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Abstract: Studies of a physical problem led to the functional equation

(1) flgz)=2 (f(z4+1)+Ff(z—1)+2f(2)) for all zeR
with the boundary condition
(2) f(z)=0 for all z with |2|>Q:=5Z;

where ¢€]0,1[ is a fixed real number. It turns out that the behaviour of
solutions of (1) which fulfill the boundary condition (2) is quite different, de-
pending heavily on the value of ¢. An — in some sense “complete” — answer
on the general solution of (1) under the condition (2) (including investiga-
tions on continuity, differentiability, measurability, integrability) can be given

in the following cases: 0<g¢<3, ¢=%, and ¢=3.

Studies of a physical problem (cf. [4]) led Prof. R. Schilling to the

functional equation given below. It was known that in the case ¢ = %
there is a continuous solution with bounded support. Now the question
arose to find all the solutions of this equation. :

Let the functional equation

(1) fle) = 1 (fo+ 1)+ fa =1 +2f(@)) forallz cF

and the boundary condition
(2) f(z) =0 forallz with |z|>Q:= iq—
—4q
be given, where ¢ €]0,1[ is a fixed real number. In the previous paper
[2] we dealt with the problem of finding solutions of equ. (1) with un-

bounded support. Now we turn over to some results on solutions with
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bounded support. As we will see, the problem (and its solutions) have
a quite different behaviour depending on the values of ¢. Though the
problem in general is far from being solved, some special cases can be
treated in the sequel:

ITII1. Solutions with bounded support

a) The case 0 <q< 1

In this case we have 0 < Q@ < 1 < 1 - Q < 1. The following
theorem will give 5 conditions (a)-(¢) equivalent to (1)-(2). Though
they are more than two (as originally given) their structure is much
more easier than (1)4(2):

Theorem 20. Let g < 3. Then the system (1) and (2) is equivalent to

the system

(@) f(=) =2¢f(¢) for allz € [-Q, Q)]
(B)  f(z) =4qf(e(z +1)) for allz € [-Q, Q)]
() f(=) =44¢f(g(z - 1)) for all z € [-Q, Q)
(6) f(z)=0 for all z with ¢Q < |z| < ¢(1 — Q)
(&)  flz)=0 for |z] > Q.
Proof. (a) Let f fulfill (1) and (2). We show that f is a solution of
(a)-(e):

(€) is trivial, as (2)=(¢).

(a) Let 2 € [-Q,Q]. Thenz+1 > Q, z—1 < —Q. Thus
flz+1)= f(z—1)=0and f(¢gz) = 41—qu(:1:), i.e. (a) holds.

(B) Let z € [-Q,Q]. Theny :=z+1€ [1-@Q,1+ Q] and
therefore y > @, y+1 > Q, y—1 ==z € [-Q,Q], qv € [¢(1 — @),
q(1 + @)]. Remembering that ¢(1+Q)=Q we have qy € [-Q, Q] and
flay) = 1;f(y — 1), thus f(g(z +1)) = & f(2).

(7) like (B).

(6) Let ¢Q < |z] < ¢(1—Q) and put y := 2. Then @ < |y| <1-Q
and therefore [y| > @, [y +1| > @, |y — 1| > @, thus f(y) = f(y+1) =
= f(y — 1) = 0. That implies f(z) = f(qy) = 0.

(b) On the other hand, suppose that f is a function which fulfills
(a)—(g). We show that f is a solution of (1)-(2):

(2) is trivial, as (2)=(¢).




On a problem of R. Schilling I 147

(WIze[-Q,Q thenz —1< —Q, z+4+ 1> Q, and therefore
f(z+1) = f(z—1) = 0 by (¢). Thus («) implies that f(qz) = El-éf(w) =
= ﬁ(f(m +D)+ f(z—-1) +2f(x)) IfQ < |z|] <1— @ then |z| > @Q,
|z =11 > @Q, [z +1| > Q. By (¢) f(z) = f(z+1) = f(z - 1) = 0.
By (6) f(gz) = 0, and thus f(gz) = %q(f(:c + 1)+ f(z — 1) + 2f(z)).
fze[l-Q,1+Q],thenz>Q,z+1>@Q,z—-1¢€[-Q,Q] and
gz € [-Q,Q]. (B) and (¢) imply f(z — 1) = 4¢f(gz) and therefore
f(gz)=7; (f(e+1)+f(z—1)+2f(z)). The case z€[-(1 + @), ~(1-Q)]
is treated like [1 — @, 1+ Q] by use of (y) and (¢). If |z| > 1+ @, then
lz| > Q, |t +1] > Q, |z — 1| > @, |¢gz| > @, and therefore (¢) implies
that (1) is fulfilled. ¢

As the next theorem shows, the conditions (a)—(e) give rise to a

detailed description of all the solutions:
Theorem 21. Suppose that f is a solution of (a)—(g). Let

Ay i=A{z | qQ <lz] < q(1-Q)}
and @o,01,0-1: [—Q,Q] — [—Q, Q)] be the functions
po(@) =gz, pi(2) = alo+1), poa(a) = gla—1).
Define the sets A, recursively by

Ant1 = o(An) Up1(An) Up_1(4n).

Then the following holds:
(a) Each A, and the set A:= |J A, are open;

neEN
(b) MA) =2Q, where X is the Lebesgue measure on R;
(c) f(z) =0 for each z € A (i.e. f =0 a.e.);

(d) [-Q,Q)\ A= {m |z =Y aiq’, where a; € {0,1,——1}}, and this

n=1

set 18 uncountable.
Proof. g, ¢1,¢—1 are linear-affine, order-preserving homeomorphisms.

(a) As A; is open, by induction each A, is open and, therefore,
the set A, too.

(b) First we show that (A,)nen is a family of pairwise disjoint
sets. We compute a detailed description of A,. Let J :=]Q,1 — Q.
Then A; = ¢J U(—¢q)J, and by induction one can easily see that A, is
the union of all the sets

n—1 n—1
Zaiqz +¢"J and Zaiqz —q"J,
=1 =1

where a; € {0,1,—1}. We show that all these sets are disjoint: Let
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m,n € N and a;, b; € {0,1,—1}, and

z € (7"2_:1 aiq' + qu> N (Tf b]-qj j:q”J).
i=1 j=1

Suppose that a; > b and m,n > 2: As J CJ0, 1| we have

(e o} . q 1
mZalq—Zlq'zalq—ql—;—q>a1q—§q;

=1

on the other hand

o0
. 1
z<big+ Y 1  =big+g—— < big+ 54,
i=2 1-q 2
a contradiction. Thus, if the intersection of two such sets is nonvoid
then necessarily a; = by, and by a simple induction argument we are
reduced to the case

m—1
T € (Z aiq' + qu> N (gJ).
i=1 ‘
Suppose m > 2: If a4 = 0 or a1 = —1 then z < Yo l¢t = ql—g—q = ¢Q,
1=2

and z € ¢J implies > ¢@, a contradiction. If a; =1, then z < ¢(1—Q),
w .
andz>qg— > l¢g'=¢q— ql—z—q = ¢(1—Q), a contradiction. Therefore,

=2

the only possible case is m = 1, and we have shown that all these sets are
n—1 .

disjoint. Now the Lebesgue measure of an interval > aiqg*+q™J is equal
i=1

to ¢"A(J) = ¢"(1—-2Q), and therefore we get A\(4) = 2A\(J) 3 ¢"37~1,

n=1
n—1 .
because there are 3"~ polynomials ) a;¢’ with a; € {0,1,—1}. Thus
=1
1 1 1-3g
AA) =2 1-2Q)=2 = 20Q).
(A) q1_3q( Q) T 5,14 — 2

(c) Using f(z) = 0 for z € Ay (by (6)), by induction and (a),
(8), (v) we can show that f(z) = 0 for z € A, where n € N. Thus
f(z) = 0 for each z € A.
(d) As A is an open set [—~Q, Q] \ 4 is a closed set which contains
n—1 .
all the border points of the intervals Y a;q' + ¢™J, that is, all the
i=1
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points
n—1
D ad+q"Q = Z zqizlq
=1 i=n+1
and
n—1 . n—1
S ad e (1-Q) =Y ad = (" + 3 (-1).
1=1 i==1 i=n+1

Furthermore, all the limit points of these border points belong to the
set [_Q7 Q] \ A.

