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Abbreviations frequently used: 
ADRB3 – β3-adrenoreceptor 

ALT – alanine aminotransferase 

ANOVA – analysis of variance 

AST – aspartate aminotransferase 

BAT – brown adipose tissue 

BMI – body mass index 

BMR – basic metabolic rate 

CI – confidence interval 

del/ins – deletion/insertion 

e8 – exon 8 

FFM – fat free mass 

HOMA – homeostasis model assessment 

IGR – impaired glucose regulation  

NAFLD – non-alcoholic fatty liver disease 

NASH – non-alcoholic steatohepatitis 

OGTT – oral glucose tolerance test 

OR – odds ratio 

PPARG2 – peroxisome proliferator-activated receptor-γ2  

RBMI – relative BMI 

RBW – relative body weight 

ROS – reactive oxygen species 

RQ – respiratory quotient 

SD – standard deviation 

T2DM – type 2 diabetes mellitus 

UCP – uncoupling protein 

U-ACR – urinary albumin/creatinine ratio 

U-BMCR – urinary β2-microglobulin/creatinine ratio 

WAT – white adipose tissue 

WBISI – whole body insulin sensitivity index 

WHR – waist to hip ratio 
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INTRODUCTION 

The dramatically increasing rate of pediatric obesity in populations throughout the world has 

triggered intensive research focusing on the development and consequences of excess body weight 

during the growing years. Obesity affects up to one third of the population in many industrialized 

countries; according to a survey conducted among school-aged children (10–12 years) in 2010, 

22.6% of Hungarian girls and 27.7% of Hungarian boys were overweight or obese (1). It is well 

established that rapid globalization of the westernized lifestyle (general availability of high-calorie 

food and limited need for physical exercise) is fuelling the obesity epidemic, yet the relationship is 

not a simple one. Not all children are affected equally by our unhealthy lifestyles; while some carry 

gene variants rendering them particularly sensitive to the obesogenic environment, others are 

protected from its deleterious effects.  

Adverse health consequences of obesity are numerous, affecting practically all parts of the human 

body and can already be present in early childhood. Joining the classical components of the obesity-

related metabolic syndrome (derangements of carbohydrate and lipid metabolism, and 

hypertension) are a growing number of target organs with obesity-induced dysfunctions, including 

the liver (non-alcoholic fatty liver disease) and the kidney (microalbuminuria). Comorbidities of 

obesity – especially features of the metabolic syndrome – cluster in families and also do not affect 

all children equally; thus besides the set of genes responsible for susceptibility to common 

paediatric obesity there also seems to be a partly overlapping set of genes that determine the 

progression and health consequences of the obese state. 

 

 

1. Genetic basis of common childhood obesity 

 

Common obesity is a typical multifactorial disorder with a strong genetic component. According to 

family and twin studies genetic influences on body size and body composition are substantial and 

by some estimates 40–70% of the interindividual variation in obesity-related phenotypes is heritable 

(2,3). The genetic background for the susceptibility to common childhood obesity seems to result 

from the possession of risk alleles at many genes involved in the regulation of energy balance (4). 

These obesogenic gene variants have small effect sizes, but the risk alleles for obesity are quite 

common in populations, and may act synergistically in response to obesogenic environmental 

conditions (5). Because of the small effect sizes, data on large populations of children and 
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numerous single gene polymorphisms are needed to identify or confirm associations with common 

paediatric obesity (6). 

Candidate gene association studies are one of the main genetic epidemiological approaches to 

identify gene loci for common obesity and related traits. Candidate gene studies are hypothesis-

driven and rely on the current understanding of the biology and pathophysiology that underlies the 

susceptibility to obesity. Candidate genes are identified based on their presumed biological roles in 

the development of obesity and can be tested for association with obesity by examining whether or 

not variations in body weight are accompanied by increased frequencies of certain alleles of these 

genes.  

Obesity results from a long-term imbalance between caloric intake and energy expenditure, 

resulting in the storing of energy as fat, primarily in adipose tissue. Energy expenditure in humans 

can be divided into (1) the energy needs of physical activity; (2) the basal metabolism (BMR – 

basic metabolic rate) measured under resting conditions and required for cell and organ survival; 

and (3) adaptive thermogenesis which confers the ability to adapt to prolonged exposure to cold 

(non-shivering thermogenesis) or increase energy expenditure after feeding (diet-induced 

thermogenesis). All components show considerable variations between subjects and have genetic 

determinants. In children, lower energy expenditure rather than increased energy intake has been 

reported to predict weight gain (7). Thus, genes concerned with energy metabolism and storage 

constitute one of the major groups of candidate obesity susceptibility genes. The replicated 

associations of common variants of genes encoding the β3-adrenoreceptor (ADRB3), the 

mitochondrial uncoupling proteins (UCPs) 1,2 and 3, and the peroxisome proliferator-activated 

receptor-γ2 (PPARG2) with obesity and related traits (8) has established these genes among the 

strongest candidates. Most of the relevant studies, however, have been conducted in adult subjects, 

and relatively little is known about how these genes influence the development of overweight in 

childhood.    

 

1.1 β3-adrenoreceptor gene  –  Trp64Arg polymorphism 

The β3-adrenoreceptor (ADRB3) is a fat-selective adrenoreceptor subtype expressed in brown 

adipose tissue (BAT) and mainly in visceral white adipose depots in humans. The adrenergic 

system has a key role in controlling energy expenditure, with ADRB3 as a principal receptor 

mediating catecholamine-stimulated thermogenesis in BAT and lipolysis in white fat cells (9). 

Thus, the ADRB3 plays an important role in regulating metabolic rate and lipid metabolism and low 

ADRB3 activity could promote obesity through several pathways. A missense mutation in codon 64 

of the gene for ADRB3 results in a tryptophan substitution by arginine in the first intracellular loop 

of the receptor protein. The Trp64Arg polymorphism of the ADRB3 gene was associated with 



 6 

decreased lipolytic sensitivity (10) and is one of the most firmly established obesity susceptibility 

gene polymorphisms (11,12). A higher prevalence of the Arg64 allele among obese subjects has 

been described in adult (10,13) and paediatric (14) populations. 

  

1.2. Uncoupling protein-1 gene  –  –3826 A/G polymorphism 

Uncoupling proteins (UCPs) constitute a family of intramitochondrial transmembrane carriers that 

may uncouple the transport of protons across the inner mitochondrial membrane from ATP 

synthesis, thereby dissipating energy as heat and lowering metabolic efficiency (15). UCP-1 (also 

called “thermogenin”) is expressed mainly in brown adipose tissue (BAT) where it is the key 

component of cold-induced non-shivering thermogenesis as well as contributing to diet-induced 

thermogenesis (16). BAT differs from white adipose tissue (WAT) in that it has large numbers of 

mitochondria containing UCP-1, and instead of storing fat it serves to oxidize lipids to produce heat 

and to rid the body of excess fat. BAT and UCP-1 have an established role in the nutritional 

homeostasis of rodents; in humans however, the importance of BAT thermogenesis in weight 

regulation has been strongly debated, since in large mammals such as humans, BAT is mainly 

active in infancy after which it atrophies; thus no discernible brown fat depots are present in adults. 

Brown fat cells remain, however, dispersed amongst the white adipose tissue so that substantial 

amounts of brown adipocytes expressing UCP-1 exist throughout life in intraperitoneal and deep-

cervical/axillary adipose depots that are generally classified as white and may represent up to 1-2% 

of body weight even in adults (17,18). It has been hypothesized, that BAT (i.e. the “brown 

compartment” of adipose tissue) might be responsible for 1–2% of the energy expenditure in 

humans, and that defects in BAT function of this magnitude might lead to weight gain of 1–2 

kg/year (18). Decreased expression of UCP-1 was indeed detected in WAT of obese as compared to 

lean adults (19). Furthermore, BAT retains capacity of expansion in adults and certain physiological 

and pathological stimuli (chronic cold exposure, adrenergic signals [pheochromocytoma], 

alcoholism, malignancies) can reactivate dormant brown adipocytes or lead to the recruitment of 

fully differentiated BAT from preadipocyte precursor cells in adult humans (20). A group of 

scientists recently reported that the transition of WAT to BAT (a phenomenon called WAT 

browning) is the precursor to cachexia, a wasting syndrome characterized by excessive weight loss 

of patients. (21). Thus, UCP-1 activity in BAT is thought to contribute to facultative energy 

expenditure and the development of obesity in humans (19). The first discovered genetic 

polymorphism of UCP-1 was an A to G point mutation in the promoter region of the gene at 

position –3826 (22). The G variant of the polymorphism was associated with reduced mRNA 

expression (23); and supporting the hypothesis of a role for UCP-1 and BAT in the body weight 

regulation of humans this functional polymorphism of UCP-1 was associated with a higher 
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frequency among obese adults (24), higher body mass index (BMI) (25, 26) higher capacity of 

weight gain (27) and resistance to low calorie diet (28, 29).   

 

1.3 Uncoupling protein-2 gene  –  –866 G/A and exon 8 45 base pair deletion/insertion 

polymorphisms; uncoupling protein-3 gene  –  –55 C/T polymorphism 

In 1997, two UCP-1 homologues have been discovered. UCP-2 is widely distributed in humans, 

with predominant expression seen in WAT, but also considerable amounts found in skeletal muscle, 

liver, heart, kidney, pancreas, brain and cells of the immune system, while UCP-3 expression is 

restricted mainly to skeletal muscle and brown adipocytes (15). UCP-2 and UCP-3 have 59% and 

57% identity with UCP-1, and 73% identity with each other (30). When they were discovered it was 

speculated that these proteins would have much the same function as UCP-1, but in tissues other 

than BAT, thus explaining the mechanisms behind phenomena such as basal proton leak and non-

shivering or diet-induced thermogenesis that can be demonstrated in the cells and tissues of adult 

humans lacking UCP-1, and thus serve as regulators of energy homeostasis. Although it has been 

demonstrated that these UCP-1 homologues are also able to reduce the mitochondrial membrane 

potential and thereby control or influence the efficiency of oxidative phosphorylation (31), they are 

not as thermogenic as UCP-1 (32), and almost two decades of intense research has shown by now, 

that their main function is not body weight or body temperature regulation. Despite the intense 

interest in defining the functions of UCP-2 and UCP-3 their precise physiological and biochemical 

roles are still uncertain. Several hypothesized functions have been described, among others, UCP-2 

has been proposed to play a role in cellular energy balance, regulation of ATP/ADP ratio, protection 

from obesity, regulation of insulin secretion and action, type-2 diabetes mellitus (T2DM), lipid 

metabolism and storage, fatty acid oxidation and transport, regulation of reactive oxygen species 

(ROS) production, thermoregulatory response to infection, thermogenesis in certain tissues (brain), 

and neuroprotection (33–40). UCP-3 is also implicated in the modulation of ROS production and is 

presently thought to be primarily involved in the regulation of fuel partitioning (39,40). Whatever 

the main physiological roles of UCP-2 and UCP-3 may be, by virtue of their uncoupling activity 

these proteins can influence the efficiency of energy coupling in mitochondria as a secondary effect 

of their main function and thus play an important role in human energy homeostasis and in the 

mechanisms underlying the variability in human energy expenditure and affecting obesity risk 

(31,40,41). Supporting this notion, linkage was demonstrated between genetic markers in the 

vicinity of the chromosomal region containing the UCP-2/UCP-3 gene cluster (11q13) and resting 

metabolic rate in humans (41) and gene expression of both UCP-1 homologues have been positively 

related to resting metabolic rate in adults (42,43). Furthermore, the UCP-2/UCP-3 gene cluster was 

identified as a genetic locus for childhood and adolescent obesity in a genome scan conducted in 
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German families (44). UCP-3 is an especially attractive candidate gene for obesity since skeletal 

muscle is a major contributor to whole body thermogenesis and BMR in humans after infancy 

which could, in part, be due to proton leaks caused by UCP-3.  

Functional variants of the UCP-2 gene include the –866 G/A polymorphism in the promoter region, 

with the A allele related to enhanced transcriptional activity (45) and lower BMI and risk of obesity 

(45, 46); and the 45 bp deletion/insertion (del/ins) polymorphism in the 3’ untranslated region of 

exon 8 with the ins variant associated with reduced mRNA stability (45) and a greater risk of 

developing obesity (47–49).  

In the UCP-3 promoter region a C to T substitution 55 bp upstream of the transcription starting site 

was identified (–55 C/T) and the T variant displayed association with enhanced transcriptional 

activity (50) and lower BMI and risk of obesity (46, 51, 52). 

 

1.4 Peroxisome proliferator-activated receptor-γ2 gene  –  Pro12Ala polymorphism 

Peroxisome proliferator-activated receptor-γ2 (PPARG2) is an adipocyte-specific nuclear hormone 

receptor that regulates fat cell differentiation, lipid metabolism and insulin sensitivity. Since the 

volume of lipid that an individual adipocyte can accumulate is fixed, significant expansion of 

adipose tissue mass requires de novo differentiation of adipocytes from precursor cells. As a lipid-

activated transcription factor PPARG2 represents a potential molecular link between cellular or 

systemic lipid metabolism and adipocyte differentiation, thereby its genetic variations can modify 

fat accumulation and obesity risk (53). 

The Pro12Ala missense mutation is a common coding gene variant located in the 5’ region specific 

for PPARG2 and was associated with reduced DNA binding and transactivation in vitro (54). Data 

are conflicting as to whether the Pro12Ala mutation is associated with obesity (55,56) or with a 

lower BMI (53,54). Considering that PPARG2 promotes lipid storage, it is somewhat surprising 

that the majority of data point to the Ala12 allele – which reportedly renders the receptor less active 

– to be associated with human obesity: two large meta-analyses have concluded that the Ala12 

allele is associated with increased BMI among obese adults (57,58). Furthermore, a higher 

frequency of the Ala12 allele was detected among obese men and women compared with controls 

(56,59) and among Spanish children and adolescents presence of the mutation was associated with 

significantly increased risk of obesity (60). It has also been proposed, that the consequences of the 

Pro12Ala polymorphism could be divergent in the lean and obese states: a study of Danish males 

suggested, that the Ala12 allele could be associated with lower BMI among lean subjects and higher 

BMI among the obese (61).  
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2. Genetic determinants of obesity-related traits and metabolic complications of 

obesity in children 
 

The basic metabolic rate is highly variable in humans, but sources of this variability remain to be 

identified. Reduced BMR and increased respiratory quotient (RQ) (implying a higher ratio of 

carbohydrate to fat oxidation) are known risk factors for weight gain (62,63) and are in part 

genetically determined (64). The development of childhood obesity – although perhaps to a lesser 

extent compared with adulthood obesity – is strongly influenced by environmental factors, which 

are difficult to precisely measure and control for. Intermediary traits related to obesity like BMR 

and RQ are less likely than BMI to be affected by extrinsic factors.    

