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AFRW alcohol-free red wine 

AI aggregation index, parameter of LORCA aggregometer 

CVD cardiovascular disease 

EI elongation index, parameter of LORCA ektacytometer 
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4 
 

III. Prologue 

 

1. The cardiovascular risk and the role of hemorheology 

 The Framingham Study and other epidemiological investigations have revealed 

numerous cardiovascular risk factors (e.g., genetic background, male gender, age, 

hypertension, diabetes mellitus or impaired glucose tolerance, hyperlipidemia, obesity, 

smoking and the lack of physical exercise). In contrast to the above mentioned “classic” 

factors, several studies have reported the importance of cardiovascular prevention with 

the basic principles of risk reduction (e.g., adequate lifestyle, risk screening, combined 

medicinal and operative therapies). Those examinations have described that avoidance 

of tobacco and of overweight, regular physical activity and healthy food consumption 

including Mediterranean diet with moderate red wine intake are primarily needed for the 

risk-free lifestyle of cardiovascular health [1]. In spite of these fundamental 

observations, several factors have been remained in the pathomechanism of 

cardiovascular diseases which requires deeper investigations, such as the properties of 

circulating blood. 

 Blood is a non-Newtonian suspension containing cells (e.g., erythrocytes, 

leukocytes and platelets), lipid components, proteins, carbohydrates and electrolytes. 

Blood flow is characterized by several hemorheological parameters, such as hematocrit 

(i.e., volume fraction of blood cells), plasma and whole blood viscosity (i.e., intrinsic 

resistance to flow generated by internal friction between nearby fluid layers), plasma 

proteins (e.g., fibrinogen and some globulins), erythrocyte deformability (i.e., the ability 

of red blood cells to deform in response to mechanical forces) and aggregation (i.e., 

rouleaux formation under low flow conditions). 

 Numerous investigations have presented that altered hemorheological parameters 

can impair microcirculation leading to development of various diseases [2, 3]. 

Furthermore, several literature reports have clearly shown that hemorheological 

parameters (e.g., hematocrit, plasma fibrinogen and blood viscosity) can also be 

considered as potential risk factors, and abnormalities of these parameters contribute to 

the development of cardiovascular diseases [4-6]. 
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 Other hemorheological parameters, such as red blood cell deformability and 

aggregation have also been under both basic science and clinical interest; reduced 

deformability and increased aggregation can affect the rheological behavior of blood 

and can impair in vivo tissue perfusion. 

 

2. Erythrocyte deformability 

 The form of a normal human red blood cell is a biconcave disc ~8 μm in diameter, 

~2 μm thick at the rim, and ~1 μm thick at its center [7]. These cells are extremely 

deformable as they progressively elongate under shear stress (i.e., erythrocyte 

deformability is a major determinant of high shear viscosity of blood) and form 

ellipsoids with their long axis aligned with the flow. Thus erythrocytes are capable of 

entering and transiting blood capillaries with diameters as small as ~4 μm. When the 

cells deform their surface area remains fixed; the red blood cell membrane resists area 

dilation and ruptures above 2-3% area expansion [8]. 

 There is a general agreement regarding the factors affecting erythrocyte 

deformability: cell shape and membrane surface area to volume ratio as “extrinsic” 

factors; membrane viscoelastic properties and cytosolic viscosity as “intrinsic” factors 

[9-11]. Deviations from the normal resting biconcave shape, decreased area to volume 

ratio, higher membrane shear modulus and viscosity or elevated cytoplasmic viscosity 

tend to reduce deformability [2]. 

 Erythrocyte deformability can be modified by several structural and functional 

alterations of erythrocytes generated by genetic or environmental factors. Changes in 

strictly regulated properties of blood (e.g., osmotic pressure, pH, etc), mechanical and 

oxidative damages induced by various internal or external sources (e.g., 

ischemia/reperfusion injury, mitochondrial leakage, activated leukocytes, iron overload 

caused by transfusions, etc), parasite infection (i.e., malaria caused by the genus 

Plasmodium) and genetic disorders (hemoglobinopathies, genetic modifications of red 

blood cell membrane proteins, enzyme deficiencies of erythrocyte metabolism, etc) are 

associated with decreased red blood cell deformability [2]. 
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 Abnormal red blood cell deformability is especially notable in sickle cell disease 

in which the erythrocytes become rigid at reduced oxygen levels due to intracellular 

polymerization of sickle hemoglobin leading to occlusions in microvessels and impaired 

tissue perfusion resulting in painful crisis, infarctions of various organs and increased 

resistance to flow in the lungs [12]. 

 

3. Erythrocyte aggregation 

 Erythrocyte aggregation is a major determinant of in vitro hemorheology 

occurring in either plasma or solutions with large polymers (e.g., dextran ≥ 40 kDa). 

During the process, red blood cells reversibly form linear (i.e., like stack of coins 

termed rouleaux formation) or branched aggregates. Under in vivo circumstances 

erythrocyte aggregation occurs at low shear forces thus determining especially the low 

shear viscosity of blood [13]. 

 Erythrocyte aggregation is characterized by red blood cell aggregability (i.e., the 

intrinsic cell characteristics) and the concentration of macromolecules, such as proteins 

in plasma (e.g., fibrinogen and some globulins) or neutral polymers in suspensions (e.g., 

dextran) [14-17]. 

 At these days, two parallel models explain the process of aggregation. The 

bridging theory claims that erythrocyte aggregation occurs when disaggregating forces 

are not capable to interfere the adsorption of macromolecules to the nearby cell 

surfaces, while the depletion model suggests that the decreasing protein or polymer 

concentration creates an osmotic gradient between two adjacent erythrocytes leading to 

depletion interaction [18-20]. 

 Although increased erythrocyte aggregation has been observed in various clinical 

diseases (e.g., hypertension, diabetes mellitus) [21, 22], all mechanisms of the process 

and the relations between different pathological states and red blood cell aggregation 

have not been completely understood. 
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4. Aim of the studies 

 These studies were designed to investigate the possible alterations of erythrocyte 

deformability and aggregation in two in vitro experiments: 1) effects of red wine, 

alcohol-free red wine extract and ethanol was examined; 2) light scattering results of red 

blood cells in ektacytometry were also analyzed.  
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IV. Methodology 

 

1. Early observations in hemorheology 

 First hemorheological observations were occurred in 1674 and performed by 

Anthony van Leeuwenhoek (Delft, the Netherlands), the inventor of microscope, who 

discovered the fact that erythrocytes have to deform for traversing capillaries [23] and 

also realized that red blood cells tend to form aggregates under low flow conditions 

[24]. In fact, the scientific interest appeared and turned to hemorheology just after the 

report describing the thesis of blood viscosity of Fåhraeus and Lindqvist in 1931 [25]. 

 Until these days, many investigations have been performed and numerous 

instruments have been manufactured for better understanding the structural and 

functional integrity of cellular and soluble components of blood as well as the different 

blood flow properties. 

 

2. Erythrocyte deformability measurements 

 Various approaches to the measurement of red blood cell deformability have been 

developed, such as filtration models requiring the cell to enter and pass through a small 

orifice, micropipette techniques describing deformability during a complete erythrocyte 

aspiration into a narrow glass tube, or those techniques (i.e., termed laser diffraction 

ellipsometry, also known ektacytometry) where cells are exposed to fluid shear stresses 

in defined flow fields [26-30]. 

 In these experiments, erythrocyte deformation in response to shear forces was 

determined by a LORCA ektacytometer (Laser-assisted Optical Rotational Cell 

Analyzer; R&R Mechatronics, Hoorn, Netherlands). In this instrument a dilute 

suspension of erythrocytes (~ 2 x 10
7
 cells/ml) in a viscous medium is placed in the gap 

of a Couette shearing system (i.e., created by an outer, rotating cylinder and an inner, 

static cylinder) having a laser-diode projected through the gap. 
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 The presence of red blood cells in the gap diffracts the laser light that creates a 

diffraction pattern on a diaphragm changing from circular to elliptical as cells deform 

and elongate. The pattern is captured and analyzed by a video camera and a computer 

system that calculates an elongation index (EI) as the (length - width) / (length + width) 

of the pattern for each shear stress (SS). Results are shown on an elongation index-shear 

stress (EI-SS) diagram [31] (Fig. 1A). 