On the other hand, A(A) = 2Q, and therefore [-Q, Q] contains
no proper interval belonging to [—@,Q] \ A. Thus every element of
[—Q,Q] \ A is a limit point of the points given above. Now the set
{x |lz=Y" a;q*, where a; € {0,1, -1}} is homeomorphic to the product

n=1
o0 .
space {0,1,—1}"N via the bijection (a;)ien — . aiq’, because ¢ < 3
i=1 i
It is easy to see that the set of border points of the intervals is dense

in the set
o0

{w |z = Zaiqi, where a; € {0,1,—1}},
n=1

and this set is closed. ¢
Corollary 4. Let ¢ < 3. Then any solution of (1) and (2) is equal to
0 almost everywhere (and therefore measurable). Thus any continuous
solution is 1dentically zero. o

The next theorem gives an idea how to find all the solutions of
(1) and (2) in the case ¢ < . But before we have to give a definition.
Definition 2. Let ¢ < % and use the notations of Th. 21. Let

=[-Q,Q)\ A= {3: |z = iaiqi, where a; € {0,1,—1}}.

n=1

Define a relation ~ on B by

oo oo

Zaiqi ~ Zbiqi: & Idm,n € N : apyi = bpy; for all 2 € NL

=1 1=1
It is easy to see that ~ is an equivalence relation on B. Furthermore,
~ has the following property: '
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Lemma 4. If z,y € B, then ¢ ~ y 1ff there is a 2 € B and there are 1,

oWk, Wi, wp € {01, Yo, 9—1} such that z = Y1(ha(. .. r(2)...))
and y = wy(wa(...wp(z)...)).

o] X oo .
Proof. For j € {-1,0,1} we have cpj(z ciq’) =Jq+ Y, ci-1q'. Now
o . o . 1=1 =2
let z = )7 a;¢*, y = Y big". First suppose that z ~ y and let m,n be
i=1 =1

oo . 00 .
as in the definition. Let z = Y apyi¢* = 3 buyiq¢'. Then

T = Qg (goaz(. e pa, (2). .. )) and y = ¢, (cpbz(. e (2). .. ))
On the other hand, if z = f ‘c,-q’. and

T =Pa; (Par (- Pan(2)...)) and y =g, (pp,(.-. 0p.(2)...))

foray,as,... ,am,B1,B2,... ,0n € {—1,0,1}, then am+; = ¢; = bpyi. O
Theorem 22. Let f be a solution of (a)~(g). Then the following holds:
(2) f(2) =0 forz ¢ B;
(b) for z € B, the value f(z) determines the values f(y) on the equiv-

alence class [z] = {y |y ~ z};

(¢) ifz =Y aiq" is periodic, i.e. there are positive integers m, p such
1=1
that Amy; = Amypti for alli € N, and if 5 is the number of zeroes
in the period, i.e. s = #{i | m <i <m+p,a; =0}, then f(z) =0
whenever (4¢q)P # 2°.
Proof. (a) was shown in Th. 21.

(b) is a trivial consequence of Lemma 4 and equations (a), (8),

(7)-

(c) We have
b . oo .
1=1 =1

Then y = ¢a,.,, (c,pam+2 (... Pams,(y)---)) and therefore by (a),
(8), (v): fly) = (2¢)°(4¢)»°f(y). Thus, f(y) = 0 whenever
(2¢)°(4¢)P~° # 1, and in this case we have f(z) = 0 by (a)-(7). 0

Let us denote by B, the set B, := {z | ¢ € B and z periodic},
and by By, the set B\ B, (those z which are not periodic), then we
can state the following
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Lemma 5.
(a) Ifz € By and z ~ y, then y € B,.
(b) The set of periods of minimal length form a system of representa-
tives for ~ on B,.
The proof is easy and omitted. ¢
Now we can give the general solution of (a)-(e) in the case ¢ < §.

We do this in the next 3 theorems, distinguishing between different
cases.

Theorem 23. Suppose that 0 < ¢ < %. Then the general solution can
be given in the following way:

(a) f(z)=0 forz € A and |z| > Q.

(b) Let (z)rex be a system of representatives for ~ on By, choose

(f(zr))rex arbitrarily and extend f onto the equivalence class [zy)

of zy as described in Th. 22(b).
(c) f(z) =0 for z € B,.
Theorem 24. Suppose that i < q < % and that ¢ = 2" for some

3
rational v. Then the general solution can be given in the following way;

(a) f(z)=0 forz € A and |z| > Q.

(b) Let (zx)rex be a system of representatives for ~ on By, choose
(f(zr))rex arbitrarily and eztend f onto the equivalence class [zy]
of xr as described in Th. 22(b).

(c) Let (Bp)pep be the system of periods of minimal length (which is
a system of representatives for ~ on By) and denote by £(B,) the
length and by 2(Bp) the number of zeroes of B,. Choose walues
9(Bp) in the following way: '

arbitrary if E(—'BL) =2+r

£(Bp)

0 otherwise.

g(ﬂp) =

For any p € P choose an element ©, € B, with period B,, define
f(zp) :=g(Bp) and eztend f onto B, as in (b).
Theorem 25. Suppose that i <g< % and that g # 27 for any rational
r. Then the general solution can be given in the following way:
(a) f(z) =0 forz € A and |z| > Q.
(b) Let (zx)rer be a system of representatives for ~ on Byy, choose

(f(zr))kek arbitrarily and eztend f onto the equivalence class [xy)
of zr, as described in Th. 22(b).
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(c) f(z) =0 for z € B,.
Proof. (a) was shown in Th. 21.
(b) If z is nonpenodlc T = Z a;q*, for no m # n the equality

Gm+i = Gn4; can hold for all 7 € N Therefore it is easy to see that the
computation of f(y) for y ~ z cannot give “different results” via the
choice of a z as in Lemma 4.

(c) If # ~ y and z is periodic, then y has the same period as z.
By Th. 22 f(z) #0is p0551b1e only in the case when (4¢)° = 22, that
is, g =27, wherer———2 Q

Corollary 5. Let ¢ = ;. Then Q = Z (%)i, which 1s periodic

with period 1. Also —Q = —3 = Z( 1)( )i is periodic with period 1.
Furthermore, —Q 1s not equivalent to Q. Thus £ =1, 2 =0, and as

1 =272 and 24 (~2) = } there ezist solutions f of (1)~(2) in this case
such that

FQ)#0 and F(-Q)#0 or
f(@Q=0 end f(-Q)#0 or
f(Q)#£0 and f(-Q)=0 or
f(Q)=0 and f(-Q)=0.

In other words, we have seen that any of the cases -Q,Q € S(f) C
C[-Q,Q], —QeS(f) C[-Q,Q[, Qe S(f)d -@.,Q), S(f/)d - Q, QI

really can occur.

After this investigation into the case ¢ < & we turn over to the

3
next value for ¢:

b) The case q = 3

The methods used in this case to give the solutions of (1)-(2) are
very similar to those used in the case ¢ < 31,’— First we give a system
equivalent to (1)-(2):

Theorem 26. Let ¢ =
equivalent to the system

[P

Then Q = % and the system (1)-(2) s
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() flz)= gf(fl;“‘"> for allz € é—%, %}
6  f@)=35(5+D) joratte e [-L,1]

11
(v)  fle)= %f(%(m + 1)) for allz € “_15’ 5]
(6)  f(z)=0 for all Jo| > 3.

Proof. This proof is nearly the same as the proof of Th. 20, but we have
to take care that = € [—@Q, @] does not imply that z+1, z—1 ¢ [-Q, @],
because ~@Q + 1 = Q.

(a) Suppose that f is a solution of (1) and (2). We show that f
fulfills (a)—(6):

(6) follows directly from (2).

(a)—(7) is shown in the same manner as in Th. 20 for all values
z € |1, 1| (for these values the same arguments as in Th. 20 hold).
z =1 As f(3) = f(=3%) =0, (a)~(7) are trivial consequences of (1)
and (2).

(b) On the other hand, let f be a solution of (a)—(6).

