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COX    cyclooxygenase 

DAG    diacilglicerol 

DNA    dezoxyribonucleic acide 

EMSA    electrophoretic mobility shift assay 

ECG    elecrocardiograph 

FV    ventricular fibrillation 

GSH    reduced glutathione 

HSP    heat shock protein 

iNOS    inducible nitric oxide synthase 

Ik-B    inhibitor kappa-B 

IKK    inhibitor kappa kinase 

IP3    inositol triphosphate 

LAD    left anterior descendens coronary artery 

LV    left ventricle (of the heart) 

MAP kinase   mitogén aktivated protein kinase 

MDA    malondialdehyde 

MnSOD    manganese superoxide-dismutase 

MPG    N-2-mercaptoproprionylglycine 

NFkB    nuclear factor-kappaB  



 6

NO    nitric oxide 

NSAID   non-steroid anti-inflammatory drugs 

OFR    oxygen free radicals 

ONOO   peroxinitrit 

PC    preconditioning 

PIP2    phosphatitil/inositol/ diphosphate 

PKC    protein kinase C 

PLC and PLD  phospholipase C and D 

ROI    reactive oxygen intermediers 

SOD    superoxide dismutase 

SWOP    second window of protection 

TyrK    tyrozin kinase 

TTC    triphenyltetrazolium chloride



 7

 

1. INTRODUCTION 

 
 
 

It is now 11 years since the phenomenon termed "ischaemic preconditioning" was formally 

recognised 1. There can be little doubt that our understanding of the mechanisms underlying 

the pathogenesis of ischaemia-reperfusion injury has been enhanced significantly by the 

extensive research stimulated by interest in endogenous myocardial protection. In the basic 

experimental setting, the triggers, mediators and effectors of the preconditioning phenomenon 

are being extensively investigated. The results of recent clinical experiments suggest that 

preconditioning can protect against ischaemic injury, although at this stage they must be 

interpreted with caution.  

 

1.1 HISTORY OF ISCHAEMIC PRECONDITIONING 

 

In 1986 Reimer et al.2 reported a series of experiments in the dog heart designed to dissect the 

contributions of ATP depletion from catabolite accumulation in the genesis of lethal 

ischaemic injury. Their experimental model involved repetitive brief ischaemic episodes, 

working on the premise that each ischaemic episode would cause cumulative ATP depletion 

while the intermittent reperfusion would wash out ischaemic catabolites. To their surprise 

they found that, following the initial ischaemic period, ATP levels were not depleted further 

by subsequent similar ischaemic challenges. They also noted that no infarction occurred in six 

of the seven dogs studied. This result was contrary to the previously accepted view that 

repetitive ischaemia would cumulatively lead to infarction. The observation led the same 

group 3 to test the hypothesis that the preservation of high energy phosphates was due to a 
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slowing of consumption during ischaemia associated with a rapid and protective adaptation of 

the myocyte. They tested this hypothesis by subjecting the myocardium to four 5 minute 

coronary occlusions, separated by 5 minutes' reperfusion, before a sustained 40 minute 

ischaemic insult. They found that the preceding brief periods of ischaemia and reperfusion 

were protective, reducing infarct size to 25% of that seen in the control group. This 

phenomenon was termed "preconditioning with ischaemia". Following these initial studies, 

the protection obtained has been further characterised both in terms of time course and 

various end-points of cellular injury. 

 

1.2. CLASSIC ISCHAEMIC PRECONDITIONING 

 

Brief episodes of ischaemia-reperfusion protect the myocardium from the damage induced by 

subsequent more prolonged ischaemia. When first described by Murry et al.4 such ischaemic 

preconditioning was elicited by brief coronary occlusion, and the endpoint was reduced 

infarct size. This protection, termed classic preconditioning, appears to be an acute and 

immediate response lasting not more than a few hours. Soon, however, a variety of 

preconditioning stimuli were uncovered including hypoxia5, rapid cardiac pacing6, 7  , thermal 

stress8, stretch9, and various pharmacological agents. Also various endpoints of ischaemic 

preconditioning have been used: ischaemic preconditioning protects against infarction in all 

species tested so far, and there is also evidence that it might be operative in human 

myocardium10. Ischaemic preconditioning also reduces the extent of apoptosis11,  12. Other 

studies have used recovery of contractile functions as an end point of ischaemic 

preconditioning. Although it appears logical that less infarcted myocardium in preconditioned 

hearts should result in improved regional and subsequently global function, ischaemic 

preconditioning does not improve regional myocardial function within the first hours of 
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reperfusion (thus it does not attenuate stunning) in animal models13, 14, 15. However, with 

longer reperfusion ischaemic preconditioning diminishes adverse left ventricular remodelling 

following infarction and improves long-termfunctional recovery in chronically instrumented 

rabbits16. Iscaemic preconditioning protects against arrhythmias in mice17, rats18, rabbits19, 

and dogs20. In pigs, however, ischaemic preconditioning not only fails to reduce the incidence 

of ventricular fibrillation during ischaemia-reperfusion, but even accelerates the onset of 

ventricular fibrillation during sustained ischaemia and decreases the ventricular fibrillation 

threshold21. 

 

This manuscript does not want to go into details of the cellular pathways leading to classic 

preconditioning. It is believed that PKC phosphorlates other kinase, including p38 mitogen 

activator protein kinase (p38 MAP kinase), and eventually leads to the opening of the 

mitochondria ATP-sensitive potassium (KATP) channels. In support of this theory, studies 

using KATP channel inhibitors such as glibenclamide or 5-hydroxydecanoate have blocked 

protection (10,11). KATP channels open when intracellular ATP concentration falls. An influx 

of potassium ions follows, shortening action potential duration and reducing the influx of 

calcium ions into the cell. KATP channel opening is believed to be the key effector in 

conferring early protection to the myocardium. There are emerging views as to the 

mechanism behind this form of protection.  

 

 

1.3. DELAYED PRECONDITIONING 

 

In addition to the initial phase of protection in 1993 two separate studies by Kuzuya et al. and 

Marber et al. both observed that, a second wave of protection appears 24 hours following the 
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preconditioning protocol22 23. This second wave of protection is now referred to as the second 

window of protection (SWOP), late preconditioning or delayed preconditioning. SWOP has 

certain characteristics, distinct from classic preconditioning. It appears gradually, yet lasts as 

long as 72 hours or more.  

Early studies about the late preconditioning studies took infarct size reduction as the end point 

of cardioprotection, and there was little data regarding any delayed antiarrhythmic effect in 

the second window. Végh et al. in 1994published a study that positively confirmed delayed 

protection against reperfusion arrhythmias in the canine heart, using ventricular rapid pacing 

to globally precondition the heart24. 

 

1.3.1. TRIGGERS OF DELAYED PRECONDITIONING 

As with investigations of classic preconditioning, the mechanisms of delayed preconditioning 

may be conceptually divided into `upstream' and `downstream' components. In the rabbit, 

adenosine A1 receptor activation during preconditioning is an important trigger of delayed 

protection against infarction. Adenosine receptor blockade during preconditioning abolishes 

the protective response 24 hours later25 and conversely, stimulation of A1 receptors with a 

selective agonist results in marked protection against infarction 24–72 hours later26 27 28. In 

the pig, delayed preconditioning against stunning does not appear to involve adenosine, but 

free radicals and nitric oxide are important triggers 29 30. At present it is not possible to say if 

this divergence is due to differences in experimental endpoint (infarction versus stunning) or 

species (rabbit versus pig).  

Since it is clear that delayed myocardial protection can be induced by means other than 

transient ischaemia, investigation of these stimuli may ultimately be relevant, not only for our 

understanding of the mechanisms of delayed preconditioning but to the development of 

practical therapeutic approaches. For example, bacterial endotoxin treatment is known to 
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induce delayed myocardial protection, probably by upregulating various cytoprotective 

proteins, including antioxidants and inducible nitric oxide synthase. The endotoxin derivative 

monophosphoryl lipid-A induces myocardial protection 24 hours after administration and the 

opening of the KATP channel may be integral to this late protective response31. There is 

considerable evidence that bradykinin (synthesised by endothelial cells) is involved as a 

trigger in preconditioning, and may contribute to the cardioprotective effects of ACE 

inhibitors32 33. ACE inhibition results reduced breakdown of bradykinin, thus could start up 

the signaling cascade leading to delayed protection34. 

 

1.3.2. THRESHOLD HYPOTHESIS OF TRIGGERING THE ISCHAEMIC 

PRECONDITIONING 

Not all combinations and durations of ischaemia and reperfusion will trigger the 

preconditioning phenomenon and protect ischaemic myocardium. There appears to be a 

critical threshold. Very short preconditioning ischaemia with subsequent reperfusion prior to 

the index ischaemia has no protective effect in pigs35 and humans36. Above this threshold the 

protection conferred by ischaemic preconditioning is independent from the intensity of the 

preconditioning stimulus. There is a definite and fairly rigid time frame for ischemic 

preconditioning. Somehow the myocardium `remembers' that it has been preconditioned by a 

brief ischemic period, which has occurred up to several hours before the index ischemia. The 

exact nature and location of this memory is one of the great, unsolved mysteries of ischemic 

preconditioning.  

 

1.2.3. SIGNALLING ASPECTS OF DELAYED PRECONDITIONING 

Activation of PKC appears to be a crucial intermediate step since pharmacological inhibition 

of PKC during the preconditioning stimulus abolishes protection 24 hours later in the rabbit 
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infarct model37. Direct measurements of PKC activity and translocation have not been widely 

studied so far but Parratt's group have recently provided evidence that sustained PKC-  

translocation to the membrane fraction occurs in the hearts of dogs subjected to rapid cardiac 

pacing38, a stimulus that induces delayed protection against ischaemia-reperfusion 

arrhythmias. It has also been reported that brief repeated periods of coronary artery occlusion 

in the conscious rabbit cause the translocation of PKC- 39, and that this can be blocked with 

chelerythrine40.  

The involvement of other parallel and downstream kinases is under investigation. 

Considerable interaction exists between PKC and other kinase systems including tyrosine 

kinase and MAP kinase cascades. Tyrosine kinase activation may be an obligatory component 

of the signalling cascade since administration of genistein during preconditioning in rabbits 

abrogates the delayed anti-infarct effect41. Interestingly, delayed protection induced by 

adenosine A1 agonist in rabbits is dependent on both PKC and tyrosine kinase activation since 

protection can be abolished by pretreatment with either chelerythrine (a PKC inhibitor) or 

lavendustin-A (a tyrosine kinase inhibitor)42. The interactions of these complex signalling 

systems and their involvement or interaction with membrane channels or new protein 

synthesis still needs to be evaluated. 

 

The transcription factor nuclear factor-kappaB (NFkB) appears to be a critical regulator for 

gene expression induced by diverse stress signals including mutagenic, oxidative and hypoxic 

stresses. NFkB is a ubiquitous transcription factor, which is translocated in response to 

oxidative stress from its inactive cytoplasmic form by releasing the inhibitory subunit 

Inhibitor kappaB (IkB) from NFkB43 44. Activation of NFkB is likely to be involved in the 

induction of gene expression associated with the ischaemic adaptation, since this transcription 
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factor has recently been found to play a crucial role in the regulation of ischaemia-

reperfusion-mediated gene expression and consecutive protein synthesis45. 

 

1.2.4. PROTEIN EFFECTORS OF DELAYED PROTECTION 

A fundamental difference between classic and delayed preconditioning may be in the means 

by which cardioprotection is conveyed. In the former, KATP channels are suspected to be the 

end-effectors, in the delayed preconditioning newly synthesised cardio-protective proteins are 

claimed to convey protection. The time course of delayed preconditioning is suggestive of a 

mechanism involving new protein synthesis.  