 

Fig. 1: The LORCA (Laser-assisted Optical Rotational Cell Analyzer) machine and its 

two cylinders with the laser beam creating an ellipsoidal diffraction pattern on a 

diaphragm. A) Ektacytometric investigation of erythrocyte deformability with an 

elongation index-shear stress (EI-SS) diagram and the analysis of the diffraction 

pattern. B) Illustration of laser backscattering intensity vs. time curve (syllectogram) 

and the process of erythrocyte aggregation with the analysis of the diagram. This figure 

is partly based on the illustrations of the Handbook of Hemorheology and 

Hemodynamics, IOS Press, Amsterdam, pp. 250 and 256, 2007. 
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3. Erythrocyte aggregation measurements 

 In this study, red blood cell aggregation was measured with two instruments 

employing different approaches of the method of syllectometry (i.e., measuring light 

intensity changes caused by the process of erythrocyte aggregation) [32]: 1) LORCA 

aggregometer operating with laser backscattering; 2) Myrenne aggregometer using 

infrared light transmission [30]. 

 Red blood cell aggregation can be determined with a LORCA aggregometer 

detecting the laser backscattering from the aggregating blood. Erythrocytes are placed in 

the gap of the instrument and disaggregated at a high shear rate (500 s
−1

) which reduces 

rapidly to zero. Backscattering of laser light suddenly increases (i.e., sheared and 

elongated red blood cells recover their normal biconcave shape) then decreases during 

the process of aggregation (i.e., larger aggregates reflect less light than single cells) that 

is characterized by the aggregation index (AI) calculated from the areas A and B of the 

diagram (AI=A/A+B) during the first 10 seconds of the measurement [33-35] (Fig. 1B). 

Another sensitive parameter of red blood cell aggregation is called threshold shear rate 

(γ) describing the smallest shear rate which is required for the complete disaggregation 

of erythrocytes [33].  

 Erythrocyte aggregation can also be measured with a Myrenne aggregometer 

(model MA-1, Myrenne GmbH, Roetgen, Germany) that employs and measures the 

infrared light transmission through an erythrocyte suspension between a transparent 

plate and a cone. Cells are initially disaggregated by the cone at high shear (600 s
−1

) 

following which shear is abruptly stopped or reduced to 3 s
−1 

and light transmission 

integrated for 10 seconds. The instrument provides two dimensionless indices of red 

blood cell aggregation (M, aggregation at stasis; M1, at very low shear); both M and M1 

increase with enhanced aggregation (i.e., quicker process or larger aggregates let more 

light to pass through the sample) [33, 36] (Fig. 2). 



11 
 

 

Fig. 2: A Myrenne aggregometer MA-1 demonstrating the experimental chamber with 

the transparent plate-cone shearing system.  
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V. In vitro hemorheological effect of red wine, alcohol-free red 

wine and ethanol 

 

1. Introduction 

1.1. The “French Paradox” 

 Cardiovascular diseases (CVD) are among the most frequent causes of morbidity 

and mortality in the developed countries. Until these days, numerous risk factors (listed 

on page 4) have been determined in the pathogenesis of CVD [37-39]. 

 Several epidemiological studies have revealed that total mortality is not but CVD-

related death is substantially lower in France than in other industrialized Western-

European countries, although consumption of saturated fats and level of blood 

cholesterol are higher, while other major risk factors, such as smoking and hypertension 

are similarly prevalent in France as in other developed regions [40, 41]. 

 In contrast to the harmful pathological consequences of chronic drinking of large 

amounts of alcoholic beverages, further epidemiological studies have demonstrated a J-

shape relationship between CVD mortality and consumed alcohol amount [42-45] and 

shown that regular but moderate (i.e., not more than 10-20 g alcohol per day) red wine 

(RW) consumption results in a decreased risk of coronary heart disease [46, 47], heart 

failure [48], intermittent claudication [49] and stroke [50]. On the other hand, binge- or 

heavy alcohol drinking leads to higher mortality risk in CVD [51-53]. 

 According to other studies, wine consumption is associated with higher beneficial 

cardiovascular effects compared to other forms of alcohol; low to moderate intake of 

wine decreases the mortality risk of patients suffering from CVD, while similar amount 

of spirits drinking increases, but beer consumption does not show any influence on it 

[54, 55]. Furthermore, this beneficial protective effect depends on the type of wine; 

mortality rates in the RW drinking Mediterranean regions is lower than in Alsace, a 

white wine drinking area of France [56]. 

This chapter is based on the following scientific articles: 

- Rábai M, Tóth A, Kenyeres P, Márk L, Márton Zs, Juricskay I, Sümegi B, Tóth K. Vörösbor és alkoholmentes 

vörösborkivonat kedvező in vitro haemorheológiai hatásai. Érbetegségek 2, 45-52, 2009. 
- Rabai M, Toth A, Kenyeres P, Mark L, Marton Zs, Juricskay I, Toth K, Czopf L. In vitro hemorheological effects of 

red wine and alcohol-free red wine extract. Clin Hemorheol Microcirc 44, 227-236, 2010 

- Rabai M, Detterich JA, Wenby RB, Toth K, Meiselman HJ.   Effects of ethanol on red blood cell rheological behavior. 
Clin Hemorheol Microcirc, accepted for publication. 
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 This phenomenon (i.e., beneficial cardiovascular effects of regular and moderate 

RW consumption) has been termed the “French Paradox” [41]. 

 

1.2. Components of red wine 

 It is assumed that the favorable cardiovascular effects of RW originate in its non-

alcoholic (phenolic) and alcoholic (ethanol) components [57]. 

 Non-alcoholic component of RW contains anthocyanins and polyphenols. 

Anthocyanins, such as delphidin and malvidin are responsible for the color of wines, 

while polyphenols are believed the main source of the cardiovascular protection. 

 The most potent polyphenols of RW, such as resveratrol, katechin and quercetin 

have been extensively studied. Several researchers have demonstrated that the amount 

of polyphenols, especially the resveratrol content, depends on vintage year and variety 

[58, 59], while other authors have shown that winemaking technology and winery 

region are determinant factors as well [60-62]. Thus different RW may have different 

influence on health, as resveratrol presumably plays a role in the CVD mortality risk 

reduction. 

 Favorable cardiovascular effects of polyphenols have been widely investigated 

and their antioxidant properties are well-known [63]. In addition to the decreased 

oxidation of low-density lipoproteins (LDL) [64] and expression of LDL receptors [65], 

polyphenols induce the nitric-oxide (NO) production and reduce the platelet aggregation 

plus the production of proinflammatory eicosanoids [66, 67]. 

 Alcohol-free red wine (AFRW), an extract of RW containing phenolic 

components without ethanol, has been particularly used in animal model investigations. 

An ischemia-reperfusion rat model measurement has proven that AFRW treatment 

improves the ventricular functions and reduces the area of postinfarction remodeling 

[68]. Some other rat experiments have reported that AFRW feeding decreases the 

thrombotic tendency [69] and the degree of oxidative stress [70], while a human study 

has shown that AFRW ingestion inhibits the oxidation of LDL [71]. 
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 Several studies of RW consumption have confirmed that, in addition to the 

antioxidant phenolic components, ethanol plays a role in the beneficial cardiovascular 

effects of moderate red wine intake as well. Ethanol favorably modifies hemostasis 

leading to reduced levels of certain coagulation factors (e.g., fibrinogen, factor VII and 

von Willebrand factor) and of platelet function [72, 73]; enhanced fibrinolysis due to 

elevated levels of tissue-type plasminogen activator has also been demonstrated [73, 

74]. Alterations of plasma lipid profiles with an increase in high-density lipoprotein and 

a decrease in LDL cholesterol concentrations have been reported [75, 76]. Furthermore, 

ethanol also enhances the production of the vasodilator endothelial NO [77]. 