(2) is a trivial consequence of (6), and (1) can be derived from
(a)-(8) as in the case ¢ < 3.

As in the case ¢ < %, we give an equivalence relation ~ in order
to describe the solutions. Therefore, let I := [—%, %] and denote by
¢0,¢1,p—1: I — I the functions ¢j(z) = 3(z + j). We denote by A
the set

A= {1 (ol (2. ) |

and let B := I\ A. For two numbers

oo 1. o0 1.
z=) ai(3)" and y=) bi(3)",
i=1 =1

where a;,b; € {0,1,—1} and =,y € B, we define

R

kel,k>0,z¢c {01 —-—%},}
Y1 ... Yk € {¥1,00,0-1}

z~y: < Im,n: Qme; = by, forallz €N,
Lemma 6. With the notation above the following holds:

- . L .1_1 1\" nEN,Gie{O,l,—l}, .
@ a={e=La@ +e@®)"|"" 20000y b

=1
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00 .
(b) Each z € I has a representation z = 3. a;(1)’, where a; €
i=1
€ {0,1,—1}. This representation is unique whenever z € B. Fur-

thermore, the real number 3 ai(%)i (where a; € {(0,1,—1}) is an
=1

1=
element of B iff this representation has no period of length 1 (i.e.
for all m € N there is an n € N such that n > m and a, # an, ).
(c) The relation ~ is well-defined and an equivalence relation on the

set B.
(d) Let Q denote the set of rational numbers. Then

INQ=AU{z€eB |z has a periodic representation}.

(e) If z,y € B, z rational and = ~ vy, then y is rational, too.
Proof. (a) Let
r _" .li ln n €N, a,E{O,l,—l},}
A= {s ;a1(3) +a(3) wefot 1) )
It is easy to see that A C A’ and A’ C A. (b) and (d) are well known
from elementary analysis, (c) and (e) are immediate consequences. ¢
Now let B,:= BNQ be the rational points of B, and By, :=
:= B\B, the set of those z € B which have a nonperiodic represen-
tation. Furthermore, let (z})rex be a system of representatives for ~
on the set B,,. The preceding lemma gives the technical details for
proving the following theorems on the structure of the solutions.

Theorem 27. Let f be a .solution of (a) -(6). Then:
(a)Ifm,yEB,mwy,x— () y—Zb()iandm,nEN

z_
such that amy; = bpy; for all 1 € N, then O, 0, ...0q, f(z) =
= ap, ap, ... ap, f(y), where ag = 2 and ag =a_q = %;

3 37
(b) f(z) =0 for all z € Q.
Proof. (a) Let

=2 ami Z b (5

Then

L = Pa, ((100.2(' v (Sollm(z) e )) and Y=vn ((pb'z(' : -QObn(Z) e ))
By (a)—(v) we have a; f(¢;(u)) = f(u) for all u € I. Thus
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f(2) =g "oy . Qa, - f(2) =0, -y e, - f(y).
(b)Ifze Q, then z has a (not necessarily unique) periodic repre-

sentation z = E ( ) Let m,p € N, p > 1, such that amii = amip+i
for all 1 € N. Because of (a)—(7y) we have

Qg Qg * e O, - f(T) =0y ~Qay* oo Ay, - f(z),
ile.,
(Qamys * Qamys -+ Xapmyp —1) f(z)=0.
NOW Gapyy * Qapys "+ * Qamyp = (§>k(4)p—k for some k € N. As this
product cannot be equal to 1 we must conclude that f(z)=0. {
Corollary 6. In the case ¢ = % the only continuous solution of (1)

and (2) is identically 0.
Proof. By Th. 27, f(z)=0forallz € R\ T andforz € INQ. {

On the other hand, we can give the general solution of equations
(a)=(8):
Theorem 28. Let g: {z | k € K} — R be given arbitrarily and define
f:I—R by

g(zr) if T = T
__ Jdefined by the formula given in Th. 26(a) f © ~ i
H@)=10 frelnQ
0 1ol 2 3.

Then f 1s a solution of (a)-(6).
Proof. As any z which is equivalent to some z is an element of By,

o0 .
the representationz = Y a; (%)1 is unique. Therefore, f is well-defined.

1=1

It is easy to see that f fulfills (a)—(6). By Th. 27, the function f given
above is the only possible extension of the given function g. ¢

Next we will show that any measurable solution vanishes almost
everywhere.
Theorem 29. Let ¢ = % Then any (Lebesgue- )measurable solution of
(1) and (2) vanishes almost everywhere.
Proof. Let f be a measurable solution of (a)—(6), and denote by
A.:={z |z €I and |f(z)| > r} for any real » > 0. As A, CBC I

and () A, =0, the function p: r — u(r) := AMA;) (Lebesgue measure
r>0
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of A,) is nonincreasing, bounded by 1, and lim u(r) = 0. Now let

t(s) := s and u(s) := %3. Then one can immediately see that
11
eo(A) = |55 N4 by (a)
11 1

= b

901(As) ls 2[ﬂAu(3) Y (,3)
111 by (7)

(P—l(As) = 2 6 [ N Au(s)

for each s > 0. Using the numbers a; of Th. 27 we have A, =
= po(Aayr)Up1(Aa,r)Up_1(Aa_,r), and the sets ¢;(Aq;r) are pairwise
disjoint. Therefore, for each r > 0 the equation

2 2 /4
"()__< )+3“(3)
holds. By induction, we get the equation

=30 0

for each 7 > 0, n € N. Now 2223 = 32 > 27 = 33, thus 22/3( ) > 1.
As the function z — 2z is continuous, there is a v = g € Q such that

q
P, EN,v < % and 1 < 2p(%)q < (22/3(%)) . Thus for any n € N we

=3 (1)) G w3+
3 (DE @) <
SHIOREIE
N WIGRORNICIOME
ST (TR ()
(@ (3)) (T ) () -
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pn—1 n— n
=X (DE) G (G)))
Now choose a real number w such that v < w < % and define the

continuous function g on the interval [0,1] by

1 for0<z<w

w—=T
—v

0 forw<z<1.

Wit

g(z) = forv<z<w

> (GG -
=X (B G i) <

EMEOTE)

The last expression is the approximation of ¢ by Bernstein polynomials
at © = 2, and, therefore,

3
L =gy /2\k 1Nk ke 2
nh_,néok;( k )(3> <3> g(qn)‘— 9’(3) =0

Furthermore, ZP(—::,";)q > 1, and therefore limu((Q”(%)q)nr) = 0. Thus
we see that p(r) < 0 for each r > 0, and this fact implies that the
solution f has to vanish almost everywhere. {

Corollary 7. As any continuous function is measurable, the preceding
theorem gives another proof for the fact that in the case ¢ = % the zero
function is the only continuous solution of the system (1)-(2).

Finally, the last case which can be said to have been completely
solved is

c) The case q = 3

Theorem 30. Let ¢ = 1. Then the system (1) and (2) is equivalent to

the system
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(@)  fl)=0 for la] > 1

®)  f@=27("17) ~2f(z +1) for o € [-1,0]

0 (5 =353) - 3@ forz € [0,1

@ () = ) for s € [0,1]

@ A=) b e
Proof. (a) Let f be a solution of (1) and (2). We show that f fulfills

a)—(e):

( ((Zz) Let z = 2. By (2), f(2) = f(3) = 0, and therefore by (1)
£(1) = £(32) = 1(F(3) + F(1) + 2£(2)) = 3£(1). Thus f(1) = 0, and
f(—1) = 0 is shown in the same way.

(B) Let z € [-1,0] and let y := z + 1. Then f(y + 1) = 0 by (a)

cand f(%) = $(Fly+ 1)+ fly — 1) + 2f(y)), thus f(ZFL) = 1(f(z) +

+2f(z+1)) and f(z) = 2f (&) — 2f(z + 1).

(6) Let © € [0,1]. Thenz +2 >z 41> 1and &L € [0,1]. By
(1) and (@) — used for the real number z + 1 — we have f(Z}1) =
=5 (f(2) + fz +2) + 2f(z + 1)) = 1 f(a).