Two early reports raised the possibility that the delayed phase of protection involves either 

increased activity of manganese-superoxide dismutase (SOD)46 or elevation of the myocardial 

content of the major inducible heat shock protein, HSP7247. Both proteins are stress-induced 

proteins that have cytoprotective properties. Manganese-SOD is a mitochondrial antioxidant 

which detoxifies superoxide anions. HSP72 is a chaperone protein involved in regulation of 

protein folding, transport and denaturation during the cellular response to injury. Hoshida et 

al.48 described the temporal dynamics of manganese-SOD activity following preconditioning 

in canine myocardium and reported a biphasic pattern of enzyme activity over a 24 hour 

period similar to the biphasic timecourse of the anti-infarct effect49. Similarly, myocardial 

content of HSP72 was elevated in rabbits 24 hours after preconditioning, a time when 

increased tolerance to infarction was observed50. Relationships between enhanced ischaemic 

tolerance and stress-inducible cytoprotective protein activity have been pursued most 

convincingly in gene transfection studies51 52, antisense oligonucleotide studies53 and studies 

with transgenic mice constitutively over-expressing human HSP7254. These studies tend to 

suggest, but do not confirm, that the appearance of the delayed protection could be related to 

changes in activities of stress-inducible cytoprotective proteins in preconditioned 
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myocardium. However, it is important to note that since the regulation of a large number of 

proteins is altered by sublethal ischaemia, it is likely that delayed preconditioning involves 

other proteins in addition to anti-oxidants and heat shock proteins. A number of new gene 

products not yet identified may be involved and techniques such as differential gene display 

and other advanced molecular techniques will be very relevant to future research directions. 
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2. AIMS AND HYPOTHESIS 

 

 

In the last decade the extensive research in the field of ischaemic preconditioning has greatly 

extended our understanding of the signalling mechanism of cardiac adaptation. Although 

many questions are yet to be elucidated, especially with regard to the role of transcription 

factors in the second window of protection, it remains one of the most powerful experimental 

tools in cytoprotection that may one day translate into a clinical reality.  

 

In the first part of our investigations we aimed to monitor the time fluctuaion of the 

activation of two transcription factors, nuclear factor (NF)-kB and activation protein 

(AP)-1, which are conferred to play essential role in the gene-expression induced by the 

ischaemic preconditioning. We aimed to measure the DNA binding activity of these two 

transcription factors in the nuclear fraction of cardiomyocytes in different, definitive times of 

the reperfusion following the stimulus of ischaemic preconditioning. 

 

In the second part of our investigations, we aimed to define the activation level of NFkB 

after repeated number of preconditioning stimuli. The protective effect of delayed 

preconditioning is an “all or nothing” response: the strength of the evoked cardioprotection is 

independent from the strength (duration and number of the ischaemic-reperfusion cycles) of 

the preconditioning (PC) stimuli. We hypothetized that the activation of the transcription 

factors in the delayed adaptation is also independent from the PC stimulus, thus the all or 

nothing response evolves in the level of the triggers.  
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We also aimed to investigate the role of oxygen free radicals (OFR) in the signaling 

cascade of this adaptive process leading to the induction of NFkB. The Department of 

Experimental Surgery in Pécs has many years of experience investigating free radicals in 

relation to ischaemic-reperfusion, especially in heart tissue. This provided us with the ideal 

opportunity to set upon the task of examining the role of OFR in delayed IPC. Numerous 

studies suggest that OFRs act as trigger and as mediators of delayed ischaemic 

preconditioning in an additive interaction with the other triggers. Accordingly, we aim to 

measure the NFkB activation after repeated cycles of preconditioning ischaemia-reperfusio 

after blocking the OFRs.  To monitor the haemodynamic parameters of the heart during the 

preconditioning and in the reperfusion period we measure the heart rate, systolic and diastolic 

heart pressure and calculate the rate pressure product of the animals. 

 

It has been demonstrated that the nonsteroid anti-inflammatory drog, aspirin - which is widely 

used for patient with ischaemic heart disease - in vitro blocks the activation of the 

transcription factor NFkB, which is necessary for the delayed cardiac adaptation. In the third 

part of our investigations we aimed to demonstrate that aspirin (acetylsalicylic acid, 

ASA), used in low and medium concentration do not inhibit the activation of NFkB in 

vivo in the preconditioned myocardium. Furthermore we investigate the effect of ASA on 

the delayed cardioprotection against myocardial infarction. 
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3. DYNAMISM OF ACTIVATION OF NUCLEAR FACTOR-κB AND ACTIVATION 

PROTEIN-1 IN THE SIGNALLING OF DELAYED MYOCARDIAL 

PRECONDITIONING 

 

 

3.1. INTRODUCTION 

 

The sublethal ischemic stress initiate a complex signal transduction cascade that modulates 

the activation of the severe transcription factors, which lead up to expression of 

cardioprotective genes. Recent studies assume, that the activation and translocation of Nuclear 

Factor (NF) -κB and Activation Protein-1 (AP-1) is a key component in the signal 

transduction mechanism of ischaemic preconditioning55,56.  

 

3.1.1. NFkB IN THE SIGNALLING OF ISCHAEMIC PRECONDITIONING 

NF-kB is a redox sensitive transcription factor involved in transcription of proteins in 

response to mutagenic, oxidative and hypoxic stress57 58. Under normal physiologic conditions 

NF-kB is found in the cytoplasm of cells in an inactive form in association with the inhibitor 

IkappaB-alpha. Upon cellular stress stimulation, IkB-alpha is phosphorylated on two serine 

residues (S32 and S36), ubiquitinated, and degraded by a proteosome-dependent pathway, 

allowing active NF-kB to translocate to the nucleus59, 60. NF-kB translocation leads to 

expression of a large number of NF-kB related genes, encoding various signaling and defense 

proteins, which are supposed to bring the cellular protection in the late preconditioning61.  

In contrast to the role NF-kB activation has in the destructive events of inflammation, NF-kB 

also mediates the expression of cytoprotective proteins (Heat Shock Proteins) that block 
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apoptosis or inhibit inflammation in response to several types of cellular stress62.  In a 

negative feedback manner, these cytoprotective proteins inhibit NF-kB63. 

The NF-κB pathway displays the capacity to activate, in a cell- and stimulus –specific 

manner, only a subset of the total repertoire of NF-κB –responsive genes. The seemingly 

promiscuous nature of NF-κB activation poses a regulatory quagmire as to how specificity is 

achieved at the level of gene expression. Rapid growth in our understanding of signal 

transduction in general, and NF-κB in particular, provide intriguing insight as to how this may 

occur. 

 

3.1.2. AP-1 IN THE SIGNALLING OF ISCHAEMIC PRECONDITIONING 

Ap-1 is another well-characterized eukaryotic transcription factor that is highly regulated by 

the redox status of the cell. It is composed of various subunits (jun, fos, and Fra) as dimers, 

which recognize with different affinities the AP-1 DNA-binding site. Through the mechanism 

of reactive oxigen intermediates (ROI) – generated by ischaemia-reperfusion – induction of 

AP-1 is not clear, alteration of cell thiol redox status has been shown to induce c-fos and c-jun 

expression, and phosphorylation of jun proteins. Many factors including ionizing radiation, 

cytokines, oxidative stress, and growth factors lead to AP-1 activation. Similar to NF-κB, 

activation of AP-1 induces expression of a variety of genes whose protein products may either 

protect the cells from, or make the cells more susceptible to oxidative stress. Oxidative stress 

caused by the brief ischaemia-reperfusion of preconditioning induce NF-κB and AP-1 

activation, both of them activate pro- and anti-apoptotic signals in vivo in the myocardium.  

For understanding the role, and the detailed regulation of these transcription factors in the 

phenomenon of ischaemic PC, the purpose of this study was to examine the time fluctuation 

of NF-κB and AP-1 levels in the preconditioned myocardium. We measured the DNA binding 
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activity of NF-κB and AP-1 at various times after brief ischaemic episode in reperfused 

myocardium.  

 

3.1.3. AIMS 

Because the exact mechanism of the activation of these factors is still not clear in the 

signaltransduction of the ischaemic preconditioning of the myocardium, we aimed to monitor 

the time fluctuation of the NFkB and AP1 induction in an in vivo animal model. We aimed to 

follow the changes in the activation rate of NFkB and AP1 in the reperfusion period after 

ischaemic preconditioning stimuli. 
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3.2. MATERIALS AND METHODS 

 

The present study conforms with the Guide for the Care and Use of Laboratory Animals 

published by the US National Institutes of Health (NIH Publication No.85-23,revised 1996) 

and was approved by the local institutional Committee on Animal Research of Pécs 

University (BA02/2000-29/2001). 

 

3.2.1. SURGICAL PREPARATION 

A marginal ear vein was cannulated in 42 New Zealand White rabbits weighing 2,6-3,3 kg 

(mean 2,8kg), after local anaesthesia was induced using lidocaine cream. The animals were 

anaesthetised with intravenous (iv.) xylazine (6mg/kg), ketamine (6 mg/kg) and propofol 

(10mg/kg). The trachea was intubated (tube 3 mm internal diameter) and the lungs were 

ventilated (Sulla 808, Drager , Lübeck, Germany) at a frequency of 30-35 breaths/min and a 

tidal volume of 15-20 ml. Anaesthesia was maintained by inhalation of isoflurane (2-4 Vol.%) 

and nitrous oxide (50 Vol.%). 

The chest was opened by midline sternotomy. A 5-0 prolene (Ethicon 5/0, 1-metric, TF) 

ligature was passed around the left anterior descending (LAD) coronary artery and through a 

snare. In general the site of vessel encirclement was on the long axis of the left ventricle 

towards the apex approximately one-fourth of the distance from the atrioventricular groove to 

the left ventricular apex. Fifteen minutes after completion of surgical preparation animals 

were heparinized with 500 U of heparin sodium. Temperature was measured inside the 

pericardial cradle (Siemens Sirem, Digital Thermometer, Düsseldorf, Germany) and 

maintained between 38,3˚C and 38,7˚C by adjusting a heating pad and an infrared lamp. 

In the ischaemic preconditioned (PC) groups the snare was tightened for 5 min, thereby 

inducing occlusion of the coronary artery.  Myocardial ischaemia was readily discernible by 
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the development of a dusky, bulging region of myocardium (careful note was made of 

anatomic landmarks of this region). The effectiveness of this manoeuvre was verified by the 

appearance of epicardial cyanosis and by the immediate occurrence of ST-segment elevations 

in the electrocardiogram (ECG) (Siemens Sirecust 1260, Düsseldorf, Germany). At the end of 

the 5-min period of coronary artery occlusion, the suture was released and removed to ensure 

proper reperfusion, which was verified by the disappearance of the ECG changes within 5 min 

in every animal. 

 

3.2.2. EXPERIMENTAL PROTOCOL 

In our experiments the animals (42 rabbits) were randomly listed in 7 groups. In control 

animals (group 1, 6 animals) the heart was excised right after thoracotomy and tissue sample 

was taken from the untreated heart. In the preconditioned groups, after 5 min ischaemic 

period animals were assigned to 10 min (group 2, 6 animals), 30 min (group 3, 6 animals), 

1hour (group 4, 6 animals), 2 hours (group 5, 6 animals), 3 hours (group 6, 6 animals), or 4 

hours (group 7, 6 animals) reperfusion period (R) before taking tissue sample from the 

ischaemic zone of the heart. (figure 1.) 

 

After the experimental period the heart was rapidly excised and rinsed in ice-cold 

physiological saline. The ischaemic zone was excised on the basis of the previously defined 

landmarks. The tissue was snap frozen in liquid N2, and stored for not more than 3 days at -

82C before EMSA analysis. 
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3.2.3. ELECTROPHORETIC MOBILITY SHIFT ASSAY (EMSA) 

100 mg tissues were homogenized in 1 ml TE buffer (1.5 mM EDTA, 0.01 M Tris Base, pH 

7.4) containing 10 µM PMSF. Nuclei were separated from cytosol by centrifugation at 1400 

xg for 20 min at 4°C, and this separation procedure was repeated for 3 times. The last pellet 

was resuspended in 2 volumes of buffer containing 20 mM HEPES pH 7.9, 25% glycerol, 420 

mM NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 0.5 mM DTT, protease inhibitors (Complete 

Mini, Boehringer Mannheim, Germany) and placed on ice for 20 min. After 10s 

centrifugation the supernatants were saved, alliquoted and stored.  

Protein concentration was determined with the Bio-Rad Protein Assay kit. 5’-end labelling of 

oligonucleotides was performed using [γ-32P]-ATP and T4 polynucleotide kinase (Amersham 

Pharmacia Biotech Inc., UK) according to the manufacturer’s protocol. 

20 µg nuclear proteins were mixed with 1 µg poly(dl-dC), 100 ng non-specific single-

stranded oligonucleotide and 4 µl buffer containing 10 mM HEPES pH 7.5, 10% glycerol, 1 

mM EDTA, 100 mM NaCl. After 15 min incubation at room temperature the mixtures was 
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Figure 1. Experimental groups with different time of reperfusion. 

 =5 min ischaemia 
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completed with 2 µl, approximately 100 000 cpm of 32P oligonucleotide and then incubated 

for another 30 min. DNA-protein complexes were electrophoresed in a 5% non-denaturating 

polyacrylamide the gel using a Tris Base, Borate, EDTA buffer system (pH 8.3) for 2.5 h at 

200 V. Gel was dried and were quantitated using an image scanning densitometer (Cyclone 

Phosphorlmager System, Packard I. C. USA).  