 

1.3. Effect of red wine and its components in hemorheology 

 Several studies have demonstrated the above mentioned inverse association 

between RW or alcohol intake and cardiovascular events, but the source of this 

cardioprotective effect is still not completely known. 

 Only a small number of in vivo and in vitro experiments have been performed to 

evaluate the effects of RW, polyphenols and ethanol on different hemorheological 

factors. Unfortunately the results are not in complete agreement. While in vitro studies 

exploring the effects of ethanol addition to blood indicate no changes of hematocrit or 

whole blood viscosity [78-80], alcohol consumption leads to dehydration without 

increased hematocrit [79, 80] but with an elevation of whole blood and plasma viscosity 

[78, 81-83]. On the other hand, several studies have demonstrated that regular but 

modest alcohol ingestion is associated with a decreased level of plasma fibrinogen [73, 

84] which was correlated with a reduction of plasma viscosity [85]. In contrast, a recent 

study has reported no changes of fibrinogen, hematocrit or blood viscosity after 

moderate RW and vodka consumption for two weeks [86]. 

 Given the current uncertainty and the lack of data regarding the specific 

hemorheological consequences, the present in vitro study was designed to further 

explore possible effects of red wine and its major components on red blood cell (RBC) 

deformability and aggregation. 
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2. Methods 

2.1. Red wine, alcohol-free red wine extract and ethanol 

 Throughout the measurements, a 2002 Merlot (Polgar Winery, Villany, Hungary) 

red wine was applied since previous chromatographic measurements have proved its 

high resveratrol content (approximately 14 mg/l), while the alcohol concentration was 

around 13% [62, 87]. For alcohol-free red wine extract measurements wine sample was 

vacuum distilled until the disappearance of alcohol. The extract was rediluted with 

distilled water, thus its osmolality became physiological plus the polyphenol and 

anthocyanin content remained similar to the original red wine [68]. Alcohol experiments 

were performed with reagent grade ethanol (Sigma-Aldrich Co., St. Louis, MO, USA), 

while physiological saline (PS) and isotonic phosphate buffered saline (PBS, 290 

mOsm/kg, pH = 7.4) were utilized as a diluent control. 

 

2.2. Blood samples 

 Venous blood samples were obtained by sterile venipuncture with a 21-gauge 

butterfly infusion set using a minimal tourniquet from 13 healthy volunteers into 

Vacutainer tubes coated with lithium heparin for the red wine and polyphenol 

measurements. For the ethanol experiment blood was taken from 7 adult laboratory 

personnel and anticoagulated with ethylenediamine-tetraacetic acid (1.5 mg/ml). Blood 

donors did not consume any ethanol-containing products within 24 hours of sampling. 

Red wine study was supported by the Regional Ethics Committee, University of Pecs, 

Pecs, Hungary, while the experiment with ethanol was approved by the Human Subjects 

Institutional Review Board, University of Southern California, Los Angeles, CA, USA. 

 

2.3. Erythrocyte deformability and aggregation testing 

 Following the RBC sample preparation (see below), erythrocyte deformability 

was studied with a LORCA ektacytometer (see page 8), while aggregation was 

measured employing a Myrenne and a LORCA aggregometers (see page 10). 
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 The viscous medium used in the RW and AFRW deformability experiments was a 

360 kDa polyvinylpyrrolidone (Sigma, 300 mOsm/kg, η=29.8 mPa·s in PBS) solution, 

while the ethanol study was performed with a 70 kDa dextran (Sigma, 297 mOsm/kg, 

η=28.4 mPa·s in PBS) solution. In both cases, the shear stress was varied, in steps, from 

0.3 to 30 Pa. Measurements were performed at 37°C. 

 For some deformability results, EI-SS data was fitted to a Lineweaver-Burke type 

non-linear equation that yields the maximum EI at infinite shear stress (EImax) and the 

stress required to achieve one-half of this maximum value (SS1/2) [88, 89]. For the more 

accurate plot fitting, negative deformability values were excluded from the analysis. 

Data fitting and analysis were carried out using non-linear regression (GraphPad Prism, 

GraphPad Software, La Jolla, CA). 

 Throughout the RBC aggregometry experiments, temperature was kept at 37°C 

for LORCA measurements, while Myrenne was operated at ambient temperature.  

 

2.4. Red blood cell suspensions 

 Red wine and blood samples were initially mixed to simulate final blood alcohol 

concentration of 0.10, 0.30 and 1%, while other samples were treated with AFRW or PS 

in a similar manner. Samples were incubated for 1 hour at ambient temperature on a 

rollerbed followed by RBC deformability and aggregation measurements. 

 In a 2
nd

 study, two general approaches were utilized to evaluate the ethanol effects 

on erythrocyte deformability: 1) direct addition of ethanol to whole blood followed by 

incubation and testing; 2) addition of ethanol only to the viscous suspending medium 

used for deformability measurements. In the direct addition studies, ethanol was added 

to whole blood to achieve final concentrations of 0, 0.25, 0.50, 1 and 2%, following 

which these samples were incubated at room temperature for 1 hour then studied. In the 

other approach, alcohol was added directly to the viscous medium used for 

ektacytometry measurements at concentrations of 0, 0.25, 0.50, 1, 2, 3, 4, 5 and 6%, 

following which untreated red blood cells were suspended in these media then 

measured. 
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 Aggregation measurements used 40% hematocrit suspensions of erythrocytes in 

autologous plasma or in a 70 kDa dextran solution (3% in PBS). In these studies, red 

blood cells were initially suspended in plasma at a 40% hematocrit, ethanol added at 

concentrations of 0, 0.25, 0.50, 1 and 2%, and incubated for 1 hour at room temperature. 

Erythrocyte-plasma samples were then tested without further processing, while cells to 

be suspended in 3% 70 kDa dextran were washed twice with PBS then re-suspended in 

the dextran at 40% hematocrit. 

 In a 3
rd

 experiment, in vitro effect of red wine, alcohol-free red wine extract and 

ethanol was examined in the presence of oxidative stress. Blood samples were 

pretreated with RW and AFRW at a concentration of 0.30% or ethanol at concentrations 

of 0, 0.25, 0.50, 1 and 2% and then the free radical generator phenazine methosulfate 

(PMS, Sigma) was added at a final concentration of 500 μM. Samples were incubated at 

37
o
C for 2 hours then erythrocyte deformability was tested. In one series, whole blood 

was treated only with PMS and alcohol added only to the viscous medium used for 

deformability measurements. 

 

2.5. Miscellaneous 

 After ethanol treatment, RBC shape was evaluated by DIC light microscopy 

(model BX50F; Olympus, Tokyo, Japan). 

 For statistical analysis paired t-tests were used to test changes from control (i.e., 

PS or PBS treated samples) with significance accepted at p<0.05.  

 The detailed technical differences in methodology between the red wine and 

ethanol studies (i.e., blood sampling, suspending medium of LORCA, etc) originate in 

the different possibilities of the two hemorheological laboratories in which the 

experiments were done. 
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3. Results 

3.1. Results of the deformability measurements 

 Our results show that no erythrocyte deformability changes were observed in any 

concentrations of the red wine and alcohol-free red wine extract treated samples 

followed by incubation then testing with LORCA (Fig. 3A). Analysis obtained using the 

Lineweaver-Burke regression indicated that in case of the two agents neither EImax, 

SS1/2 nor their ratio differed from the saline treated control (Fig. 3B, C and D). 

 

Fig. 3. A) Erythrocyte deformation as an elongation index (EI) versus shear stress (SS) 

when red wine (RW) or alcohol-free red wine extract (AFRW) (0-1%) were added to 

whole blood followed by incubation and testing with LORCA. B) EImax, C) SS1/2 and D) 

SS1/2 / EImax calculated using non-linear regression of the Lineweaver-Burke equation. 

Control (C) means physiological saline treated samples. N=13, values are mean ± SD. 