Obesity is associated with several metabolic complications and cardiovascular risk factors attributed 

to obesity-driven insulin resistance such as hyperinsulinemia, impaired glucose tolerance 

(IGT)/type 2 diabetes mellitus (T2DM), increased triglyceride/decreased HDL-cholesterol level, 

increased blood pressure, and non-alcoholic fatty liver disease (NAFLD); and also with the 

clustering of these, the metabolic syndrome. Genetic predisposition is hypothesized to be a key 

factor in the susceptibility of obese individuals to metabolic disorders. Although comorbidities of 

obesity usually present in adulthood, it is well known by now that obesity-related metabolic 

derangements and damage to different target organs of obesity can already accompany overweight 

during childhood and adolescence (65). According to recent estimates from the European Union 

(66), one third of obese children have hyperinsulinemia, 8.4% suffer from IGT and 0.5% from 

T2DM, about 20% have dyslipidemia, 20% have hypertension, and 28% show evidence of hepatic 

steatosis. The majority of obese children are affected by one or more features of the metabolic 

syndrome (66).   

Besides being potential risk factors for the development of obesity, energy expenditure gene 

polymorphisms are also implicated in the polygenic background of common obesity-related traits 

and metabolic complications (8).  

 

2.1 β3-adrenoreceptor gene  –  Trp64Arg polymorphism 

Low ADRB3 activity may cause decreased thermogenesis in BAT and retention of lipids in white 

fat cells. In humans, the latter may be especially important, since ADRB3 activity is much more 

prominent in visceral fat (67) and thus ADRB3 dysfunction may lead to visceral adiposity, a key 

component of the metabolic syndrome. In accordance with these, the Trp64Arg ADRB3 

polymorphism was previously associated with lower BMR (68), a higher capacity of obese subjects 

to gain weight (69), and features of the metabolic syndrome including visceral adiposity, insulin 

resistance, T2DM, dyslipidemia and raised blood pressure among adults (70–72). In studies of 
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Japanese children the variant Arg allele was associated higher degree of adiposity and lower HDL-

cholesterol level among obese boys (73) and with the presence of the metabolic syndrome among 

obese children (74). Two other studies conducted among Japanese and Chinese schoolchildren 

found no significant differences in serum lipid, glucose and insulin levels or blood pressure between 

the different Trp64Arg genotype groups (14, 75), but the mutation did affect the success of dietary 

intervention among obese Chinese children (75).  

 

2.2 Uncoupling protein-1 gene  –  –3826 A/G polymorphism 

Reduced BAT thermogenesis has been etiologically related to the development of insulin resistance 

and diabetes in animal models of obesity (18). Since brown adipocytes in humans are present only 

in „internal” sites of adipose depots and absent from subcutaneous adipose tissue, defects of BAT-

type thermogenesis might have a role in central fat distribution (18). Indeed, low amount of BAT 

has been associated with abdominal obesity in adult males (76), potentially implying UCP-1 in the 

development of the features of the metabolic syndrome. 

Among obese adults the UCP-1 –3826 A/G polymorphism was related to reduced BMR (77) and an 

increased tendency to gain weight (78). The G variant was associated with T2DM (26), insulin 

resistance (79), dyslipidemia (80) and higher blood pressure (81) among adults. Among children the 

G allele was associated with diminished diet-induced thermogenesis (82). 

 

2.3 Uncoupling protein-2 gene  –  –866 G/A and exon 8 45 base pair del/ins polymorphisms; 

uncoupling protein-3 gene  –  –55 C/T polymorphism 

UCP-2 and UCP-3 have been implicated in several mechanisms that underlie or influence the 

development of obesity-related traits and features of the metabolic syndrome – including body fat 

distribution, lipid metabolism, insulin secretion and action, fuel substrate partitioning, cellular 

energy metabolism, and ROS production – making variations in these genes strong candidates for 

obesity-associated conditions.  

By lowering the intracellular ATP concentration UCP-2 expressed in pancreatic beta-cells has been 

demonstrated to be a negative regulator of glucose-stimulated insulin secretion (36) and the –866 

G/A polymorphism was repeatedly (although not consequently) related to disturbances of glucose 

metabolism and altered risk of T2DM. Thus, the G allele – while being conductive for obesity – 

was shown to afford relative protection against T2DM (83), while the A allele was associated with 

lower glucose-stimulated insulin secretion (84). In other studies, however, the G allele was more 

frequent among subjects with T2DM (85,86). Furthermore, Pima Indian carriers of the A allele 

were shown to have an increased BMR (87). In Japanese adults, the A allele was significantly more 

frequent among hypertensives (88). In paediatric studies, the A allele was associated with increased 
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resting energy expenditure and increased carbohydrate oxidation among obese European children 

(89). In a Spanish study of school-aged children, the G allele was associated with obesity and 

insulin resistance risk while the A allele was associated with lower risk of hyperinsulinemia and 

insulin resistance among the obese (90). The A allele has also been linked to markers of reduced 

cardiovascular risk among children and adolescents (91). 

The UCP-2 exon 8 45 bp del/ins polymorphism was associated with metabolic rate during sleep and 

over 24 hours among Pima Indians (35) and related to increased BMI and abdominal obesity among 

Danish men (92). In a smaller group of children, association was demonstrated between the ins 

allele and greater skinfold thicknesses and body fat mass, although no relationship with resting 

energy expenditure could be demonstrated (48). The UCP-2 del/ins polymorphism was also 

indicated as a determinant of insulin resistance in obese children (90).  

The – 55 C/T UCP-3 polymorphism was implicated in several phenotypes associated with obesity 

and the metabolic syndrome, including central fat distribution (93), insulin resistance (90), and 

T2DM and dyslipidemia (94). Among children significant association was observed between the –

55 C/T polymorphism and serum insulin levels, as well as waist circumference (46). 

 

2.4 Peroxisome proliferator-activated receptor-γ2 gene  –  Pro12Ala polymorphism 

PPARG2 acts as a master regulator of fat cell function by regulating differentiation of new 

adipocytes, and by inducing expression of genes promoting fatty acid uptake, triglyceride synthesis 

and insulin sensitivity; it is therefore an excellent candidate gene for influencing susceptibility to 

the features of the metabolic syndrome. In humans, loss-of-function mutations of PPARG2 confer 

an extreme phenotype of partial lipodystrophy, early-onset severe insulin resistance, T2DM, 

dyslipidemia, hypertension, and hepatic steatosis (95); while gain-of-function mutations leading to 

the permanent activation of PPARG2 were found in four unrelated subjects with severe obesity 

(96). Since the activity of PPARG2 differs between subcutaneous and intraabdominal adipose 

tissue, it has been suggested that PPARG2 regulates body fat distribution, thereby affecting insulin 

resistance (59).  

Observations regarding the associations between the Pro12Ala mutation and obesity-related 

metabolic complications are controversial. Thus, the Pro12 allele has been associated with insulin 

resistance (58) and T2DM (54), and the Ala12 allele related to higher insulin sensitivity (59), 

protection against the onset of T2DM (53), a lower risk of hypertriglyceridemia (49), higher HDL-

cholesterol levels (54), and a decreased risk of the metabolic syndrome (97). However, in other 

studies the Ala12 allele was linked to higher risk of combined hyperlipidemia (98), central obesity 

and higher cholesterol levels (55), multiple traits associated with the insulin resistance syndrome, 
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including higher glucose levels and blood pressure (99), and an increased risk of the metabolic 

syndrome (100). 

 

It must be emphasized, that the above cited observations are only examples selected from the large 

number of papers that can be found in the literature on the relationship between the candidate gene 

polymorphisms of our interest and obesity, with focus on the positive findings and data pertaining 

to children. Despite the numerous studies investigating the allelic associations of these 

polymorphisms with obesity propensity and obesity-related traits results concerning their impacts 

on these are controversial, and thus their role and significance in obesity are still under debate. 

Besides the studies with positive results cited above many other investigations have been published; 

some providing further support for the link between the polymorphisms and obesity but others 

demonstrating no or even an opposite association (some examples: 8,10,101–111). Since the limited 

success of the candidate gene approach can mainly be ascribed to small sample sizes (n<1000) that 

are insufficiently powered to identify modest effects that are expected for common obesity (11), it is 

generally agreed upon, that more studies with larger populations of subjects are needed to clarify 

the controversial results that are presently available on the associations of obesity candidate genes 

with the risk and consequences of obesity.   

It should also be emphasized, that most of the obesity candidate gene association studies are 

conducted in adult populations and there are relatively few data on the influence of energy 

expenditure gene polymorphisms on body weight regulation in children. Childhood onset common 

obesity is believed to be etiologically different from common adult obesity, as children are less 

influenced by prolonged exposure to environmental factors and comorbidities compared with 

adults; thus data from adult studies cannot be directly related to children and studies in pediatric 

populations are warranted. It has also been suggested, that alterations in genes that regulate energy 

metabolism would be more likely to contribute to childhood-onset rather than adult-onset obesity 

(46). Furthermore, the manifestation of the effects of polymorphisms predisposing an individual to 

common multifactorial diseases depends on many factors including ethnicity, therefore it is 

important for studies to focus on populations with different genetic backgrounds and different 

environments, because presence or absence of association in one ethnicity or environment does not 

guarantee or exclude association in another.  
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3. Genetic influence on the hepatic complication of obesity: non-alcoholic fatty 

liver disease 
 

Obesity-related hepatic injury includes a spectrum of conditions commonly referred to as non-

alcoholic fatty liver disease (NAFLD), the hepatic component of the metabolic syndrome. Stages of 

NAFLD extend from simple steatosis to non-alcoholic steatohepatitis (NASH) and fibrosis, all of 

which can present as early as childhood (112–114). There is a growing concern about NAFLD, as it 

is emerging as the most common chronic liver condition in the developed world. Diversity in the 

occurrence and phenotypic expression of NAFLD in obese subjects suggests a significant polygenic 

basis for the disorder, involving variations in single nucleotide polymorphisms (115), but 

knowledge of the identity and effects of the genes and polymorphisms involved is currently limited 

(116). 

Theoretical considerations as well as experimental data recently reviewed (117) indicate, that UCP-

2 may have a role in the development of fatty liver disease. NAFLD begins with steatosis in the 

liver, which is generally accepted to be the result of insulin resistance and alterations in hepatic fat 

metabolism. In susceptible populations, and as the result of a “second hit” hepatic steatosis can 

progress to inflammation, or NASH. This course of NAFLD involves genetic determinants within 

several distinct processes linked to disease development and progression, including obesity, insulin 

resistance, lipid metabolism (synthesis, oxidation, transport and partitioning), cellular energy 

balance and oxidative stress (115), all of which are implicated as being regulated or influenced by 

the activity of UCP-2 (33–37). Experimental data implicating UCP-2 in the development and 

progression of NAFLD originate from research on both cell lines and animals. In normal liver, 

UCP-2 is expressed mainly in Kupffer cells, but not in hepatocytes; however hepatocytes induce 

UCP-2 mRNA and protein expression in obesity, leading to a substantially increased presence of 

UCP-2 in fatty livers (117,118). In liver biopsy specimens from young NAFLD patients, UCP-2 

expression was correlated with the severity of inflammation and fibrosis (114). As to the possible 

protective or detrimental role of UCP-2 in human fatty liver disease, its concurrent effects of 

limiting ROS production but at the same time compromising cellular energy homeostasis by 

reducing ATP synthesis leave theoretical and experimental controversies (37) yet to be resolved. On 

the basis of these, the UCP-2 exon 8 del/ins polymorphism associated with altered UCP-2 activity 

(45) is a candidate gene polymorphism for the development/progression of or protection from 

obesity-associated NAFLD.  

Definitive diagnosis of NAFLD requires liver biopsy, but the use of this invasive method is limited 

in large numbers of clinically healthy individuals, particularly children. Patients with NAFLD are 
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commonly characterized by elevated circulating concentrations of markers of liver injury, including 

alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, which are thus used 

extensively as surrogate markers for NAFLD (116). In obese children, an elevated ALT is a strong 

predictor of fatty liver disease (113) and associations between abnormal aminotransferase levels and 

histological and radiographic evidence of NAFLD have been repeatedly demonstrated both in adults 

and children (119–122). 

 

 

4. Renal effects of obesity: proteinuria indicating early renal dysfunction 
 

There is increasing evidence that obesity may damage the kidney in otherwise healthy individuals. 

Enhanced excretion of urinary proteins – particularly that of albumin – indicating hyperfiltration 

and early renal damage has been shown to be associated with adult obesity (123–125). Furthermore, 

slightly increased urinary albumin excretion (microalbuminuria), an indicator of disturbed 

glomerular permeability, is not only a marker of renal damage, but may also represent the renal 

expression of systematically increased transcapillary albumin leakiness reflecting general 

endothelial dysfunction (126) and leading to vascular damage. Major epidemiological studies in 

adults have established microalbuminuria as an independent predictor of premature atherosclerosis 

and cardiovascular disease in both diabetics and non-diabetics (127–129). Data concerning the 

presence of microalbuminuria in obese children and its association with cardiovascular risk factors 

were, however, lacking.   

β2-microglobulin is a low molecular weight protein that is freely filtered through the glomerular 

barrier, and is normally almost completely reabsorbed and catabolized by the renal proximal 

tubules. Increased urinary β2-microglobulin excretion is a sensitive marker of proximal tubular 

dysfunction (130). Prospective data regarding the association between markers of renal tubular 

dysfunction and obesity is limited and has been controversial (131–133), and data pertaining to 

children is scarce. 
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AIMS 
 
1. Energy expenditure gene polymorphisms and the risk of childhood obesity 

We determined the frequencies of the ADRB3 Trp64Arg polymorphism, the UCP-1 –3826 A/G 

polymorphism, the UCP-2 –866 G/A and exon 8 45 basepair del/ins polymorphisms, the UCP-3 –

55 C/T polymorphism, and the PPARG2 Pro12Ala polymorphism among a large group of normal 

weight and overweight/obese Hungarian school-aged children, in order to provide basic, pediatric, 

nation-specific data on these polymorphisms and to investigate their effects on the risk of common 

childhood obesity.  

 

2. Energy expenditure gene polymorphisms and obesity-related traits and metabolic 

complications of childhood obesity 

To study the influences of the above energy expenditure gene polymorphisms on obesity-related 

traits and metabolic complications of common childhood obesity we looked for associations 

between the genetic variants and measures of obesity, BMR, blood pressure and parameters of lipid 

and carbohydrate metabolism among obese children.  

