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1. Summary 
 

 

Carnitine, a ubiquitous water-soluble molecule exerts its primary physiological 
role in the transport of long-chain fatty acids into the mitochondria, to the place of their 
oxidation. Besides, carnitine is involved in various other metabolic and cellular 
processes. Humans obtain their proper carnitine levels mainly through the diet, although 
it is known that at some degree endogen synthesis of carnitine also takes place. Cells 
aquire carnitine through an active transport mechanism, the uptake takes place against a 
significant plasma/tissue concentration gradient. 

Direct mutations of the high affinity human carnitine transporter gene (SLC22A5) 
lead to primary carnitine deficiency, which disease primarily affects the heart, liver and 
sceletal muscles, however, the phenotypic spectrum is very broad. We have investigated 
Hungarian Roma families with primary carnitine deficiency that showed variable 
phenotypic manifestations even within a family, and as a novelty, we found sudden infant 
death syndrome cases with verified SLC22A5 mutations. The extensive histological 
examination of the organ manifestations added new information to the pathomorphology 
of primary carnitine deficiency. 

Apart from its classical metabolic role additional cellular functions of carnitine 
were investigated through the analysis of the lymphoreticular tissues obtained from the 
SIDS cases. Our results showed an important contribution of carnitine in the humoral 
immune response. 

As a high-throughput analytical and diagnostic tool tandem mass spectrometry 
was introduced in our laboratory 4 years ago. Taking advantage of this method we 
analysed the changes in carnitine homeostasis in homozygote and heterozygote primary 
carnitine deficiency. 

Expanding our area of interest we investigated the role of carnitine transporter 
genes (SLC22A5 és SLC22A4), their variants and regulator genes in the etilology of 
certain inflammatory multifactorial diseases. According to recent experimental and 
clinical studies we performed molecular genetic and tandem mass spectrometric 
metabolic investigations in Hungarian rheumatoid arthritis patient cohorts. 
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2. Introduction 
 
2.1. The role of carnitine in human metabolism 

A well-known biochemical property of L-carnitine (3-hydroxy-4-N,N,N-
trimethylaminobutyrate) is its ability to form acyl-carnitine esters with organic acids by 
certain enzymatic reactions. Its classic physiological role can also be derived from this 
chemical property: carnitine is indipensable in the transport of activated long-chain fatty 
acids from the cytosol to the mitochondrial matrix, where β-oxidation takes place 
(Fig.1.). Cytosolic long-chain fatty acids are unable to cross the mitochondrial inner 
membrane even in their activated form as CoA esters, they are first transesterified to L-
carnitine by the enzyme carnitine palmitoyltransferase I (CPTI) at the mitochondrial 
outer membrane, then transported over the inner membrane as long-chain acyl-carnitine 
esters via a specific carrier, carnitine-acylcarnitine translocase (CACT) and at the matrix 
side they are transesterified to intramitochondrial CoA via the enzyme carnitine-
palmitoyltransferase II (CPTII). Carnitine is also involved in various other metabolic 
processes: it ensures a proper level of free CoA in the cell, which is indispensable in 
many metabolic routes, such as the citric acid cycle, ketogenesis, and gluconeogenesis, 
and carnitine can also modulate the toxic effects of poorly metabolised acyl-groups of 
various origin. By forming carnitine-esters with organic acids of xenobiotic origin (e.g. 
pivalic acid and valproate) and with those arising from various inborn errors of 
metabolism (e.g. propionic acid, methylmalonic acid), carnitine replenishes the free CoA 
pool of the cell and eliminates the toxic intermediates. Finally, carnitine is involved in the 
transport of products of the peroxisomal β-oxidation system from the peroxisomes into 
the mitochondria. 

 
Figure 1.: The role of carnitine in the mitochondrial transport of long-chain fatty acids (Vaz et al., 2002). 
 
2.2. Other cellular functions of carnitine 
 

Besides its classical metabolic role in energy-homeostasis, it has been proposed 
that carnitine is also functionally involved in many other cellular processes. Many 
experimental data stresses the involvement of carnitine in the immune response, also the 
clinical data of the increased susceptibility of primary carnitine deficient patients to 
infections leads to the assumption that carnitine might play a crucial role in the immune 
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processes. Besides extensive experimental data demonstrates the role of carnitine in both 
the extrensic and the intrinsic apoptotic pathways. 

 
2.3. Primary carnitine deficiency 

According to the etilogy primary and secondary carnitine deficiency can be 
differentiated in the literature. In primary systemic carnitine deficiency the cellular 
uptake of carnitine is mainly disturbed, while in secondary carnitine deficiency carnitine 
depletion is the secondary cause of other conditions or diseases. 