No significant differences were detected. 
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 The effects of ethanol on red blood cell deformability depended on the manner in 

which cells were exposed to the alcohol: 1) addition to whole blood followed by 

incubation caused no change in deformability (Fig. 4A); 2) addition to the LORCA 

media and testing of non-incubated cells resulted in significant, dose-dependent 

deformability increase (p<0.05) (Fig. 5A). No changes were observed in EImax, SS1/2 and 

SS1/2 / EImax for incubated cells (Fig. 4B, C and D). Conversely, EImax, SS1/2 and their 

ratio for non-incubated cells significantly decreased (p<0.05) with alcohol concentration 

of the LORCA media (Fig. 5B, C and D). Note, however, that the magnitude of these 

alcohol-induced changes differed greatly: at 6% ethanol (the highest concentration 

studied), EImax was only 1% below control whereas SS1/2 and the SS1/2 / EImax ratio 

decreased by 46% and 43%. Thus, there was essentially no meaningful change of EImax 

whereas the shear stress needed to achieve one-half of EImax was markedly reduced. 

 

Fig. 4. A) Erythrocyte deformation as an elongation index (EI) versus shear stress (SS) 

when ethanol (0-2%) was added to whole blood. B) EImax, C) SS1/2 and D) SS1/2 / EImax 

calculated using non-linear regression of the Lineweaver-Burke equation. Control (C) 

means phosphate buffered saline treated samples. N=7, values are mean ± SD. No 

significant differences were detected. 
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Fig. 5. A) Erythrocyte deformation as an elongation index (EI) versus shear stress (SS) 

when ethanol (0-6%) was added to the suspending medium of the LORCA 

ektacytometer; cells were not pre-incubated with ethanol. B) EImax, C) SS1/2 and D) SS1/2 

/ EImax calculated using non-linear regression of the Lineweaver-Burke equation. 

Control (C) means only a phosphate buffered saline dilution added to the LORCA 

media. N=7, values are mean ± SD. Stars represent significant differences from control 

samples at p<0.05, while links show differences which are not significant. 

 

3.2. Results of the oxidative stress experiment 

 The effects of RW and its major components on erythrocyte deformability when 

cells were oxidatively stressed by the free radical generator phenazine methosulfate 

were also studied using the LORCA ektacytometer. 

 As expected [90], incubation with 500 μM PMS alone caused a significant 

decrease (p<0.05) of erythrocyte deformability (Figs. 6, 7 and 8).  
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 Although AFRW pretreatment at 0.30% concentration significantly prevented 

(p<0.05) erythrocytes from the PMS generated deformability impairment, 0.30% RW 

had no such effect (Fig. 6A). The Lineweaver-Burke analysis demonstrated that EImax 

for AFRW plus PMS treated cells did not change, while SS1/2 and the SS1/2 / EImax ratio 

significantly decreased (p<0.05) by ~17% from the only PMS treated samples. On the 

other hand, EImax, SS1/2 and their ratio showed no alterations for erythrocytes treated 

with 0.30% RW and PMS compared to the only PMS damaged cells (Fig. 6B, C and D). 

 

Fig. 6. A) Erythrocyte deformation as an elongation index (EI) versus shear stress (SS) 

for whole blood incubated with 0.30% red wine (RW) or 0.30% alcohol-free red wine 

extract (AFRW) + 500 μM phenazine methosulfate (PMS); following incubation, cell 

deformability was measured with LORCA B) EImax, C) SS1/2 and D) SS1/2 / EImax 

calculated using non-linear regression of the Lineweaver-Burke equation. Control 

means physiological saline treated samples. N=7, values are mean ± SD. Stars 

represent significant differences from control, while crosses show significant 

differences from PMS treated samples at p<0.05. 
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 Changes of erythrocyte deformability again depended strongly upon the manner in 

which cells were exposed to ethanol. Red blood cells incubated for 2 hours with alcohol 

plus PMS then tested in alcohol-free LORCA media exhibited significant decreases 

(p<0.05) of deformability from PMS alone (Fig. 7A). Under these conditions, EImax for 

PMS treated cells was unaffected by the presence of ethanol during incubation, while 

both SS1/2 and the SS1/2 / EImax ratio significantly increased (p<0.05) by ~20% at 2% 

ethanol (Fig. 7B, C and D). 

 

Fig. 7. A) Erythrocyte deformation as an elongation index (EI) versus shear stress (SS) 

for whole blood incubated with ethanol (0-2%) + 500 μM phenazine methosulfate 

(PMS); following incubation the cells were tested in ethanol-free LORCA media. B) 

EImax, C) SS1/2 and D) SS1/2 / EImax calculated using non-linear regression of the 

Lineweaver-Burke equation. Control (C) means phosphate buffered saline treated 

samples. N=7, values are mean ± SD. Stars represent significant differences from 

control, while crosses show significant differences from PMS treated samples at 

p<0.05. 
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 However, PMS treated cells tested with alcohol in the LORCA media exhibited 

significant improvements (p<0.05) of deformability compared to PMS alone (Fig. 8A), 

EImax was not meaningfully altered, while SS1/2 and the SS1/2 / EImax ratio were ~17% 

lower at 2% ethanol (Fig. 8B, C and D). 

 

Fig. 8. A) Erythrocyte deformation as an elongation index (EI) versus shear stress (SS) 

for whole blood incubated with 500 μM phenazine methosulfate (PMS); following 

incubation, cell deformability was measured in LORCA media containing 0-2% ethanol. 

B) EImax, C) SS1/2 and D) SS1/2 / EImax calculated using non-linear regression of the 

Lineweaver-Burke equation. Control (C) means phosphate buffered saline treated 

samples. N=7, values are mean ± SD. Stars represent significant differences from 

control, while crosses show significant differences from PMS treated samples at 

p<0.05. 
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3.3. Results of the aggregation measurements 

 Treatments with RW and AFRW inhibited erythrocyte aggregation in a dose 

dependent manner (Fig. 9). In M and M1 mode of the Myrenne aggregometer the 

differences were significant (p<0.05) already at a concentration of 0.10%.  

 Red wine had a tendency for stronger inhibition compared to AFRW which 

became significant (p<0.05) at a concentration of 1%: mean reductions in parameter M 

and M1 at highest concentration were 48% and 22% for AFRW as well as 80% and 

43% for red wine (Fig. 9A). 

 

Fig. 9. Erythrocyte aggregation determined by A) Myrenne showing its M and M1 

parameters and B) Lorca aggregometer representing aggregation index (AI) and 

treshold shear rate (γ) after treatments with alcohol-free red wine extract (AFRW) and 

red wine (RW). Control means physiological saline treated samples. Effects of agents 

are compared within the same concentration group to eliminate the impact of sample 

dilution. N = 13, values are mean ± SD. Links represent significant difference at 

p<0.05. 
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 LORCA aggregation index (AI) confirmed these results only at the highest 

concentration where the difference between RW and AFRW became significant 

(p<0.05). Changes in LORCA threshold shear rate (γ) were concordant with Myrenne 

parameters: mean reductions in γ at the highest concentrations were 38% for AFRW and 

55% for RW (p<0.05) (Fig. 9B). 

 Further results show that erythrocyte aggregation in autologous plasma (Fig. 10A) 

or in 3% 70 kDa dextran solution (Fig. 10B) showed significant decreases (p<0.05) in a 

dose-dependent manner after ethanol treatment. The changes of the M and M1 indices 

were significant at 0.25% and above, with the greatest decreases at 1% alcohol: mean 

reductions of M and M1 parameters were 24% and 18% for aggregation in plasma and 

43% and 32% for aggregation in dextran. At 2% ethanol the aggregometer was unable 

to detect RBC aggregate formation in either medium. 

 

Fig. 10. Erythrocyte aggregation determined by Myrenne aggregometer A) in 

autologous plasma or B) in 3% 70 kDa dextran solution. No aggregation was 

measureable at 2% concentration. Control means phosphate buffered saline treated 

samples. N=7, values are mean ± SD. Links represent significant differences at p<0.05. 
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3.4. Microscopic analysis 

 Morphological analysis using DIC light microscopy demonstrated that normal 

discocytes (i.e., biconcave shaped cells) in PBS (Fig. 11A) became echinocytes (i.e., 

erythrocytes with spiky projections on the cell surface) with 2% ethanol (Fig. 11B). The 

viscous dextran medium used in the LORCA induces a slight stomatocytic (i.e., cup 

shaped red blood cells) transformation (Fig. 11C), while erythrocytes retain their 

normal, discocytic shape in dextran with 2% alcohol (Fig. 11D). 