 

3. Association of the UCP-2 exon 8 del/ins polymorphism with obesity-related liver injury 

To investigate the potential role of UCP-2 in the development of pediatric obesity-related liver 

injury we examined the relationship between the UCP-2 exon 8 45 basepair del/ins polymorphism 

and aminotransferase elevations indicative of liver dysfunction among obese children.  

 

4. Effect of childhood obesity on renal glomerular and tubular function 

To examine the effect of childhood obesity on urinary albumin and β2-microglobulin excretion as 

markers of renal glomerular and tubular dysfunction, respectively, we measured the urinary 

albumin/creatinine ratio (U-ACR) and urinary β2-microglobulin/creatinine ratio (U-BMCR) in 

clinically healthy obese and normal weight children. We also evaluated the relationship between the 

U-ACR and U-BMCR and multiple obesity-related cardiovascular risk factors among the obese 

children. 
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SUBJECTS 
 

Most of the overweight/obese children included in the studies were referred to the childhood obesity 

center of the Department of Pediatrics, University of Pécs because of their excess body weight. 

Children were classified as overweight or obese according to international cut-off BMI values for 

overweight or obesity by sex and age (134). They underwent a detailed clinical examination aimed 

at determining the etiology and consequences of their obese state. Those with features to suggest 

rare metabolic or genetic conditions, endocrinological disorders, growth or renal problems or other 

forms of secondary obesity were excluded. As part of their examinations, the overweight/obese 

children underwent anthropometric measurements, indirect calorimetry, fasting blood sample 

collection, an oral glucose tolerance test (OGTT), and determination of blood pressure level.   

 

1. Energy expenditure gene polymorphisms and risk of childhood obesity 

Normal weight (control) children (n=637) aged 6 to 18 years, were recruited from elementary and 

middle schools of Pécs and surrounding cities. The overweight/obese group (n=709) included 

children aged 6 to 18 years, referred to our childhood obesity center for medical assessment and 

also those, who participated in the school recruitment programs but were above normal weight. In 

children recruited from the schools only basic physical examination and anthropometric 

measurements were performed, and random blood samples were collected for genetic analysis. 

 

2. Energy expenditure gene polymorphisms and obesity-related traits 

Overweight/obese children (n=528) aged 6 to 18 years, referred to our obesity center were included 

in this study.  

 

3. UCP-2 exon 8 del/ins polymorphism and NAFLD 

Overweight/obese children (n=252) aged 6 to 18 years, referred to our obesity center were included 

in this study. Children with features to suggest rare metabolic or genetic conditions, ongoing 

infections, or with a history of previous hepatitis or regular alcohol consumption, and also those 

taking medicine regularly were excluded.  

 

4. Renal effects of obesity 

During their clinical examination random morning spot urine samples were collected from 86 

clinically healthy, obese children referred to our childhood obesity center.  Random morning spot 

urine samples were also collected from 79 age-matched, healthy, normal weight children 

participating in a urinary screening program conducted among students of an elementary school. 
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Written informed consent was obtained from all parents of the children before enrollment in the 

studies. The studies were approved by the ethic review committee of the University of Pécs. 



 18 

METHODS 

 

1. Anthropometric measurements 
 

Anthropometric measurements were carried out by the same investigators. Body weight in light 

clothing was determined to the nearest 0.5 kg by a standard beam scale, and height without shoes to 

the nearest 0.1 cm by a Holtain stadiometer. Relative body weight (RBW) and relative body mass 

index (RBMI) calculated as the ratio between actual body weight or BMI, and the ideal weight or 

BMI for age, gender and height were determined on the basis of Hungarian national standards 

(135,136), and are expressed as percentage. 

Waist circumference was measured at midway between the inferior border of the rib cage and the 

superior border of the iliac crest, and hip circumference at the level of the greater trochanter, not 

including clothing. Skinfold thicknesses were measured on the left side of the body to the nearest 

0.1 mm with a Holtain caliper and body fat was estimated using Slaughter et al. equations (137). 

 

2. Clinical examinations 
 

Overweight/obese children referred to our obesity center were examined for the presence of 

obesity-related metabolic and cardiovascular derangements. Blood samples were drawn after an 

overnight fast for measurement of fasting plasma glucose, serum insulin and lipid levels and a 

standard 2-hour OGTT was performed with administration of 1.75 g/kg (maximum 75 g) glucose 

and venous blood samples taken every 30 minutes for determination of plasma glucose and serum 

insulin concentrations.   

Definitions used for the obesity-related metabolic conditions were as follows:  

hyperinsulinemia – fasting serum insulin >20 µU/mL (mean+2SD value of 100 control Hungarian 

children) and/or postload peak serum insulin during OGTT >150 µU/mL (138);  

impaired glucose regulation (IGR) – fasting plasma glucose ≥5.6 mmol/L or 2-hour plasma 

glucose during OGTT ≥7.8 mmol/L (according to American Diabetes Association updated criteria 

[139]); except for the study on the renal effects of obesity, where the older criteria were used: 

fasting plasma glucose >6.1 mmol/L or 2-hour plasma glucose during OGTT >7.8 mmol/L 

(according to American Diabetes Association criteria [140]);  

diabetes mellitus (DM) – fasting blood glucose ≥7.0 mmol/L or 2-hour blood glucose during OGTT 

≥11.1 mmol/L (139); 
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dyslipidemia – high fasting triglyceride (>1.1 mmol/L [<10 years]; >1.5 mmol/L [>10 years]) or 

low fasting HDL-cholesterol (< 0.9 mmol/L) concentration (criteria of the Hungarian Lipid 

Consensus Conference [141]);  

hypercholesterolemia – total fasting cholesterol concentration > 5.2 mmol/L (141).  

Insulin resistance/sensitivity was estimated with the homeostasis model assessment (HOMA) index 

(142) and the OGTT-derived whole body insulin sensitivity index (WBISI) using the Matsuda 

Formula (143).  

Blood pressure was measured according to published recommendations for children at least three 

times in each subject on separate days by the same observer, using a mercury-gravity manometer 

with proper cuff size in standard conditions. We considered children to be hypertensive when the 

lowest blood pressure value of the three measurements was above the 95th percentile for age and sex 

(144). 

Basic metabolic rate (BMR) was measured by means of a Deltatrac metabolic cart (Datex 

Instrumentarium Corp., Helsinki, Finland), using the ventilated hood technique. After achieving 

steady state (which took typically 5–10 min) the BMR was measured for 45 min. Oxygen 

consumption, carbon dioxide production, standardized for temperature, barometric pressure and 

humidity, were measured at 1 min intervals and averaged over the whole measurement period. 

Oxygen and carbon dioxide concentrations were analyzed by a differential paramagnetic sensor and 

an infrared carbon dioxide analyzer, respectively. Before each test the calorimeter was calibrated 

with a reference gas mixture (95% oxygen, 5% carbon dioxide). To assess the precision of the 

indirect calorimeter ethanol burning tests were carried out. The coefficient of variation on BMR of a 

1 day and a 1 week interval was less than 3%. In girls the timing of the BMR measurements was 

synchronized to the menstrual cycle. BMR and respiratory quotient (RQ) were adjusted for age, 

gender and fat free body mass (FFM). 

Serum aminotransferase levels were determined from blood samples drawn after an overnight fast. 

We defined elevated aminotransferase levels as those exceeding the upper limit of normal specified 

for the method used in our laboratory as follows: aspartate aminotransferase (AST) > 50 U/L, 

alanine aminotransferase (ALT) > 40 U/L. Children with aminotransferase elevations were retested 

3–6 months after the first examination, and only those with persistently elevated aminotransferase 

levels were considered as having indication of liver injury, with results of the initial tests used for 

the analyses. 

Routine urinalysis by dip stick test and microscopic examination was performed on all analyzed 

urine samples, and protein or hemoglobin positive samples or those showing erythrocytes, 

leukocytes or cylinders were excluded from further assessment. Since time and temperature 

dependent degradation of β2-microglobulin occurs at a urine pH<5.5 (145), results for β2-
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microglobulin were considered only for urine samples with pH greater than 5.5 (obese n= 56, 

control n= 62). To compensate for the variations in the concentration of random urine samples, we 

determined the urinary creatinine concentration and used the urinary albumin:creatinine ratio (U-

ACR) and urinary β2-microglobulin:creatinine ratio (U-B2MCR) as estimation of the urinary 

excretion of albumin and β2-microglobulin.  

 

3. Laboratory analyses 
 

3.1 Biochemical analyses 

Plasma glucose and serum total cholesterol, HDL-cholesterol, triglyceride, ALT and AST 

concentrations were determined by enzymatic methods using a Merck Selectra chemistry analyzer 

and reagents from Reanal Ltd (Budapest, Hungary). Serum insulin was determined by 

radioimmunoassay with the use of a commercially available kit (Isotope Institute of the Hungarian 

Academy of Sciences, Budapest, Hungary). Urinary albumin concentration was determined by 

immunoturbidimetric method, β2-microglobulin concentration by an enzyme immunoassay kit 

(Abbott Laboratories, Ill., USA), and creatinine concentration by the Jaffe method. 

 

3.2 Examination of the common polymorphisms of genes associated with energy expenditure 

Genomic DNA was isolated from peripheral leukocytes with the use of a commercially available 

DNA isolation kit (Generation Capture Column Kit, Gentra Systems, Minneapolis, Minnesota, 

USA). Genotyping for the common polymorphisms of genes associated with energy expenditure 

were performed by polymerase chain reaction (PCR)/PCR-restriction fragment length 

polymorphism (RFLP) methods previously described, with only minor modifications, as follows: 

the Trp64Arg polymorphism of the ADRB3 gene was examined by the method of Sipiläinen et al. 

(68); the –3826 A/G polymorphism of the UCP-1 gene was examined by the method of Valve et al. 

(77); the exon 8 45 basepair del/ins polymorphism of the UCP-2 gene was examined by the method 

of Walder el al. (35); the –866 G/A polymorphism of UCP-2 was examined by the method of 

Schauble et al. (107); the –55 C/T polymorphism of the UCP-3 gene was examined by the method 

of Cassel et al. (93); and the Pro12Ala polymorphism of the PPARG2 gene was examined by the 

method of Yen et al. (146). Important aspects of the methods applied are summarized in Table 

3.2.1.   
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Table 3.2.1. Important details of the PCR/PCR-RFLP methods used for the examination of 

common polymorphisms of energy expenditure genes 

 

Polymorphism Primers RE 
Distinction of the wild 

type and variant allele 

 

ADRB3 

Trp64Arg 

F: 5’–CGC CCA ATA CCG CCA ACA C–3’ 

R: 5’–CCA CCA GGA GTC CCA TCA CC–3’ 

product size: 210 basepairs 

 

BstNI 

Trp allele: 

97+61+31+15+6 bp 

Arg allele:  

158+31+15+6 bp 

 

UCP-1 

–3826 A/G 

F: 5’–CCA GTG GTG GCT AAT GAG AGA A–3’ 

R: 5’–GCA CAA AGA AGA AGC AGC AGA 

GAG G–3’ 

product size: 279 bp 

 

Bcl I 

 

A allele: 157+122 bp 

G allele: 279 bp 

UCP-2 

–866 G/A 

F: 5’–TGA TG AAC GTC TTT GGG ACT–3’ 

R: 5’–GAT GAG AAA AGG CGT CAG GA–3’ 

product size: 201 bp 

Bsh 

1236I 

G allele: 122 + 79 bp  

A allele: 201 bp 

UCP-2 exon 8 

45 bp del/ins 

F: 5’–CAG TGA GGG AAG TGG GAG G–3’ 

R: 5’–GGG GCA GGA CGA AGA TTC–3’ 

 del allele: 457 bp 

ins allele: 502 bp 

UCP-3 

–55 C/T 

F: 5’–GGA TAA GGT TTC AGG TCA GGC–3’ 

R: 5’–AAG GGA TGA GGG AGG AGA AA–3’ 

product size:  194 bp 

 

BsuRI 

C allele:  

100+64+20+10 bp 

T allele: 100+84+10 bp 

 

PPARG2 

Pro12Ala 

F: 5’–GCC AAT TCA AGC CCA GTC–3’ 

R: 5’–GAT ATG TTT GCA GAC AGT GTA TCA 

GTG AAG GAA TCG CTT TCC G–3’ 

product size:  270 bp 

 

BstUI 

 

Pro allele: 270 bp 

Ala allele: 227+43 bp 

 

RE – restriction endonuclease; F – forward; R – reverse; ADRB3 – β3-adrenoreceptor; UCP – 

uncoupling protein; del/ins – deletion/insertion; PPARG2 – peroxisome proliferator-activated 

receptor-γ2; bp – basepairs. 
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4. Statistical analysis 
 

Descriptive statistics are given as mean ± standard deviation (SD) for normally distributed 

continuous variables, median [interquartile range] for not normally distributed variables, and 

number (percentage) for categorical variables.   

 

 1–2. Energy expenditure gene polymorphisms and risk of childhood obesity, obesity-related traits 

and metabolic complications of childhood obesity 

Genotype and allele frequencies were calculated for each polymorphism, and chi-square test was 

used to assess the concordance of estimated genotype frequencies with Hardy-Weinberg 

proportions. The comparison of allele/genotype frequencies in cases (overweight or obese) versus 

controls (normal weight) was performed with a simple chi-square analysis. Association between 

risk of obesity and the different polymorphisms was estimated using univariate and multivariate 

logistic regression. In univariate analyses each gene was evaluated separately. For multivariate 

analysis, all of the examined polymorphisms were entered into a multiple logistic regression model 

with normal weight or overweight/obese as the dependent variable, genotype and allele frequencies 

according to the polymorphisms as independent predictor variables. Adjustment variables were age, 

height, and gender. Interaction between the gene polymorphisms was tested with the multiple 

logistic regression model containing the allele frequencies.  

Intergroup comparisons of continuous variables were performed with analysis of variance 

(ANOVA) or unpaired Students’ t-test and of categorical variables with chi-square test. Corrections 

for multiple comparisons were performed with the Bonferroni method. Adjustment variables were 

age, gender and FFM (ANCOVA) as appropriate. 