 

3.2.4. STATISTICAL ANALYSIS 

For statistical analysis EMSA pictures were appreciate with Colim 2000 Color Image 

Measuring (Pictron Kft, Hungary) densitometry software. The data (mean ± SEM) for levels 

of expression of individual protein (EMSA) were subjected to analysis of variance with post 

hoc Dunnett’s 1-tailed t-tests (NF-κB, and AP-1 EMSA), and two-sample Student’s t-test for 

significance. P < 0,05 was considered significant. 
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3.3. RESULTS 

 

3.3.1. TIME COURSE OF NF-KB ACTIVATION 

Fig. 2. shows changes in NF-kB levels in preconditioned myocardium after various 

reperfusion (R) times. Specificity of the signal was verified in a competition assay wherein 

the signal detected by labeled NF-kB was abolished, when the protein homogenate was 

preincubated with excess unlabeled NF-kB oligo before the addition of labeled NF-kB. The 

signal was not abolished, when the competition assay contained excess unlabeled non NF-kB 

binding oligonucleotide.  Low and consistent levels of NF-kB were detected in normal 

myocardium (untreated: group 1) at steady state. Significantly higher levels were detected at 

30 min R (group 3) in all 6 animals (densitometry: 2,35-fold; p<0.0001 vs. controls), and then 

fell to lower state at 1 h R. Again at 3 h R (group 6), the levels rose significantly higher (2,59-

fold; p<0.0001). At 4 h R the levels decreased to basic rate, indicating a biphasic regulation 

(with an emphatic up- and downregulation) of NF-kB in preconditioned myocardium.  

 

3.3.2. TIME COURSE OF AP-1 ACTIVATION 

Fig. 3. shows changes in AP-1 levels in control (untreated) and in preconditioned 

myocardium. After a weak signal elevation at 30 min R, significant increase of AP-1 levels 

were detected at 1 h R (group 4) (p<0.001). Though the levels declined gradually, they were 

still signal at 2, 3, and 4 h R. Preincubation of protein homogenate with excess unlabeled AP-

1 consensus oligo abolished specific signals obtained by labeled AP-1, demonstrating the 

specificity of signals. Signal specificity was established the above mentioned way in all cases. 
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Figure 2. Nuclear levels of NFkB after different reperfusion period in the 
preconditioned myocardium. (time course). Activated NF-kB bands (a p50/p65 
heterodimer and a p50 homodimer) are shown. EMSA analysis.(left) Densitometry 
measurements expressed as percent of control. * p<0,0001 v control.(right) 
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Figure 3. Nuclear levels of AP-1 transcription factor after different reperfusion 
period in the preconditioned myocardium. (time course) EMSA analysis. (left) 
Densitometry measurements expressed as percent of control. * p<0,001. (right) 
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3.4. DISCUSSION 

 

Recurrent episodes of myocardial ischaemia are commonly observed in patients with coronary 

artery disease who suffer from frequent angina pectoris or angioplasty of the left anterior 

descending coronary artery. Reversibly injured myocardium (by short episode of ischaemia 

followed by another short period of reperfusion) renders the heart more resistant to a longer 

ischaemic-reperfusion period. Such adaptation – ischaemic precondition (PC) - is mediated 

through the upregulation of the heart’s own cellular defense via the accumulation of 

intracellular mediators and reprogramming of gene expression. Recent studies suggest that 

NF-kB and AP1 transcription factors have a possible role in the signaltransduction pathways 

of this cytoprotection are resulted from ischaemic adaptation. 

 

3.4.1. DYNAMISM OF NFkB ACTIVATION 

The results of our experiments show that there is a biphasic activation of NF-kB in the 

preconditioned myocardium, with increased levels at an early time point (30 min), and again 

at 3 hour R.  There is presumed to be two different ways leading to the early NF-kB activation 

after ischaemic PC. Through receptor-dependent triggers (AdenosineA1 agonists64, opioid δ1 

agonists65, bradykinin, prostaglandins, norepinephrine, angiotensin, endothelin): the receptor 

is coupled through G proteins to, among others, phospholipase C (PLC) and D (PLD). PLC 

catalyzes the hydrolysis of membrane inositol-containing phospholipids into inositol 

trisphosphate and diacylglycerol (DAG)66. DAG stimulates the translocation and activation of 

protein kinase Cε (PKCε). The onset of the PLC reaction is typically very rapid, and DAG 

production is short-lived, peaking at 30 s67. PKCε activation then triggers a complex signaling 

cascade that involves Src and-or Lck tyrosine kinases and probably other kinases, leading to 
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phosphorylation of Inhibitor-κBα (IκBα) and to mobilization (nuclear translocation) and 

activation of the transcription factor NF-kB68. 

Another possible way of NF-kB activation in ischaemic PC is came off through the increased 

production of nitric oxide (most likely via eNOS) and .O2- (leading to formation of secondary 

reactive oxygen species (ROS)) after a brief episode of myocardial ischaemia/reperfuson69. 

Both NO and  .O2- derived ROS could directly activate the ε  isoform of PKC via nitrosylation 

and oxidative modification, respectively; alternatively, NO and .O2- are known to react  to 

form ONOO- which, in turn, could activate PKCε. Thus PKC is thought to be a critical 

component in both pathways70,71.  

 

Ischaemic PC has recently been found to activate Janus Activated Kinase 1 and 2 (JAK1, 

JAK2) with a subsequent tyrosine phosphorylation and activation of STAT1 and STAT3, 

which is essential for iNOS upregulation. Binding of NF-kB and STAT1/3 to the inducible 

Nitric Oxide Synthase (iNOS) promoter results in transcriptional activation of the iNOS gene 

and lead to synthesis of new iNOS protein (eNOS-dependent iNOS induction).  iNos –derived 

NO is supposed to make a second wave of PKCε activation, leading to the late phase of NF-

kB activation and translocation72.  

 

The other possible explanation of the late increase in NF-kB activation might be the feed-back 

mechanism of NF-kB induced pro-inflammatory cytokines (TNFα, IL-1β). After ischaemia-

reperfusion, even in case of ischaemic preconditioning, NF-kB can induce TNFα and IL-1β 

gene expression73,74. Trough a certainly unknown mechanism these cytokines generate a mass 

of ROI in the myocardium, which can - via the above mentioned pathway – newly activate 

NF-kB in the cytoplasm and lead to a delayed wave of nuclear translocation of this 

transcription factor. TNFα and IL-1β can also start up a signaling pathway leading to IkB 



 28

phosphorylation, - and thus NF-kB activation - through cell membrane receptors75. A number 

of signal transduction proteins have been identified as associated with these receptors, 

including TNF-receptor associated factors 2 and 6 (TRAF2 and 6) death domain-containing 

proteins (TRADD and FADD), kinases associated with IL-1 receptor (IRAK1 and 2, and 

MYD88). These kinases phosphorylate members of the IkB family at specific serines within 

their N-termini, leading to site-specific ubiquitination and degradation of NF-kB by the 26S 

proteosome. This circle cascade (NF-kB→TNFα, IL-1β→NF-kB feedback) might also be an 

explanation of the biphase activation of NF-kB after ischaemic PC76. (figure 4.) 

 

 

3.4.2. DYNAMISM OF AP-1 ACTIVATION 

The second observation of our study is the detection of increased AP1 levels in the 

preconditioned myocardium. In contrast to NF-kB, where after an initial increase at 30 min a 

second peak was observed at 3 hR, AP1 levels increased in a monophasic manner at 1 h R. 

Though we did not measure the levels of AP1 during the ischaemic period, in various in vitro 

systems, substantial increase in AP1 levels was demonstrated during hypoxic conditions. In a 

cancerous cell line (HeLa), Rupec and Baeuerle have shown increased NF-kB activity within 

15 min after initiation of reperfusion, while increased AP1 was detected during hypoxia 

itself77. They argued that during reoxygenation, increased intracellular ROI activate existing 

NF-kB by dissotiation from its inhibitor IkB, while low levels of free radicals during hypoxia, 

a condition similar to that observed during antioxidant treatment, induced AP1. 

Because both NF-kB and AP1 are activated by cytokines such as IL-1 and TNFalpha, the 

positive synergy between NF-kB and the subunits of AP1 might have important implications 

for both immune and inflammatory responses. Stein et al. have shown functional cross-

coupling of NF-kB p65 and AP1 families of transcription factors, resulted in increased DNA 
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binding activity of NF-kB. Both s-fos and c-jun synergised with NF-kB by physically 

interacting with p65 subunit78. Whether such interaction exists in preconditioned myocardium 

is not known.  

 

3.4.3. CONCLUSION 

From our study we conclude, that after the ischaemic preconditioning stimuli the activation of 

NFkB is biphasic with peak levels at 30min and at 3 hour of reperfusion in the preconditioned 

myocardium. The activation rate of AP1 increased monophasically, with peak level at 1 hour 

of reperfusion. These data show that the activation of NFkB and AP1 have a specific time 

curve in the signaling of endogenous cardioprotection. 

 

 

 

 

 

 

 

Figure 4.(next page) Shematic representationof the intracellular signaltransduction of 
ischaemic preconditioning. (NO-nitric oxide; ROI-reactive oxygen intermediers; ONOO-
peroxinitrit;  PLC and PLD-phospholipase C and D; PIP2-phosphatitil/inositol/ diphosphate; 
Ip3-inositol triphosphate; DAG-diacilglicerol; PKC-protein kinase  C; IKK-inhibitor  kappa 
kinase; MAP kinase-mitogén aktivated protein kinase; TyrK-tyrozin kinase; NFkB-nuclear 
factor-kappaB; iNOS-inducible nitric oxide synthase; MnSOD- manganese  superoxide-
dismutase) 
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4. THE ROLE OF OXYGEN FREE RADICALS IN THE ACTIVATION OF NF-KB IN 

THE PRECONDITIONED MYOCARDIUM 

 

 

 

4.1. INTRODUCTION 

 
4.1.1.GENERAL BACKGROUND 

Oxygen free radicals are highly reactive molecules with an unpaired electron, associated 

widely with ischaemic-reperfusion injury79 80 81. Although better known for their toxicity, 

when in large quantities they overwhelm the endogenous antioxidant systems, recently it has 

been suggested that at low concentrations they can modulate survival functions within the 

cell. As previously mentioned Murry et al was the first to investigate their potential role as 

triggers of classic IPC82. Since then various species and models have been examined with 

conflicting results83 84 85 86, yet it is now generally acknowledged that oxygen free radicals can 

indeed induce early protection. Their role in delayed preconditioning however remains 

ambiguous.  

 

Since oxidative stress is known to induce the synthesis of cardioprotective proteins, such as 

antioxidant enzymes87 88 89 90 and HSPs91 92 93, and since these proteins could theoretically 

mediate the protection observed 24 hours after the initial ischaemic challenge, we 

hypothesized that the molecular adaptations, that lead through transcription factor NFkB 

activation to the late preconditioning, are initiated by the exposure to increased levels of 

reactive oxygen species during the preconditioning ischaemia. Low levels of free radicals can 

activate protein kinase C (PKC) directly94, thus through phosphorylation of Inhibitor Kappa 

Kinaseβ could induce NFkB activation and translocation to the nucleus. In addition, reactive 
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oxygen species may stimulate phospholipase D95, and the consecutive production of 

diacylglycerol could then also lead to the activation of PKC and to the induction of NFkB. 

 

4.1.2.AIMS 

One possibility, that has not been tested, is that the free radicals may act in concert with the 

other triggers of delayed preconditioning (adenosine, bradykinin etc.) in the induction of the 

transcription factor NFkB. If that were the case, then elimination of the free radical 

component following a single cycle preconditioning protocol, which is close to the threshold 

for protection, would cause a subthreshold stimulation for NFkB activation and loss of 

protection. On the other hand, if multiple cycles of preconditioning were employed then loss 

of only the free radical component would not be missed, because enough additional adenosine 

and bradykinin and other triggers would be released to reach threshold. In the present study 

we tested this hypothesis by examining the ability of the potent, cell-permeant radical 

scavenger, N-2-mercaptoproprionylglycine (MPG), to attenuate the induction of NFkB in 

ischaemic preconditioning induced by either a single or multiple episodes of ischaemia-

reperfusion in in situ rabbit hearts.  

In the first series of this study we aimed to investigate the activation rate of  NF-κB in cases 

of repeated cycles of ischaemic PC. In the second series we examined the NFkB activation 

after repeated cycles of PC in the presence of MPG. 
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4.2. MATERIALS AND METHODS 
 

All procedures were approved by the Local Committee on Animal Research, and were in 

accordance with recommendations by International Guiding Principles for Animal Research96 

(48) and was approved by the local institutional Committee on Animal Research of Pécs 

University (BA02/2000-29/2001). 