Primary systemic carnitine deficiency (OMIM 212140), an autosomal recessive 
disorder, is caused by mutations of the SLC22A5 gene leading to damage or loss of the 
function of the OCTN2 carnitine transporter protein. The genetically impaired or missing 
transporter is unable to take up carnitine from the circulation and transport it into the 
cells, thus the tissue carnitine stores are depleted. Since the renal reabsorption of carnitine 
was also shown to be OCTN2-dependent, the kidney is unable to reabsorp carnitine and 
therefore, the circulating carnitine concentration is also decreased. In circulating and 
tissue carnitine deficiency the mitochondrial utilization of long-chain fatty acids is 
impaired, energydepletion, and hypoketotic hypoglycaemia develop. Since the primary 
fuel for cardiac- and sceletal muscle cells as well as for hepatocytes and renal cells during 
starvation is provided by the long-chain fatty acids, the above mentioned organs are 
mainly affected in primary carnitine deficiency. 
 
2.4. The human carnitine transporters 

Since tissue carnitine concentration is 20-50 times higher as plasma carnitine 
levels, most tissues ensure their carnitine levels through active transport catalyzed by the 
high-affinity, Na+-ion dependent carnitine transporter in the plasmamembrane, the 
organic cation transporter 2 protein (OCTN2). This transport system is also responsible 
for the tubular reabsorption of carnitine in the kidneys. The OCTN2 protein is composed 
of 557 aminoacids with a molecular mass of 63kDa. According to the aminoacid 
sequence analysis 12 putative transmembrane domains can be distinguished in its 
structure (Fig. 2.). SLC22A5, the gene encoding for OCTN2 is approximately 30 kb in 
size and is localized to the 5q31 chromosome region. The sequence of OCTN2 shows 
great homology (75,8%) to OCTN1 (encoded by the gene SLC22A4), one of the earlier 
discovered members of the organic cation transporter family, that also transports carnitine 
besides its primary substrate ergothioneine. Besides, another transporter, ATB0,+ was 
discovered in the past decade, that was shown to transport carnitine as well. According to 
current data OCTN2 acts as the pimary physiological carnitine transporter, while OCTN1 
and ATB0,+ proteins can be regarded as aspecific carnitine transporters in the humans. 
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Figure 2.: The proposed structure of the OCTN2 protein, with N-terminal on the left, C-terminal on the 
right end. (Amat di San Filippo et al., 2003). 
 
2.5. The clinical spectrum of OCTN2 mutations 

Although the role of OCTN2 in carnitine uptake was first demonstrated in 1998 
the condition of primary carnitine deficiency was already known in the literature. 
Currently primary carnitine deficiency (OMIM 212140) is regarded as the clinical 
syndrome associated with verified mutations in the SLC22A5 gene. 

In the cases reported so far in the literature the developing phenotype usually 
includes functional abnormality of the heart, skeletal muscle and the liver, however a 
wide phenotypic variability has already been reported. The appaerance of the clinical 
symptoms is usually between 1-6 years of age. The cardiac muscle and the liver are the 
two organs that are affected primarily and almost in all cases, or at a certain stage of the 
disease: in the full-blown picture usually dilative cardiomyopathy, in less severe forms 
subtle EKG- or ultrasound-abnormalities appear. The cardiomyopathy, as a potentially 
lethal manifestation of primary carnitine deficiency, shows a dramatic regression upon 
high-dose carnitine treatment: 100 mg/kg/day carnitine enables a quick clinical recovery 
and even EKG- and ultrasound abnormalities are corrected. The disrupted β-oxidation of 
FFA in the liver leads to hepathopathy, which can show in liver function elevations, in a 
more severe form it may lead to Reye-syndrome like episodes. Microvesicular lipid 
storage can also be observed in the sceletal muscle leading to hypotonia, excercise 
intolerance, muscle fatigue. Besides the typical hepatocardial and myopathic 
manifestations anaemia, mostly iron-deficient microcyter anaemia, can also occur in 
primary carnitine deficiency patients, as well as recurrent infections that respond very 
well to carnitine treatment. The phenotypic variability is very broad in OCTN2 defects, 
the developing phenotype can be quite different even wihin the same mutation and even 
within the same familiy. According to the cases reported so far in the literature no 
genotype-phenotype correlation can be predicted for the SLC22A5 gene mutations. 