 

3. UCP-2 exon 8 del/ins polymorphism and obesity-related liver injury 

Chi-square test or Fisher’s exact test was used to analyze frequencies of liver enzyme elevations 

between the different genotype groups. For comparisons across genotypes, significance tests for 

linear trend were performed. To strengthen the use of aminotransferase elevations as markers of 

obesity-related hepatic damage, presence of an elevated ALT or AST, elevated ALT, and elevated 

ALT and AST level were all tested for indication of liver injury. For continuous parameters, 

distributional assumptions were verified, and parametric (unpaired Students’ t-test, ANOVA, 

Pearson’s correlation) and non-parametric (Mann-Whitney U-test, Kruskall-Wallis test, Spearman’s 

correlation) methods were used as appropriate, for intergroup comparisons and tests of correlation.  
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4. Renal effects of obesity 

Bivariate analyses included both parametric (Students’ t-test) and non-parametric (Mann-Whitney 

U test) methods. Correlation between the U-ACR and U-BMCR and anthropometric and metabolic 

parameters of the obese children were evaluated by calculation of Spearman’s correlation 

coefficients.  

 

Statistical analyses were performed using the SPSS for Windows statistical software (version 11.5–

13.0, SPSS Inc., Chicago, IL, USA). A two-sided P-value of less than 0.05 was considered 

significant.  
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RESULTS 
 

 

1. Energy expenditure gene polymorphisms and risk of childhood obesity 
 

The anthropometric characteristics of the normal weight, and overweight or obese children included 

in this study are reported in Table 1.1. The mean ages of the groups were similar, while their indices 

of obesity were significantly different. For subsequent analyses the overweight and obese children 

were grouped together. 

 

Table 1.1. Anthropometric data of the normal weight and overweight or obese children  

 

 Normal weight 

n=637 

(253 males) 

Overweight 

n= 205 

(87 males) 

Obese 

n= 504 

(287 males) 

Overweight/obese 

n=709 

(374 males) 

Age (y) 13.4 ± 2.3 13.6 ± 2.3 13.1 ± 2.6 13.2 ± 2.6 

Weight (kg) 48.6 ± 11.2 64.8 ± 12.6** 81.3 ± 21.9*** 76.5 ± 21.0* 

Height (cm) 159.7 ± 11.8 160.3 ± 11.3 158.7 ± 13.8 159.1 ± 13.2 

BMI (kg/m2) 18.8 ± 2.4 25.0 ± 2.0** 31.7 ± 4.7*** 29.7 ± 5.1* 

RBW (%) 100.3 ± 10.6 133.8 ± 10.9** 171.8 ± 21.9*** 160.8 ± 25.9* 

RBMI (%) 96.5 ± 10.0 127.8 ± 8.0** 165.1 ± 19.8*** 154.3 ± 24.2* 

WHR 0.77 ± 0.05  0.82 ± 0.07** 0.87 ± 0.06*** 0.85 ± 0.07* 

Data are mean ± SD. 

* p<0.001 vs. normal weight (unpaired Students’ t-test). 

** p<0.001 vs. normal weight (ANOVA, Bonferroni post hoc test). 

*** p<0.001 vs. overweight (ANOVA, Bonferroni post hoc test).  

BMI – body mass index; RBW – relative body weight; RBMI – relative BMI; WHR – waist to hip 

ratio.   

 

The genotype distributions and minor allele frequencies for the examined gene polymorphisms 

among the overweight or obese and control children are presented in Table 1.2. The allelic 

distributions were in Hardy Weinberg equilibrium for all of the variants investigated. 
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Table 1.2. Genotype distributions and minor allele frequencies of the examined gene 

polymorphisms in overweight or obese (ov/obese) and control children. 

 

ADRB3 Trp64Arg (n=1337) Control (n=634) Ov/obese (n=703) p* 

Trp64Trp 547 (86.3 %) 598 (85.1%)  

0.80 Trp64Arg 85 (13.4 %) 102 (14.5%) 

Arg64Arg 2 (0.3 %) 3 (0.4%) 

Arg allele frequency 0.07 0.08 0.75 

UCP-1 –3826 A/G  (n=1346) Control (n=637)  Ov/obese (n=709)  p* 

A/A  347 (54.5 %) 365 (51.5 %)  

0.44 A/G  245 (38.5 %) 284 (40.1 %) 

G/G  45 (7.1 %) 60 (8.5 %) 

G allele frequency 0.26 0.28 0.20 

UCP-2 –866 G/A (n=1346) Control (n=637)  Ov/obese (n=709)  p* 

G/G  234 (36.7 %) 302 (42.6 %)  

0.07 G/A  303 (47.6 %) 314 (44.3 %) 

A/A  100 (15.7 %) 93 (13.1 %) 

A allele frequency 0.39 0.35 0.024 

UCP-2 e8 del/ins (n=1346) Control (n=637) Ov/obese (n=709) p* 

del/del 340 (53.4 %) 330 (46.5 %)  

0.041 del/ins 248 (38.9 %) 313 (44.1 %) 

ins/ins 49 (7.7 %) 66 (9.3 %) 

ins allele frequency 0.27 0.31 0.016 

UCP-3 –55 C/T (n=1245) Control (n=567) Ov/obese (n=678) p* 

C/C 316 (55.7 %) 410 (60.5 %)  

0.24 C/T 213 (37.6 %) 229 (33.8 %) 

T/T 38 (6.7 %) 39 (5.8 %) 

T allele frequency 0.25 0.23 0.10 

PPARG2 Pro12Ala (n= 1313) Control (n=637) Ov/obese (n=676) p* 

Pro/Pro 484 (76.0 %) 490 (72.5 %)  

0.32 

 

Pro/Ala 144 (22.6 %) 177 (26.2 %) 

Ala/Ala 9 (1.4 %) 9 (1.3 %) 

Ala allele  frequency 0.13 0.14 0.20 

Data are n (%).  

* p value in chi-square test. 

ADRB3 – β3-adrenoreceptor; UCP – uncoupling protein; e8 – exon 8; PPARG2 – peroxisome 

proliferator-activated receptor-γ2. 
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The genotype distributions and allele frequencies for the Trp64Arg polymorphism of ADRB3, the –

3826 A/G polymorphism of UCP-1, the –55 C/T polymorphism of UCP-3 and the Pro12Ala 

polymorphism of PPARG2 did not significantly differ between the study groups. There were 

significant differences, however between the cases and controls with regard to the genotype 

distributions and minor allele frequencies of the examined UCP-2 polymorphisms. The variant A 

allele of the –866 G/A UCP-2 polymorphism was significantly more frequent among the normal 

weight children compared with the overweight/obese (0.39 vs. 0.35; p=0.024), and the G/A and 

A/A genotypes were more prevalent among controls compared with the overweight/obese group, 

although chi-square analysis of the genotype distribution for this polymorphism did not show 

statistical significance. The variant ins allele of the UCP-2 exon 8 del/ins polymorphism was 

significantly more common among the overweight/obese children compared with controls (0.31 vs. 

0.27; p=0.016), and the genotype distribution for this polymorphism also showed a significant 

difference with the del/ins and ins/ins genotypes more prevalent among the overweight/obese 

compared with normal weight controls. 

Obesity risk associated with the examined gene polymorphisms was estimated with univariate and 

multivariate logistic regression analyses, adjusted for age, height and gender (Table 1.3). Univariate 

analyses showed that the UCP-2 –866 G/A polymorphism and the UCP-2 exon 8 del/ins 

polymorphism slightly, but significantly influenced the risk of overweight/obesity. The presence of 

the UCP-2 –866 A allele was associated with an odds ratio (OR) for obesity of 0.84 (95% 

confidence interval [CI]: 0.71–0.97; p=0.024), with homozygotes for the A allele having a reduced 

risk of overweight/obesity (OR: 0.72, 95% CI: 0.52–1.00; p=0.049). The OR for obesity related to 

the presence of the UCP-2 exon 8 ins allele was 1.23 (95% CI: 1.04–1.45; p=0.016), and 

heterozygotes for the ins allele had a higher risk for overweight/obesity (OR: 1.30, 1.04–1.63; 

p=0.022).    
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Table 1.3. Odds ratios for the isolated (univariate, i. e., each gene polymorphism considered 

separately) and combined (multivariate, including all gene polymorphisms) effects of allelic 

variants and genotypes of the examined gene polymorphisms on obesity risk 

 

Gene polymorphism 
Univariate Multivariate 

OR 95% CI p* OR 95% CI p* 

ADRB3 

Trp64Arg 

Trp/Trp 

Trp/Arg + Arg/Arg** 

Arg allele 

1 

1.10 

1.03 

 

0.81–1.50 

0.88–1.20 

 

0.53 

0.75 

1 

1.20 

1.00 

 

0.86–1.69 

0.82–1.23 

 

0.29 

0.99 

 

UCP-1 

–3826 A/G 

AA 

AG 

GG 

G allele 

1 

1.10 

1.27 

1.12 

 

0.88–1.38 

0.84–1.92 

0.94–1.32 

 

0.40 

0.26 

0.20 

1 

1.09 

1.31 

1.10 

 

0.86–1.39 

0.82–2.09 

0.90–1.33 

 

0.47 

0.26 

0.38 

 

UCP-2 

–866 G/A 

GG 

GA 

AA 

A allele 

1 

0.80 

0.72 

0.84 

 

0.64–1.01 

0.52–1.00 

0.71–0.97 

 

0.06 

0.049 

0.024 

1 

0.69 

0.50 

0.69 

 

0.52–0.92 

0.32–0.79 

0.55–0.86 

 

0.013 

0.003 

0.001 

UCP-2 

exon 8 

del/ins 

del/del 

del/ins 

ins/ins 

ins allele 

1 

1.30 

1.39 

1.23 

 

1.04–1.63 

0.93–2.07 

1.04–1.45 

 

0.022 

0.08 

0.016 

1 

1.66 

2.12 

1.51 

 

1.24–2.23 

1.23–3.63 

1.20–1.91 

 

0.001 

0.006 

0.001 

 

UCP-3 

–55 C/T 

CC 

CT 

TT 

T allele 

1 

0.83 

0.79 

0.86 

 

0.65–1.05 

0.49–1.27 

0.71–1.03 

 

0.12 

0.33 

0.09 

1 

1.08 

1.02 

0.94 

 

0.82–1.41 

0.61–1.70 

0.76–1.17 

 

0.59 

0.94 

0.59 

 

PPARG2 

Pro12Ala 

Pro/Pro 

Pro/Ala 

Ala/Ala 

Ala allele 

1 

1.21 

0.99 

1.16 

 

0.94–1.56 

0.39–2.51 

0.93–1.45 

 

0.13 

0.98 

0.20 

1 

1.17 

0.97 

1.13 

 

0.89–1.53 

0.33–2.81 

0.88–1.46 

 

0.27 

0.95 

0.35 

 

* Wald-χ2 statistics. P-values were adjusted on age, height, and gender. 

** Grouped together because of the small number of Arg/Arg homozygotes. 

OR – odds ratio; CI – confidence interval. Other abbreviations as in table 1.2. 
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Considering all gene polymorphisms as independent factors in one model (Table 1.3 multivariate) 

did not substantially modify results as compared to the univariate estimates; however, for both 

UCP-2 polymorphisms the ORs for overweight/obesity corresponding to the minor alleles and 

heterozygote and homozygote genotypes were more pronounced and the p-values decreased. Thus, 

the UCP-2 –866 A variant was associated with an OR for obesity of 0.69 (95% CI: 0.55–0.86; 

p=0.001), with both heterozygotes and homozygotes for the A allele showing significantly lower 

risk for overweight/obesity: OR=0.69 (95% CI: 0.52–0.92; p=0.013) and OR=0.50 (95% CI: 0.32–

0.79; p=0.003), respectively, compared with G/G homozygotes. The ins allele for the UCP-2 del/ins 

polymorphism was associated with an OR for obesity of 1.51 (95% CI: 1.20–1.91; p=0.001), and 

heterozygosity and homozygosity for the ins allele were associated with significantly higher risk of 

overweight/obesity: OR=1.66 (95% CI: 1.24–2.23; p=0.001) and OR=2.12 (95% CI: 1.23–3.63; 

p=0.006), respectively, compared with the del/del genotype. The effects of these polymorphisms 

were altogether low, since the multivariate logistic regression model adjusted for age, height and 

gender and containing all examined polymorphisms accounted for only about 3.7% percent of 

variance. The search for possible effects of interaction between the examined genetic 

polymorphisms on risk of obesity was carried out with the multivariate logistic regression model for 

allele frequencies including all possible interaction terms. There were no evidence of a significant 

interaction between the different allelic variants, other than that between the two UCP-2 gene 

polymorphisms known to be in linkage disequilibrium (correlation coefficient r2=0.52; p<0.001).   

The anthropometric characteristics of the children according to genotypes of the gene 

polymorphisms found to significantly influence obesity risk are presented in Table 1.4. Measures of 

obesity decreased progressively across the three genotype groups G/G, G/A and A/A for the –866 

G/A UCP-2 polymorphism, with the A allele carriers and A/A homozygotes showing a significantly 

lower relative body weight and relative BMI compared to G/G homozygotes. Likewise, indices of 

obesity showed a progressive increase across the del/del, del/ins and ins/ins UCP-2 genotypes, with 

the ins allele carriers and ins/ins homozygotes having a significantly higher relative body weight 

and relative BMI as compared to del/del homozygotes. There were no significant differences in 

indices of obesity between the groups of children with different genotypes according to the 

examined ADRB3, UCP-1, UCP-3 and PPARG2 polymorphisms (data not shown).    
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Table 1.4. Anthropometric characteristics of the children according to the examined UCP-2 

genotypes 

 

UCP-2 –866 G/A (n=1346) 

 G/G (n=536) 

(256 males) 

G/A (n=617) 

(396 males) 

A/A (n=193) 

(75 males) 

p* A carrier 

(n=810) 

p*** 

Age (y) 13.3±2.4 13.3±2.4 13.4±2.5 0.87 13.3±2.5 0.94 

Weight (kg) 64.7±22.3 62.7±22.0 61.2±21.2 0.12 62.4±21.8 0.06 

Height (cm) 159.5±12.6 159.5±12.7 159.0±12.0 0.90 159.3±12.5 0.87 

BMI (kg/m2) 25.1±6.9 24.3±6.8 23.8±6.8 0.045 24.2±6.76 0.017 

RBW (%) 135.2±36.9 130.9±35.9 128.6±35.8** 0.048 130.3±35.9 0.021 

RBMI (%) 129.8±34.6 125.8±34.6 122.9±33.4** 0.028 125.1±34.3 0.015 

WHR 0.81±0.07 0.82±0.08 0.81±0.07 0.13 0.82±0,08 0.68 

UCP-2 exon 8 del/ins (n=1346) 

 del/del    

(n= 670) 

(332 males) 

del/ins 

(n=561) 

(255 males) 

ins/ins 

(n=115) 

(40 males) 

 

p* 

 

ins carrier 

(n=676) 

 

p*** 

Age (y) 13.3±2.4 13.3±2.5 13.4±2.5 0.95 13.3±2.5 0.98 

Weight (kg) 62.7±22.3 63.6±21.5 65.0±23.5 0.52 63.9±21.8 0.33 

Height (cm) 159.7±12.8 159.4±12.5 158.0±11.4 0.39 159.1±12.4 0.41 

BMI (kg/m2) 24.2±6.8 24.7±6.7 25.7±7.6 0.07 24.9±6.8 0.07 

RBW (%) 130.2±36.0 133.2±35.6 139.1±40.8** 0.030 134.2±36.5 0.038 

RBMI (%) 124.7±34.4 128.4±33.8 132.9±37.8** 0.048 129.2±34.5 0.037 

WHR 0.82±0.07 0.82±0.08 0.81±0.07 0.51 0.82±0.08 0.72 

* One-way ANOVA. 