 

Adult New Zealand White rabbits (60 animals) of either sex with body weight ranging from 

2,6-3,3 kg (mean 2,8kg) were used. The rabbits were subjected to overnight fast prior to the 

experiments. Animals were pre-medicated with droperidol (1,5mg/kg) and atropine (1mg). 

Anesthesia was induced by intravenous (iv.) xylazine (6mg/kg), ketamine (6 mg/kg) and 

propofol (10mg/kg). Anesthesia was maintained with isoflurane (2-4 Vol.%) and nitrous 

oxide:oxygen (7:3) gaseous mixture. 

 

4.2.1. SURGICAL PROCEDURE 

After anesthesia we opened the chest by midline sternotomy. 5-0 prolene (Ethicon 5/0, 1-

metric, TF) ligature was circled around the left anterior descending (LAD) coronary artery. In 

general the site of vessel encirclement was on the long axis of the left ventricle towards the 

apex approximately one-fourth of the distance from the atrioventricular groove to the left 

ventricular apex. Fifteen minutes after completion of surgical preparation animals were 

heparinized with 500 U of heparin sodium.  

In the ischaemic preconditioned (PC) groups the snare was tightened for inducing occlusion 

of the coronary artery. At the end of the ischaemic period, the suture was released and 

removed to ensure proper reperfusion, which was verified by the disappearance of the ECG 

changes within 5 min in every animal. 
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In the second series of the study the animals N-2-mercaptopropionylglicine (MPG) was 

universally administered as a continuous infusion to block oxygen free radicals during the 

ischaemia- reperfusion period of preconditioning cycles. 

 

4.2.2. EXPERIMENTAL PROTOCOL 

In the first series of our study we aimed to measure the NF-kB activation after repeated cycles 

of ischaemia-reperfusion. The animals were selected in five groups, in each group there were 

6 rabbits. For NF-kB investigations the animals were subjected to either 1x-, 2x-, 3x-, or 4x-5 

min LAD occlusion with an intermittent 5 min reperfusion, and after 30 min R (NF-kB 

showed the activation maximum at 30 min R) tissue samples were taken from the ischaemic 

zone of the heart. In the control group (group 1) animals were subjected to thoracotomy and 

LAD isolation, however no ligature was applied. In the second group the preconditioning 

stimuli comprised of a single cycle of ischaemia and reperfusion (1x5 IPC). In the third group 

animals were subjected to two cycles of ischaemia and reperfusion with intermittent 5-min 

reperfusions (2x5 IPC). In the fourth and fifth group all animals underwent three (3x5) and 

four cycle of 5 min of regional ischaemia (4x5 IPC). (figure 5.) 

 

In the second series of this study we sought to block OFR by administering an antioxidant: N-

2-mercaptopropionylglicine (1.5 mg/kg/min) as a continuous infusion to any protocol. In the 

first group, acting as drug control, MPG was administered 30 min before sham thoracotomy. 

In the others MPG was infused 30 min prior to 4x5, 2x5, 3x5 or 1x5 IPC. All groups were 

administered normal saline (vehicle) infusion, starting 30 min before the procedures. (figure 

6.) 
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For NF-kB investigation (because NF-kB showed the activation maximum at 30 min R) we 

lasted 30 min reperfusion after the last cycle of PC and tissue samples were taken from the 

ischaemic zone of the heart for analysis.  

After the experimental period the heart was rapidly excised and rinsed in ice-cold 

physiological saline. The ischaemic zone was excised on the basis of the previously defined 

landmarks. The tissue was snap frozen in liquid N2, and stored for not more than 3 days at -

82°C before  EMSA analysis. 

 

4.2.3. ELECTROPHORETIC MOBILITY SHIFT ASSAY (EMSA) 

The exact method of EMSA analysis we applied in this study was described in the previous 

part of this thesis (3.2.3.).   

 

4.2.4. HAEMODYNAMICS, ARRHYTHMIAS AND FIBRILLATIONS 

Following a control measurement, ECG, heart rate and systemic blood pressures were 

registered and recorded every 15 minutes during the two-day procedure. Furthermore 

occurrence of any ventricular tachycardia and fibrillation were recorded automatically. In case 

of fibrillations, cardioversion was immediately attempted. Hearts that needed more than 3 

consecutive cardioversions to convert ventricular fibrillation were excluded from the study.  

 

4.2.5. STATISTICAL EVALUATION  

For statistical analysis EMSA pictures were appreciate with Colim 2000 Color Image 

Measuring (Pictron Kft, Hungary) densitometry software. The data (mean ± SEM) for levels 

of expression of individual protein (EMSA) were subjected to analysis of variance with post 

hoc Dunnett’s 1-tailed t-tests (NF-κB, and AP-1 EMSA), and two-sample Student’s t-test for 
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significance. Haemodynamic data were analysed using repeated measures ANOVA. The null 

hypothesis was rejected when P < 0.05.  
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Figure 5. Experimental protocol to first series of the study. (I= ischaemia, R= reperfusion) 
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4.3. RESULTS 
 

4.3.1. EXCLUSIONS FROM THE STUDY 

In total 6 animals were excluded from the statistical analysis of NFkB activation, leaving 60 

animals who completed the protocol. Three animals were disregarded from the 4x5 ischaemic 

preconditioning (IPC) group. Two developed intractable ventricular fibrillation (VF) during 

the last ischaemic cycle of preconditioning, and one during the early reperfusion. Two 

animals were excluded from the 3x5 IPC group due to VF that was terminal. Similarly one 

animal was excluded from the 2x5 IPC group due to persistent fibrillation.  

 

4.3.2. HAEMODYNAMICS 

Changes in heart rate, systolic and diastolic blood pressures, and rate-pressure products are 

shown in table I. The pre-ligation (control), ischaemic preconditioning (during the end of the 

ischaemic cycles), as well as early reperfusion (rep.5’) and late reperfusion (rep.30’) mean 

values are shown. Values were checked for significant variation during the time course of the 

experiment within any given group, as well as with the control group. Changes in heart rate 

did not show any significant fluctuations, even though most frequent rhythm disturbances 

were noted during early reperfusion (rep.5’). Similarly systolic and diastolic blood pressures 

only showed slight variations, however none of the changes were statistically significant. 

(table I.) 

Although MPG has been associated with a slight fall in mean arterial pressure in some 

models97, this fact is not of relevance in this study. (table II.) 

The rate pressure product, an indicator of myocardial oxygen consumption, was also fairly 

constant through out the experiments. Although few values were either significantly different 

within a group or when compared with the control group, no set pattern of change could be 

established between preconditioned and non-preconditioned animals, in either phases of the 
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study. In short, haemodynamic parameters were comparable across the groups and it is 

unlikely that changes in infarct size could be attributed to haemodynamic variations. 

 

Table I. Haemodynamic variations in the different groups of the first series. 

CONTROL 
GROUP 

Heart rate 
(beat/min) 

Systolic 
pressure 
(mmHg) 

Diastolic pressure
(mmHg) 

Rate pressure 
product 
(mmHg/min x 103) 

Control reading 170.7±14.0 101.3±4.3 81.3±5.6 17,2±9,3 
PC ischaemia 165.3±8.4 98.0±7.5 73.4±7.4 16,1±9,4 
Reperfusion 5’ 157.5±5.7 96.3±15.9 78.6±17.2 15,1±6,7 
Reperfusion 30’ 168.0±13.3 103.0±14.8 87.7±25.0 17,3±4,0 
 
1x5 IPC 
GROUP 

Heart rate 
(beat/min) 

Systolic 
pressure 
(mmHg) 

Diastolic pressure
(mmHg) 

Rate pressure 
product 
(mmHg/min x 103) 

Control reading 176.7±17.0 104.3±8.3 76.3±7.5 18,4±2,9 
PC ischaemia 169.4±9.4 88.0±7.3 64.4±3.8 14,9±7,2 
Reperfusion 5’ 162.6±6.7 104.3±13.9 80.6±15.2 16,9±5,9 
Reperfusion 30’ 171.9±11.3 109.0±9.7 92.7±14.8 18,7±3,7 
 
2x5 IPC 
GROUP 

Heart rate 
(beat/min) 

Systolic 
pressure 
(mmHg) 

Diastolic pressure
(mmHg) 

Rate pressure 
product 
(mmHg/min x 103) 

Control reading 169.4±12.6 99.3±7.3 68.3±1.7 16,7±8,1 
PC ischaemia 164.0±13.4 93.0±7.2 74.4±3.4 15,2±5,2 
Reperfusion 5’ 152.7±8.7 106.3±7.9 79.6±6.2 16,2±3,2 
Reperfusion 30’ 158.0±7.3 103.0±11.8 86.7±5.0 16,3±7,4 
 
3x5 IPC 
GROUP 

Heart rate 
(beat/min) 

Systolic 
pressure 
(mmHg) 

Diastolic pressure
(mmHg) 

Rate pressure 
product 
(mmHg/min x 103) 

Control reading 167.7±18.0 102.3±13.3 72.3±1.4 17,1±5,4 
PC ischaemia 162.5±11.4 82.0±14.5 64.4±3.7 13,3±2,5 
Reperfusion 5’ 169.6±5.6 97.3±15.9 80.6±17.2 16,5±2,0 
Reperfusion 30’ 153.3±7.3 106.0±7.8 92.7±14.0 16,2±9,8 
 
4x5 IPC 
GROUP 

Heart rate 
(beat/min) 

Systolic 
pressure 
(mmHg) 

Diastolic pressure
(mmHg) 

Rate pressure 
product 
(mmHg/min x 103) 

Control reading 180.7±22.0 104.3±7.3 76.3±1.7 15.0±1.6 
PC ischaemia 153.0±13.4 88.0±7.5 64.4±3.4 11.2±1.6 
Reperfusion 5’ 154.6±5.7 104.3±15.9 80.6±17.2 13.8±2.2 
Reperfusion 30’ 154.0±13.3 109.0±14.8 92.7±14.0 15.7±2.9 
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Table II. Haemodynamic variations in the different groups treated with MPG (second series). 
 
 
MPG GROUP Heart rate 

(beat/min) 
Systolic 
pressure 
(mmHg) 

Diastolic pressure
(mmHg) 

Rate pressure 
product 
(mmHg/min x 103) 

Control reading 175.5±2.7 85.3±6.3 69.3±7.7 14,9±7,0 
PC ischaemia 147.3±5.4 78.6±7.3 76.4±3.8 11,5±7,7 
Reperfusion 5’ 154.6±5.7 86.7±11.9 85.6±17.6 13,2±9,5 
Reperfusion 30’ 173.4±8.3 107.0±9.5 78.7±8.0 18,5±5,3 
 
MPG + 1x5 IPC 
GROUP 

Heart rate 
(beat/min) 

Systolic 
pressure 
(mmHg) 

Diastolic pressure
(mmHg) 

Rate pressure 
product 
(mmHg/min x 103) 

Control reading 175.7±14.6 99.5±3.2 81.3±5.8 17,4±8,2 
PC ischaemia 168.0±8.3 88.8±5.7 66.7±7.4 14,9±8,4 
Reperfusion 5’ 159.6±5.2 103.7±11.7 70.8±17.2 16,5±5,2 
Reperfusion 30’ 163.0±7.7 97.4±22.5 86.1±22.3 15,8±7,6 
 
MPG + 2x5 IPC 
GROUP 

Heart rate 
(beat/min) 

Systolic 
pressure 
(mmHg) 

Diastolic pressure
(mmHg) 

Rate pressure 
product 
(mmHg/min x 103) 

Control reading 169.6±4.8 93.3±4.3 81.3±4.7 15,8±6,8 
PC ischaemia 166.0±21.4 76.0±1.5 67.4±7.3 12,6±6,1 
Reperfusion 5’ 197.6±5.4 106.3±11.9 84.6±11.2 21,0±8,4 
Reperfusion 30’ 183.0±17.3 103.0±22.8 93.7±17.0 18,8±4,9 
 
MPG + 3x5 IPC 
GROUP 

Heart rate 
(beat/min) 

Systolic 
pressure 
(mmHg) 

Diastolic 
pressure 
(mmHg) 

Rate pressure 
product 
(mmHg/min x 103) 

Control reading 158.7±7.6 108.3±7.3 85.3±1.7 17,1±7,2 
PC ischaemia 172.7±2.9 104.0±7.5 71.4±3.4 17,9±6,8 
Reperfusion 5’ 173.6±7.7 111.3±15.9 76.6±17.2 19,3±8,6 
Reperfusion 30’ 168.0±11.8 96.0±17.3 74.7±14.0 16,1±2,8 
 
MPG + 4x5 IPC 
GROUP 

Heart rate 
(beat/min) 

Systolic 
pressure 
(mmHg) 

Diastolic pressure
(mmHg) 

Rate pressure 
product 
(mmHg/min x 103) 

Control reading 173.7±3.0 112.3±5.2 88.3±5.7 19,3±7,6 
PC ischaemia 184.0±7.4 63.0±7.5 61.4±8.4 11,5±9,2 
Reperfusion 5’ 166.4±5.7 111.3±6.1 85.6±11.2 18,5±3,2 
Reperfusion 30’ 181.7±5.3 97.0±4.4 83.7±4.0 17,6±4,9 
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4.3.3. MEASUREMENT OF NFkB ACTIVATION 

Figure 7. (left side) shows the changes in NF-kB levels in preconditioned myocardium after 

different cycles of preconditioning ischaemia (first series of investigation). Specificity of the 

signal was verified in a competition assay wherein the signal detected by labelled NF-kB was 

abolished, when the protein homogenate was preincubated with excess unlabeled NF-kB oligo 

before the addition of labelled NF-kB. The signal was not abolished, when the compatition 

assay contained excess unlabeled non NF-kB binding oligonucleotide.   