 

Fig. 11. Morphological appearance of erythrocytes visualized by DIC light microscopy. 

A) Untreated erythrocytes in PBS demonstrating the normal, discoid shape of the cells. 

B) Echinocytes in PBS with 2% ethanol concentration. C) Stomatocytes in the viscous 

medium (dextran) of LORCA. D) Erythrocytes maintaining the normal, discocytic shape 

in dextran containing 2% ethanol. 
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4. Discussion 

 Direct addition of red wine or alcohol-free red wine extract to blood is obviously 

not physiological. Furthermore, ethanol concentrations used herein greatly exceed levels 

(over 0.50%) that are physiologically tolerable. In many locations throughout the world, 

intoxication and inability to operate machinery (e.g., drive a car) is assumed at 0.08 to 

0.1% ethanol. On the other hand, throughout the development process of a new 

pharmacological agent many different kinds of in vitro and in vivo investigations are 

made. In this in vitro study, blood was used as an isolated human tissue and the 

measurements with red wine and its major components may provide several 

reproducible pharmacodynamic effects. High, in vivo intolerable concentrations can be 

accepted in the setting of an in vitro investigation. Furthermore, measurements with 

high, intolerable alcohol concentrations can reveal valuable toxicological information. 

 In this in vitro experiment, hemorheological consequences of red wine and its 

major components were examined focusing on erythrocyte deformability measured by 

LORCA ektacytometer (see page 8) and aggregation determined by Myrenne and 

LORCA aggregometers (see page 10). 

 

4.1. Analysis of the deformability results 

 Erythrocyte deformability and its determining factors have already been discussed 

(see page 5) [2, 9-11]. The relative importance of these parameters for altering 

deformability can depend on the testing system and the level of applied forces; 

abnormal deformation behavior may be detected at low stress level forces but may not 

be evident when much higher forces are applied. In order to avoid choosing the 

appropriate stress for comparisons, we have elected to utilize a curve fitting approach 

over the entire range of shear stress (i.e., 0.3-30 Pa) in order to characterize RBC 

mechanical behavior by just two parameters (i.e., EImax and SS1/2); this approach has 

been validated and shown to be appropriate for various erythrocyte populations [88, 89]. 

 The results of our in vitro study indicate that direct addition of RW and AFRW to 

blood followed by incubation do not alter erythrocyte deformability, while ethanol can 

improve it when the cells are subjected to fluid stress in a defined shear field. 



28 
 

 These improvements were only observed when ethanol was in the viscous media 

used for ektacytometry testing (Fig. 5) and were not present when cells were incubated 

with the alcohol but tested in alcohol-free viscous media (Fig. 4). Our in vitro results 

thus indicate that the ethanol-induced deformability improvement requires the presence 

of ethanol. These results were supported by several in vivo experiments [86, 91] and in 

vitro studies suggesting that changes in the cell membrane are reversible [92, 93]. 

 Comparing our deformability results to literature reports is problematic since 

variety of methods was used. The effects of ethanol consumption depend on the 

drinking habits of the subjects tested. Using micropore filtration, studies have shown 

that erythrocyte deformability is reduced in active alcoholics [94, 95]. On the other 

hand, ektacytometry results have shown increased deformability at high shear stresses 

1.5 hours after the ethanol intake [91], while a recent study indicates no changes after 

red wine or moderate vodka consumption for two weeks [86]. Prior in vitro studies are 

also not in concordance: filterability measurements have demonstrated increased RBC 

deformability at physiological concentrations of ethanol [96], while a micropipette 

aspiration technique has shown that high, intolerable levels of ethanol decreases 

deformability [97]. Our results indicate that the greatest enhancement of deformability, 

indexed by SS1/2 and the SS1/2 / EImax ratio, was observed at 4% and 5% ethanol 

concentration, while deformability at 6% was significantly lower and similar to the 3% 

ethanol results (Fig. 5). These findings thus indicate a bi-phasic effect of ethanol: 

improved deformability followed by decreased benefits with increasing concentration. 

 As indicated above, four factors (e.g., morphology, geometry, membrane 

rheologic properties and cytoplasmic viscosity) can affect erythrocyte deformation 

behavior [9, 10]. Although ethanol can cause a discocyte-echinocyte shape change [93, 

98], cells suspended in dextran + ethanol generally have a discoidal morphology (Fig. 

11). Ingested alcohol increases plasma osmolality [99, 100], thereby reducing cell 

volume [80], increasing surface to volume ratio and elevating cytoplasmic viscosity; the 

increased ratio favors deformability, while the greater cytoplasmic viscosity has the 

opposite effect. Given that cells were always suspended in isotonic media, it thus seems 

most likely that ethanol affects the mechanical behavior of the membrane with its 

attached cytoskeleton. The importance of the cytoskeleton for the cell’s physical 

behavior has been shown in a detailed analysis of RBC membrane properties [8]. 
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 Ethanol has a polar hydroxyl group soluble in aqueous media and hence must 

distribute within the exterior glycocalyx and the interior of the cell, while the non-polar 

part of the molecule is preferentially found in the lipid bilayer [83, 101]. The fluidity of 

the lipid portion can be altered by ethanol in a dose dependent manner: 1) up to 0.3% 

there is no change in the membrane’s external layer (TMA-DPH fluorescence) or its 

hydrophobic region (DPH fluorescence) [79]; 2) increased fluidity up to 1.6% as 

assayed by electron paramagnetic resonance [101]. Note, that the less viscous lipid 

bilayer has only minimal influence on cell deformability [8, 10, 102]. Thus the 

cytoskeleton must be reversibly altered in a manner that decreases membrane shear 

modulus [103, 104]. The most likely molecular change is a weakening of spektrin-aktin 

linkages [8, 103]. In addition, it is possible that interactions between transmembrane 

proteins and cytoskeletal components are involved [10]. 

 

4.2. Analysis of the oxidative stress experiment 

 RBC deformability alterations induced by red wine, alcohol-free red wine extract 

and ethanol were also examined in the presence of oxidative stress generated by 

phenazine methosulfate. PMS is a well-known oxygen free radical generator that causes 

lipid peroxidation and structural modifications in the membrane skeletal protein 

network, leading to increased membrane rigidity and decreased deformability [90]. 

These harmful effects of PMS have successfully been employed in previous 

hemorheological studies using filtration technique where antioxidant effects of various 

cardio- and cerebrovascular drugs were investigated [105, 106]. 

 Determination of erythrocyte deformability after RW or AFRW pretreatment 

demonstrated that AFRW significantly decreased the PMS generated RBC 

deformability impairment thus prevented erythrocytes from oxidative stress (i.e., 

decreased SS1/2 and the SS1/2 / EImax ratio) (Fig. 6). Our in vitro results confirm prior in 

vivo results about the antioxidant properties of polyphenols where plasma antioxidant 

capacity was increased by the consumption of AFRW in human volunteers [107]. 

Although AFRW could partially protect erythrocytes, red wine pretreatment had no 

such preventive influence in this model. 
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 This red wine observation is presumably supported by the in vitro ethanol 

experiment, where pure ethanol + PMS were added together to whole blood followed by 

incubation then tested in alcohol-free LORCA media (Fig. 7); ethanol enhanced the 

effect of oxidative stress with increasing concentration leading to progressively 

decreased erythrocyte deformability compared to blood samples containing only PMS 

treatment (i.e., increased SS1/2 and the SS1/2 / EImax ratio). Based on these results it 

seems reasonable that the protective effect of polyphenols is attenuated by the presence 

of ethanol in the red wine portion. 