On the molecular level the mutations detected so far can be simple, one basepair 
missense or nonsense mutations, insertions and deletions, or mutations involving several 
bases. The mutations affecting either the splicing mechanism or altering the 
proteinstructure can either lead to the synthesis of a functionally disturbed transporter or 
through the introduction of a premature stop codon no OCTN2 protein will be 
synthesised. There are reports that even heterozygote patients can show episodic heart 
manifestations, analysis of Japanese families showed an increased risk of adult- or late-
onset cardiomyopathy in heterozygotes. 
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2.6. Carnitine transporter genes as susceptibility factors in 
multifactorial disease 

More and more clinical syndromes and multifactorial diseases are shown to have 
a complex genetic background that contribute to its pathogenesis as susceptibility factors. 
An association between several inflammatory diseases, among them the inflammatory 
bowel disease and rheumatoid arthritis and the 5q31 cytokine cluster region has been 
proposed in recent years. This chromosome region contains several genes involved in 
immune- and inflammatory responses and it also harbors the genes for the two organic 
cation transporters (OCTN1 and OCTN2) that are involved in carnitine homeostasis. 

Rheumatoid arthritis (RA) is a chronic inflammatory disease affecting 0.5%-1.0% 
of the world’s population, including Hungary. Several studies have proposed that genetic 
susceptibility factors also contribute to its complex etiologic background. Combinations 
of the susceptibility alleles of various genes seem to be involved in the development of 
RA. A role for several non-HLA genes as susceptibility factors has recently been 
proposed, including the TNFR2, PADI4, PTPN22, IL-1B, GSTM1, SLC22A4 and RUNX1 
genes. High-accuracy linkage disequilibrum mapping in the Japanese population 
demonstrated an association between RA and the SLC22A4 gene, encoding OCTN1 the 
ergothioneine and aspecific carnitine transporter protein. In a case-control study a single 
nucleotide polymorphism called slc2F2 (C6607T) was identified in intron 1 of the gene, 
which was associated with RA. In addition, another SNP denoted runx1 (G24658C) in 
intron 6 of the gene that codes for the RUNX1 protein (Runt-related transcription factor-
1), also showed a strong association with RA. The RUNX1 transcription factot was 
shown to repress the expression of the SLC22A4 gene. 
 
3. Objectives 
 
1. Molecular genetic analysis of the SLC22A5 gene from samples of Hungarian primary 
carnitine deficient patients, their relatives and their SIDS sibs. 
 
2. Histological characterisation of the cardiac- and hepatic tissues from autopsy samples 
of SIDS cases with verified SLC22A5 mutations. 
 
3. Analysis of the carnitine homeostasis in OCTN2 deficient patients and heterozygote 
relatives with tandem mass spectrometric carnitine ester profile analysis. 
 
4. Investigation of the role of carnitine in the immune response through the 
histopathologic analysis of immunetissues from autopsy samples of SIDS cases. 
 
5. The role of susceptibility polymorphisms of the SLC22A4 gene and of the regulating 
gene RUNX1 in Hungarian rheumatoid arthritis patient cohorts. 
 
6. As a reflection of the functional consequences of the proposed susceptibility 
polymorphisms of the SLC22A4 és RUNX1 genes the comparison of the circulating 
carnitine ester profile in rheumatoid arthritis patients and in controll groups. 
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4. Patients and methods 
 
4.1. Patients 
 Several homozygote and heterozygote patients with OCTN2 deficinecy were 
diagnosed during the phenotypic, biochemical and genetic characterisation of primary 
carnitine deficiency. Our investigations focused on the analysis of the members of two 
extended Hungarian Roma families. 
The first family we investigated is an extensive Hungarian Roma family from Eastern-
Hungary (Fig. 3.). We could obtain DNA samples from 26 members of the family. Two 
SIDS cases (III/5 és III/8) and one perinatal death (III/11) was recorded in the family. 
 

 
Figure 3.: Our first Hungarian family investigated with primary carnitine deficiency. Black symbols: 
homozygotes, white: normal, striped: heterozygotes, N: not examined. P: the proband currently under 
treatment 
 The second extended family (Fig. 4.) is not related to the first examined family, 
they have been living in another part of the country for at least three generations. In this 
family one verified SIDS case was noted. Consanguinity occured witihin the family. 

Blood and serum samples of 209 patients with RA collected at the Department of 
Immunology and Rheumatology of the Medical Faculty of our university (169 females 
and 40 males; mean age ± SD: 57.3±14.6 years; 73% of all were rheumatoid factor 
positive) were used. All patients with RA were unrelated Caucasians and fulfilled the 
American College of Rheumatology criteria for RA. The control samples (n=217, 122 
females and 95 males; mean age ± S.D., 56.5±10.4 years) were collected from healthy 
volunteers with no evidence or history of any systemic disease; special care was taken to 
exclude subjects with inflammatory arthritis from the control group. Patients and controls 
gave informed consent to all investigations performed in the study. The guidelines and 
regulations approved by the Ethical Committee of the Medical Faculty of our University 
were followed during all investigations. 
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Figure 4.: The second family with primary carnitine deficiency.The asterisks indicate the familiy members 
examined.. Symbols see Fig.3. 
 