** p<0.05 vs. G/G or del/del; Bonferroni post hoc test.  

*** Carrier vs. non-carrier; Students’ t-test. 

Abbreviations as in table 1.1. and 1.2.  
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Discussion 
 

In a large population of Hungarian school-aged children, we found an association between higher 

risk of overweight or obesity and the ins allele of the UCP-2 exon 8 del/ins polymorphism, as well 

as lower risk of overweight/obesity and the A allele of the UCP-2 –866 G/A polymorphism. These 

observations suggest that genomic variations in or nearby the UCP-2 gene may influence the 

susceptibility to common pediatric obesity in the Hungarian population. On the other hand, our data 

did not reveal any evidence for a significant impact of the examined polymorphisms of the ADRB3, 

UCP-1, UCP-3 and PPARG2 genes on childhood obesity incidence.  

Although the physiological role of UCP-2 is still a matter of debate, numerous studies support its 

effect on mitochondrial energy metabolism and obesity (8,38,39,147,148). Since UCP-2 is an 

uncoupler of mitochondrial oxidative phosphorylation, its decreased expression or function might 

reduce energy expenditure and thereby increase the propensity to store energy as fat. There is 

evidence, that UCP-2 expression levels correlate with BMI in humans, with reduced expression in 

adipose tissue and skeletal muscle linked to obesity (149,150), and UCP-2 mRNA levels in adipose 

tissue were positively related to resting metabolic rate (43). The –866 G/A and the 45 basepair 

del/ins polymorphisms of UCP-2 have been reported to be functional variants. Esterbauer et al. (45) 

found the –866 A variant to be related with enhanced transcriptional activity both in vivo and in 

reporter gene constructs expressed in a human adipocyte cell line, and the exon 8 45 basepair ins 

variant to be associated with reduced mRNA stability. Thus, decreased UCP-2 message linked to 

the –866 G and the exon 8 ins variant could result in decreased energy expenditure and weight gain. 

Further data supporting this notion are contradictory. Le Fur et al. (89) reported that obese children 

with the −866 G/A and A/A genotype had a modest but significant increase of resting energy 

expenditure compared with the G/G genotype. Metabolic rate was also enhanced in Pima Indians 

carrying the –866 A allele, but also in those with the ins allele for the exon 8 del/ins polymorphism 

(106). Esterbauer et al. reported (45) that the –866 A allele was associated with a lower risk of 

obesity in middle-aged Caucasian subjects, but haplotype analysis of the two UCP-2 

polymorphisms also showed that haplotypes including the -866 A and exon 8 ins alleles are more 

frequent in lean subjects. Other studies found no association between the UCP-2 –866 G/A 

polymorphism and risk of adulthood obesity (88,111). In a study of 193 obese and 170 control 

Spanish school-aged children, the individual polymorphisms of UCP-2 did not show linkage to 

obesity, but obesity was associated with a haplotype that included the –866 G and exon 8 del alleles 

(90). Schauble et al. could not demonstrate a significant influence of the –866 G/A polymorphism 

on the incidence of childhood-onset obesity among 277 extremely obese and 188 control children 
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and adolescents (107), although based on the slightly greater frequency of the G allele among the 

obese they concluded, that larger sample sizes could provide convincing evidence for a small effect 

of this polymorphism on body weight regulation in children. Among more than 700 Korean 

children, the A allele was associated with significantly decreased risk of overweight (46). Recently, 

a meta-analysis that included 12 studies with a total of 7390 cases and 9860 controls demonstrated a 

significant association between the UCP-2 –866 G allele and an increased risk of obesity among 

subjects of European descent (151) and another meta-analysis of data from 12 984 subjects also 

found the G allele to be related to obesity (152). A greater risk of developing obesity among 

individuals carrying the exon 8 45 basepair ins allele was found in Spanish and German adults 

(47,49), and an association of this polymorphism with BMI was observed in a variety of ethnic 

groups (148). Other studies, however, could not establish a relationship between the UCP-2 del/ins 

polymorphism and risk of adulthood obesity (108,109,153). In a smaller sample of children, the 

UCP-2 exon 8 ins variant was associated with childhood obesity and body composition (48). The 

two UCP-2 polymorphisms are in linkage disequilibrium (45,90) and can influence each other’s 

effects, thus in some of the above mentioned studies the promoter polymorphism could have 

camouflaged the effect of the exon 8 del/ins variation. In our study, both univariate analysis 

examining the isolated and multivariate analysis examining the combined effects of the genetic 

variants identified the –866 G and the exon 8 ins variants to be risk alleles for obesity. Multivariate 

analysis suggested an interaction between the polymorphisms that did not attenuate, but enhanced 

their effects. Discrepancies between our results and the previous studies could be related to different 

haplotype distributions in the studied populations. We remain cautious in trying to interpret our 

results in the light of the physiology of UCP-2, since the precise role of this mitochondrial carrier 

protein remains to be defined. 

The effect sizes (odds ratios) found for risk of obesity for the UCP-2 gene polymorphisms were 

moderate. In the multivariate model (adjusted for age, height and gender) identifying the UCP-2 –

866 A variant as non-risk allele and the exon 8 ins variant as risk allele for obesity, the model 

accounted for only about 3.7% of the variance in normal weight or overweight/obese status. This 

observation is in accordance with the polygenic model of common obesity, and the small effect 

sizes expected for each one of the numerous susceptibility genes (6). Possession of the –866 A 

allele was associated with a 4.7% decrease in relative BMI compared with G/G wild type 

homozygotes, and possession of the exon 8 ins allele was related to a 4.5%  increase in relative BMI 

compared with the del/del wild type homozygotes.    

The ADRB3 Trp64Arg and UCP-1 –3826 A/G polymorphisms alone or in conjunction have been 

numerously associated with obesity, diabetes mellitus and related diseases although with 

contradictory results (8,16). Our analyses revealed no single or combined effects of these 
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polymorphisms on obesity risk. Although the Trp64Arg polymorphism has been shown to be 

associated with higher risk of obesity in Japanese children (14), a recent meta-analysis suggests, 

that its role in the development of common obesity might be confined to Asian populations (154). 

Likewise, UCP-1 was recently implicated in the regulation of body weight in healthy Japanese 

children (82), but data on large Caucasian populations could not prove a major role for the UCP-1 –

3826 A/G polymorphism in the development of obesity, nor its additive effect with the ADRB3 

Trp64Arg genetic variation (104,105). The –55 T UCP-3 variant was associated with increased 

skeletal muscle expression of UCP-3 (50), and in large Caucasian populations the polymorphism 

was negatively correlated with BMI (51,155), and with lower risk of overweight among children 

(46). Controversial results suggesting an inverse relation of this polymorphism to BMI however, 

have also been published (90,156). The Ala12 allele of the PPARG2 was originally associated with 

reduced receptor activity and lower BMI (54), however in a large meta-analysis, obese Caucasian 

carriers of the Ala12 allele showed increased BMI (58). Among Spanish children the Pro12Ala 

polymorphism was associated with higher risk of obesity (60), however among German children 

and adolescents, the frequency of the polymorphism did not differ between lean and obese (157). 

We do not conclude that the above gene polymorphisms previously strongly indicated as factors in 

the genetic background of common obesity have no effect in Hungarian children. Possible 

explanations for the lack of associations to risk of overweight/obesity in our study population with 

regard to the examined polymorphisms of ADRB3, UCP-1, UCP-3 and PPARG2 may be related to 

ethnicity, interactions with other genes, uncontrolled environmental factors such as diet and 

physical activity, and also to the lack of sufficient statistical power. Since genetic variants with low 

minor allele frequencies especially require great sample sizes to identify association between the 

variant and obesity (6), our study may have been underpowered with regard to the ADRB3 and 

PPARG2 polymorphisms.     

 

Observations and practical consequences 

 
Our data provide evidence that common polymorphisms of the UCP-2 gene are genetic risk factors 

for overweight/obesity among Hungarian school-aged children.  

Numerous studies have investigated the effects of obesity candidate genes associated with energy 

expenditure on the risk of developing overweight/obesity in adults, but only few studies have been 

conducted on large numbers of children. To the best of our knowledge, the present results provide 

the largest data on obesity candidate gene analysis among Hungarian children. Besides providing 

basic, nation-specific data on the investigated polymorphisms for the Hungarian pediatric 

population, we also have presented data valuable for future large-scale data integration (meta-
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analysis), which is a key factor contributing to the success of candidate obesity  gene studies to 

identify gene-disease associations with conclusive evidence.  

Knowledge of the molecular background for childhood obesity is important from scientific, 

prognostic and prophylactic points of view. With the increasing prevalence of obesity, early 

detection of individuals at risk for becoming obese would be valuable in preventing childhood as 

well as adult obesity and obesity-related disorders. In the future our knowledge of the genetic 

factors that influence the development of obesity will also guide therapeutic decisions. 
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2. Effects of energy expenditure gene polymorphisms on obesity-related traits and 

metabolic complications of obesity in children 
 

The anthropometric characteristics and metabolic parameters of this study population are reported 

in Table 2.1. The minor allele frequencies and genotype distributions for the polymorphisms studied 

are described in Table 2.2. The allelic distributions were in Hardy-Weinberg equilibrium for all of 

the variants investigated. 

Carriers of the ADRB3 Arg64 allele (n=81) had a significantly higher relative body weight and 

relative BMI than the wild type homozygotes (Table 2.3.). There were no statistically significant 

differences in metabolic parameters between the ADRB3 genotype groups, although the two 

homozygote Arg allele carriers had a considerably lower mean adjusted BMR (1853.5 kcal) than 

the rest of the population (1991.3 kcal).  
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Table 2.1. Anthropometric characteristics and metabolic parameters of the children included in the 

study  

Anthropometric and metabolic parameters* n=528 (297 boys) 

Age (y) 13.2 ± 2.6 

Weight (kg) 78.7 ± 20.8 

Height (cm) 159.1 ± 13.8 

BMI (kg/m2) 30.6 ± 4.6 

Relative body weight (%) 167.9 ± 28.9 

Relative BMI (%) 158.8 ± 21.2 

Waist-to-hip ratio 0.87 ± 0.06 

Fasting glucose (mmol/L) 4.8 ± 0.7 

OGTT 2-hour glucose (mmol/L) 6.7 ± 1.4 

Fasting insulin (µU/mL) 29.7 ± 23.6 

OGTT 2-hour insulin (µU/mL) 163.2 ± 107.0 

Impaired glucose regulation 116 (22.0) 

Diabetes mellitus 30 (5.7) 

Hyperinsulinemia 339 (64.2) 

HOMA 6.4 ± 5.3 

WBISI 38.5 ± 23.5 

Total cholesterol (mmol/L) 4.4 ± 0.9 

Triglycerides (mmol/L) 1.4 ± 0.7 

HDL-cholesterol (mmol/L) 1.2 ± 0.3 

Dyslipidemia  199 (37.8) 

Hypercholesterolemia 89 (16.9) 

Systolic/diastolic blood pressure (mmHg) 125.3 ±11.7/72.2 ± 8.9 

Basic metabolic rate (kcal)† 1993.6 ± 424.3 

Respiratory quotient† 0.81 ± 0.07 

 

Data are n (percentile) or mean ± SD. 

*Definitions used for the obesity-related metabolic conditions are described under methods.  

† adjusted for age, gender, and fat free body mass. 

BMI – body mass index; OGTT – oral glucose tolerance test; HOMA – homeostasis model 

assessment index; WBISI: whole body insulin sensitivity index.    
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Table 2.2. Minor allele frequencies and genotype distributions for the examined polymorphisms 

 

Polymorphism 
Minor allele 

frequency 

Wild type 

homozygote 
Heterozygote 

Variant 

homozygote 

ADRB3 Trp64Arg (n= 522) 0.08 441 (84.5%) 79 (15.1%) 2 (0.4%) 

UCP-1 –3826 A/G (n=528) 0.29 270 (51.1%) 214 (40.5%) 44 (8.3%) 

UCP-2 –866 G/A (n=528) 0.34 230 (43.6%) 234 (44.3%) 64 (12.1%) 

UCP-2 e8 del/ins (n=528) 0.32 244 (46.2%) 233 (44.1%) 51 (9.7%) 

UCP-3 –55 C/T (n=515) 0.23 306 (59.4%) 178 (34.6%) 31 (6.0%) 

PPARG2 Pro12Ala (n=508) 0.14 368 (74.2%) 122 (24.6%) 6 (1.2%) 

 

ADRB3 – β3-adrenoreceptor; UCP – uncoupling protein; e8 del/ins – exon 8 deletion/insertion; 

PPARG2 – peroxisome proliferator-activated receptor-γ2. 

 

 

Table 2.3. Anthropometric parameters according to the presence of the ADRB3 Trp64Arg 

polymorphism 

 

Parameters 
Trp64Trp 

(n=441) 

Trp64Arg/Arg64Arg* 

(n=81) 
p 

Weight (kg) 78.1 ± 20.5 82.2 ± 22.2 ns 

Height (cm) 159.0 ± 13.6 160.4 ± 14.6 ns 

BMI (kg/m2) 30.2 ± 4.5 31.4 ± 4.7 ns 

Relative body weight (%) 166.4 ± 29.1 175.4 ± 27.1 0.01 

Relative BMI (%) 157.5 ± 21.0 164.0 ± 21.1 0.01 

Waist-to-hip ratio 0.86 ± 0.06 0.87 ± 0.06 ns 

Data are mean ± SD. 

*Grouped together because of the small number of Arg/Arg homozygotes 

BMI – body mass index; ns – not significant. 