 On the other hand, the ethanol + PMS results also showed that the deformability 

of oxidatively damaged erythrocytes could be improved when ethanol was present in the 

LORCA media (Fig. 8). However, the deformability improvement was not that 

remarkable, ethanol presumably acts in a manner similar to the effects on normal 

erythrocytes (Fig. 5). Furthermore, this observed difference in the magnitude of the 

alcohol-induced deformability improvements (i.e., with vs. without PMS) confirms the 

above mentioned speculations about the modifications in the viscoelasticity of the cell 

membrane, since PMS impairs the lipid components of the membrane as well as the 

attached cytoskeletal protein network, while ethanol supposedly has the opposite effect; 

increases the fluidity of the lipid layers and alters the organization between 

transmembrane and cytoskeletal proteins. 

 

4.3. Analysis of the aggregation results 

 There are multiple factors that can characterize RBC aggregation which is 

explained by two parallel models: 1) the bridging theory; 2) the depletion layer model 

(see page 6) [18-20]. 

 In this experiment, red wine and alcohol-free red wine extract were incubated with 

whole blood then tested with Myrenne and LORCA aggregometers demonstrating a 

dose-dependent reduction in erythrocyte aggregation and indicating that RW is a more 

potent inhibitor of RBC aggregation than AFRW (Fig. 9). 
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 This decrease may be a consequence of the changes in RBC membrane and in 

plasma components especially modifications of plasma proteins. Polyphenols can bind 

to plasma proteins due to their poor water solubility. Based on the bridging theory for 

aggregation, the phenol-protein interactions presumably alter the properties of proteins 

leading to reduced capability to form cross links between cellular components leading to 

decreased erythrocyte aggregation. 

 The alcohol experiment is consistent with a prior report indicating decreased 

aggregation when ethanol is added to whole blood (Fig. 10A) [79] and also 

demonstrates that aggregation is reduced when this alcohol is added to a suspension of 

erythrocytes in 3% 70 kDa dextran (Fig. 10B). Furthermore, this experiment gave the 

explanation why RW and not AFRW showed the greater inhibitory effect on RBC 

aggregation. Decreased aggregation in plasma may be partially due to the ethanol-

induced echinocytic shape transformation (Fig. 11) [98] and to alteration or destruction 

of plasma proteins that promote aggregation (e.g., fibrinogen). Reduced RBC 

deformability also tends to reduce aggregation [20]; however, our results indicate an 

increased cellular deformability (Fig. 2). It therefore seems most likely that ethanol-

induced changes of the RBC glycocalyx are involved. Based on the depletion layer 

model for aggregation, the scale of a protein or polymer depletion zone near the 

membrane depends strongly on the ability of the macromolecule to penetrate the 

glycocalyx [19, 20]; increased penetration would reduce aggregation. 

 It is interesting to note, that this presumed change of glycocalyx properties is 

irreversible, since reduced RBC aggregation was observed for cells incubated with 

ethanol but suspended in ethanol-free dextran (Fig. 10B). 

 

5. Conclusion 

 In summary, these in vitro measurements indicate that red wine, alcohol-free red 

wine extract and ethanol have some effects on hemorheological parameters including 

erythrocyte deformability and aggregation. 
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 Our investigations proved that AFRW can protect erythrocytes and preserve their 

deformability from oxidative stress mediated impairment, while RW had no such effect 

(Fig. 6). Both RW and AFRW reduce RBC aggregation although RW is the more potent 

inhibitor (Fig. 9). Furthermore, ethanol reversibly improves erythrocyte deformability 

and irreversibly decreases RBC aggregation (Figs. 5 and 10). The presence of ethanol in 

blood enhances the oxidative stress induced RBC deformability impairment and 

improves the deformability of the previously damaged cells (Figs. 7 and 8). 

 It is important to note that the cardiovascular risk reduction associated with 

moderate red wine drinking is most likely related to the combined beneficial effects of 

red wine components (e.g., different polyphenols, ethanol): separate studies of these 

main components may not reflect the overall response seen with red wine. In our 

opinion, the found beneficial hemorheological changes (i.e., improved RBC 

deformability and decreased aggregation) enhance the tissue perfusion and may play a 

role in the cardiovascular protective effects of moderate red wine consumption. 

 Although our preliminary results demonstrate that moderate red wine 

consumption has some beneficial effects on hemorheological parameters, additional 

studies are obviously needed to prove these findings under in vivo circumstances. The 

specific molecular mechanisms involved also require further investigations. 

Identification of the most important polyphenolic components of red wine and 

investigation of their specific effect in pharmacological doses may also be interesting 

for future research.  
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VI. Analysis of light scattering by red blood cells in 

ektacytometry 

 

1. Introduction 

1.1. Deformability of sickled erythrocytes 

 As it has been mentioned before in a more-detailed description, RBC 

deformability is the ability of erythrocytes to deform in response to mechanical forces 

which is essentially required for traversing capillaries and determined by several factors 

(e.g., morphology, geometry, membrane rheologic properties and cytoplasmic viscosity) 

(see page 5) [2].  

 Pathological red blood cell deformability can be seen in several disease states 

especially in sickle cell disease (SCD) characterized as a genetic disorder due to an 

amino acid substitution (valine for glutamic acid) at the 6
th

 position in the β-globin 

chain forming hemoglobin S (HbSS). 

 At low oxygen tension HbSS starts polymerizing leading to increased intracellular 

viscosity and diminished erythrocyte deformability with the typical distorted and 

elongated cell shape (the process is also termed sickling). Blood of patient with SCD 

contains different sub-populations of erythrocytes including normal, well-deforming 

discocytes, fairly rigid sickled cells (these reversibly sickled cells (RSC) can regain the 

discoid shape at high oxygen tension) and not deformable erythrocytes (irreversibly 

sickled cells (ISC) with no ability to recover the normal shape upon oxygenation). 

 Based on the general agreement, irreversibly sickled erythrocytes can be 

recognized with microscopic analysis because their length is twice as much as their 

width (Fig. 12). These rigid cells are fragile causing continuous hemolysis and anemia. 

Furthermore, sickled cells are also responsible for other main symptoms of SCD 

including capillary occlusions, painful crisis (i.e., pain due to impaired and insufficient 

tissue perfusion), infarctions of different organs and increased blood flow resistance in 

the lungs [12, 108, 109]. 

This chapter is based on the following article: 

- Rabai M, Meiselman HJ, Wenby RB, Detterich JA, Feinberg J. Analysis of light scattering by red blood cells in 

ektacytometry using global pattern fitting. Biorheol, accepted for publication. 
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Fig.12. Different shapes of erythrocytes (i.e., normal RBC, reversibly (RSC) and 

irreversibly (ISC) distorted sickled cells) in blood obtained from a patient with sickle 

cell disease. 

 

1.2. Previous analysis of diffraction patterns 

 Various methodological approaches of red blood cell deformability have been 

developed (e.g., filtration models, micropipette aspiration techniques and 

ektacytometry) (see page 8) [26-30]. 

 The technique of ektacytometry (also known as laser diffraction ellipsometry) has 

already been described in detail (see page 8). In brief, it analyzes the laser diffraction 

patterns of red blood cells subjected to shear stress while suspended in a fluid. At low 

shear stress the essentially circular cells generate a circular diffraction pattern, while the 

increasing stress forces the cells to progressively deform into ellipsoidal shapes aligned 

with the flow, and thereby generate elliptical diffraction patterns (Fig. 13) [102, 110]. 
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Fig. 13. Contour plots of intensity diffraction patterns of a mixture of 100% normal red 

blood cells. Low shear stress (0.5 Pa): A) Observed diffraction pattern. B) Best fit of 

that diffraction pattern using a Bessel function. High shear stress (50 Pa): C) Observed 

diffraction pattern. D) Best fit of that diffraction pattern using an anomalous diffraction 

function. 

 For analyzing the laser diffraction patterns, ektacytometry takes a single level 

slice through the measured laser intensity pattern and fits the resulting contour to an 

ellipse. If the major and minor axes of the fitted ellipse have lengths “a” and “b” 

respectively, then for each shear stress an elongation index; EI = (a - b) / (a + b) can be 

assigned to the cells. 

 However, in patients with sickle cell disease, the red blood cells are a mixture of 

normal cells together with a sub-population of poorly deformable sickle cells [111]. 