4.2. Biochemical methods 
Mass spectrometry analysis of the circulating carnitine esters 

For carnitine ester profiling serum from each patient and control subject was 
collected after an overnight fasting period between 8:00 and 8:30 AM. Acylcarnitines 
were measured after methanolic extraction and derivatization as butyl esters by an isotope 
dilution mass spectrometry method using a Micromass Quattro Ultima ESI triple-
quadrupole mass spectrometer. A Waters 2795 Alliance HPLC instrument was used for 
the solvent delivery maintaining a 0.1 ml/min stream of acetonitrile:water (80:20 v:v% ). 
Ten µl of sample aliquots were injected into the flow at 4-min intervals. The free 
carnitine and all acylcarnitines were determined by ESI-MS/MS analysis using positive 
precursor ion scan of m/z 85; scan range was 200-550 m/z. The optimised capillary 
voltage, cone voltage and collision energy were 2.50kV, 55V and 26eV, respectively. 
Each sample was measured in triplicates starting with the injection step and the results 
are the means of the three determinations. 

 
4.3. Molecular genetic methods 
Analysis of the OCTN2 mutations and the OCTN1 and RUNX1 
polymorphisms 

Genomic DNA was extracted from peripheral blood by a routine desalting 
method. For the amplification of the 10 exons of the SLC22A5 gene as well as for the 
analysis of the SLC22A4 and RUNX1 genes intron-based specific primer pairs were 
designed. We performed the polymerase chain reactions (PCR) on MJR PTC 200 thermal 
cyclers, similar conditions were applied to all exons. Our incubation mixture contained in 
50 µl approx. 10-20 ng DNA, 3 pmol forward és reverse primers, 5 µl 10x reaction 
buffer, 2 U Taq polimerase enzyme, 0.2 mM of all four dNTPs and 1.5-2.5 mM MgCl2. 
We applied standard reaction conditions, primer annealing was 1 minute on 58°C for the 
SLC22A5, and 1 minute on 60°C for the RUNX1 and SLC22A4 genes. The PCR products 
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were sequenced in both directions in an ABI Prism 310 Genetic Analyzer with a dye 
termination method (Applied Biosystems, Foster City, CA, USA). We also developed a 
RFLP method for quick genotyping of the samples: for the SLC22A5 PCR products Bsl I, 
for the RUNX1 BstN I, and for the SLC22A4 PCR products Hph I enzyme digestion was 
used. The restriction fragments were separated by electrophoresis on 1% agarose gels 
containing ethidium bromide and visualized by UV transillumination. 

 
 
4.4. Histopathologic methods 

The haematoxylin-eosin (H&E) stained tissue sections from different 
lymphoreticular organs including bone marrow, spleen, tonsils, lymph node, and thymus 
were evaluated for histologic features and overall architecture. 

Immunohistochemical analysis was performed with a DAKO autostainer (DAKO, 
Glostrup, Denmark) with use of a standard indirect avidin-biotin peroxidase detection 
method; the immunochemicals were also from DAKO. 

Sections were immunostained for bcl-2 (1:50 dilution), IgD (1:200 dilution) and 
MIB-1 (1:150 dilution); for counterstainings Giemsa was used. The IgD was used as a 
specific indicator for mantle cells; the MIB-1 was used as a marker for proliferating and 
thereby functionally active cells inside the follicles. The anti- apoptotic bcl-2 
immunoreaction was used for visualization of cells in the thymus. The 
immunohistochemical results were evaluated analyzing the dark brown positive signal 
distribution; location in the follicles or in the thymus cortex or medulla. The staining 
patterns of each antigen in our patient were compared with a normal control. 
 
4.5. Statistical analysis 

The distribution of the genotypes were compared using the χ2 assay. For the 
comparison of the serum carnitine ester values the Student’s t test for unpaired samples 
was used. The values are expressed as means ± SEM throughout, in three decimals for 
the carnitine esters with respect to the low levels of the long-chain carnitine esters. 
 
 
5. Results 
 
5.1. Molecular genetic results of the families with primary carnitine 
deficiency 

The molecular genetic investigation of all three suspected patients (Fig.3.: III/7 
and Fig.4.: IV/8 és IV/11) revealed a common mutation, a homozygous cytosin deletion 
in exon 5 of the SLC22A5 gene (844 delC in the cDNA and 17081 delC in the genomic 
sequence). The mutation led to a frameshift and a premature stop codon in the 13th codon 
after the deletion site resulting in R282D aminoacid change or V295X truncation of the 
protein. 