(¢) Let z € [0,1] and y := z — 1 € [-1,0]. By (1) and (a) we
have f(y ——i) = 0 and therefore f(¥) = T(fly+1)+2f(y)). By (B)
we get 2f(—22il-> _—2f(%+1) = %(f(y-i-l)—}—élf(}%) —4f(y+1)), or
2{%{?) —2f(’”2i) = %f(:z:) -I—2f(%) —2f(z), which implies (e)vby use

i'y) Let z € [0,1]] and y:=z —1,theny—2<y—1< -1, and
=% € [~1,0]. By (1) and (2) (used for the number y — 1) we have

F(32) = L(fly —2) + f(y) +2f(y — 1)) = 1 f(v). By (8),

y=1 —
2 (L5) -2f(Pg ) =
=1(Y57) = 2w = F (L) - fw + ).
Thus 2f(2) — 2f(%) = f(£) — f(z), which implies (7).
(b) On the other hand, let f be a solution of (a)—(¢). We show
that f fulfills (1) and (2):

(2) is an immediate consequence of ().
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(1): We show that (1) is fulfilled for any z € R:

(1.1) Let |z| > 2. Then f(z) = f(£) = f(z+1) = f(z - 1) =0,
and (1) is fulfilled.

(1.2) Let z € [1, 2] and y := z — 1. Then

@ & £(2) = 11 by @ & F(H) = 35w

which is fulfilled by (6).
(1.3) Let z € [0,1], y := = — 1. Then

@) & £(2) = 2 (e -1 +2f(=)) by (@) &

& fy) —2f(y+1) —2f(y+1) « (6).
(1.4) Let z € [-1,0] and y := = + 1. Then

@ & £(2) = (@ + 1) +27(@) by (a)
zf(:c—i—Q) _2f(m+2>
= e +2r(Th7) 2@+ ) by (B
ot (1) () ~r(2) o

saf (L10) = 47(2) - 1) by (9=
(1.5) Let z € [-2,-1}, y:=z + 1, w:=z + 2. Then

Z

Wef(2) = 5f@+1) by (a)e

oir(50) -5 (55D~ (ZF5) s b 91

w 3. /w 1
ﬁf(z) = §f(§> - §f(w)¢*(’)’)- 0

Corollary 8. Let g = %, and (a)-(€) as in the preceding theorem. Then
any function g: [0,1] — R which fulfills (v)-(¢) has a unique extension
to a solution f: R — R of (1) and (2).

Proof. As (1)-(2) is equivalent to (a)—(e), the statement is trivial be-
cause such an f is given on [—1,0] by (3), and for |z| > 1 by (a). The
only problem might arise at the points 0,1, —1 because of some fact of
“confusion”. But:
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(6) implies that g(1) = g(2+L) = 1g(1), therefore g(1) = 0;

(B) gives f(0) = 2f(3), the same as (6), and f(—1) = 2f(0) —
—2£(0)=0. ¢
Remark 4. As the proofs of Th. 30 and Cor. 8 show, the other case
— restriction to the interval [—1, 0] instead of [0,1] — can be dealt in
the same way. Thus for describing solutions of (1)-(2) we always may

restrict ourselves to solutions of (7)-(¢) on the interval [0, 1].
Theorem 31. Let ¢ = 1, and («)~(¢) as in Th. 30. A function

22

f:[0,1] — R 1s a solution of (v)~(&) iff

T4+ m m+1 z m + 2

(*) f( 2k )2(2— 2':51 )f(§)+< 27: _1>f(“’)
holds for any z € [0,1] and any nonnegative integers k,m such that
0<m<2F
Proof. (a) Suppose that () is fulfilled. We show that (y)~(¢) hold.
(7): Putm=0,k=2. (6): Putm=1,k=1 (e): Pt m=1,k=2.

(b) On the other hand, suppose that (v)—(¢) are fulfilled. We show
that (*) holds.

k = 0: Then m = 0, and (%) is nothing else but f(z) = f(z).

m = 0: f(%) = f(%), a trivial statement.

m = 1: nothing else but (§).

k > 1: We do the proof by induction on k:
m = 2n: Then %Im = f2n _ 2%,;{:711, and 0 < m < 2F implies that

2k 2k
0<n<2k1 , thus

H(37) - (5
- (- F6)+ (G- 0/6) -
-G o)+ (- 016)-

= (2= 5E0)1(5) + (P - 1) et

z+1 . .
m = 2n + 1: Then ”;’,}" = $+§f+1 = 22,6_*; , and 0 < m < 2% implies

that 0 < n < 251 thus

wIH

) (by induction)

f($ ;m) _ f(%cTn) = (by induction)
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= (-G () + (5= - )r(557) =
= (-5 (1(5) - 97@) + (G5 —1) 5@ =

2n + 2 T 2n +3
= (2= %) 1(5) + (o~ )@e- 0
Remark 5. The equation (%) can be written in the following way: let

z= ﬂz}cﬂ, then we have

fey=(1-2- 2"

) (27 () - 7)) + 52 f(2).

Proof. We have 2z — z = m. Using this equation in (%), we get

x —i—m) _ 2k—2kz+w——1f<x) 2kz—~m+2—2kf($) _

1) = f( ok k=1 2 ok
l—=z T 1
- (=) r(§) )+ o o
In order to describe the solutions of (a)-(g) we introduce some
equivalence relations on the interval [0,1]. Let M be the set

M := {2‘%|p,k62}.

It is easy to see that M is dense in R and a group with respect to
addition. Furthermore, M is invariant under multiplication with powers
of 2 resp. %

Definition. Let 2,y € [0,1[. We define

r~y:&Sr—yeM

and

e~y eIkel: 2% —ye M.

Lemma 7. The relations ~ and =~ on [0,1] are equivalence relations,
and for z,y € [0,1] we have
T & y& thereis az € [0,1] and there are nonnegative integers k,m,n,p
suchthat0 <m < 2¥, 0<n< 2P andz = 2—'2",:—"‘ andy = z;'—,,”

Proof. ~ is an equivalence relation because M 1is a group.

~: Reflexivity is evident, for symmetry we have 2%y — z =
= —27%(2kz —y) € —27FM = M. Transitivity: 2%z —y = m € M,
Wy —z=neM= 2P _ 2 =2"m 4 necM.
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As to the last statement of the lemma:

a) Suppose that there are z,k,m,n,p for  and y. Then z = z—;t,cﬂ,
Yy = —z—;;{i, thus 2¥z — 2Py = (24+m)—(2+n) = m—n € Z. Furthermore,
kP _y="2r cM=ary.

b) Suppose that z =~ y and 2z —y = & € M. Because of
symmetry we may assume that & > 0 and, of course, p > 0. Then
2k+Pg = 2Py 4 m. We put z := 2¥Pz(mod1). Then z € [0,1], and
ri=2rPr 2 €7, 0<r < 2P ¢ = 5’9’;’; Furthermore, 2Py =
=2k —m=z4+r—-m. Thus0<r—-m <2 and y = z+;p—m_ O

In the following [z] will denote the equivalence class of z € [0, 1]
with respect to the relation ~. We distinguish two types of these classes:
“type 17: there is an integer k, £ > 0 and a y € [z] such that

2ky —y e M,
“type 2”: for any k € N and any y € [z] we have 2%y —y ¢ M.

The following remark shows that these types exclude one another.
Remark 6. Suppose that [z] is of type 1 and 2Fy — y € M for some
k€N, y e [z]. Then:

«) For any z € [z] 22 — 2 € M holds;

B) © = 2 = 5 for some integer m, 0 < m < 2 _ 1. m can

be chosen in such a way that = = z;—p" for some nonnegative integers n
and p.

Proof. o) 2¥y—y=m e M,y =~ 2= 2Py—2z =n € M for some p € Z.
Thus z = 2Py —n and 2%z — z = 2F+Py _2kp _ 9Py 4 = 2P(2Fy —y) —
—2fn 4 n=2"m —2Fn4nec M.