With such blood, the resulting laser diffraction pattern is a weighted average of the 

diffraction pattern of rigid discs (or non-deforming cells not aligned with the flow) 

together with the normally-deforming cells [112, 113]. 
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 Under increasing shear stress, normal cells progressively deform and yield 

elliptical diffraction curves, while the poorly deformable cells exhibit rigid body 

rotation and consequently produce an essentially circular diffraction pattern. The 

combined diffraction pattern of these two kinds of cells has a cross-like appearance; it is 

a distorted ellipse with a bump or bulge at its center (Fig. 14) [114, 115]. Accordingly, 

applying the commercial ellipse-fitting routines to such patterns yields incorrect values 

for the elongation index. 

 

Fig. 14. Contour plots of intensity diffraction patterns of a mixture of 70% normal + 

30% rigid red blood cells. A) Measured diffraction pattern at high shear stress (50 Pa). 

B) Best fit to the measured diffraction pattern. C) Digital difference between the two 

patterns. Note the pronounced bumps in the center of the diffraction patterns due to the 

presence of the rigid cells. 

 Streekstra and co-workers [115] analyzed such distorted diffraction patterns by 

considering mixtures of oblate and prolate spheroids and employing the anomalous 

diffraction approximation for spheroids. They were able to theoretically generate 

diffraction patterns for various mixtures and then apply their method to deduce the 

relative concentrations of rigid and deformable human red blood cells. 

 While aiding in the understanding of such distorted patterns, their approach was 

limited to a single, high-shear stress region (60 Pa) and mixtures of discoidal plus 

maximally deformed cells, and consequently did not extract the EI values for the 

deformable cells over the wide range of stress levels used in red blood cell 

ektacytometry [116]. 
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 In this study, a new method is described to analyze the diffraction patterns 

produced by a sickle cell blood model; a mixture of normal and abnormal red blood 

cells. The method relies on global curve fitting, in which a series of diffraction patterns 

taken at different shear stresses are analyzed simultaneously using a subset of fitting 

parameters common to all of the curves. The technique can reveal the elongation index 

of the normal cells even in the presence of non-deformable cells. Additionally, the 

method can estimate the fraction of non-deformable cells present in the blood. 

 

2. Theory 

 An incident laser beam diffracts from the cell and travels to a distant screen whose 

x-y plane is perpendicular to the direction of the incident laser beam and is located at a 

distance z from the scattering cell. The intensity of the diffraction pattern observed on 

the screen is [117, 118]: 
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 is the distance from the 

red blood cell to any point (x, y, z) on the viewing screen, and k is the wavevector of the 

laser light in air. 

 The scattering function S(x, y, z) depends on the shape of the cell, and is 

calculated by first determining the amplitude of the incident light wave in a plane P' 

immediately after the cell and then propagating that transmitted wave from the plane P' 

to the plane of the viewing screen. If the light incident on the cell has a flat wavefront 

and if the screen is sufficiently far from the cell, the wave’s propagation is described by 

a Fraunhofer diffraction integral [118]. 

 The far-field diffraction pattern produced by erythrocytes depends on the shape of 

the cells, which varies with shear stress. At zero shear stress a RBC is a biconcave disc. 

It is assumed, that at low shear stress a normal RBC transforms from a biconcave disc 

into an elliptical disc having major and minor diameters a and b respectively, and 

having a uniform thickness, c (resembling a stretched hockey puck). In this case, the 

scattering function can be evaluated using Bessel function of the first kind [119]. 

Eq. 1 
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 It is assumed, that at high shear stress the red blood cell no longer resembles a 

disc of a uniform thickness and instead is modeled by an ellipsoid with axis diameters a 

> b > c. The resulting scattering function is a so-called “anomalous” diffraction pattern 

[117, 118, 120, 121]. 

 On the other hand, combinations of cells create sums of diffraction patterns. In 

general, when a laser beam passes through a sample containing both rigid and 

deformable cells, the observed laser diffraction pattern is the incoherent sum of two 

scattered light waves [122], the first from the deformable cells and the second from the 

rigid, non-deformable cells. In the present study, a least-squares fit of this composite 

calculated function was performed to the entire measured diffraction pattern. It is 

assumed, that the rigid cells remain transparent discs of fixed size for all values of shear 

stress, and so the amplitude of their diffraction pattern S(x, y, z) will be a Bessel-

function pattern. Normal cells at low to moderate shear stress (<3 Pa) are discs, but at 

high shear stress (>3 Pa) become ellipsoids. 

 

3. Global computer fits of observed diffraction patterns 

 At low values of the shear stress, both the normal and the rigid cells are described 

as discs of uniform thickness, and the fitting Bessel-function is proportional to the 

projected shadow area of the normal and of the rigid cells. In this case, there are seven 

adjustable parameters as well: 

 q1 - concentration of normal red blood cells 

 q2 - mean diameter of normal red blood cells 

 q3 - ratio of minor to major axes of normal red blood cells 

 q4 - concentration of rigid red blood cells 

 q5 - mean diameter of rigid red blood cells 

 q6 - ratio of minor to major axes of rigid red blood cells 

 q7 - uniform background of the photodetector 
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  However, since the volume of a red blood cell as well as its surface area do not 

change as the cell is stretched, the thickness of the red blood cell can be computed if the 

cell’s eccentricity and mean diameter are known; ~100 μm
3
 [123] and ~140 μm

2
 [124] 

for the fixed values of the cell’s volume and surface area were used, respectively. 

 At high values of the shear stress, the normal cells are treated as ellipsoids, while 

the rigid cells remain discs. The form of the fitting function is then a mixture of 

“anomalous” and Bessel functions, so the intensity of the light passing through the 

normal cells is determined by not only the length of minor and major axes but by the 

thickness of the cell as well, which changes with applied shear stress. However, as in 

the case of the discs, the area and the volume of the cell remain constant under shear, so 

the thickness c can be calculated from the values of the other two dimensions of the 

ellipsoid. 

 In principle, five of the above seven parameters should not vary with shear stress. 

In particular, the concentration of normal cells (q1) as well as the background counts of 

the photodetector (q7) should not vary with shear stress. Similarly, for the rigid red 

blood cells the concentration (q4), mean diameter (q5), and axes ratio (q6) should all 

stay fixed as the shear stress is varied. This condition was employed by requiring that all 

of the fitting parameters except for the mean diameter (q2) and the axes ratio (q3) of 

normal cells maintain fixed values for all shear stress, and then minimize the global 

sum of the least-squares differences for all nine shear stresses simultaneously. Thus, the 

minimized following global sum over all nine shear stresses: 

   

 

9
2

1 ,

, ,j j

measured computed

shear stresses all pixels
j x y

Global Sum I x y I x y



      

 Only the two parameters, (q2) and (q3) are allowed to vary as the shear stress 

varies; the other five parameters are locked at their optimum values as determined by 

the computer. In effect, this method performed 23 parameter fit for all of the nine shear 

stress patterns simultaneously. Although somewhat time consuming, this approach 

yielded very well reproducible parameters. 

 

Eq. 2 
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4. Methods 

4.1. Normal and rigid blood samples 

 Venous blood samples were obtained from healthy adult subjects; the study was 

approved by the Human Subjects Institutional Review Board, University of Southern 

California, Los Angeles, CA. 

  Tourniquet was applied to locate the antecubital vein prior to venipuncture and was 

released at the start of sampling that was completed within 90 seconds; the samples 

were anticoagulated with ethylenediamine-tetraacetic acid (1.5 mg/ml). Blood samples 

were centrifuged at 1,400 x g for 5 minutes. The plasma and the white cell layer were 

removed and discarded. Erythrocytes were washed twice with phosphate buffered saline 

(PBS, 290 mOsm/kg, pH = 7.4) then re-suspended in PBS. 

 Rigid, non-deformable erythrocytes were prepared by treating with 

glutaraldehyde, a di-aldehyde that reacts quickly with amino groups. A dilute red blood 

cell/phosphate buffered saline suspension was carefully added to an equal volume of 1% 

glutaraldehyde (Sigma Chemical Co., St Louis, MO, USA) in PBS followed by gentle 

stirring for 60 minutes at room temperature. Rigid cells were washed to remove any 

unreacted glutaraldehyde, then re-suspended in phosphate buffered saline and stored at 

4°C until use. At the concentration employed the glutaraldehyde did not alter RBC 

volume or shape; light microscopy indicated that the rigid cells maintained the usual 

discoidal biconcave morphology. 

