (BD-Pharmingen, Soft Flow Hungary Kft., Pécs, 

Hungary). Cells were washed with annexin-binding buffer, resuspended in 100 µl annexin-

binding buffer, and stained with 10 µl Streptavidin-APC (BD Pharmingen, Soft Flow 

Hungary Kft. Hungary) and 10 µl propidium iodide (PI, Sigma-Aldrich Kft., Hungary) by 

gently mixing for 15 minutes at room temperature in the dark. Binding buffer was added to 

each tube to restore the volume to 300 µl, and the samples were analyzed by FACSort. In 
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setting compensation, cells stained with annexin V alone or PI alone were used. Apoptotic 

cells stain with annexin V, while necrotic cells stain with both annexin V and PI. 

 

Statistics 

In paper1, the two-tailed Student's t-test and the paired t-test were used for statistical 

evaluation of the data. Differences were considered significant if the P value was equal to 

or less than 0.05. 

In paper 2 and paper 3, data were expressed as median. Statistical analysis was 

performed using statistical software SPSS version 11.0 package (SPSS, Inc. Chicago, IL). 

Group comparisons were made using non-parametric Mann-Whitney U-test. Differences 

were accepted as significant at a level of p<0.05.   
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SUMMARY 

 

The process of implantation and placentation are immunologically unique 

phenomena during which, immunocompetent fetal tissue invades the endometrium creating 

a successful collaboration between the two different sites . Fetal antigens are presented on 

the invading trophoblast, partly in context with HLA-C, a limited amount of which is 

expressed on certain trophoblast populations.  The non-classical Class I molecules; HLA-G 

and HLA-E are highly expressed by the trophoblast. Recognition of these molecules by 

resident lymphocytes results in a mild local inflammatory response that is needed for 

implantation. NK cells, iNKT cells, γ/δ T cells are highly enriched in the decidua. All of 

them possess activating and inhibitory NK cell receptors for MHC molecules, which enable 

them to distinguish maternal self from fetal non-self.  

Successful implantation is controlled by a precisely tuned balance of activating and 

inhibitory mechanisms. The establishment of an invasive phenotype in the trophoblast 

involves a host of cellular processes and an array of expression and/or repression of several 

genes involved in cell adhesion, composition of the extra-cellular matrix, matrix digestion, 

angiogenesis, apoptosis or cell cycle arrest.  

 Activation of NK cells, iNKT cells, γ/δ T cells leads to local inflammatory 

processes, which results in extracellular matrix digestion, (thus facilitating trophoblast 

invasion) and enhances angiogenesis of the developing placenta. At the same time, non-

classical HLA molecules convey immunotolerance by moderating the inflammatory 

process. The local immunological changes are reflected in the maternal peripheral blood. 
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Disturbances of implantation and placentation constitute the pathological 

background of recurrent miscarriage, pre-eclampsia or intrauterine growth retardation.  

Maladaptation of both local and systemic immune responses can be observed in 

women suffering from the above disorders.  

In recurrent aborters local and systemic inflammatory processes become 

exaggerated with dominating Th1 responses, particularly by lymphocytes of the innate 

immune system.   Due to poor vascularization of the placenta at the time of implantation, 

an enhanced systemic inflammation presents in the third trimester resulting in pre-

eclampsia. Because of an increased decidual resistance to trophoblast invasion, placental 

development and remodeling of the spiral arteries is not supported. These pathological 

changes manifest in clinical symptoms when fetal growth accelerates and placental blood 

supply becomes insufficient. Subsequently, the placenta becomes oxidatively stressed and 

releases factors in the maternal circulation that elicit a strong activation of the immune 

system. Activated lymphocytes secrete pro-inflammatory cytokines, show increased 

cytotoxic potential and reduced apoptotic capacity. The generalized inflammation affects 

several maternal organs and persists as long as the placenta is attached to the uterus.  

Successful implantation and placentation requires a close cooperation and active 

communication between fetal and maternal tissues. Initially, disorders of the process 

manifest in local pathological phenomena, however this is usually followed by systemic 

changes. Early diagnosis of these conditions is essential for targeted health care and 

management. Identification of circulating markers of fetal/placental and maternal pathology 

in patients will enable researchers to understand the underlying mechanisms and translate 

their findings to new therapies, and ultimately prevention of these devastating diseases. 
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