8) By ), 2z —z =2 for some integers m,p. Let z:=2Pz(mod 1),
n=2Pz — z. Then n € 7 and therefore z ~ z. Furthermore, 2%z — z =
=2ktry 9k _2Pp 4 n =2°(2%z —2)—2"n4tn=m-2*n4+nel
Furthermore, z = 5—2'%—’3. O
Remark 7. Let us denote by (z) the equivalence class of z with respect
to ~. Then (z) C [z] for any z € [0,1[, and all the sets (z), [z] are
countable and dense subsets of [0,1[. Furthermore, if [z] is of type 2,
for two numbers y, z € [z] for which 2¥y —z € M and 2Pz —z € M we
have y ~ z if and only if k£ = p.

After these remarks we are able to describe the structure of the
general solution of (*):

Theorem 32. Let f be a solution of (%) on the interval [0,1], and let
z € [0,1]. Then the following holds:
(a) The function y — 2f (%) — f(y) =: ¢y is constant on [z].
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(b) If m € M and z +m € [0,1] then in any case
(%) f(z) = f(z +m) = me,.
(c) f is given on (z) by the formula
f(y) = (1 —y) +d, for constants c and d.
(d) If[z] is of type 1, then f is uniquely determined on [z] by the value
f(z), and each value of f(z) gives rise to a solution f on the set
[]. The value f(y) for y = = can be computed by the formula

1 —
) = f(@) 7=
(e) If [z] is of type 2, then f is uniquely determined on [z] by the
values f(z) and f(%), and any choice of values of f(z) and f(%)

gives rise to a solution f on the set [z].
Proof. (a) We show that for each y ~ = the value f(y) can be computed

from the values f(z) and f(%): Asy = z, there is a z € [0,1] and there
are nonnegative integers k,m,n,p such that z = z'{km 5;7"
Now () implies that

o) = 1(5) = (2 5o )4 (5) + (T~ 1)@
and

1(5) =1 (5) = (- "5)1(5) + (o 1)1

This system of two linear equations in the unknowns f(z), f (%) has a
unique solution for any given values of f(z), f (%) because the deter-
minant of the coefficients is nonzero. Computation of the determinant
of the coefficients:

det — (2_m+1>(m+2_1)_(2_m+1><m+2_1) _

and y =

9k—1 ok+1 ok 9k
= (@ = m - Dm 42254 (2 1 42 29) =
= 5%;(—22’““ +2Fm+2+2m +2) — (m+1)(m +2)+
42261 _ok(m 4 14 2m 4+ 4) + (m+1)(m +2)) = —51,-;.

By (%), the value f(y) can be computed from the values f(z) and f(%)
Furthermore, we see that 2f(%) — f(z) = 2f(§) — f(2). Thus the

function y — 2f (-g—) — f(y) is constant on each equivalence class [z].
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(b) Let m € M and suppose that z +m € [0,1]. As z ~ = + m,
we have ¢; = cz4m. Thus we may assume for proving (b) that m =
= & > 0. Let z := 2¥z(mod 1), n := 2%z — 2 € Z. Then z = ﬁ;ﬂ,
T+m= %’ﬂ By (%), we have

= 5(25) - (- D)) + (252 1)1
and

o= H(ZET) < (o P (51 (24252

Thus

f(2) = f(o +m) = 2 (21 (5) - £(2)) = me, = me,.
(c) Let ¢ := ¢, = 2f(%) — f(z), d = f(z) — ¢(1 — z). Then
f(z) = ¢(1 —z) +d, and for y € (z) we have (by (b)) f(y) = f(z) +
+(:L'—-y)c—d+c(1——a:)—|—c(:z— y) =d+¢(1—y).

(d) Suppose that [z] is of type 1. Then z = %, where z = 52—,
for some integers k,m,n,p, i.e. [z] = [z]. Now z = Z5™ and (x) imply

that

@ = (357 = (1- 2= 52) (24 (5) - 7)) + 5 o)
Thus

f@=1(%") = (1—-'”—1;oz)(2f(§>—f<z>)+55f<z)=

= (12— 208 Ly

FE) = 1(50) = (- 5 52 (or(3) - 1) + e -
— (-2 iE L L,

2 2p+1 —z
Thus (1 — z)f(£) — (1 — £)f(z) = 0. Therefore, the value (&) is
uniquely determined by f(z). In order to show that there is a solution
on [z] for any choice of the value f(z), one has to check that y —
— 1=L () is a solution of (*) on [z]. This is easy and omitted.
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(e) Suppose that [z] is of type 2. We only have to show that any
choice of values of f(z) and f(%) gives rise to a solution on the set
[z]. As it has been shown in (1), for any y € [z] the value f(y) can
be computed from f(z) and f ( —23-—) Thus it only has to be shown that
f(z) and f(%) can be chosen arbitrarily. Here we indicate an explicit
construction of the solution: Let f(z) and f (%) be given and define
¢:=2f(%) - f(z), d := f(z) —¢(1l — z) and g: [z] — R by g(y) =
= ¢(1 — y) + d2*, where 2%z — y € M. Then:

g(z) = c(1 - z) + d1 = f(a)

z z 1
o(3) =e(1-3) +d5=
2—z 1 l—z 1 1 T
=+ 5 f@) e = set () = £(3).
g is a solution of (y)—(¢). In fact, let y € [z], 2z —y € M:

b(3) - -

() = 2e(1- ¢

() 2

(1 —y)+d2¥) = %g(y)

D] =
~~

g(%) —%g(y) = c(l— %) +d2k? —ic(l—y)— ;};dIZ’“ —
=) et =),

Thus g is a solution and, therefore, g = f.

The only fact to show is that g is well defined (i.e. the integer k
is unique). Suppose that 2fz —y =m € M, 2Pz —y = n € M, where
k > p. Then 2Fz —2Pz = m —n € M and, therefore, 2Pz —z € M —a
contradiction to the assumption that [z] is of type 2. {

Theorem 33. The general solution of () on the interval [0, 1] is given
in the following way: Let {z;};eT be a system of representatives for the
relation ~. For each i € T choose ¢; € R arbitrarily and

()
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arbitrarily of [z;] 1s of type 2
z{ =0 if [zi] s of type 1.
Define f: [0,1[—R by f(y)=cfl—y)+d2F whenever 2%;—yec M.
The proof has been given in the preceding theorem. ¢
From this result one can easily deduce the general structure of
continuous solutions.
Corollary 9. Let f be a solution of () on [0,1] which is continuous
on a nondegenerate interval J. Then f(z) = ¢(1 — z) for some real
constant c.
Proof. As 20 — 0 = 0 € M, the set [0] is of type 1. Thus f is given
on [0] by f(z) = ¢(1 — z) for some constant c¢. As [0] is dense in [0, 1],
f(z) =c(1—=z)on J. Now let y € [0, 1[ be arbitrary. On (y) f is given
by f(z) = ¢'(1 — z) + d' for some constants ¢/,d’. As (y) is dense in
[0, 1], there are at least two elements u,u’ € (y) N J, u # «'. Thus we
have

d(l—u)+d = flu) = (1 —u)
dl—u)+d = flu')=¢1-u")

and therefore ¢’ = ¢, d = 0. As y was chosen arbitrarily we have
flz)=¢(1—-2z)on [0,1]. {

We also can use the result of Th. 33 to give the structure of solu-
tions of (*) which are continuous at one point:
Theorem 34. Let f: [0,1[— R be a solution of (*) which is continuous
at a point zq € [0,1[. Then f(z) = c(1 —z) for some constant c.
Proof. Let y € [0,1[ and z = £. Then [z] = [y], and we have

FO) = (1—t)+dy for tefy)

and

f(t) =cy(1—2t)+ dy% for t € (2).

As (y) and (z) are dense in [0, 1] and as f is continuous at zy we have

1 .
cy(1 — o) + dy§ = lim f(t) = f(zo) =
te(z)
= th_{f; () = cy(l —zg) + dy.
te(y)

Therefore, dy, =0 and ¢, = % As y was arbitrary, f(z) = ¢(1 — z),

— f(=0)
where ¢ = o O



On a problem of R. Schilling IT 7 167

Remark 8. For getting the result of Th. 34 it is essential that the point
of continuity is an element of the open interval ] — 1,1[. The following
example shows that continuity at the point £ = 1 is not sufficient to
guarantee the continuity of the solution f: Let {z;};cr be a system
of representatives for the relation =, choose ¢; := z;, d; := 0 for each
1 € T and define f: [0,1[— R by f(z) = ¢;(1 — z) whenever z ~ ;. By
Th. 33, f is a solution of (*) and, by Th. 34, f is not continuous at any
point = € [0,1[. (As Th. 35 will show, f is not measurable, too.) As
c¢i € [0,1] for all 1 € T' we have 0 < f(z) < 1 — z on the interval [0, 1],
which implies that f is continuous at z = 1.