Low and consistent levels of NF-kB were detected in normal myocardium (untreated: control 

group) at steady state. Significantly higher levels were detected after one cycle of 5 min 

ischaemia (group 1x5 IPC) compared to control (2,35 fold; p<0.05). In case of further 

repeated cycles (group 2x-, 3x-, 4x5 IPC) the NF-kB levels were significant elevated 

according to the control, but did not resulted in additional significant accretion of NF-kB rate 

compared to one cycle PC.  

 

The mean levels of NFkB in the second series of the study are depicted in Figure 7. (right 

side). The drug control group had a mean level comparable to that of the controls in series 

one. The addition of the antioxidant during the IPC protocol had little effect on the group 

preconditioned with 4 and three cycles of 5 min ischaemia, as the level of NFkB was still 

statistically significant. Adding MPG, however, abolished the previously observed NFkB 

induction with either 2x5 or 1x5 IPC. 
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Figure 7. NFkB activation rates in the first (left) and in the second (right) series of the 
study. Representative EMSA blots are showed. (upper panel)  In the graphs the results of 
the densitometry measurements are expressed as percent of control. Data are means ± 
SEM. (* means p<0,05) The values in the columns show the number of the samples. 
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4.3.4. ARRHYTHMIA AND FIBRILLATION 

Figure 8. demonstrates the tolerance to ventricular fibrillation rendered by IPC. Although we 

also monitored the incidence of arrhythmia and premature ventricular beats in every 

experiment, it can be safely claimed that no specific pattern, or significant difference was 

noted between the groups. However a distinct pattern of reduced susceptibility to VF was 

seen in most preconditioned groups.  
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4.4. DISCUSSION 
 
 
4.4.1. FREE RADICALS IN THE SIGNALING CASCADE OF PRECONDITIONING 

Our results demonstrated that oxygen radicals produced in the process of the ischaemic 

preconditioning represent an important trigger for activation of NFkB in the signaling 

mechanism of ischaemic preconditioning to act parallel with adenosine, bradyknin and the 

others. The hypothesis that oxygen free radicals may also be involved in preconditioning was 

first proposed by Murry et al98. In their experiments protection against infarction afforded by 

four cycles of ischaemic preconditioning in dogs was partially limited by the combined 

administration of the free radical scavengers Superoxide-dismutase (SOD) and catalase. In a 

subsequent study Iwamoto failed to show any alteration of protection using SOD and catalase 

in anesthetized rabbits preconditioned with four cycles of 5 min ischaemia99. In direct contrast 

to the study of Iwamoto Tanaka reported that the limitation of infarct size in in situ rabbit 

hearts could be abolished by either SOD or MPG100. The model of Tanaka was identical to 

that of Iwamoto, except for the preconditioning protocol. Tanaka used a single cycle of 

ischaemic preconditioning, whereas Iwamoto utilized four cycles. The present study clearly 

reveals that the preconditioning protocol was the cause of the divergent results.  

Consequently, our experiments in rabbits confirmed that the production of oxygen free 

radicals during the brief ischaemia-reperfusion is an important contributor to the triggering 

the signaltransduction cascade leading to NFkB activation in preconditioned myocardium. 

 

There are several possible mechanisms whereby reactive oxygen species could induce NFkB 

activity. Oxygen radicals could stimulate the protein kinase C (PKC) enzyme directly and 

Gopalakrishna and Anderson have documented that hydrogen peroxide could oxidatively 

modify the regulatory domain of PKC leading to its activation in a manner independent of 

either phosphatidylserine or calcium ions101. Consequently, - as it was described in the 
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discussion of the previous study – PKC induce the activation of NFkB through the 

phosphorylation of Inhibitor Kappa Kinase-epsilon (IKK-ε). Indirect mechanisms also exist. 

It was previously believed that mediators of preconditioning were activating PKC via the 

stimulation of phospholipase-C and hence phosphatidylinositide hydrolysis. However, recent 

evidence suggests that phospholipase-D, and not c, may be involved in the upregulation of 

PKC102. Von Ruecker et al.  have shown that membrane binding of PKC in hepatocytes is 

markedly increased following exposure to oxidative species suggesting that oxygen radicals 

can stimulate the translocation and hence activation of PKC103. It is unknown which, if any, of 

these influences on PKC accounts for the induction of NFkB transcription factor in the 

preconditioning action of oxygen radicals.  

 

 However, when multiple cycles are employed, other mediators such as adenosine and 

bradykinin appear to be released in sufficient quantities to trigger the signaling, even in the 

absence of oxygen radicals. A similar redundant mode of action has been postulated for 

bradykinin in pigs104. 

 

4.4.2. CONCLUSION 

In our experiment we demonstrated the DNA binding activities of NF-kB after different 

number of ischaemia-reperfusion (I/R) cycles. Our results show, that after one cycle of I/R – 

which was previously shown to exert powerful cardioprotective effects for ischaemic hearts – 

the activation of NF-kB increased progressively and steadily. But further clone of I/R cycles 

has not resulted in further elevation in activation of NF-kB compared to the one cycle. These 

findings correlate with Goto’s threshold hypothesis, he found that ischaemic PC is an “all or 

nothing” response to slight ischaemic-reperfusion injury. If the PC stimulus is strong enough 

to reach a “threshold” level, a full signaling cascade and protection will be induced, but in 
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cases of subthreshold stimulus the whole process will be failed. Above this threshold the 

strenght of the PC stimulus does not influence the volume of the  signaling cascade and the 

degree of the evoked cardioprotection105. (figure 9.) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

 

 

The authors have investigated in this study, in an animal model, that OFR are important 

triggers of delayed ischaemic preconditioning; examining NFkB induction as to show the start 

up of the signaltransduction of ischaemic preconditioning. The robust 4x5 IPC protection, 

even in the presence of MPG, as opposed to loss of protection with fewer cycles under the 

same conditions, indicates that generation of OFR is essential in triggering delayed 

cardioprotection in rabbits only when a less rigorous preconditioning stimulus is used. In 

other words, multiple cycles (4x5 IPC) may lead to the release of numerous mediators so that 
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Figure 9. Additive interaction of the triggers in ischaemic preconditioning. The 
triggers together could reach the threshold of protection and start up the signalling 
of the delayed adaptation. 
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eliminating a single trigger (in this case OFR) would not diminish the overall stimulation to a 

subthreshold level. (figure 10.) 

Nuclear Factor kappa-B activation induced by one and two cycles of ischaemic 

preconditioning was abolished by the oxygen radical scavenger MPG in in situ reperfused 

rabbit hearts, suggesting that oxygen radicals are involved in the triggering of the signaling 

cascade of ischaemic preconditioning. However MPG failed to abort NFkB induction by three 

and four cycles of ischaemic preconditioning in which accumulation of other substances could 

be sufficient to trigger the signaltransduction in the absence of oxygen radicals. 
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5. EFFECT OF ASPIRIN ON NUCLEAR FACTOR-kappa B 
ACTIVATION AND ON LATE PRECONDITIONING AGAINST 

INFARCTION IN PRECONDITIONED MYOCARDIUM 
 
 
 
 

5.1. INTRODUCTION 

 

5.1.1. GENERAL BACKGROUND 

Recent studies have demonstrated, that the NF-kB dependent gene activation can be blocked 

by sodium salicylate and by acetyl-salicylate (aspirin) in lymphoid and endothelial cells, 

through preventing phosphorylation and the subsequent proteosomal degradation of the 

inhibitor IkappaB-alpha106 107 108 109 110. 

 

 Acetylsalicylic acid (ASA) is one of the most often used nonsteroidal anti-inflammatory 

drugs applied against acute pain, fever, inflammatory diseases, and it is an important 

additional therapy for patients with ischaemic heart disease, through ASA significantly 

inhibits platelet aggregation in vivo. Thus ASA is useful in coronary artery sclerosis 

preventing the generation of thrombus on the scleroid lesions of coronary artery wall111. 

Otherwise it has been demonstrated by Shinmura et al. that ASA is able can to block late 

preconditioning in a dose dependent way. These authors presumed that this retardant effect 

could be explained by the inhibition of COX-2 activity 112. In contrast to these assumptions 

there are clinical evidences that in patients with prolonged ASA treatment significant delayed 

cardioprotection can be evoked113.  
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5.1.2. AIMS 

The aim of this study was to investigate the effect of aspirin on the NF-kB activation in the 

endogenous adaptation response of the myocardium. Accordingly, we aimed to investigate the 

effect of three different doses of acetylsalicylic acid (ASA) on the late phase of ischaemic 

preconditioning (PC) against myocardial infarction, and on the activation and nuclear 

translocation of NF-kB in the preconditioned myocardium. 

 



 51

5.2. MATERIALS AND METHODS 

 

The present study conforms with the Guide for the Care and Use of Laboratory Animals 

published by the US National Institutes of Health (NIH Publication No.85-23, revised 1996) 

and was approved by the local institutional Committee on Animal Research of Pécs 

University (BA02/2000-29/2001). 

 

5.2.1. SURGICAL PREPARATION 

A marginal ear vein was cannulated in 60 New Zealand White rabbits weighing 2,6-3,3 kg 

(mean 2,8kg), after local anaesthesia was induced using lidocaine cream. The animals were 

anaesthetized with intravenous (iv.) xylazine (6mg/kg), ketamine (6 mg/kg) and propofol 

(10mg/kg). The trachea was intubated (tube 3 mm internal diameter) and the lungs were 

ventilated (Sulla 808, Drager, Lübeck, Germany) at a frequency of 30-35 breaths/min and a 

tidal volume of 15-20 ml. Anaesthesia was maintained by inhalation of isoflurane (2-4 Vol.%) 

and nitrous oxide (50 Vol.%). 

All surgical procedures were performed under sterile conditions, and intravenous antibiotic 

profilaxis (cephazolim, 35mg/kg) was given. Temperature was measured inside the 

pericardial cradle (Siemens Sirem, Digital Thermometer, Düsseldorf, Germany) and 

maintained between 38,3˚C and 38,7˚C by adjusting a heating pad and an infrared lamp. 

The chest was opened by midline sternotomy, and a small incision in the pericardium was 

made. The left anterior descending (LAD) coronary artery was encircled with a 5-0 prolene 

suture (Ethicon 5/0, 1-metric, TF). In general the site of vessel encirclement was on the long 

axis of the left ventricle towards the apex approximately one-fourth of the distance from the 

atrioventricular groove to the left ventricular apex. Fifteen minutes after completion of 
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surgical preparation baseline measurements were performed and animals were heparinized 

with 500 U of heparin sodium. 
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thoracothomy, LAD isolation 

Ischaaemic preconditioning with 
LAD coronary ligature + ASA in 

selected groups. 

30 min reperfusion. 

Tissue sample collection from the 
myocardium. 

Measurement of NF-kB activation 
with EMSA. 

Thread -encircled the LAD coronary- 
was tunneled to subcutis. 

Closing the chest 
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selected groups 

Reperfusion for 24 hours. 

30 min LAD ligature (test ischaemia) 
+ 2 hours reperfusion. 

Infarct size analysis with double 
staining of the heart. 