We could obtain DNA from 24 members of the first family (Fig.3.) and paraffin 
embedded blocks from two of the fatal cases. The two sudden death patients (III/5 and 
III/8) were also homozygous for the mutation, and a total of 12 carriers were verified 
(Fig.3.). In the second family we could obtain DNA from 12 members, both the parents 
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and 3 children were shown to be carriers of the common mutation. In the case of the 
sudden death patient (Fig.4. IV/9) DNA was extracted from a single block of lung tissue 
and the analysis verified the above mutation in a homozygous form. 
 
5.2. Histologic features of the liver and heart tissues of the OCTN2 
R282D homozygote patients 

We performed the histopathologic examination of the liver, cardiac muscle and 
lung tissues obtained at autopsy from the SIDS cases in the investigated families. 

Histology of tissues revealed lipid deposition vacuoles in the liver predominantly 
in the peripheral areas of the lobules, whereas the centro-lobular regions of the acini were 
less or not affected (Fig. 5., H&E stainings in columnes A and B). The younger patient 
who died at 6 months of age (Family 1, III/5) had much more severe infiltration (Fig. 5. 
row 2) compared with the older patient (Family 1, III/8, Fig.5. row 1). 

In the heart tissues different size of nuclei were seen providing microscopic 
evidence for muscle hypertrophy. In both patients (III/8 row 3 and III/5 row 4) focal lipid 
vacuoles were seen much less intensively than in the liver, the major lipid globules 
localized mainly into the subendocardial areas (Fig. 5. column A in rows 3 and 4). In 
other areas, like in the ventricular walls smaller aggregates of lipid droplets could be 
observed, the vacuoles were apparently separated from each other by membranes (Fig. 5.; 
column B, rows 3 and 4). 

In the autopsy lung tissue of patient IV/9 in Family 2. (Fig.4.) only signs of 
emphysema was seen without any further characteristic pathologic signs (not shown). 
Staining with PAS (Fig. 5., column C) showed severe exhaustion of the glycogen 
reserves. In age and sex matched controls who died after caloric depression PAS positive 
granulates could still be detected in the liver (inserts at the bottom right corners), while 
the control hearts did not differ significantly from the patient’s tissues. In tissues of fed 
individuals a striking difference of PAS positive substance accumulation was seen (upper 
right corners). 
 
5.3. Plasma carnitine ester profile in homozygous and heterozygous 
OCTN2 deficiency 

In the investigated families we could identify three homozygous patients in whom 
carnitine supplementation was started in time. In all three patients we detected severely 
decreased free and total carnitine levels before treatment. In the treated homozygote 
patient of the first family (Fig. 3.: III/7) and in the treated girl of the second family 
(Fig.4.: IV/11) we were only able to perform plasma carnitine measurements with the 
radiochemical carnitine assay. Prior to treatment the postprandial levels of total and free 
carnitine were decreased, these values increased after the introduction of treatment, but 
did not reach control levels. 

In the second family plasma carnitine ester profile of the affected patient 
(Fig.4.:IV/8) and the carrier family members was determined with tandem mass 
spectrometry, the results are shown in Table 1. (the results are in umol/l). The controls 
were 6 healthy pediatric patients (4 males and 2 females matched pair wise by age to the 
three heterozygous sibs IV/2, 5 and 6). Prior to treatment we found a dramatic decrease 
of the free carnitine and all carnitine esters in the proband (Fig.4.:IV/8). The free 
carnitine levels of the 3 heterozygote siblings and of the parents were 62.2% of the 
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controls, while the levels of the individual carnitine esters were in average 48.4% of the 
control values. After two months of carnitine treatment in the proband the level of free 
carnitine and all individual esters increased, in average it reached 41.2% of the control 
levels. After 13 months of carnitine supplementation there was a further increase in the 
free carnitine level, as well as in the levels of the individual esters, however without 
reaching that of the age-matched controls. Before treatment the ratios of the carnitine 
esters were as follows: medium<long<short chain (in the controls: long<medium<short 
chain); while after 13 months of the treatment it changed to long<medium<short chain 
esters. The largest increase was seen for the acetylcarnitine after 2 months and for the 
butyrylcarnitine after 13 months of treatment. 