 

The ins allele of the UCP-2 exon 8 del/ins polymorphism was associated with worse indices of 

obesity, as well as higher insulin levels during OGTT, insulin resistance, dyslipidemia and a lower 

adjusted BMR and higher RQ (Table 2.4.). Adjusting the insulin levels and related indices for fat 

free body mass did not significantly change the results.   
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Table 2.4.  Anthropometric and metabolic parameters according to the UCP-2 exon 8 del/ins 

genotypes 

Parameters § 
del/del 

(n=244) 

del/ins 

(n=233) 

ins/ins 

(n=51) 
p* 

ins carriers 

(n=284) 
p** 

Weight (kg) 77.5±21.3 79.5±19.9 81.1±22.3 ns 79.8±20.3 ns 

Height (cm) 159.4±14.2 159.2±13.7 157.17±12.8 ns 158.9±13.5 ns 

BMI (kg/m2) 29.9±4.5 30.9±4.4 32.3±5.23 0.001 31.1±4.6 0.002 

RBW (%) 164.1±29.71 170.1±26.8 176.1±31.83 0.008 171.2±27.8 0.005 

RBMI (%) 154.8±21.11 160.9±20.2 167.3±22.83 <0.001 162.0±20.8 <0.001 

F glu (mmol/L)† 4.8±0.7 4.7±0.7 4.8±0.9 ns 4.8±0.8 ns 

2h glu (mmol/L)† 6.6±1.4 6.7±1.5 6.6±1.4 ns 6.7±1.4 ns 

F ins (µU/mL)† 26.7±17.6 30.1±19.32 42.8±49.03 <0.001 32.4±27.5 0.004 

2h ins (µU/mL)† 147.0±108.5 167.1±102.22 223.1±99.53 <0.001 177.1±101.8 0.001 

IGR 51 (20.9) 53 (22.7) 12 (23.5) ns 65 (22.9) ns 

DM 18 (7.4) 10 (4.3) 2 (3.9) ns 12 (4.2) ns 

Hyperinsulinemia 133 (54.5)1 162 (69.5)2 44 (86.3)3 <0.001 206 (72.5) <0.001 

HOMA† 5.8±4.3 6.4±4.52 9.2±10.33 <0.001 6.9±6.0 0.01 

WBISI† 41.1±22.4 38.2±24.92 27.3±18.33 0.001 36.3±24.2 0.02 

Chol (mmol/L)† 4.4±0.8 4.5±0.9 4.5±1.0 ns 4.5±0.9 ns 

TG (mmol/L)† 1.4±0.6 1.5±0.7 1.6±0.8 0.05 1.5±0.7 0.04 

HDL-chol 

(mmol/L)† 
1.2±0.3 1.2±0.3 1.1±0.3 ns 1.2±0.3 ns 

Dyslipidemia 76 (31.3)1 96 (41.2) 27 (59.2)3 0.005 123 (43.3) 0.005 

Hyperchol 34 (14.0) 42 (18.0) 13 (25.5) ns 55 (19.4) ns 

BMR (kcal)‡ 2063.2±463.1 1937.0±390.7 1933.5±367.2 0.001 1936.3±382.5 0.001 

RQ‡ 0.800±0.07 0.813±0,07 0.824±0.08 ns 0.815±0.07 0.027 

Data are mean ± SD or number (percentage). 

§ Definitions used for the obesity-related metabolic conditions are described under methods.  

† adjusted for age and gender; ‡ adjusted for age, gender and fat free mass. 

* for comparison of the three genotype groups; ANOVA for continuous variables and chi-squared 

test for categorical variables; across all genotypes. 

** del/del vs. ins allele carriers; unpaired Students’ t-test for continuous variables and chi-square 

test for categorical variables. 
1 p< 0.05 for del/del vs. del/ins (Bonferroni post hoc test or chi-squared test) 
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2 p< 0.05 for del/ins vs. ins/ins (Bonferroni post hoc test or chi-squared test) 
3 p< 0.05 for del/del vs. ins/ins (Bonferroni post hoc test or chi-squared test) 

RBW – relative body weight; RBMI – relative BMI; F – fasting; 2h – 2-hour (OGTT); glu – 

glucose; ins – insulin; IGR – impaired glucose regulation; DM – diabetes mellitus; chol – 

cholesterol; TG – triglycerides; hyperchol – hypercholesterolemia; BMR – basic metabolic rate; RQ 

– respiratory quotient; ns – not significant. Other abbreviations as in Table 2.1. 

 

Children with the UCP-3 –55 T/T genotype had a significantly lower adjusted BMR (1808.1±295.8 

kcal) than either those with the C/C (1991.7±431.5 kcal, p=0.04) or the C/T (2012.9±418.4; p=0.02) 

genotype. The T/T genotype group had a higher relative body weight (168.7±33.8) and relative 

BMI (158.8±23.3) when compared with the C/T genotype group (164.1±27.1 and 155.3±18.9, 

respectively), but similar when compared to the C/C genotype (169.7±29.3 and 160.1±21.8, 

respectively), and the differences were not statistically significant. There were no meaningful 

differences in the other anthropometric and metabolic parameters according to the presence of the 

UCP-3 –55 C/T polymorphism. 

The UCP-1 –3826 A/G, UCP-2 –866 G/A and PPARG2 Pro12Ala polymorphisms were not 

associated with significant differences in measures of obesity, adjusted metabolic rate, or obesity-

related metabolic parameters in this study population.    

 

 

 

Discussion 
 

In our group of overweight/obese, school-aged Hungarian children the Tpr64Arg polymorphism of 

the ADRB3 gene and the exon 8 45 basepair del/ins polymorphism of the UCP-2 gene were 

associated with severity of obesity. The UCP-2 exon 8 del/ins and the UCP-3 –55 C/T 

polymorphisms influenced BMR and the UCP-2 exon 8 ins allele was also associated with obesity-

related derangements of carbohydrate and lipid metabolism. We could not demonstrate any effect of 

the UCP-1 –3826 A/G, the UCP-2 –866 G/A or the PPARG2 Pro12Ala polymorphisms on BMR, or 

the severity or metabolic complications of pediatric obesity in this study group.    

The Trp64Arg ADRB3 variant was one of the first polymorphisms for which association with 

obesity was reported, but although since the first reports in 1995 more than 100 studies have been 

published on the relation between this polymorphism and obesity-related traits, results are still 

inconsistent, and there are relatively few data on children. In pediatric studies, the Arg64 allele was 

associated with obesity, adiposity, features of the metabolic syndrome and effectiveness of dietary 
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intervention is Asian populations (14,73–75), but in studies of Caucasian children no associations 

with obesity-related traits were found (60,103,158). Recently, a large meta-analysis that combined 

data of 44 833 adults suggested, that the polymorphisms’ effect on the risk of obesity may be 

confined to the East Asian populations (154). The minor allele frequency of the Trp64Arg ADRB3 

polymorphism is highly heterogeneous among different populations and has been found to be about 

twice as high in Asian (0.18) than in Caucasian populations (0.075) (154), making it more difficult 

to demonstrate its effect in studies of Caucasian subjects. The minor allele frequency of the 

polymorphism in our study group was similar to that found among other European children (158), 

and lower than that reported among Asian children (14), and our study group was considerably 

larger than those of previous studies of Caucasian children (60,103). Our results are in concert with 

previous observations among young healthy Danes suggesting that the Trp64Arg ADRB3 mutation 

is associated with greater weight gain during childhood and adolescence (71). In our previous study 

including 295 obese children we also reported the Trp64Arg ADRB3 polymorphism to be 

associated with increased adiposity (159), however in the above analysis of a larger population of 

school-aged children (n=1337) the Arg64 allelic frequency was similar between the normal weight 

and obese subjects. These observations together suggest that the effect of this gene variant may be 

confined to the severity and not the risk of obesity. The underlying mechanism may involve 

changes induced by obesity (obesity-conditioned effect), for example down-regulation of the 

ADRB3 gene in enlarged adipose cells (160), which together with an already impaired receptor 

function could promote further obesity, establishing a vicious cycle.  

The two homozygote carriers of the Trp64Arg polymorphism in our study population had a 

considerably lower BMR than the rest of the population. Other investigators have reported that 

influences of the Trp64Arg polymorphism on BMR and metabolic complications of obesity were 

only apparent in homozygote carriers of the Arg64 allele (13,71,161) as well, but because of the 

small number of homozygous subjects identified this observation must be interpreted with caution 

and needs further investigation.   

We could not demonstrate any significant influence of the Trp64Arg mutation on blood pressure or 

metabolic parameters in our group of obese children. Results concerning an independent effect of 

this polymorphism on the development of the features of the metabolic syndrome are contradictory 

in adults and our results are in concert with previous studies of European children (103). 

Connection of the Trp64Arg mutation with features of the metabolic syndrome was demonstrated in 

Asian study participants (73,74), perhaps because of the higher frequency of the polymorphism in 

Asian populations, which may have caused our study to be underpowered in this respect.   

The regulation and function of UCP-2 seems to be tissue-specific, and among others, UCP-2 has 

been proposed to play a role in cellular energy balance, obesity, BMR, fuel substrate partitioning, 
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insulin secretion and action, and lipid metabolism and storage (33,35,36,41,162). The UCP-2 exon 

8 45 basepair ins variant was previously found to be associated with reduced mRNA stability (45) 

resulting in decreased UCP-2 message which could result in decreased energy expenditure and 

weight gain. In accordance with this hypothesis of an obesogenic effect for the UCP-2 exon 8 

del/ins polymorphism, carriers of the ins allele had a lower adjusted BMR and higher degree of 

overweight in our group of obese children. BMR accounts for 60–80% of daily energy expenditure, 

has genetic determinants and reduced BMR is a known risk factor for weight gain (63). In the above 

analysis of 1346 normal weight and obese school-aged children the exon 8 ins allele was also 

associated with higher risk of obesity. In agreement with our findings an association of this 

polymorphism with BMI was observed in a variety of ethnic groups (148). In a smaller sample of 

children, the ins variant was associated with childhood obesity and body composition (48), however 

in that study no effect on BMR was found. In another pediatric study lack of an association between 

the ins allele and childhood obesity or BMR was demonstrated (163); however that study included a 

considerably smaller number of children than ours. In addition to an obesogenic effect, our data also 

show an association between the UCP-2 ins allele and increased insulin levels, decreased insulin 

sensitivity, higher triglyceride levels and a higher prevalence of dyslipidemia. These metabolic 

derangements are common consequences of obesity, however adjusting the insulin levels for fat free 

body mass did not change our results, suggesting a direct influence of the UCP-2 polymorphism on 

these metabolic parameters. Pathogenesis of overweight-associated metabolic conditions involves a 

variety of genetic determinants, and UCP-2 with a still debated biological function has been 

implicated in the processes presumed to underlie the development of the features of the metabolic 

syndrome (33,162). The higher insulin levels in carriers of the ins allele is also in accordance with 

previous studies demonstrating, that UCP-2 expressed in islet beta-cells influences glucose-

stimulated insulin secretion in a way, that inhibition of UCP-2 promotes insulin secretion (36). The 

relationship between functional polymorphisms of the UCP-2 gene associated with decreased UCP-

2 activity and insulin levels is however, also contradictory, and in a previous study the ins allele 

was associated with a lower risk of high fasting insulin levels in a group of obese children (90). The 

mildly increased triglyceride levels and higher frequency of dyslipidemia among children carrying 

the ins allele might be the consequence of the higher degree of obesity associated with the ins 

variant, or support a previously suggested role for the UCP-2 gene in the regulation of fat 

metabolism directly or indirectly via effects on insulin secretion (162). The higher ratio of 

carbohydrate to fat oxidation as evidenced by a higher RQ in carriers of the UCP-2 ins allele is also 

in accordance with the previously suggested role of UCP-2 as a regulator of intracellular fuel 

partitioning, with lower UCP-2 activity adversely affecting the availability of fatty acids for 
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oxidation (162). Increased RQ and low fat oxidation are also known to be risk factors for weight 

gain and development of obesity (62). 

UCP-3 is predominantly expressed in human skeletal muscle where its expression was negatively 

correlated with BMI and positively with metabolic rate during sleep (42). In our group of obese 

children the –55 T/T genotype was associated with significantly lower adjusted BMR, than either 

the C/T or C/C genotypes. If UCP-3 does increase metabolic rate in humans, then this observation 

is contradictory to the initial report of the T allele being related with increased skeletal muscle 

expression of UCP-3 among 18 male, non-diabetic Pima Indians (50), and also with the studies 

associating the T variant with lower BMI among Caucasian adults (51,155), and with lower risk of 

overweight in Korean children (46). Studies demonstrating an inverse relation of the –55 C/T 

polymorphism to risk of obesity and related traits and also those reporting lack of association, 

however, have also been published (90,93,110,151,156), leaving the pathophysiological role of this 

UCP-3 variant uncertain. We cannot support the effect of the –55 C/T polymorphism on BMR we 

detected with consistent genotype-associated differences in degree of obesity. Although children 

with the T/T genotype had a higher relative body weight and BMI than those with the C/T genotype 

this difference did not reach statistical significance and measures of obesity were similar between 

the C/C and T/T genotypes. This, however, does not rule out a possible effect of the UCP-3 –55 C/T 

polymorphism on BMR, since intermediary phenotypes such as BMR or RQ are less likely than 

BMI to be influenced by extrinsic factors unrelated to obesity and may therefore provide more 

statistical power. Possible explanations for the great variability of results regarding the existence or 

direction of the impact of the UCP-3 –55 C/T polymorphism on human obesity and metabolic rate 

includes different effects of the polymorphism in different populations due to genetic or 

environmental interactions, and also the possibility that it is not a functional variant and the 

contrasting effects detected at the –55 C/T polymorphism reflect varying degrees of linkage 

disequilibrium with functional variants in the nearby genomic regions. UCP-2 and UCP-3 are 

neighboring genes on chromosome 11q13 and this region was previously linked to resting 

metabolic rate in humans (41). The UCP-2 exon 8 del/ins and UCP-3 –55 C/T, and also the UCP-2 

–866 G/A polymorphisms are in considerable linkage disequilibrium and have all been implicated 

in human BMR. We, however, did not find significant correlations between the UCP-2 and UCP-3 

genotypes that we analyzed (data not shown), and most importantly the UCP-2 ins allele was not 

correlated with the UCP-3 –55 T allele which could have explained their similar effects on BMR. 

Thus we think that the influences of the UCP-2 del/ins and UCP-3 –55 C/T polymorphisms we 

observed are independent of each other and of the UCP-2 –866 G/A polymorphism, but we cannot 

exclude other possible causative variants in the UCP-2–UCP-3 cluster nearby.   
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No associations of the UCP-1 –3826 A/G, UCP-2 –866 G/A, or PPARG2 Pro12Ala polymorphisms 

with obesity-related traits were evident from the present data. Possible explanations for the lack of 

associations may be related to ethnicity, interactions with other genes, uncontrolled environmental 

factors such as diet and physical activity, and also to the lack of sufficient statistical power.  