Figure 11. Graphic algorithm of the different steps of the experiment. 
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5.2.2. EXPERIMENTS FOR NF-KB ANALYSIS  

Following the surgical preparation in the ischaemic preconditioned (PC) groups the snare was 

tightened for 4 times 5 min, thereby inducing occlusions of the coronary artery, this caused 

ischaemic preconditioning (PC) in the concerned myocardium. Myocardial ischaemia was 

readily discernible by the development of a dusky, bulging region of myocardium (careful 

note was made of anatomic landmarks of this region), and by the immediate occurrence of 

ST-segment elevations in surface electrocardiogram (ECG) (Siemens Sirecust 1260, 

Düsseldorf, Germany). Between the ischaemic cycles the heart was allowed to reperfuse for 5 

min. At the end of every 5-min period of coronary artery occlusion the suture was released to 

ensure proper reperfusion. The effectiveness of this manoeuvre was verified by the 

disappearance of the ECG changes within 2 min in every animal. 10 min before 

preconditioning in selected groups the animals were treated with intravenous acetylsalicylic 

acid (ASA) (Aspisol,Bayer AG, 51368 Leverkusen, Germany) following the experimental 

protocol. After the four cycles of ischaemia/reperfusion the animals were assigned to 30 min 

reperfusion period, and the heart was rapidly excised and rinsed in ice-cold physiological 

saline. The right ventricle and atria were trimmed away, and the left ventricle (LV) was 

divided into ischaemic and non-ischaemic zones on the basis of the previously defined 

landmarks. The tissue samples taken from the previously ischaemic region and from the 

posterior wall (nonischaemic region) were snap frozen in liquid N2, and stored for not more 

than 3 days at -82C before NF-kB analysis with EMSA and enzyme immunoassay. 

 

5.2.3. ELECTROPHORETIC MOBILITY SHIFT ASSAY (EMSA) 

The exact method of EMSA analysis we applied in this study was described in the previous 

part of this thesis (3.2.3.).   
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5.2.4. EXPERIMENTS FOR SWOP INVESTIGATION 

After the surgical preparation (described above) the threads were pulled through a reinforced 

tube (2.5 mm internal diameter, Mallinckrodt Medical, Athlone, Ireland), which was tunneled 

subcutaneously to the interscapulare space. The central end of the tube was placed close to the 

sutures around the coronary artery and fixed at the pericardium. The chest wound was then 

closed in layers and air aspirated from the thorax. Postoperative care included analgeticum 

(piritramide, 2 mg/kg, subcutaneously), mucolysis (bromhexin hydroclorid 0,1 mg/kg 

intravenous), and recovery in an isolated pen. 

 

5.2.5. LATE PRECONDITIONING 

Rabbits were allowed to recover for 10-13 days. Then, under anaesthesia we made a small 

incision above the peripherial end of the tube, and in preconditioned groups the suture was 

tightened, thereby inducing occlusion of the coronary artery. The outgrowth myocardial 

ischaemia was verified by the ST-segment aberrations in the ECG. In selected groups animals 

were treated with intravenous acetylsalicylic acid (ASA) 20min before the experimental 

protocol, and were subjected to four 5-min coronary occlusion / 5-min reperfusion cycles. For 

reperfusion the suture was released, and the complete reperfusion of the myocardium was 

verified by the disappearance of the ECG changes within 2 min in every animal. 

 

5.2.6. INFARCT SIZE ASSESSMENT 

24 hours later animals were anesthetized again with the above mentioned method. After 

median thoracotomy the suture around the coronary artery was dissected free. The animals 

were then heparinized with 500 U of heparin sodium. The rabbits were then subjected to 30 

min of coronary artery occlusion by tightening the snare. Ventricular fibrillation during 

coronary artery occlusion was treated by electrical defibrillation (5 J, DCS261 Defibrillator, 
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Piekser, Ratingen, Germany). After 30 min of occlusion the snare was released and 2 h of 

reperfusion was allowed. 

After the reperfusion period, the LAD was briefly reoccluded and patent blue dye (2ml of 1% 

cc, Byk Gulden, Konstanz) was injected into the left auricle at a constant pressure. After 

allowing for 1 more minute of circulation, the heart was excised and washed twice in cold 

saline. The atria and right ventricle were then cut away, leaving only the left ventricle. Total 

left ventricular mass was recorded. Then using fine surgical scissors the bluish non-ischaemic 

myocardium was excised from the area at risk. Area at risk –or risk zone- is the blood-supply 

area of the LAD coronary distal from the ligature. During LAD occlusion area at risk stays 

red, because Patent blue can not perfuse in this myocardium. The isolated area at risk was 

then weighed, sliced (1 mm thick) and incubated in 1% triphenyltetrazolium chloride (TTC) 

for 20 min at 37oC. The slices were then immersed in 10% formalin to enhance the contrast 

between viable (deep red) and pale, infarcted myocardium. The percentage of infarction 

within the area at risk was determined by planimetry of each slice. The volume of each zone 

was then calculated by multiplying each area by the thickness of the slice and summed up as a 

total size of infarction and area at risk in individual hearts. 

  

5.2.7. EXPERIMENTAL PROTOCOLS 

 

PROTOCOL I: EFFECT OF ASA ON THE ACTIVATION AND TRANSLOCATION OF 

NF-kB.  

Rabbits were randomly assigned into five groups. In the control group (group I, shame 

operation, 6 rabbits) animals underwent the whole surgical procedure, but the coronary artery 

was not closed. In preconditioned groups rabbits underwent 4 cycles of 5 min ischaemia / 5 

min reperfusion, inducing ischaemic preconditioning (PC) in the myocardium. In group II (6 
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rabbits) animals were subjected to 4x5 min PC without acetylsalicylic acid (ASA) treatment.  

In group III (6 rabbits) animals were treated with 5mg/kg intravenous ASA 20 min before 4x5 

min PC. 5 mg/kg is the dose of clinical antythrombotic profilaxis: significantly inhibits in 

vivo thrombocyte aggregation. In group IV (6 rabbits), before 4x5 min PC, animals were 

treated with 25 mg/kg ASA. 25 mg/kg is a high dose for analgesia and antirheumatic therapy. 

In group V (6 rabbits) animals were treated with 130 mg/kg ASA before 4x5 min PC. 130 

mg/kg is the maximum, subtoxic dose of ASA that can be used in clinical practice. (figure 

12.) 

 

PROTOCOL II: EFFECT OF ASA ON DELAYED PRECONDITIONING AGAINST 

MYOCARDIAL INFARCTION.  

Rabbits were randomly assigned into further five groups. The experiments in this protocol 

lasted for two days. On the first day animals underwent a shame operation (group VI, 6 

rabbits), or in the preconditioned group a four cycles of 5 min ischaemia / 5 min reperfusion 

(4x5 min PC, group VII, 6 rabbits). 20 min before PC rabbits were pretreated with 5mg/kg 

ASA (in group VIII, 6 rabbits), 25 mg/kg ASA (in group IX, 6 rabbits), or 130 mg/kg ASA 

(in group X, 6 rabbits). On the second day all of the animals were subjected to 30 min 

coronary occlusion and 2 hours reperfusion before infarct size analysis. (figure 13.) 

 

PROTOCOL III: EFFECT OF ASA ON PLATELET AGGREGATION. 

To prove the inhibitory effect of ASA on the platelet aggregation in rabbits we measured 

platelet function before and after administration of 5 mg/kg ASA in group III (6 rabbits).  

Three milliliters of blood were collected from the mid-dorsal ear artery into a syringe 

containing sodium citrate (Becton Dickinson Vacutainer Systems 9NC, Plymouth, UK) before 

and 60 min after the intravenous administration of 5 mg/kg ASA. After determination of 
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circulating blood cell counts, in vitro platelet aggregation was measured in stimulated whole 

blood in presence of adenosine diphosphate (ADP) and collagen with platelet aggregometer 

(Chronolog Lumi-Aggregometer M560-VS, Havertown, USA)114. 

 

5.2.8. STATISTICAL ANALYSIS 

Data are reported as mean ± SEM. Intragroup comparisons, levels of expression of individual 

protein (NF-kB EMSA) were subjected to analysis of variance with post hoc Dunnett’s 1-

tailed t-tests, and one-sample Student’s t-test for significance. Infarct size data were analyzed 

with one-way analysis of variance (ANOVA) followed by unpaired t test with Bonferroni’s 

correction for multiple comparisons. Hemodynamic data were analyzed using repeated-

measures ANOVA. Changes were considered significant when the P value was less 0,05. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. Experimental protocol I.  (PC = preconditioning; I = Ischaemia; R = Reperfusion; 
iv = intravenous administration.) 
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Figure 13. Experimental protocol II. (PC = preconditioning; I = Ischaemia; R = Reperfusion; 
iv = intravenous administration.) 
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5.3. RESULTS 

 

5.3.1. PROTOCOL I: EFFECT OF ASA ON THE ACTIVATION AND TRANSLOCATION 

OF NF-KB.  

Representative examples of electrophoretic mobility shift assay of NF-kB in nuclear fraction 

are illustrated in figure 14. The diagram shows changes in NF-kB levels in preconditioned 

myocardium after using various doses of ASA. Specificity of the signal was verified in a 

competition assay wherein the signal detected by labeled NF-kB was abolished, when the 

protein homogenate was preincubated with excess unlabeled NF-kB oligo before the addition 

of labeled NF-kB. The signal was not abolished, when the compatition assay contained excess 

unlabeled non NF-kB binding oligonucleotide.  

Low and consistent levels of NF-kB were detected in normal myocardium (untreated, control: 

group I) at steady state. Significantly higher levels were detected, when rabbits were 

preconditioned with four 5-min occlusion/5-min reperfusion cycles (group II) in all 6 animals 

(densitometry: 2,35-fold; p<0.001 vs. controls). The administration of low (5mg/kg) and 

medium (25mg/kg) dose ASA before ischaemic preconditioning failed to abolish the 

activation of NF-kB transcription factor. In contrast, the high dose  (130mg/kg group V) ASA 

arrested the activation of NF-kB (Fig.14, left graph). There was no change in NF-kB 

activation in the nonischaemic region among the five groups (Fig.14 , right graph). 
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Figure 14. Representative EMSA pictures showing the level of activated and translocated 
NFkB in the different groups. Densitometric measurements of NFkB on the EMSA pictures 
were expressed as a percentage of the average value measured in the control rabbits. The two 
comparisons performed in each panel were adjusted by the Bonferroni correction. Data are 
means ± SEM. (ASA=acetylsalicylic acid, PC= preconditioning) 
 
 

5.3.2. PROTOCOL II: EFFECT OF ASA ON DELAYED PRECONDITIONING AGAINST 

MYOCARDIAL INFARCTION.  

There were no significant differences in the heart rate, systemic blood pressures or 

rate/pressure product (not shown) among the five (VI.-X.) groups. Table III. summarizes 

changes in heart rate at selected intervals during both first and second day of the experiments.  

Ischaemic risk zone volume and infarct size are shown in table IV. Ischaemic risk zone 

volume was similar in all experimental groups at around 19% to 23% of the left ventricle 

mass. Infarct size as a percentage of the risk zone is demonstrated in figure 15. Sham-operated 

100 

200 

300 

* 
* 

* 

control 4x5 PC 
5mg/kg 
ASA 

4x5 PC 
25mg/kg  
ASA 

4x5 PC 
130mg/kg  
ASA 

4x5 
PC 

100 

200 

300 

control 4x5 PC 
5mg/kg 
ASA 

4x5 PC 
25mg/kg 
ASA 

4x5 
PC 

Anterior wall 
(Ischaemic Zone) 

Posterior wall 
(Nonischaemic Zone) 

% %



 61

control rabbits (group VI.) had a mean infarct size of 61,3 ± 12,3% of the risk zone. 

Preconditioning (PC) with four 5-min coronary occlusion episodes limited the infarction to 

32,7 ± 8,6% (p<0,05) in group VII. Pre-treatment of the animals before PC with 5 mg/kg 

ASA (group VIII.) and with 25 mg/kg ASA (group IX.) did not influenced the protective 

effect of late PC, and resulted in 34,6 ± 8,7% and 36,4 ± 9,3% infarct/risk ratio. In contrast, 

pre-treatment with 130 mg/kg ASA (group X.) prior to PC abolished the cardioprotection and 

lead to an infarct size of 59,1 ± 11,6%. Thus, protection against infarction was observed 24 h 

after PC with 4x5min coronary artery occlusion, and this protective effect was significantly 

blocked with a high dose (130 mg/kg) of ASA treatment prior to the PC stimuli. 

 Arrhythmias during the PC procedure on the first day were rare and minor in nature. 