 
5.4. Histopathologic abnormalities of the lymphoreticular tissues in 
primary carnitine deficiency 

We performed the histologic and immunohistologic analysis of lymphoreticular 
tissues obtained from the autopsy sample of one of the SIDS cases in Family 1. (Fig.3.: 
III/8). Histopathological examination of the haematopoetic and immune organs revealed 
significant structural alterations being indicative of cellular dysfunction (Fig. 6.). The red 
bone marrow (Fig. 6.: row 1) harbored numerous enlarged secondary follicles that 
corresponded to definitely pathological ones (slide A1). The mantle zones were separated 
from the germinal centers of the follicles in all of the examined tissues: identifiable IgD 
positive cells were detected in the mantle zone of the bone marrow (B1), lymph node 
(B2) and in the spleen (B3). The germinal center compartment exhibited pathological 
hallmarks, which implied a decreased proliferation capacity in the bone marrow (C1), in 
the lymph nodes (C2), and also in the spleen (C3), as indicated by the decrease of the 
dark labels of the MIB-1 immunostainings. 

Taking the spleen as an example for the coexisting morphological structures (A5 
and B5) many follicles exhibited also a significantly increased apoptosis as evidenced by 
the large number of apoptotic bodies (basophil, diminished debris like materials; arrows 
in block B5). The extracellular location of the apoptotic bodies is indicative for a 
saturated phagocytic capacity of the intrafollicular macrophages (B5, arrowheads). This 
phenomenon was also detectable in numerous follicles of the other lymphoreticular 
tissues, such as in the lymph nodes, bone marrow and slightly in the tonsils (not shown). 
As a next stage of the cellular damage the proliferation and apoptosis diminished largely: 
in follicles captured in this stage hypocellularity as well as deposition of homogenous, 
eosinophil fibrinous material were seen (C5, arrows). This morphology was reminiscent 
to atrophic, so called “burned-out” follicles (rows 1-3 and slide C5); and was represented 
besides the follicles of the bone marrow (row 1 and slide C5) in the spleen, lymph nodes 
and at a much modest incidence rate in the tonsils (not shown). 

The ultrastructure of the thymus did not show morphologically discernible 
alterations (Fig. 6.: row 6); normal architecture with H&E staining was seen (A6). 
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5.5. Investigation of the polymorphisms of the carnitine transporter and 
regulator genes as susceptibility factors in Hungarian rheumatoid 
arthritis patients 
 We investigated the slc2F2 polymorphism (C6607T) of the first intron of the 
SLC22A4 gene and the runx1 polymorphism (G24658C) in the sixth intron of the RUNX1 
gene in blood samples of 209 rheumatoid arthritis patients and 217 controls. The 
distribution of different genotypes found in the patients and controls are shown in Table 
2. All genotypes for both SNPs examined were in Hardy-Weinberg equilibrum in all 
groups. No significant differences could be found comparing the genotype prevalences of 
the patients and the controls, for either slc2F2 or runx1 SNP. The same result was 
obtained when we compared the distribution patterns of the particular alleles for each 
polymorphism in the two groups (C or T in slc2F2 and G or C in runx1). 
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Figure 5.: Histology of liver and heart tissues in OCTN2 deficiency 
Rows 1.(liver) and 3.(heart) are from Family 1. patient III/8 who died suddenly at age of 
2 years and 9 months, below them rows 2. and 4. are blocks from patient III/5 who died 
as a typical SIDS victim at age of 6 months. (H&E stainings in columns A-B, PAS in 
column C). In PAS stained slides the inserts are from probably fed and from starved 
controls at the upper right and bottom right corners, respectively. 
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Table I. Plasma carnitine esters in homozygote and heterozygote OCTN2 deficiency. Values are µmol/l, means + SEM for three separate 
determinations; in the % columns the values are expressed as percents of the controls. 

  proband1 heterozygote   parents2    controls2 (n=6) 