 

Observations and practical consequences 

 
These data provide support for the roles of the Trp64Arg ADRB3 polymorphism and the exon 8 45 

basepair del/ins UCP-2 polymorphism as genetic determinants of the severity or the metabolic 

complications of pediatric obesity. Further studies in pediatric populations are needed to clarify the 

role of the UCP-3 –55 C/T polymorphism in childhood obesity.  

The current epidemic of obesity represents a major public health concern given the strong 

association of adiposity with cardiovascular, metabolic, and other comorbidities. Understanding the 

genetic parameters that contribute to the development and progression of obesity and its 

complications may lead to earlier identification of subjects at risk of being affected by the harmful 

consequences of obesity, offering the opportunity to prevent or delay the onset of disease through 

appropriate intervention. 
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3. Association of the UCP-2 exon 8 del/ins polymorphism with obesity-related liver 

injury 
 

Characteristics of the children participating in this study are presented in Table 3.1. Of the features 

of the metabolic syndrome, IGR was detected in 25.0% (n=63), hyperinsulinemia in 74.6% 

(n=188), dyslipidemia in 33.7% (n=85), and hypercholesterolemia in 19.4% (n=49) of the 

overweight/obese children. An elevated serum aminotransferase level was present in 25.8% (n=66) 

of the subjects. The liver enzyme elevations were usually mild to moderate, between 2 to 3 times 

the upper limit of the normal range. ALT levels exceeded AST levels in most cases.  
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Table 3.1 Clinical and biochemical characteristics of the study population and of the UCP-2 exon 8 

del/ins polymorphism genotype groups 

 

Variable§ 

Total 

population 

n=252 

UCP-2 e8 

del/del 

n=126 (50%) 

UCP-2 e8  

del/ins 

n=103 (40.9%) 

UCP-2 e8  

ins/ins 

n=23 (9.1%) 

p * 

Age (y) 12.8±2.7 12.7±2.7 12.9±2.6 12.7±2.7 ns 

Weight (kg) 80.2±21.6 80.1±22.4 79.8±20.3 82.2±21.6 ns 

Height (cm) 158.9±12.9 158.1±12.3 159.8±13.0 160.0±16.0 ns 

BMI (kg/m2) 31.2±4.9 31.5±5.2 30.7±4.4 31.7±4.8 ns 

RBW (%) 168.7±22.1 171.1±24.2 165.0±18.4 173.4±24.8 ns  

WHR 0.87±0.06 0.88±0.06 0.87±0.05 0.85±0.07 ns 

F glu (mmol/L) 5.0 [4.7–5.3] 5.0 [4.7–5.3] 5.1 [4.7–5.3] 5.0 [4.7–5.5] ns 

2h glu (mmol/L) 6.7 [5.9–7.4] 6.6 [5.8–7.4] 6.8 [5.9–7.4] 6.9 [6.0–7.2] ns 

F ins (µU/mL) 28 [20–40] 28 [20–38] 26 [20–39] 35 [27–51]** 0.05 

2h ins (µU/mL) 132 [94–250] 124 [93–230] 134 [92–275] 251 [129–326]** 0.02 

HOMA 6.1 [4.6–8.7] 6.1 [4.4–8.4] 5.9 [4.5–9.5] 7.6 [6.0–11.3]** 0.04 

WBISI 
27.9  

[19.1–39.1] 

28.7  

[19.5–40.7] 
28.6 [20.1–40.2] 

20.6 

 [14.4–26.3]** 
0.02 

Chol (mmol/L) 4.4 [4.0–5.0] 4.4 [4.0–5.1] 4.5 [4.0–5.0] 4.0 [3.3–4.6] ns  

TG (mmol/L) 1.2 [0.9–1.7] 1.2 [0.9–1.7] 1.2 [0.8–1.7] 1.3 [1.0–1.5] ns 

HDL-chol 

(mmol/L) 
1.1 [1.0–1.3] 1.2 [1.0–1.3] 1.1 [1.0–1.3] 1.1 [1.0–1.2] ns 

ALT (U/L) 34 [21–43] 37 [24–49] 28 [20–35]† 24 [17–34]† 0.003 

AST (U/L) 32 [20–36] 35 [25–41] 27 [22–33]† 25 [20–29]† 0.011 

Elevated ALT 

or AST 
65 (25.8) 44 (34.9) 19 (18.4)† 2 (8.7)† 0.003 

Elevated ALT  60 (23.8) 41 (32.5) 17 (16.5)† 2 (8.7)† 0.004 

Elevated ALT 

and AST 
18 (7.1%) 15 (11.9) 3 (2.9)‡ 0 (0) 0.013 

Data are mean ± SD, median [interquartile range] or number (percentage). 

§ Definitions used for the obesity-related metabolic conditions are described under methods.  

* for comparison of the three genotype groups; ANOVA or Kruskall-Wallis test for continuous 

variables, as appropriate; chi-squared test for categorical variables; across all genotypes. 
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** p<0.05 for del/del vs. ins/ins and del/ins vs. ins/ins (Mann-Whitney U test).  

† p<0.05 for del/del vs. del/ins and del/del vs. ins/ins (Mann-Whitney U test or chi-square 

test/Fisher’s exact test).  

‡ p<0.05 for del/del vs. del/ins (chi-square test). 

UCP-2 – uncoupling protein-2; e8 – exon; 8; del/ins – deletion/insertion; BMI – body mass index; 

RBW – relative body weight; WHR – waist to hip ratio; F – fasting; 2h – 2-hour (OGTT); glu – 

glucose; ins – insulin; HOMA – homeostasis model assessment; WBISI – whole body insulin 

sensitivity index; chol – cholesterol; TG – triglycerides; HDL – high-density lipoprotein; ALT – 

alanine aminotransferase; AST – aspartate aminotransferase; ns – not significant. 

 

Of the study participants 148 (58.7%) were boys and the genders were well matched for age and 

BMI. Compared with the boys, girls had a significantly lower WHR (0.84±0.05 vs. 0.90±0.05; 

p<0.001), higher fasting insulin level (35 [27–46] vs. 27[19–36] µU/mL; p=0.03), higher 2-hour 

insulin level during OGTT (174 [110–282] vs. 120 [85–235] µU/mL; p=0.004), and tended to be 

more insulin resistant (HOMA: 7.0 [5.4–9.8] vs. 5.9 [4.2–8.4]; p=0.07; WBISI: 24.4 [18.0–34.1] vs. 

33.1 [20.4–41.2]; p=0.05). Compared with the girls, aminotransferase levels were significantly 

higher among the boys (ALT: 35 [22–47] vs. 24 [19–28] U/L; p<0.001, AST: 31 [25–40] vs. 25 

[21–30] U/L; p<0.001), and elevated aminotransferase levels were significantly more frequent 

(elevated ALT or AST: 34.5% vs. 13.5%; p<0.001). The allelic frequency and genotype distribution 

of the UCP-2 gene polymorphism did not differ between the genders. 

Among the children with the different UCP-2 genotypes there was a progressive, statistically 

significant decrease in the proportion of subjects with aminotransferase elevations, as well as in 

mean aminotransferase levels in carriers of the ins allele in heterozygote or homozygote form 

(Table 3.1., Figure 3.1.). Accordingly, prevalence of aminotransferase elevations was highest 

among children with the del/del genotype, lower among those with del/ins genotype, and the lowest 

among those with the ins/ins genotype, with respect to an elevated ALT or AST level (chi-square: 

11.9, p=0.003), an elevated ALT level (chi-square: 11.2, p=0.004), or an elevated ALT and AST 

level (chi-square: 8.9, p=0.013). Linear trends across genotypes for lower prevalence of elevated 

liver function tests in heterozygote and homozygote carriers of the ins allele were significant with 

respect to all tested sets of hepatic enzymes (elevated ALT or AST: p=0.002, elevated ALT: 

p=0.003, elevated ALT and AST: p=0.012). Children with the ins/ins genotype had significantly 

higher fasting and 2-hour insulin levels during OGTT, higher HOMA index and lower WBISI 

compared with the del/del and del/ins groups (Table 3.1.).  
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Figure 3.1 Percentage of children with elevated aminotransferase levels by genotype. Linear trends 

across genotypes for decreased prevalence of elevated liver function tests in heterozygote and 

homozygote carriers of the UCP-2 ins allele were significant with respect to all tested sets of 

hepatic enzymes: elevated ALT or AST: p=0.002; elevated ALT: p=0.003; elevated ALT and AST: 

p=0.012. Abbreviations as in Table 3.1.   

 

Abnormal aminotransferase levels were generally associated with higher prevalence of or worse 

indices for features of the metabolic syndrome (Table 3.2.). In particular, children with an elevated 

liver function test were characterized by significantly higher BMI, relative body weight, and waist-

to-hip ratio, fasting total cholesterol and triglyceride levels, and 2-hour blood glucose level during 

OGTT. Dyslipidemia, hypercholesterolemia and IGR were significantly more frequent among 

children with elevated aminotransferase levels, and hyperinsulinemia also tended to be more 

frequent. ALT positively correlated with body weight (r=0.16; p=0.01), BMI (r=0.23; p<0.001), 

waist-to-hip ratio (r=0.37; p<0.001), 2-hour glucose level during OGTT (rho=0.12; p=0.05), total 

cholesterol (rho=0.15, p=0.01), and triglycerides (rho=0.15, p=0.02), and AST with waist-to-hip 

ratio (r=0.40; p<0.001), 2-hour glucose level during OGTT (rho=0.14; p=0.03) and triglycerides 

(rho=0.16, p=0.01). 
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Table 3.2. Clinical and biochemical characteristics according to normal or elevated 

aminotransferase (ALT or AST) levels 

Variable§ 

Normal 

aminotransferase 

(n=186) 

Elevated 

aminotransferase 

(n=66) 

p value* 

Age (y) 12.8±2.7 12.8±2.6 ns 

Weight (kg) 78.7±21.1 84.5±22.8 0.06 

Height (cm) 158.6±13.4 160.0±11.3 ns 

BMI (kg/m2) 30.7±4.6 32.5±5.4 0.01 

Relative body weight (%) 166.5±20.7 174.9±24.6 0.02 

Waist-to-hip ratio 0.86±0.1 0.9±0.06 <0.001 

Fasting glucose (mmol/L) 5.0  [4.7–5.4] 5.0 [4.7–5.3] ns 

OGTT 2-hour glu (mmol/L) 6.6 [5.9–7.2] 7.2 [6.0–7.8] 0.04 

Fasting insulin (µU/mL) 26 [19–38] 29 [20–46] ns 

OGTT 2-hour ins (µU/mL) 130 [90–240] 150 [101–291] ns 

HOMA 6.0 [4.4–8.5] 6.3 [4.6–10.2] ns 

WBISI 28.7 [20.1–40.9] 26.1 [17.9–36.4] ns 

IGR  40 (21.5) 23 (34.8) 0.03 

Hyperinsulinemia 133 (71.5) 55 (83.3) 0.06 

Total cholesterol (mmol/L) 4.3 [3.9–4.9] 4.7 [4.1–5.3] 0.05 

Triglycerides (mmol/L) 1.2 [0.9–1.6] 1.5 [1.0–1.9] 0.005 

HDL-cholesterol  (mmol/L) 1.1 [1.0–1.3] 1.1 [0.9–1.3] ns 

Hypercholesterolemia 30 (16.1) 19 (28.8) 0.05 

Dyslipidemia 53 (28.5) 32 (48.5) 0.006 

ALT (U/L) 24 [19–30] 54 [47–70] <0.001 

AST  (U/L) 25 [22–31] 44 [32–57] <0.001 

 

Data are mean ± SD, median [interquartile range] or number (percentage). 

§ Definitions used for the obesity-related metabolic conditions are described under methods.  

* for normal vs. elevated; Students’ t-test or Mann-Whitney U test for continuous variables, as 

appropriate; chi-square test for categorical variables.  

OGTT – oral glucose tolerance test; IGR – impaired glucose regulation. Other abbreviations as in 

Table 3.1.  
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Discussion 
 

Previous works, as well as our findings demonstrate that obesity-related hepatic injury indicated by 

elevated serum aminotransferase levels is a frequent consequence of childhood obesity 

(120,164,165). Pathogenesis of overweight-associated conditions, such as NAFLD, involves a 

variety of genetic determinants, and UCP-2 with a still debated physiological role has been 

implicated in some of the mechanisms thought to underlie the development and progression of fatty 

liver disease, including insulin resistance, altered lipid metabolism, and ROS production (115,117). 

The main finding of this study is, that the ins allele of the exon 8 45 basepair del/ins polymorphism 

of the UCP-2 gene was associated with decreased prevalence of aminotransferase elevations among 

overweight/obese children, suggesting, that the ins allele might be a protective factor, or the del 

allele a vulnerability factor for the development of pediatric obesity-linked hepatic damage.  

As previously demonstrated, elevations in serum ALT usually occur in more severe cases of fatty 

liver (113,166), and ALT and AST were identified as significant predictors of hepatic inflammation 

and fibrosis in pediatric NAFLD (119,165). The elevated transaminase levels with the relatively 

high upper limit of normal we used (164,167,168) are therefore likely to have identified children 

with some degree of NASH. 

Mitochondrial abnormalities involving the uncoupling of oxidation and phosphorylation have been 

proposed to play a role in the susceptibility to NASH (166). According to the „two hit” theory of 

the pathogenesis of NASH (169), accumulation of fat in the liver along with the compensatory 

responses of fat-laden hepatocytes increase hepatic vulnerability to secondary insults which cause 

necroinflammatory changes. Lipid-laden hepatocytes overexpress UCP-2 (170), presumably as part 

of an adaptive response to alleviate lipid toxicity by dissipating the mitochondrial membrane 

potential, and thereby enhancing the capacity for substrate oxidation and/or controlling ROS 

generation associated with increased substrate metabolism (34,118). Besides its potential 

advantages, however, UCP-2 upregulation proposes serious risks to cell viability, as increased 

uncoupling decreases the efficiency of energy production and the cell’s capacity to respond to acute 

energy needs in conditions of stress (118,171). Only a subset of fatty livers develop 

necroinflammation, therefore, it is likely that the “second hit” involves environmental and genetic 

polymorphism. Lack of UCP-2 has recently been shown to reduce susceptibility of hepatocytes to 

acute injury (37). Decreased function associated with the ins allele of the exon 8 UCP-2 

polymorphism may therefore protect fatty liver hepatocytes from the vulnerable state of 

compromised energy homeostasis associated with UCP-2 upregulation. Recently, a study aiming to 

identify clinical predictors distinguishing NASH from steatosis in young Koreans found, that UCP-
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2 was expressed in all NASH liver biopsy specimens and was significantly related with the severity 

of inflammation and fibrosis (114). 