Although the majority of animals in all groups experienced some form of ventricular 

premature beats and/or ventricular tachycardia (VT) (data not shown), their extent was highly 

variable, and no specific pattern could be determined. Fewer animals had ventricular 

fibrillation (VF) during the ischaemia-reperfusion period, overall, there were no statistically 

significant differences in VT or VF across the groups. 
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Table III. Heart Rate (beats/min) during the PC on first day and ischaemia-reperfusion on 
second day. Values are means ± SEM. 
 (Baseline = before administration of ASA; Before PC = just before the first ischaemic period 
of preconditioning; PC1 = end of the first ischaemic cycle of preconditioning; PC4 = end of 
the fourth ischaemic cycle of preconditioning; second day control = on the second day before 
surgical procedur;e ASA = acetylsalicylic acid) 
 
 

 
 
Table IV. Size of ischaemic-reperfused (risk) zone. Values are means ± SEM. (ASA = 
acetylsalicylic acid; PC = preconditioning; LV = left ventricle; *= significant) 
 
 

 
 
 

Group 6 
(control) 
(6 animals) 

Group 7 
(PC) 
(6 animals) 

Group 8 
(PC+5ASA) 
(6 animals) 

Group 9 
(PC+25ASA) 
(6 animals) 

Group10 
(PC+130ASA)
(6 animals) 

 
Body weight (g) 

 
2869 ± 97 
 

 
2765 ± 125 

 
2925 ± 89 

 
2874 ± 65 

 
2831 ± 139 

 
LV weight (g) 
 

 
3,77 ± 0,25 

 
4,13 ± 0,17 

 
4,06 ± 0,21 

 
3,92 ± 0,15 

 
4,26 ± 0,28 

 
Area at risk (g) 
 

 
0,81 ± 0,08 

 
0,79 ± 0,07 

 
0,87 ± 0,05 

 
0,91 ± 0,09 

 
0,84 ± 0,10 

 
Risk-to-LV ratio 
(%) 

 
21,5 ± 2,8 

 
19,1 ± 3,1 

 
21,4 ± 2,9 

 
23,2 ± 3,2 

 
19,7 ± 3,5 

Infarct size-to 
risk zone ratio 
(%) 

 
61,3 ±12,3% 

 
32,7 ± 8,6%*

 
34,6 ± 8,7%*

 
36,4 ± 9,3%* 

 
59,1 ± 11,6% 

 
 

Heart rate 
(Beats/min) 

Baseline Before PC PC 1 PC 4 Second 
day 
control 

Ischaemia 
30 min 

Reperfusi
on 2 h 

Group 6 
(control) 

- 237±9 252±5 248±9 226±11 247±9 234±8 

Group 7  
(PC) 

- 245±6 257±5 251±9 237±4 252±11 236±14 

Group 8 
(PC+5ASA) 

244±9 232±12 239±7 238±11 228±9 249±12 231±11 

Group 9 
(PC+25ASA) 

253±6 241±5 251±15 247±13 234±13 237±6 228±7 

Group 10 
(PC+130ASA) 

248±7 229±7 236±8 235±14 233±8 241±15 232±13 
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Figure 15. Infarct size: infarct size as a percentage of the area at risk. * p<0,05.  (PC = 
preconditioning; ASA = acetylsalicylic acid) 
 

5.3.3. PROTOCOL III: EFFECT OF ASA ON PLATELET AGGREGATION.  

There were no significant differences in the number of white blood cells, platelets and red 

blood cells before and after the administration of 5 mg/kg ASA (table V). After ASA 

treatment the values decreased slightly, but not significantly in all categories, probably due to 

the diluting effect of the intravenous infusion and the blood sampling. With collagen 

induction the platelet aggregation was suppressed by low dose (5 mg/ kg) ASA. In contrast, 

platelet aggregation in response to ADP was unchanged after low dose ASA. That 

demonstrates, that the inhibitory effect of ASA (5mg/kg) on platelet aggregation is similar in 

rabbits and in humans. (table V.) 
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Table V. Complete blood count and platelet aggregation before and after ASA treatment in 
rabbits of group III.  
Values are means ± SEM. ASA = acetylsalicylic acid; ADP = adenosine diphosphate. 
 
 

 
 
 

 Baseline After ASA (5 
mg/kg iv) Units P Value 

 
Complete Blood Count 

 
White blood cells 7,3 ± 0,5 7,0 ± 0,4 103/ml NS 
Red blood cells 5,52 ± 0,06 5,19 ± 0,06 106/ml p<0,05 
Hemoglobin 12,0 ± 0,4 11,5 ± 0,4 G/dl NS 
Hematocrit 35,4 ± 0,8 34,1 ± 1,1 % NS 
Platelets 231 ± 22 217 ± 23 103/ml NS 

 
Platelet Aggregation Test 

 
ADP (at 6 min) 9,3 ± 0,46 8,2 ± 0,38 Ω NS 
Collagen (at 6 
min) 

21,3 ± 2,4 14,6 ± 1,9 Ω p<0,05 
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5.4. DISCUSSION 

 

5.4.1. THE QUANDARY: ASPIRIN, COX-2 AND CARDIOPROTECTION 

An obvious question is, whether ischaemic preconditioning is a clinically relevant 

phenomenon, that is, whether brief bouts of ischaemia evoke a protective phenotype in 

patients at risk of suffering acute coronary events. In this regard, current evidence, although 

not definitive, favors the conceptthat, as in the experimental laboratory, brief episodes of 

antecedent ischaemia may confer both an early and delayed phase of endogenous 

cardioprotection in the human heart115 116 117. However, if the conclusions regarding the 

crucial role of COX-2 in delayed PC derived from experimental models can be explorated to 

the clinical arena, this raises a disturbing possibility: the benefits of delayed PC may, in 

concept, be compromised in patients using the COX inhibitor acetylsalicylic acid (ASA; 

aspirin) for relief of fever, pain, and inflammation and, perhaps of greatest concern, in the 

countless patients prescribed ASA for the prophylactic prevention of acute myocardial 

infarction and stroke118 119 120. Moreover, as the protective role of prostanoids is not limited to 

the delayed second window of preconditioning – there is experimental evidence implicating 

the involvement of endogenous prostaglandins in infarct size reduction in some models121 of 

early, first window of PC, in the protection afforded by angiotensin-converting enzyme 

(ACE) inhibitors against postischaemic myocardial stunning122 123, and in the reduction of 

infarct size seen with angiotensin A1 receptor blockers124 – ASA therapy may adversely 

effect these other cardioprotective modalities. In fact, retrospective analyses of large clinical 

trials have suggested that the prophylactic use of ASA may deprive the postmyocardial 

infarction patient125. It is not, however, clear from these analyses whether the potential loss of 

benefit related to antithrombotic, analgesic or antirheumatic doses of ASA. 
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5.4.2. EFFECT OF ESCALATING DOSES OF ASA ON THE ACTIVATION OF NFkB 

AND ON THE LATE PC AGAINST MYOCARDIAL INFARCTION 

In clinical practice ASA is used at three different dosage levels, with each dose reflecting the 

relative ASA sensitivity of different target cells126. ASA acts as an antithrombotic (60 to 325 

mg per day), as an analgesic/antipyretic (650 mg), or as an antirheumatic agent (3000 to 6000 

mg). We chose 5 mg/kg as the low dose because this dosage is comparable to that used to 

prevent cardiovascular events in patients127. We found that this dose of ASA inhibited platelet 

aggregation (a COX-1-dependent phenomenon) but had no effect on NFkB induction 

followed the brief ischaemic-reperfusion episodes of PC (COX-2-dependent phenomenon and 

had no effect on late PC against myocardial infarction. We also evaluated the antirheumatic 

dose of aspirin (25 mg/kg) and nor NFkB activation neither late cardioprotection was blocked. 

Taken together, these results indicate that doses of ASA commonly given to patients (5 to 25 

mg/kg) do not interfere with late PC. 

 

In a recent report of Shinmura et al. extend their previous work and address the question of 

ASA therapy and cardioprotection in a conscious rabbit model of late PC against myocardial 

stunning128. Using a multigroup and multidisciplinary study design, the primary end point of 

late PC against stunning was quantified by measurement of systolic wall thickening, and 

myocardial COX-2 levels were determined by Western immunoblotting. Shinmura reported 

that a single, low-dose administration of ASA (5mg/kg), designed to mimic clinical 

antithrombic therapy (typical daily dose of 75 to 325 mg) and confirmed by the authors to 

inhibit in vitro platelet aggregation, attenuated the increase in COX-2 activity seen with brief 

antecedent PC ischaemia. Most importantly, however, low dose ASA, despite its partial 

inhibition of COX-2 activity, did not block the favorable, delayed PC response129. 

 



 67

 

The ability of ASA to prevent platelet aggregation and, thereby, prevent cardiac and cerebral 

ischaemia, results from inhibition of COX-1 due to irreversible acetylation of the protein at 

serine 530130 131. ASA also inhibits COX-2 in a similar manner but exhibits less potency for 

COX-2 than for COX-1132 because the substrate channel of COX-2 is larger and more flexible 

than that of COX-1133. These considerations provide a plausible explanation for our finding 

that 5mg/kg of ASA inhibited platelet aggregation but failed to affect late PC. 

In contrast with the effect of antithrombotic and antirheumatic doses of ASA, administration 

of the subtoxic dose of ASA (4-8000 mg per day; maximum subtoxic serum level: 150-300 

microg/ml), 130 mg/kg, blocked the induction of the transcription factor NFkB and 

completely ablated the beneficial action of late PC on myocardial infarction, suggesting that 

they should be used with caution in patients with atherosclerotic cardiovascular disease 

because they may deprive the hearts endogenous adaptation capability. Given the ubiquitous 

use of ASA and other NSAIDs and the increasing use of selective COX-2 inhibitors, the 

present findings have potential clinical reverberations. Recent studies indicate that COX-2 

inhibitors increase the incidence of cardiovascular events134 135, possibly because they inhibit 

late PC (a COX-2 dependent phenomenon) without inhibiting platelet aggregation (a COX-1 

dependent phenomenon)136. Because many NSAIDs, such as ibuprofen and indomethacin, are 

less COX-1 selective than ASA137, they may interfere with late PC at relatively lower doses. 

Our result suggest that the actions of NSAIDs in patients with atherosclerosis are more 

complex than heretofore appreciated, and that when NSAIDs are given in dosis sufficient to 

block COX-2, inhibition of the PC response may offset the benefits deriving from inhibition 

of platelet aggregation. 
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5.4.3. CONCLUSIONS OF OUR STUDY 

Our study provides the first experimental insight into the consequences of nonsteroidal anti-

inflammatory therapy on the efficacy of the delayed PC against myocardial infarction, and 

yields three important observations: 

 

The administration of a low dose of ASA (5mg/kg), which is sufficient to inhibit platelet 

aggregation, does not block NFkB activation and does not ablate the cardioprotective effect of 

late PC. 

Higher doses of ASA, in the range used for analgesic/antipyretic and antirheumatic effects (25 

mg/kg), also do not block NFkB activation and late PC. 

In contrast, a very high dose of ASA (the subtoxic, maximally allowed daily dose: 130 

mg/kg) abrogates the activation and nuclear translocation of transcription factor NFkB, and 

completely blocks the cardioprotection afforded by late PC. 

 

These results suggest that, in patients taking ASA, the ability of the myocardium to shift to a 

preconditioned phenotype is not impaired so long as these drugs are given in low and medium 

doses, however, high doses of ASA that completely block NFkB activation, can deprive the 

heart of its innate defensive response. 

 

5.5.4. EXPERIMENTAL AND CLINICAL CONSIDERATIONS 

Despite the comprehensive protocol design there are two caveats that warrant consideration in 

the interpretation of our data. First, in addition to the care that must always be exercised in the 

extrapolation of experimental studies to the clinical setting, it must further be acknowledged 

that the single, low-dose administration of aspirin in our rabbit model does not fully mimic 

the long-term, daily aspirin therapy prescribed to patients for the primary or secondary 
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prevention of cardiovascular events. Second, although the age of the rabbits was not specified, 

our study was conducted in adult animals. The effect of increasing age on the delayed, 

“second window” of PC are at present unknown, however, concerns have emerged that, in 

some models, the efficacy of the early protection may wane, or be lost in senescent cohorts138 

139 140 141, while, in other species (i.e., rabbit), recent evidence suggest that the cellular 

mechanisms responsible for early PC may differ in adult versus old animals142 143. As the 

aging cohort is, without question, precisely the population in which the incidence of acute 

ischaemic events is greatest and, thus, cardioprotection by any means (including both PC and 

prophylactic aspirin therapy) is most germane, future studies focusing on delayed PC in old 

animals, with versus without aspirin therapy, would be of considerable interest and relevance. 