Next we deal with measurable solutions. A heavy instrument for
treating this question is Smital’s lemma, which can be written in the
following way:

Lemma 8. Let A, B C R be such that A has positive Lebesgue measure
and B is dense in R. Then the set A+ B has full Lebesgue measure,
i.e. the complement of A+ B has measure 0.

A proof can be found in [3].

Before we give the theorem on measurable solutions we need a
lemma which bases on Smital’s lemma:

Lemma 9. Let J C [0,1] be a nondegenerate interval, g: J — R a
measurable function which is constant on the equivalence classes (x)
for any z € [0,1[NJ. Then g is constant a.e.

Proof. Suppose that ¢ is not constant a.e. As g is real there must be
a number ¢ € R such that both of the sets A := {z | f(z) < ¢} and
B := {z | f(z) > c} have positive Lebesgue measure. As g is constant
on each equivalence class (z) we have A= JN(A+M)and B=Jn
N (B + M). By Smital’s lemma A(A) = A(B) = A(J), a contradiction
to the fact that AN B = (). Thus g must be constant a.e. ¢
Theorem 35. Let f: [0,1{— R be a solution of (%) which is measurable
on a measurable set S C [0, 1] of positive Lebesgue measure. Then there
18 a constant ¢ € R such that f(z) = (1 — z) almost everywhere.
Proof. We give the proof in several steps:

(a) By Smital’s lemma the set S+ (M\{0}) has full Lebesgue
measure, thus A(SN(S+(M\{0})) = A(S) > 0. Now S+ (M\{0}) =

= U (S+m), and M is countable. Therefore, thereis anm € M,
mEM\{0}

m # 0, such that A(SN (S +m)) > 0. Now choose such an m and
let A:=(SN(S+m)) —m. Then A C S and A +m C S, thus the
functions z — f(z), z — f(z + m) are both measurable on the set A.
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(b) As it was shown, on A the function

T —Cp = 2f<§) — f(z) is given by ¢; =

Now let n € M be arbitrary. Then we have
f(a +n) = f() = nes = f(2) + = (f(z +m) = £(2)).

Thus f is measurable on the set ((4+n)N|[0,1[), for arbitrary n € M,

and therefore measurable on B := [0,1[n |J (4 4+ n). By Smital’s
neM
lemma, A(B) = 1, and therefore f is measurable on the whole interval

[0, 1]

(c) By Th. 33, f is given by f(z) = ¢(z)(1 — z) + d(z), where c is
constant on the set [z] and d is constant on the set (z) for any = € [0, 1[.
As f is measurable the function c(z) = 2f(%) — f(z) is measurable,
too, which implies that d is also measurable. By Lemma 9, ¢ and d are
constant functions a.e. Keeping in mind the structure of the function
d as it is given in Th. 33 (d(z) = d;2*), the only possible case for d to
be constant a.e. is that d vanishes a.e. Thus f(z) =c¢(1 —z)+ 0 a.e. §

f(@) = f(z +m)

m
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Abstract: In this paper we consider derivations on special sets of functions,
mainly on the set of infinitely differentiable functions. We will be able to
characterize the derivations on this set in such a way that the problem is
reduced to that of determining the derivations on the real field, which is
already done in the literature. Finally we characterize the differentiation
operator as a derivation with some additional properties.

Der erste Autor hat auf der vierten ,International Conference on
Functional Equations and Inequalities” im Februar 1993 einen Vortrag
mit dem Titel ,Uber ein Funktionalgleichungssystem des Differentia-
tionsoperators” gehalten. Der zweite Autor hat dort darauf hingewiesen,
daf das vorgestellte Funktionalgleichungssystem, welches Endomorphis-
men auf der Menge der stetigen Funktionen beschreibt, die zusitzlich
noch die Produktregel und Kettenregel erfiillen, nur die triviale Losung
(den Nulloperator) besitzt. Durch gewisse Modifikationen konnte er

Die Autoren danken dem Referenten fiir einige hilfreiche Bemerkungen.
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jedoch simtliche Derivationen auf der Menge der auf einem Intervall
beliebig oft differenzierbaren Funktionen beschreiben.

1. Vorbemerkungen

I C R sei ein fest gewahltes Intervall. Gehoren Randpunkte zum
Intervall dazu, so sind unter Ableitungen in diesen Punkten im folgen-
den stets Einseitige zu verstehen. Die uns interessierenden Funktio-
nenraume sind

F :={f: I — R} die Menge der reellwertigen Funktionen auf I,

Fr:={f € F; f konstant},

P := {p € F; p Polynom},

C = {f € F; f stetig},

A" := {f € F; f n-mal differenzierbar}(n € NU {oo}).
F ist bzgl. der punktweise erklarten Addition und (Skalar-)Multipli-
kation eine kommutative Algebra mit Einselement ; Fg, P, C und
A" sind Teilalgebren. Dabei wird das n-te Monom fiir n € Np mit

Tn: I Dt — t" € R bezeichnet. Alle Ergebnisse gelten sinngemafl auch

dann, wenn man komplexwertige Funktionen betrachtet.
1.1. Definition. Wir sagen die Transformation T': D(T') — F erfiille
(D) dann und nur dann, wenn gilt:

(1) P C D(T) C F und D(T) ist Algebra, T': D(T) — F,

(2) T(f+g9)=Tf+1g
(3) T(f-9)=fTg+gTf

Die Transformation T': D(T) — F ist also eine Derivation, an deren
Definitionsbereich D(T) gewisse Anforderungen gestellt werden.
Derivationen sind schon von vielen Autoren ausgiebig untersucht
worden. Das Buch [4] gibt einen guten Uberblick iiber die gingigen
algebraischen Strukturen; Derivationen werden dort auf Seite 120 ein-
gefithrt. Die hier zugrundeliegende Menge, auf der die Derivationen

} fiir alle f,g € D(T).

erklirt werden, hat jedoch eine vergleichsweise reiche Struktur; es wer-
den algebraische und analytische Eigenschaften zusammen betrachtet.
1.2. Definition. Die Transformation T': D(T) — F erfiille (D') dann

und nur dann, wenn sie (D) erfiillt und zusétzlich gilt:
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(4) TT1 = 7o, T¢=®fur¢€fk,

wobei © € F die Nullfunktion bezeichnet.
Die letzte Bedingung dient als Normierung;; sie liefert im Satz (2.5)
die Uberemstlmmung der betrachteten Derivation mit dem Differenti-

ationsoperator, der natiirlich (D') erfiillt.
1.3. Bemerkung. T erfille (D) und zusdtzlich

(4a) D(T) ist o-abgeschlossen, d.h.: f,g € D(T) = fog e D(T),
(4b) T(fog)=(Tfog) Ty, fir alle f,g € D(T),

(4¢) zu jedem t € I existiert ein f € D(T) mat (T f)(¢t) # 0.
Dann erfillt T such (D'); es gibt also (4). Dies sieht man so:

T4 =T($00) 2 (Tg00).-TO X 0 fiir ¢ € Fy,

Tf :T(fOTl) ® (Tforl)-T'rl:Tf-TTl fir feD(T),
und weilter

Tf(ITri—7)=0© fiir f € D(T).

Wegen (4c) erhalten wir daraus T'r; = 79, also insgesamt die Bedingung
4). ¢

@ Die Normierungsbedingung (4) kann also durch die Kettenregel
(4a, 4b) und eine weitere relativ schwache Bedingung (4c) ersetzt wer-
den:

(D),(4a-c) = (D).

Der Sinn der Bemerkung (1.3) liegt einzig und allein in dem Nachweis,
daf die im weiteren Verlauf ausschlieBlich benutzten Bedingungen (D’)
wirklich weniger fordern, als die im anfangs erwahnten Vortrag von Z.
Powazka.