 

4.2. Mixtures of normal and rigid cells 

 Mixtures of normal and rigid erythrocytes were prepared containing 0, 5, 10, 20, 

30 and 50% rigid cells. The experimental protocol involved adjusting the normal red 

blood cell/phosphate buffered saline suspensions to a cell concentration equal to the 

rigid cell suspension using an automated hematology analyzer (Micros, Horiba-ABX, 

Irvine, CA, USA) to determine cell concentrations. Samples containing various 

proportions of rigid cells were prepared using appropriate volumes of the normal and 

rigid red blood cell suspensions while keeping the total cell concentration constant. 
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4.3. Erythrocyte deformability testing 

 The above mentioned global-fitting approach was tested with a LORCA 

ektacytometer (Laser Assisted Optical Rotational Cell Analyzer; R&R Mechatronics, 

Hoorn, Netherlands) measuring erythrocyte deformability of rigid and normal RBC 

mixtures. These different cell populations were added directly to a viscous, isotonic 70 

kDa dextran solution (Sigma, 297 mOsm/kg, η=31.4 mPa.s in PBS), and mixed well to 

obtain a uniform suspension before being measured. 

 Throughout the measurements, diffraction patterns of the deforming erythrocytes 

were captured by a video camera and digitally stored. The central region of the 

diffraction pattern also contains the undiffracted laser spot and so is very bright; it is 

physically blocked by an opaque dot affixed to the viewing screen leading to a “hole” in 

the middle of the diffraction pattern (Figs. 13 and 14). For each sample, 10 patterns 

were digitally averaged at each shear stress and used for further processing of global 

parameter fitting. 

 

5. Results and Discussion 

5.1. Diffraction patterns of normal red blood cells 

 Throughout the erythrocyte deformability measurements, nine different shear 

stresses from 0.5 Pa to 50 Pa were used for the global fit for each RBC sample, but only 

the lowest and the highest shear stresses of the laser diffraction patterns generated by 

normal erythrocytes (0% rigid cells) are shown (Fig. 13). The seven fitting parameters 

(qi) are varied to minimize simultaneously the least-square difference between the nine 

measured diffraction patterns and the calculated patterns. 

 

5.2. Diffraction patterns of a mixture of normal and rigid cells 

 Data of red blood cell samples containing 30% rigid and 70% normal erythrocytes 

are demonstrated as well (Fig. 14). 
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 Note, that at high shear stress the measured contours produced by this mixture are 

non-elliptical, however are faithfully reproduced by the calculated pattern and showed 

the computed elongation index for red blood cells at nine different values of applied 

shear stress using two different RBC samples (Fig. 15). One sample contained 

erythrocytes from normal blood, while the other contained 70% normal cells mixed with 

30% rigid cells. 

 The EI values computed using global fits are shown, as well as the EI values 

obtained using the LORCA’s elementary ellipse-fitting routine. For normal RBC 

samples the global fits and the LORCA analysis produce reassuringly identical results. 

For the normal-plus-rigid cell population the global fits still yield the correct EI values 

for the normal sub-population of cells present in the sample. Note, however, that the EI 

curve obtained using the LORCA’s ellipse fitting routine is displaced downward due to 

the presence of the rigid cells. 

 

5.3. Concentration of rigid cells in a mixture with normal cells 

 Series of blood samples were prepared and analyzed containing different fractions 

of rigid cells varying between 0 and 50%. The fitting parameters (q1) and (q4) reveal 

the concentrations of normal and rigid cells in each sample, and the ratio q4/(q1 + q4) 

yields the percentage of rigid cells in each sample. A correlation between the computed 

fraction of rigid cells determined by the global fits and the prepared fraction of rigid 

cells in that sample is found (Fig. 16). At each prepared concentration, two sets of data 

were obtained using different apertures on the LORCA’s video camera; the 

reproducibility of the computed results can be seen on the figure. 

 Although the slope of the straight-line fit is gratifyingly near unity, the intercept is 

not zero due to spillover of the un-diffracted portion of the laser beam as well as 

scattering from other objects. Such scattering is essentially the same for all shear 

stresses, and so mimics the diffraction pattern produced by the rigid cells. If necessary, 

the intercept can be brought closer to zero by excluding a larger central region of the 

intensity pattern from the least-square fit. The data here yield a low-stress diameter for 

the normal red blood cells of 8 μm, which is in agreement with the literature [7]. 
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Fig. 15. Computed Elongation Index (EI) using the LORCA’s software and using the 

techniques presented herein. Values of two blood samples are presented here: (1) 100% 

normal cells shown with unfilled (open) markers. For these cells our global fits and the 

LORCA’s ellipse-fitting routine give essentially identical EI values. (2) Mixture of 70% 

normal cells / 30% rigid cells. For the mixed cells, our global fits provide the correct EI 

of the normal cells in spite of the presence of the rigid cells. In contrast, the LORCA’s 

ellipse-fitting routine gives EI values that are markedly reduced. 

 

Fig. 16. Computed fraction of rigid cells vs. the prepared fraction of rigid cells for each 

sample. A straight line fits to the data. The intercept of the line is not zero due to 

additional scattering of laser light from sources other than the rigid cells deliberately 

added to the sample. 
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5.4. Future analysis of sickled blood 

 In sickled blood, it is expected that there is a continuous distribution in red blood 

cell deformability, while in this experiment only two cell populations (i.e., deformable 

and rigid) were used. Several studies have presented that the knowledge of cell 

deformability has clinical value. The number of circulating irreversibly sickled cells has 

been confirmed to be strongly correlated with the extent of hemolysis, but this 

correlation has not been seen in connection with the clinical severity of the disease. 

Furthermore, the number of rigid cells can provide information about the efficacy of 

therapy and may have predictive value for estimating the probability of a painful sickle 

crisis [12, 125]. 

 Nevertheless, our preliminary experiments with sickled blood show that our 

global curve-fitting technique can accurately extract the elongation index-shear stress 

behavior of the normally-deforming cells in the sample. It would be also desired if this 

technique could estimate the percentage of rigid or barely deformable sickled cells in 

the blood sample. 

 

6. Conclusion 

 Using a combination of Bessel functions and anomalous scattering functions to 

simultaneously fit ektacytometry data for multiple shear stresses can reveal the 

elongation index of erythrocytes over the entire range of shear stresses, even in the 

presence of rigid, non-deformable cells (Fig. 15). 

 In addition, this global fitting technique can yield the concentration of non-

deformable cells in the sample (Fig. 16). 

 It is thus suggested that this technique will be useful in determining the curve of 

elongation index versus shear stress of the normal cells, as well as the concentration of 

rigid cells in mixed red blood cell populations as seen, for example, in sickle cell 

disease.  
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VII. Summary of new scientific results 

 

1. Effects of red wine, alcohol-free red wine extract and ethanol 

[1] Our in vitro measurements have demonstrated that both red wine and alcohol-free 

red wine extract reduce red blood cell aggregation in plasma. Red wine showed 

stronger inhibitory effect. 

[2] Ethanol reversibly improves erythrocyte deformability and irreversibly decreases 

RBC aggregation. 

[3] Furthermore, our experiments have revealed that alcohol-free red wine extract 

protects erythrocytes and preserves their deformability from oxidative stress 

mediated impairment. 

[4] The presence of ethanol enhances the oxidative stress induced erythrocyte 

deformability impairment and improves the deformability of the previously 

damaged cells. 

 

2. Analysis of light scattering of red blood cells in ektacytometry 

[1] A new theoretical analyzer model was designed for accurately examining the 

diffraction patterns of ektacytometry technique. 

[2] It has been proven that combination of Bessel and anomalous scattering functions 

reveals the elongation index of the normally-deforming red blood cells over a 

wide range of shear stresses in the presence of non-deformable cells. 

[3] Moreover, the global curve-fitting technique yields the concentration of non-

deformable cells in the blood sample.  
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