 

In addition to these aforementioned issues, the current result raises several other compelling 

questions. For example, the widespread clinical use of other nonsteroidal anti-inflammatory 

agents with greater COX-2 specificity (i.e., ibuprofen, naproxen) and growing popularity of 

recently developed COX-2.specific inhibitors (celexocib, rofexocib)144 begs the question: do 

agents that more closely target COX-2 undermine the endogenous, late phase of 

cardioprotection conferred by brief antecedent ischaemia? This concept may, again, be of 

particular relevance in aging cohorts. Finally, although prospective clinical evaliation of these 

issues would be daunting, a retrospective analysis of surrogate indexes of delayed, “second 

window” preconditioning, incorporating use of nonsteroidal anti-inflammatory agents as a 

covariate, may provide a more feasible approach to explore the clinical implications of the 

“COX-2 hypothesis of late PC”. All of these concepts would build upon our observations, and 

represent fruitful lines of future investigation. 
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Figure 15. (next page) Effect of ASPIRIN on the intracellular signaling mechanism of 

ischaemic preconditioning.   

(NO-nitric oxide; ROI-reactive oxygen intermediers; ONOO-peroxinitrit;  PLC and PLD-

phospholipase C and D; PIP2-phosphatitil/inositol/ diphosphate; Ip3-inositol triphosphate; 

DAG-diacilglicerol; PKC-protein kinase  C; IKK-inhibitor  kappa kinase; MAP kinase-

mitogén aktivated protein kinase; TyrK-tyrozin kinase; NFkB-nuclear factor-kappaB; iNOS-

inducible nitric oxide synthase; MnSOD- manganese  superoxide-dismutase)
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6. DISCUSSION AND CLINICAL RELEVANCES 

 

 

6.1 PRECONDITIONING THE HUMAN HEART 

 

The evidence in support of the occurrence of the preconditioning phenomenon in human 

myocardium arises from laboratory and clinical experiments. Studies in isolated human 

ventricular myocytes145, and isolated atrial trabeculae146 both suggest that protection can be 

induced in vitro using metabolic and functional end-points respectively. In the clinical setting 

there is some evidence to suggest that preconditioning may occur naturally. Patients suffering 

angina prior to a myocardial infarction have a better in-hospital prognosis, a reduced 

incidence of cardiogenic shock and congestive cardiac failure, and smaller infarcts as assessed 

by release of cardiac enzymes147. The phenomenon of warm-up angina, in which patients 

complain that their anginal symptoms are worse in the morning but improve during the course 

of the day has been studied148. There is evidence of increased efficiency of myocardial 

metabolism during a second episode of exercise in terms of reduced oxygen consumption at a 

given work load as well as less anginal symptoms and ST segment changes. PTCA studies, in 

which the effect of serial balloon inflations can be examined, have provided further support149 

but, as with all of the above examples, results may be confounded by the effects of collateral 

recruitment despite efforts to control for this effect150.  

More direct evidence for preconditioning in man has emerged from a study in patients 

undergoing cardiac surgery in which resistance to global ischaemia was assessed151. In this 

situation changes in collateral flow do not play a role. Intermittent application of the aortic 

cross clamp was used to deliver repeated episodes of global ischaemia to provide the 

preconditioning stimulus. Patients subjected to this protocol had better preservation of ATP 
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levels in myocardial biopsies during a subsequent 10 minute global ischaemic period. These 

metabolic changes were almost identical to those seen in dogs by Jennings group152. 

However, as discussed later, total myocardial ATP content may not reflect local turnover 

within subcellular compartments, and certainly does not provide information about the 

efficiency of cellular metabolism in terms of ATP requirements. In a more recent study153, 

involving a larger group of patients, serum levels of troponin-T were used as an indicator of 

myocardial cell necrosis. Using this end-point, patients subjected to the same preconditioning 

protocol suffered less necrosis as determined by release of troponin-T. Of considerable 

interest, however, was the finding that the ATP levels did not differ between preconditioned 

and control groups. This emphasises the need for multiple end-points to be used, especially in 

studies where small differences in myocardial viability without overt clinical effects are 

expected.  

 

6.1.1. WHO SHOULD WE TREAT WITH THERAPEUTIC APPROACHES BASED ON 

PRECONDITIONING? 

It would appear from the evidence outlined above that human myocardium is amenable to 

preconditioning and that preconditioning may occur as a natural feature of some ischaemic 

syndromes. However, even with the development of pharmacological agents that can mimic 

or evoke the protection of ischaemic preconditioning, the timing of administration will be 

critical. Prompt reperfusion will always remain the most effective method of limiting 

ischaemic injury and is, therefore, the most important determinant of prognosis. However, 

there are certain situations in which the timing of treatment before the onset of ischaemia can 

be controlled to some extent.  

Patients presenting with unstable angina are at high risk of myocardial infarction and would 

form a reasonably well-defined group for pre-emptive treatment. A therapy that stimulated or 
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augmented the cellular preconditioning mechanisms over a period of several days or weeks 

could keep the myocardium protected. In the event of the patient suffering an acute 

myocardial infarction the treatment would enhance tissue tolerance and slow the rate of 

necrosis. Such a treatment would `buy time' for the administration of revascularisation 

therapies. A major theoretical hurdle is maintaining myocardium in a protected state by 

preconditioning. Experiments in Downey"s laboratory suggest that continuous adenosine A1 

receptor activation with high dose chronic infusion of CCPA leads to down-regulation of the 

signalling mechanism and loss of protection154. However, more encouraging data have been 

obtained recently using a different dosing schedule. CCPA was administered to rabbits by 

intermittent dosing over a 10 day period, and the persistence of myocardial protection 

assessed 48 hours after the final dose. The expected down-regulation of adenosine A1 

receptors was not observed (since the haemodynamic responses to administration of the 

agonist were preserved) and infarct size remained significantly reduced in the drug treated 

group155.  

Preconditioning strategies might also be applied prior to a planned procedure involving a 

potentially injurious ischaemic insult. An example is coronary artery bypass graft (CABG) 

surgery. Highly effective strategies for myocardial preservation have already been developed 

including the use of various cardioplegic solutions, topical and systemic hypothermia, and 

intermittent aortic cross-clamping with ventricular fibrillation. In general, the rationale behind 

the use of cardioplegic techniques includes rapid diastolic arrest, membrane stabilisation, 

hyperosmolarity (to prevent intracellular oedema), acid buffering, and hypothermia. 

Additional strategies such as continuous coronary perfusion, warm instead of cold 

cardioplegia (to avoid cold injury), and the use of blood instead of crystalloid solutions (to 

improve oxygen delivery) have all added to the choices available to the cardiac surgeon. 

Having said that present cardioprotective measures are highly effective at minimising 
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irreversible injury that might occur during these periods of imposed ischaemia, they are not 

without their limitations. Even with carefully controlled intra-operative ischaemic periods and 

hypothermia, sensitive markers of tissue injury such as troponin-T indicate that discrete 

necrosis occurs156 157 158 159. Moreover, as surgeons undertake more complex and higher risk 

operations, so the need for better preservation methods increases. In a situation like CABG, 

the administration of an agent prior to surgery that could enhance myocardial defences would 

reduce susceptibility to focal necrosis during surgery and permit the extension of the intra-

operative ischaemic period. High risk patients with poor pre-operative left ventricular 

function might certainly benefit if the degree of protection could be improved by invoking 

endogenous cellular adaptive mechanisms. The possibility that organ preservation prior to 

transplantation might be amenable to the same improved protection is also of significant 

interest.  

 

6.1.2. CLINICAL ENDPOINTS FOR ASSESSMENT OF EFFICACY 

Any clinical trial involving the use of a potential pharmacological agent designed to mimic 

the protection of ischaemic preconditioning will have to demonstrate its value in terms of 

relevant clinical end-points such as preservation of left ventricular function, attenuation of 

stunning, need for inotropic or balloon support, incidence of clinically detectable infarction, 

left ventricular failure, and post-operative death. However, studies so far have concentrated on 

low risk patients with good pre-operative status that would be expected to do well in any 

event. The benefit derived from ischaemic preconditioning in this group of patients is likely to 

be marginal. The end-points used presently are relatively insensitive; they provide us with 

indirect information on myocardial viability and are no substitute for direct measurement of 

infarct size. Measurement of total myocardial ATP content is not universally accepted as a 

sensitive marker of cell viability and the concept of a critical tissue concentration of ATP, 
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below which cell death occurs, is now known to be incorrect160. If it were possible to measure 

sub-cellular levels of ATP within different compartments (such as the mitochondrial fraction), 

and thereby assess local turnover, then more useful information might be available. End-

points of clinical outcome are more likely to demonstrate a difference in studies conducted in 

a group of patients at higher risk, but these can only be performed once safety and tolerability 

have been established.  

 

6.1.3. REMOTE PRECONDITIONING AND STRETCH-INDUCED PRECONDITIONING 

Stimuli other than ischaemia of the myocardial risk territory may confer cardioprotection 

against damage by subsequent coronary artery occlusion. Brief circumflex coronary 

occlusions in canine myocardium induce protection of remote myocardium subtended by the 

left anterior descending coronary artery, suggesting that unidentified diffusible factors or 

neuronal mechanisms may influence remote tissue161. A further, and more intriguing, example 

of remote preconditioning is that brief renal ischaemia or mesenteric artery occlusion leads to 

protection against coronary artery occlusion162. The mechanisms of `inter-organ' 

preconditioning are unknown but it is possible that there is a neuronal component. Transient 

stretch of myocardium by acute volume overload has been shown to confer protection against 

myocardial ischaemia by Ovize and co-workers163. This phenomenon is abolished by 

gadolinium, a stretch activated ion channel blocker, and by a PKC blocker164. These 

investigations expand the strictly defined concept of ischaemic preconditioning.  
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6.2. CLINICAL CONCLUSION 

 

Direct activation of the cellular pathways involved in ischaemic preconditioning by 

pharmacological manipulation would allow improved myocardial protection without the need 

for an ischaemic preconditioning insult. A clear understanding of the mechanisms involved in 

either form of protection (early or late) is essential to allow a reasoned approach to drug 

design.  

There are several classes of pharmacological agents that may be able to mimic the protection 

conferred by ischaemic preconditioning and provide some basis for optimism that a beneficial 

and clinically detectable improvement in myocardial protection may be possible.  

In conclusion, we feel that exploitation of endogenous cardioprotective mechanisms may be 

possible in the context of carefully conducted clinical studies. There have been significant 

advances in our understanding of the mechanisms underlying ischaemia-reperfusion injury as 

a result of preconditioning research and potential pharmacological approaches to protection 

seem feasible. However further development of pharmacological therapies should be based on 

sound experimental investigation and assessed in the context of other effective therapeutic 

strategies.  
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7. NOVEL FINDINGS 

 

Our result shows a biphasic increase of Nuclear Factor-kB activation, with peak levels at 30 

min and at 3 hour of reperfusion in preconditioned myocardium. Induction of Activation 

Protein-1 increased monophasically, with peak level at 1 hour of reperfusion. Our results 

shows that the activation of NFkB and AP-1 have a specific time curve after ischaemic-

reperfusion stimulus, and suggest that the regulation of these two transcription factors in the 

signalling of ischaemic preconditioning are different. 

 

We have demonstrated, that one cycle of ischaemia induced a significant increase of NFkB 

and AP-1 activation in the preconditioned myocardium. Further repetition of ischaemia-

reperfusion cycles has not resulted in further elevation in activation of NF-kB and AP1 

compared to the one cycle. These findings demonstrate that the activation of these 

transcription factors in the signaltransduction of ischaemic PC is an “all or nothing” response. 

If the PC stimulus is strong enough to reach a “threshold” level, a full signaling cascade and 

protection will be induced. Above this threshold the strenght of the PC stimulus does not 

influence the volume of the signaling cascade and the degree of the evoked cardioprotection. 

 

In our experiments we were able to demonstrate that oxygen radicals are involved in the 

triggering of the signaling cascade of ischaemic preconditioning and in the induction of the 

transcription factor NFkB in the preconditioned myocardium in an in vivo rabbit model. 

Oxygen free radicals act in concert with the other triggers of ischaemic preconditioning 

confirming the additive interaction between the triggers of the endogenous cardioprotection. 
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Our results demonstrated firstly that the administration of a low dose of ASA (5mg/kg), 

which is sufficient to inhibit platelet aggregation, does not block NFkB activation and does 

not ablate the cardioprotective effect of late PC. Higher doses of ASA, in the range used for 

analgesic/antipyretic and antirheumatic effects (25 mg/kg), also do not block NFkB activation 

and late PC. In contrast, a very high dose of ASA (the subtoxic, maximally allowed daily 

dose: 130 mg/kg) abrogates the activation and nuclear translocation of transcription factor 

NFkB, and completely blocks the cardioprotection afforded by late PC. 
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