  
before 

treatment % 
2 months after 

treatment % 
13 months after 

treatment % siblings2 (n=3) %   % 100% 
                                  
free carnitine 1,377 ± 0,050 4,2 12,790 ± 0,129 39,0 15,943 ± 0,233 48,6 20,390 ± 1,154 62,2 20,203 ± 2,230 61,63 32,782 ± 4,218 
Short-chain acylcarnitines            ±               
C2-carnitine 3,847 ± 0,083 17,9 19,753 ± 0,296 92,0 11,027 ± 0,324 51,3 10,072 ± 0,097 46,9 10,682 ± 1,045 49,74 21,477 ± 2,893 
C3-carnitine 0,010 ± 0,001 3,1 0,133 ± 0,003 41,0 0,233 ± 0,009 71,7 0,248 ± 0,044 76,1 0,170 ± 0,007 52,22 0,326 ± 0,050 
C4-carnitine 0,060 ± 0,012 30,8 0,153 ± 0,015 78,6 0,270 ± 0,026 138,5 0,059 ± 0,010 30,2 0,047 ± 0,027 23,93 0,195 ± 0,032 
C5-carnitine 0,027 ± 0,007 6,8 0,053 ± 0,003 13,6 0,167 ± 0,003 42,7 0,194 ± 0,021 49,7 0,113 ± 0,030 28,98 0,391 ± 0,051 
C5:1-carnitine 0,013 ± 0,003 26,4 0,013 ± 0,003 26,4 0,030 ± 0,000 59,3 0,029 ± 0,001 57,1 0,028 ± 0,002 56,04 0,051 ± 0,005 
Medium-chain acylcarnitines            ±               
C6-carnitine 0,037 ± 0,003 34,4 0,080 ± 0,010 75,0 0,117 ± 0,012 109,7 0,053 ± 0,003 50,0 0,052 ± 0,022 48,44 0,107 ± 0,007 
C8-carnitine 0,010 ± 0,001 6,8 0,023 ± 0,003 15,9 0,040 ± 0,010 27,3 0,046 ± 0,006 31,1 0,078 ± 0,018 53,41 0,147 ± 0,022 
C8:1-carnitine 0,007 ± 0,007 9,2 0,037 ± 0,003 50,8 0,023 ± 0,003 31,8 0,042 ± 0,001 58,5 0,045 ± 0,002 62,31 0,072 ± 0,009 
C10-carnitine 0,007 ± 0,003 3,8 0,010 ± 0,001 5,8 0,027 ± 0,003 15,6 0,043 ± 0,008 25,0 0,087 ± 0,030 50,00 0,173 ± 0,038 
C10:1-carnitine 0,057 ± 0,012 44,0 0,010 ± 0,000 7,7 0,017 ± 0,003 13,1 0,047 ± 0,015 36,1 0,088 ± 0,012 68,24 0,129 ± 0,020 
C10:2-carnitine 0,003 ± 0,003 16,7 0,007 ± 0,003 33,3 0,010 ± 0,006 50,0 0,011 ± 0,002 55,6 0,012 ± 0,005 58,33 0,020 ± 0,002 
C12-carnitine 0,020 ± 0,006 36,7 0,033 ± 0,003 61,2 0,033 ± 0,003 60,6 0,017 ± 0,002 30,6 0,032 ± 0,005 58,16 0,054 ± 0,010 
C12:1-carnitine 0,010 ± 0,006 16,2 0,013 ± 0,003 21,6 0,023 ± 0,003 37,3 0,013 ± 0,004 21,6 0,027 ± 0,000 43,24 0,062 ± 0,015 
Long-chain acylcarnitines            ±               
C14-carnitine 0,010 ± 0,001 24,7 0,013 ± 0,003 32,9 0,020 ± 0,000 49,3 0,014 ± 0,001 35,6 0,017 ± 0,003 41,10 0,041 ± 0,004 
C14:1-carnitine 0,020 ± 0,006 32,4 0,027 ± 0,003 43,2 0,017 ± 0,003 27,6 0,017 ± 0,005 27,0 0,027 ± 0,007 43,24 0,062 ± 0,013 
C14:2-carnitine 0,010 ± 0,001 26,9 0,010 ± 0,001 26,9 0,013 ± 0,003 34,9 0,014 ± 0,005 38,8 0,020 ± 0,003 53,73 0,037 ± 0,008 
C16-carnitine 0,040 ± 0,001 28,1 0,060 ± 0,006 42,2 0,067 ± 0,009 47,1 0,071 ± 0,008 50,0 0,083 ± 0,003 58,59 0,142 ± 0,019 
C18-carnitine 0,033 ± 0,007 42,3 0,043 ± 0,009 54,9 0,043 ± 0,003 54,5 0,044 ± 0,001 56,3 0,057 ± 0,000 71,83 0,079 ± 0,009 
C18:1-carnitine 0,050 ± 0,012 23,0 0,050 ± 0,006 23,0 0,040 ± 0,010 18,4 0,078 ± 0,005 35,7 0,115 ± 0,012 52,81 0,218 ± 0,034 
C18:2-carnitine 0,020 ± 0,001 16,1 0,030 ± 0,006 24,1 0,013 ± 0,003 10,4 0,056 ± 0,005 44,6 0,095 ± 0,025 76,34 0,124 ± 0,015 
total ester 4,290 ± 0,055 17,9 20,553 ± 0,357 86,0 12,230 ± 0,349 51,2 11,169 ± 0,201 47,3 11,873 ± 1,060 50,17 23,906 ± 3,113 
total carnitine 5,667 ± 0,043 10,0 33,343 ± 0,464 58,8 28,173 ± 0,586 49,7 31,559 ± 1,343 55,8 32,077 ± 1,170 56,75 56,688 ± 6,792 
1: mean±SEM of three parallel measurements                 
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Figure 6.: Histopathology of the bone marrow, lymph nodes, spleen, tonsils and 
thymus in OCTN2 deficiency 
row 1.: bone marrow, row 2.: lymph node, row 3.: spleen, row 4.: pharyngeal tonsil, row 
5.: different stages of the pathologic germinal center reactions, A5 and B5: spleen, C5: 
bone marrow, row 6.: thymus (for details see description in text) 
Stainings and immunohistochemical stainings: all of column A, B5 and C5 H&E 
staining. B1 – B4 slides: IgD; C1 – C4 and C6 slides: MIB-1; and block B6: bcl-2 
immunoreaction. In all immunoreactions the positive signal is dark brown. 
Magnification: all slides are 40x magnified, except A5 (100x) and B5 and C5 (400x). 
 