Vorab wird nun noch der fiir die weiteren Untersuchungen we-
sentliche stetig fortgesetzte Differenzenquotient einer differenzierbaren
Funktion betrachtet:

1.4. Definition und Lemma. Zu f € F, f differenzierbar im Punkt
tg € I sei

F®)—F(to) firt £t
) TOTSTIO PSS S A
f’(to) fir ¢t = t()
der an der Stelle ¢, stetig fortgesetzte Differenzquotient von f. Damit

gilt:
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(6) FirneNy, fe A" und ty € I ist ryq, € A™

Beweis. Seien f € A™! und t; € I gewihlt. Definiere R € A"
durch

n+1
Ft) = Z ¢ (t") —t)* + R(t), teR

Aus dieser Gleichhelt folgt durch sukzessive Differentiation fir m €
€ {0,...,n+1}

n+l-—m

Fm(t) = Z f(mm(t")  (t = to)* + RO (2).

Weil R(™)(¢) das Restglied zum (n 4+ 1 — m)-ten Taylorpolynom von
FOm(t) ist, gilt fiir 0 < m < n (vergleiche etwa [3], Seite 239):

(7 R™M(t) = o((t —to)"t'™™)  (t — to)-
Definiere S € F durch

A+1)
r(t)—Zf(kJrlt)? S(t—t) +5(), tel

Daraus ergibt sich:

R(t
S(t) = { o, t#to
0, t =1t
Zu zeigen bleibt, dafl S n-mal auf I differenzierbar ist, denn dann gilt
dies auch fiir . Fiir ¢ ¢ t, ist S(¢) sogar (n + 1)-mal differenzierbar.
Mit Hilfe der Leibnizschen Regel fiir die mehrfache Differentiation von
Produkten erhalt man fiir 0 < m < n+ 1, t # to:

s =3 (7). Sl

k=0

m m! R (t)
=D () ) T s
— k! (t —to)
Mit (7) bekommt man hiermit fiir 0 <m <n—1 schliefllich S(m)(t) =%0

woraus weiter §'(t) = ... = S(™(¢y) = 0, also insgesamt d1e n-malige
Differenzierbarkeit von S im Punkt ¢, folgt. ¢

Das Beispiel f(t) :=sgnt - t?, ryo(t) = |t| zeigt {ibrigens schnell,
daB es Fille gibt, in denen r in A™ \ A"t liegt (n € Np).

?
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2. Folgerungen

Ohne die Bedingung (4) wird man erwarten, daf} es auf den Funk-
tionenrdumen A" eine Fiille von Derivationen geben wird. Das folgende
Lemma, gibt eine Schar davon an, die sich im Falle des Raumes A als
erschopfend erweisen wird:

2.1. Definition und Lemma. Es sel « € F und B: Fp—F eine
Derivation. Definiere fiir f € A!

(KBf)(t) := (B(f(t)r0) — f' - B(tm))(t), te,
Tf:=a-f +Kgf.

Dann sind Kg und T zwei Derivationen (D) auf A'. Dies kann durch
direktes Nachrechnen der Bedingungen (2) und (3) eingesehen werden.
Das nédchste Lemma zeigt nun, daf} sich jede Derivation nach (D)
wenigstens auf einem Teilbereich in dieser Form darstellen 1a8t:
2.2. Lemma. T erfille (D), und es sei a := T1; und B := T|x,.
Dann gult:
Fir f €e AAND(T) und to € I mit gy, € D(T) ist (Tf)(to) =
(- f' 4+ Kpf)lio).

Beweis. Unter den Voraussetzungen an f und r = rg, folgt:

f :f(to)To + (T1 — tng) - T,
Tf =B(f(to)ro) + (o — B(tomo)) - 7 + (11 — tomo) - T',
(TF)(to) = (af")(to) + (B(f(to)70) — f' - B(toT0))(to)
=(af'+ Kpf)(to)- 0 '

Es sei angemerkt, daf§ die Forderung r¢:, € D(T) fir f € A* C D(T)
immer erfiillt ist.

Wir kommen nun zu den abschlielfenden Satzen, die das Wesent-
liche noch einmal zusammenfassen:
2.3. Satz. T erfille (D), es sei a:=T7y, B :=T|x,, und fir f € A
ses Tf :=af' + Kgf. Dann ist T eine Derivation, und es gilt:

- #
a) CcD(T)=T|la=T, T(C)DC,
b) neN und A" ¢ D(T) = Tl gn+r = T'An+1,
c) A® € D(T) = T|ae = T|aes.

Zu beweisen bleibt nur Punkt a): C ist eine echte Teilmenge der Menge
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aller f' mit f € Al; die Letztere ist wiederum wegen T'f = f' in T(C)
enthalten. ¢

Ist T' zusatzlich linear, so ist B wegen Btg = B(7g - 19) = 279 -
- Bty = 2B 7y notwendig das Nullfunktional, und es ergibt sich:
2.4. Satz. T erfille (D), sei linear, und es sei o := Tmy. Dann gilt:

a) CCD(T)= fir f € A' ist Tf = af',

b) n €N und A* ¢ D(T) = fir f € A" st Tf = af’,

c) A® C D(T) = fir f € A ist Tf = af',

d) fir fePist Tf=af'

Zu beweisen bleibt nur Punkt d): Wegen der Linearitét reicht es, fir
n € N nachzuweisen, dal T, = nar,—; gilt. Letzteres zeigt man
induktiv. ¢

2.5. Satz. T erfille (D). Dann gilt:

a) CCD(T)= fir fe AL st Tf=f,

b) n €N und A® C D(T) = fir f € A" ist Tf = f',

c) A® C D(T) = fir f € A® ist Tf = f',

d) fir feP st Tf=f.

3. Schluibemerkung

Die Frage, ob es liberhaupt Derivationen gibt, die auf ganz C
definiert sind, konnte nicht beantwortet werden. Es hat sich hier je-
doch gezeigt, dafl samtliche Derivationen von 4 Restriktionen der in
Lemma 2.1 definierten Derivationen auf A! sind und der Differentia-
tionsoperator die einzige Derivation auf A% ist, die zusatzlich noch die
Normierungsbedingung (4), also insgesamt (D') erfiillt.

Die Derivationen auf A hangen von einer Derivation B: Fp +— F
und einer ,,Steigungsfunktion” o« ab. B ist jedoch genau dann eine
Derivation, wenn fiir jedes t € I die Funktion R 3 z — B(z7)(t) € R
eine Derivation auf R ist; da es eine Fiille unstetiger Derivationen in
R gibt, erkennt man, was fiir eine Vielzahl von Derivationen auf A*
existieren. Speziell die Derivationen auf dem Korper R werden relativ
ausfithrlich in [1], Kapitel XIV, Seite 346-355 abgehandelt. Dort wird
auch deutlich, dal samtliche von © verschiedenen Derivationen auf R
nicht mefibar, also ziemlich exotisch sind.
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Abstract: The relationships between certain substructures of a morita con-
text for near-rings and the associated morita near-ring is determined. This is
then used to determine the relationship between the radicals of the two near-
rings in the morita context and the radical of the associated morita near-ring.

1. Introduction and preliminaries

Morita contexts have proved to be a useful tool in ring theory
in determining the transfer of structural properties between two rings,
especially as far as the radicals are concerned, see for example Amitsur
[1] and Sands [6]. In [3] we have defined morita contexts for near-rings
and in [4] we showed that two much studied cases from the theory
of near-rings can be accommodated in this setting and how the tools
provided by the morita context facilitates their investigation. The two
cases referred to are, firstly, the transfer of structural properties between
a (right) ring module and the associated near-ring of homogeneous maps
on the group and secondly, that of a near-ring and the associated matrix
near-ring. Here, in Section 3, we study the relationships between the
radicals of the two near-rings L and R from a morita context for near-
rings I' = (L, G, H, R) and the radical of the associated morita near-ring
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M,(T). We give explicit conditions which ensures that the radical of
M;(T) can be expressed in terms of the radicals L and R - initially
having to first determine the relationship between the radicals of L and
R. In doing this, we had to establish various relationships between some
substructures of the morita context and the morita near-ring (Section
2). But firstly we have to recall some relevant definitions and earlier
results.