NAFLD is commonly associated with insulin resistance and dyslipidemia and is now considered to 

be the hepatic manifestation of the metabolic syndrome (121). In agreement with previous findings, 

our data confirmed an association between elevated aminotransferase levels and degree of obesity, 

fat distribution, insulin resistance, and abnormalities of glucose and lipid metabolism associated 

with the metabolic syndrome (116,122,167,172). Like most published reports we found obesity-

related liver injury to be more prevalent among boys, than girls (116). 

Higher insulin levels in children with the UCP-2 ins/ins genotype is in accordance with previous 

studies demonstrating, that UCP-2 expressed in islet beta-cells influences glucose-stimulated insulin 

secretion in a way, that inhibition of UCP-2 promotes insulin secretion (36). Higher insulin levels in 

the girls, compared with the boys might be explained by their slightly older age (13.0±2.7 vs. 

12.7±2.6 years; p=0.4), and thus more advanced stage of puberty, associated with the worsening of 

insulin resistance that is compensated for by an increase in insulin secretion (173). Interestingly, 

both children homozygous for the ins allele and our girl participants showed a lower prevalence of 

elevated liver function tests, compared with the other genotype groups, and the boys, respectively. 

Our cross sectional data do not allow to make an assumption of cause and effect relationship 

between hyperinsulinemia and lower prevalence of liver damage. Theoretically, hyperinsulinemia 

could protect against obesity-related liver injury in the setting of a different degree of peripheral and 

hepatic insulin resistance, with more preserved hepatic insulin sensitivity. Female gender has been 

associated with higher serum adiponectin levels, which correlated inversely with hepatic insulin 

resistance but not with peripheral insulin sensitivity (174); however adiponectin was not measured 

in our study. 

 

Observations and practical consequences 
 

These results support previous findings connecting the UCP-2 gene to obesity-related liver injury. 

The data suggest that a common polymorphism of the UCP-2 gene may contribute to the variation 

in the development and expression of obesity-associated hepatic damage in children. 

Identification of candidate genes and polymorphisms that explain disease onset and progression of 

pediatric NAFLD can be useful in informing theories of disease pathogenesis and progression and 

ultimately improving management.   
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4. Renal effects of childhood obesity 
 

The main characteristics of the children included in this study are presented in Table 4.1. The 

groups were well matched for age and sex, although the age range of the obese children was wider 

than that of the normal weight children.  
 

 

Table 4.1. Characteristics of the study population  

 

Characteristic 

 

Obese children 

(n=86) 

Control children 

(n=79) 

Age (y) 12.9 [8.9–17.2] 13.5 [10.7–14.9] 

Males (n)  49 44 

Weight (kg) 80.6 [46.1–136.8] 51.0 [27.3–72.5] 

Height (cm) 161.5 [122.8–184.4] 165.0 [142.3–189.5] 

Body mass index (kg/m2) 30.4 [24.5–43.2] 18.2 [13.2–23.9] 

Relative body weight (%) 163 [125–231] 95 [73–119] 

Data are median [range]. 

 

 

Obese children had a significantly higher urinary albumin:creatinine ratio (U-ACR) (median: 11.7 

mg/g, interquartile range: 12.9 mg/g versus median: 9.0 mg/g, interquartile range: 5.1 mg/g; 

p=0.003) and urinary β2-microglobulin:creatinine ratio (U-BMCR) (median: 63.9 µg/g, 

interquartile range: 34.7 µg/g versus median: 34.6 µg/g, interquartile range: 44.1 µg/g; p<0.001) as 

compared to the normal weight children (Figure 4.1.).   
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   p=0.003      p<0.001 
 

Figure 4.1. The urinary albumin:creatinine ratio (U-ACR) and urinary β2-microglobulin:creatinine 

ratio (U-BMCR) of the obese and control children (the median is depicted by the line, the 

interquartile range by the box limits, and the 10th–90th percentiles by the error bars).  

 

Associations between the U-ACR and U-BMCR and the presence of obesity-related cardiovascular 

risk factors were investigated in the obese children by performing bivariate comparisons between 

the U-ACR and U-BMCR values of the obese children with or without a certain risk factor (Table 

4.2). Among the obese children, 25 (29%) had fasting hyperinsulinemia, 56 (65%) had postprandial 

hyperinsulinemia, 20 (23%) had impaired glucose regulation (IGR), 45 (52%) had dyslipidemia, 17 

(20%) had hypercholesterolemia, and 10 (12%) had hypertension. The presence of all tested 

cardiovascular risk factors was associated with a higher mean U-ACR, but the difference was 

significant only in the case of three factors. Thus, obese children with fasting hyperinsulinemia had 

a significantly higher U-ACR than obese children with normal fasting insulin and the same was true 

for obese children with or without IGR, and for the ones with or without hypercholesterolemia. The 

U-BMCR in the obese children was not significantly influenced by any of the cardiovascular risk 

factors studied. 
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Table 4.2 The urinary albumin:creatinine ratios (U-ACR) of the obese children with or without 

certain cardiovascular risk factors  

  

Obesity-related cardiovascular 

risk factor* 

Obese children without 

the cardiovascular 

 risk factor 

Obese children with  

the cardiovascular 

 risk factor p** 

n U-ACR  

(mg/g) 

n U-ACR 

(mg/g) 

Fasting hyperinsulinemia 61 10.4 [10.7] 25 13.6 [15.0] < 0.05 

Postprandial hyperinsulinemia  30 10.4 [8.2] 56 13.2 [15.3] ns 

IGR 66 10.8 [10.9] 20 19.3 [18.0] < 0.05 

Dyslipidemia 41 11.5 [12.3] 45 13.6 [15.1] ns 

Hypercholesterolemia 69 10.6 [12.5] 17 18.2 [10.6] < 0.05 

Hypertension 76 11.5 [11.6] 10 22.7 [17.8] ns 

Values are median [interquartile range]. 

*The definitions used for the different risk factors are described under methods. 

** Mann-Whitney U test.  

IGR – impaired glucose regulation; ns: not significant. 

 

The relationship between the degree of albuminuria and β2-microglobulinuria and the clustering of 

the cardiovascular risk factors that comprise the metabolic syndrome (hyperinsulinaemia [fasting or 

postprandial], IGR, dyslipidemia and hypertension) was further investigated. Obese children with 

no more than one of these traits had a significantly lower U-ACR, than those with two or more traits 

(median: 10.4 mg/g, interquartile range: 5.8 mg/g versus median: 15.3 mg/g, interquartile range: 

14.9 mg/g; p<0.05). There were no differences in the U-BMCR between these groups.  

When analyzing both the obese and normal weight groups together, the U-ACR as well as the U-

BMCR ratio was positively correlated with body weight (r=0.16; p<0.05 and r=0.34; p<0.001, 

respectively), BMI (r=0.22; p<0.05 and r=0.23; p<0.05, respectively), and relative body weight (r= 

0.23; p<0.005 and r=0.31; p<0.001, respectively). When analyzing the normal weight and obese 

children separately, no correlations were found between the U-ACR or U-BMCR and these 

anthropometric measures. Among the obese children, no significant correlations were found 

between the U-ACR or U-BMCR and skinfold thicknesses or waist-to-hip ratio either. 

Among the obese children, the U-ACR positively correlated with the fasting (r=0.225; p< 0.05) and 

2-hour (r=0.368; p<0.001) plasma glucose concentrations measured during the OGTT. No 

correlations were found between the U-ACR of the obese children and other metabolic parameters 
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measured (fasting insulin, peak insulin, serum total cholesterol, triglyceride, HDL-cholesterol) or 

the systolic and diastolic blood pressure. Among the obese children, no significant correlations were 

found between the U-BMCR and any of the metabolic parameters or blood pressure values. 

 

 

 

Discussion 
 

Enhanced urinary albumin excretion is an indicator of systemic endothelial dysfunction (126), and 

an independent predictor of atherosclerosis and increased cardiovascular morbidity and mortality in 

the diabetic and general adult population (127–129). Previous studies have demonstrated that 

albuminuria is a continuous risk factor. Urinary albumin excretion levels relevant for cardiovascular 

risk have been shown to be substantially lower than the cutoff for the original definition of 

microalbuminuria as a marker of early diabetic nephropathy (128,129). A progressive graded 

relationship has been demonstrated between different degrees of albuminuria below the arbitrary 

threshold for defining microalbuminuria and cardiovascular events, extending to a U-ACR as low as 

0.5 mg/mmol (4.4 mg/g). Therefore, reconsideration of the lower limit defining a “pathological” 

albuminuria had been suggested earlier, but no consensus has been reached on such a cut-off value 

so far. For this reason, we have not used a definition for microalbuminuria, but instead, have 

compared the U-ACR of obese and normal weight children.  

Association between excessive albuminuria and common cardiovascular risk factors has been 

studied extensively in adults (124,125,175–177), with somewhat conflicting results. In the present 

study, increased albuminuria was observed in obese children and it was related to the presence of 

some features of the metabolic syndrome, but not with others. In particular, significant associations 

were found with the disorders of carbohydrate metabolism (hyperinsulinemia and IGR). This 

finding is in agreement with previous studies in adults demonstrating an association between 

microalbuminuria and insulin resistance (124,178) or increased blood glucose levels (179,180), and 

provides further evidence for the hypothesized central role of insulin resistance in the development 

of the metabolic syndrome and in the increased cardiovascular risk of subjects with excess urinary 

albumin excretion. The link between elevated insulin concentrations and the phenotypic traits of the 

metabolic syndrome are still only partially understood, mechanisms that might link 

hyperinsulinaemia to greater urinary albumin excretion include increased glomerular hemodynamic 

pressure (131,181) and endothelial dysfunction (126) that results in increased transcapillary leak of 

albumin.   
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Obesity is associated with atherogenic changes in lipoproteins and high lipid levels have previously 

been suggested to contribute to the obesity-associated pathological changes of the kidneys (181). 

Several studies have emphasized that increased total cholesterol may be associated with excessive 

albuminuria in some adult patient groups (131,182), and also with obesity-associated proteinuria 

and focal segmental glomerulosclerosis in children (183). Protective effect of dietary prevention of 

hypercholesterolemia in preventing obesity-linked renal disease has been demonstrated in animals 

(184). Our results have shown association between elevated serum cholesterol levels and enhanced 

albuminuria. The U-ACR was almost 2-fold increased in obese children with hypercholesterolemia 

compared to obese children with normal cholesterol levels, underscoring the importance of high 

cholesterol level in the development of obesity-related renal damage. We could not demonstrate a 

significant relationship between the U-ACR and serum triglyceride or HDL-cholesterol levels.  

The synergistic effect of obesity and hypertension on renal function and albumin excretion in adults 

has been investigated by numerous studies, and the observations are controversial (125,131,132, 

182). In our paediatric population, we could not demonstrate any significant influence of 

hypertension on the level of albuminuria in obese children, which is in accordance with the results 

of some of the adult studies (125) and might also be explained by the relatively mild degree of 

hypertension associated with childhood obesity, or the relatively few cases of obesity-associated 

hypertension we have identified among our obese patients.         

We have found an association between excessive albuminuria and clustering of the traits of the 

metabolic syndrome in obese children. In 1998, the World Health Organization has designated 

microalbuminuria a feature of the metabolic syndrome (185), but this extension of the definition has 

raised debate, since results contradicting this relationship have also emerged (176,186). Our results, 

on the other hand, reinforce this association by demonstrating a link between enhanced albuminuria 

and presence of the features of the metabolic syndrome in children. Further longitudinal research is 

needed to evaluate the significance of the increased urinary albumin excretion of obese children in 

relation to the development of cardiovascular disease in adulthood.  

Aside from the direct effects of obesity and associated metabolic disorders, glomerular proteinuria 

may also be a causative factor of tubulointerstitial dysfunction in obesity, since proteinuria has been 

shown to increase the turnover of tubular cells (187). On the other hand, infusion of albumin in 

proteinuric patients had no relevant effect on the tubular reabsorption of β2-microglobulin (188), 

and thus β2-microglobulin can be useful as a parameter to detect tubular injury and alterations in 

tubular handling of proteins in patients with glomerular proteinuria. Our finding of a significantly 

and greatly increased U-BMCR in obese children therefore indicates that there is also a tubular 

component to the renal dysfunction caused by childhood obesity. Unlike in the case of the level of 

albuminuria, we have not found any associations between the investigated cardiovascular risk 
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factors and the level of β2-microglobulinuria among the obese children, which indicates a different 

mechanism for obesity-linked glomerular and tubular dysfunction.  

 

Observations and practical consequences 
 

The onset of obesity-associated renal disease is insidious and asymptomatic, so early markers will 

be extremely useful in its prevention and treatment. According to our results, clinically healthy 

obese children have a higher level of albuminuria and β2-microglobulinuria than normal weight 

children. The U-ACR in the obese children was associated with certain metabolic derangements 

linked to obesity, and also with the clustering of the features of the metabolic syndrome. Our 

findings suggest that increased levels of albuminuria and β2-microglobulinuria indicating early 

glomerular and tubular dysfunction, respectively, are features of childhood obesity. The 

significance of this in relation to later development of obesity-related cardiovascular and renal 

disease should be further investigated.  
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CONCLUSIONS 

 
1. Energy expenditure gene polymorphisms and the risk of childhood obesity 
We provide data on the prevalence of six obesity candidate gene polymorphisms associated with 

energy expenditure among Hungarian obese and normal weight children. We show evidence that 

the UCP-2 –866 G and exon 8 45 basepair ins alleles are genetic risk factors for overweight/obesity 

among Hungarian school-aged children.  

 
2. Energy expenditure gene polymorphisms and obesity-related traits and metabolic 

complications of childhood obesity 
We show evidence for the roles of the Trp64Arg ADRB3 polymorphism and the exon 8 45 basepair 

del/ins UCP-2 polymorphism as genetic determinants of the severity and/or metabolic 

complications of pediatric obesity in the Hungarian population. Our results regarding the influence 

of the UCP-3 –55 C/T polymorphism on childhood obesity are inconclusive.  

 

3. Association of the UCP-2 exon 8 del/ins polymorphism with obesity-related liver 

injury 
We provide data suggesting that the exon 8 del/ins polymorphism of the UCP-2 gene may play a 

role in the development of hepatic injury, as indicated by elevated aminotransferase levels in obese 

children.  

 
4. Effect of childhood obesity on renal glomerular and tubular function 
We show that clinically healthy obese children have a higher level of albuminuria and β2-

microglobulinuria than normal weight children, indicating early renal glomerular and tubular 

dysfunction as a consequence of childhood obesity.  
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