 
 
Table 2. Distribution of the slc2f2 and runx1 genotypes and allele frequencies in the 
groups of patients with rheumatoid arthritis and controls. 

SNP patients 
n=209 

controls 
n=217 

    
slc2F2    

CC 180   (86.1%) 181   (83.4%) 
CT 28   (13.4%) 35   (16.1%) genotype 
TT 1   (0.5%) 1   (0.5%) 

    
C 92.8% 91.5% alleles T 7.2% 8.5% 

    
runx1    

GG 81   (38.8%) 98   (45.2%) 
GC 100   (47.8%) 94   (43.3%9 genotype 
CC 28   (13.4%) 25   (11.5%) 

    
G 62.7% 66.8% alleles C 37.3% 33.2% 
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6. Summary of the results and conclusions 

 
1. The molecular genetic analysis of the SLC22A5 gene encoding the high-affinity 
physiological carnitine transporter OCTN2 in two extended Hungarian Roma families 
revealed one common mutation, a 844delC mutation leading to R282D in the protein. 
The mutation causes systemic carnitine deficiency either through the formation of an 
unstable mRNA or through the rapid degradation of the synthesized truncated protein. 
 
2. The primary clinical manifestation of the mutation involves the functional abnormality 
of the heart and liver with recurrent infections and iron-deficient anaemia, however, a 
variable phenotype can be seen even within a family. Oral carnitine supplementation 
results in dramatic regression of the symptoms. 
 
3. We verified the above mentioned mutation in homozygote form in three SIDS cases of 
the investigated families. Clinically, we found a somewhat new phenotypic manifestation 
that corresponds to a lethal hepatocardial syndrome. Through the extensive histological 
examination of the autopsy tissues as a novelty we were the first to demonstrate 
lipiddeposition in cardiac muscle in primary carnitine deficiency.  
 
4. Analysing the alterations of carnitine homeostasis in homozygote and hetrozygote 
primary carnitine deficiency, we found that in homozygotes besides the dramatic 
decrease in free carnitine all circulating carnitine esters are severely depleted, which 
probably results in serious metabolic disturbances. On the other hand, the detected 
decrease in the concentrations of the free and esterified carnitines in heterozygotes may 
reflect ongoing pathological changes on the cellular level. 
 
5. The histologic examination of the lymphoreticular tissues of SIDS cases with verified 
SLC22A5 mutations revealed cellular dysfunctions in the germinal centers of the 
lymphoid tissues reflecting a disturbed antigen driven affinity maturation of the B cells in 
primary carnitine deficiency. The results give morphological evidence of the functional 
contribution of carnitine in plasmacell maturation, however, the precise molecular 
mechanisms need still to be elucidated. 
 
6. The common detected mutation in several non-consanguinous grandparent lines of our 
investigated families reflects the wide-spread incidence of the mutation in the Hungarian 
Roma poulation. The potentially lethal manifestations of primary carnitine deficiency 
(cardiomyopathy, SIDS), the available and effective treatment with oral carnitine 
supplementation underly the importance of the screening for this disease. Carnitine ester 
profile analysis by tandem mass spectrometry as developed in our institute provides an 
effective and rapid method for screening, with catious analysis of the samples even 
heterozygotes can be detected. 
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7. We performed molecular genetic studies in Hungarian rheumatoid arthritis patients for 
the determination of the role of proposed susceptibility polymorphisms of carnitine 
transporter genes and regulator genes in the development of multifactorial diseases. Our 
results do ot confirm the universal and population-independent susceptibility role of the 
SLC22A4 C6607T and RUNX1 G24658C variants for rheumatoid arthritis. Further 
studies on larger population samples are needed to clarify the real ethiopathologic role of 
a proposed susceptibility variant found in one population sample. 
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