All near-rings will be right distributive and 0-symmetric. Let R
and L be near-rings and let G be a group. G is a L-R-bimodule if there
are functions

LxG—G,(z,9)— 2y and GxR—G, (g,7)—gr

such that (z1 + z3)g = 219 + 29, (g1 + g2)r = G17 + gor, (T172)g =
= z1(z29), (gr1)rz = g(rir2) and (zg)r = z(gr) for all z,z21,22 € L,
g,91,92 € G, r,r1,m9 € R. (Strictly speaking we should call G a near-
ring L-R-bimodule, for even if both L and R are rings, G need not be
a ring bimodule.) A normal subgroup K of G, G a L-R-bimodule, is
an ideal of G if

KR:={kr|ke K,re R} CK and
L+K:={z(¢g+k)—zg|z€eLl,gecGEkeK}CK.

Let N, := {1,2}. For i € N,, we use i, to denote the complement
of i in N,. For each i,j € Ny, let T';; be a group. The quadruple
I' = (11,12, T21, Ta2) is @ morita context (for near-rings) if for every
i,7, k € Ny there is a function

Dijk xTgi = Tji, (2,y) — 2y

which satisfies (a + b)c = ac + bc and (db)e = d(be) for all a,b € T'jg,
c € Tyi, d € Tj and e € Ty It is clear that for each ¢,7 € Ny, Iy
is a I';;-I';;-bimodule and, in particular, for : = j, I';; 1s a near-ring.
As agreed earlier on, we only consider 0-symmetric near-rings. Hence
we should add the requirement that a0 = 0 for each a € T';;, ¢ = 1,2.
Then 2z0;; = 0y for all = € Tyj, i,5,k € N;. We will usually not
write the subscripts in 0;;. It is clear that if I' = (T'11,T12,T21,T22)
is a morita context, then so is (2,21, '12,'11), the one being called
the dual of the other. Often, for a fixed i € Nz, we will thus talk
about the morita context (I';;, i, i i, i ). For each 4,5 € Na, let
A;j € T'ij. The quadruple A = (A11,A12,21,Dp;) is an ideal of the

morita context I' = (T'y1, 12,21, 'a0) if each A;; is a normal subgroup
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of T;j, AijTjk C Ajg and Tri A5 := {a(b+c)—ab | a € Tri, b€ Tyj,c €
€ A} C Ak] for all 4,7,k € Ny. In this case we get the quotient morita
context

r o [Tn Tio Ty Fzz]
AT LA A’ Agr’ Ag
where the relevant maps
| PP 7 Tk
X —
Ai; Ay Ak

are defined by
(z+ Aij,y + Aji) > zy + Aig.

For the morita context ' = (T'11, 12,21, '22), let 't = [PH Flz] be
a1 Do

the associated matrix group. Let m;;: IV — T;; and 7i5: T'y; — T't be
the (7,7)-th projection and (i, j)-th injection respectively. For 1 € Ny,
let T';; @ ', be the direct sum of the two groups I';; and I';; and let
m;: Tt = Ty @ Ty and 75: Ti1 @ Tyo — I'™ be the obvious projection
and injection respectively. Let u;;: I';; — Map (T'j1 @ T'j2, T'aa @ Tiz) be
defined by

uij(z) =uf;: Tj; ®Tja = Dan ® T, wjj(ar, a2) := (zay,zaz).
Finally, for each i,] € Np, x € Tyj, let s7; := 7 o ujj o

The morita near-ring determined by T', denoted by M3(T'), is the
subnear-ring of

Map (I't, ) := {f: Tt = T'" | f a function with f(0) =0}

generated by {sf; | = € F”, i,j € Na}. M(T) is a 0-symmetric near-
ring which has an identity si; + s3, if both I';; and I'y2 have identities
(here 1 denotes both the identity of I'1; and [2). A proof technique
which is quite useful when dealing with elements of M(T") is “induction
on the weight w(u) of U € My(T")”. The weight of U € M,(I"), written
as w(u), is the smallest number of s¥; needed to represent U. If I'y
denotes the dual of the morita context I', then M(T") & M3(T'g). Some
useful facilities for doing calculations in ]\/Iz(l") are (cf. [3]):

_ Tty
1.1 z]+3,, CHARS

1.2 : sfj + s%m = szm + sfj if @#Kk
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1.3 r v _{Sfﬁi i#j=k,
' Stkm =\ o i AR
1.4 s5i(sik, + 2k2) - Szmlgj;
0 0a
15 f UeM I‘,Ua”a”]:U[a“ ] U[ 12];
or By 2( ) [au a3 az 0 + 0 as;
1.6
for any U,V € My(T), U v |9 =v |0 v a0,
’ ’ b 0 0d 0d b0’
17 for k€ Ny, Cy = {sf}c + 552 | z1 € T'ig, 20 € sz}
' is a left invariant subgroup of My(T');
for U € My(T'),U [“11 “12] _ [1’11 1’12]
1.8 ’ Q21 22 ba1 bay

if and only if U( a1 3“2’) = 511’1‘ + 3b2' for all z € V,.

All our consideration to follow, will be in what we call a standard
morita context. A morita context I' = (I'11,T"12,'21,'22) is a standard
morite context if both I'y; and T'y; have identities, all bimodules in T’
are unital (both left and right) and T';;. T'; ; = T';; for all j € N, where
I';;.T';.; denotes the subgroup of I';; generated by I';;, I';, ;. Some useful
consequences are:

1.9 Forall j,k€ Ny, and z €Ty, z € (ijchcj):L';

1.10 Fjn=Tjtlkn forall j,k,n € Ny;

1.11 if z € T'j; and A is a subgroup of I'j, then T';; T'; ;2 € A
implies z € A;

1.12 for © € Tyg, if Thjz € Apk, then z € Apx where
(Alla Alg, A21, Agg) is an ideal of T'.

Finally, it is clear that if I' is a standard morita context, then so is its
dual as well as % for any ideal A of I'.

In all that follows, we assume that the morita contexts under
discussion are all standard morita contexts.
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2. Substructures of morita contexts and morita
near-rings

Let A = (Ayq1,A12,A21,Az) be an ideal of the morita context
' = (Fll,F12,F21,P22). Then A* := {U € Mz(r) | UP+ g A+
+} is an ideal of the near-ring M,(I") where At is the matrix group

At = [A“ A1z . Let T be an ideal of the morita near-ring M(T").
AVSIRAVY!

For each i,j € Ny, let T;; = {z € Ty; | S§; € T}. Then T, :=
:= (T11,T12, T21, T22) is an ideal of the morita context I'. I U € T,

and U |91 92| _ |t b”], then st¥ € T for all 7,7 € Np. It
as1 A2z ba1 bag J

is clear that if 7% and 72 are ideals of M,(T") with 7% C 7?2, then
(T1Y)s C (T?).. Moreover, if 7° is an ideal of M, (T") where each « is
from some index set, then ((\7%*)« = [(J((7)«). For any ideal A of

T, (A*), = A and if 7 is an ideal of My(T'), then (in general) only
T C (T,)* holds. If T = (T,)*, then 7 is called a full ideal of M(T').

From the above and [3], we have

2.1 Proposition.

(1) An ideal T of M>(T') 1s full if and only of 1t satisfies:
UM;(T)spp €T forall k€ Ny implies U€T.

(2) There is a one-to-one correspondence, which preserves inclusions
and intersections, between the ideals of the morita contezt I' and
all the full ideals of the associated morite near-ring My(T') given
by Ar— Ar— A*— (A" =A. O
Let A;; be an ideal of the I';;-T'j;-bimodule I';;. For k € N,,

let AyTy} := {z € Tix | Tk; C Ay;}; it is an ideal of the T'yi-Trs-

bimodule I';x. Let I‘i"klAij be the ideal of the I'yx-I';;-bimodule T'x;

generated by T'; * A;;. Part of the next result follows from [4]:

2.2 Proposition. Let i € Ny be fized. Let T' = (T, Tii,, Tiss, Tici.) be

a (as usual) standard morita context. For each j € Na, let Aj; be an

ideal of the near-ring T';;. Let

A = (A, AiDT 5 T Ay (T 8i)Tis

and let
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Aie: = ((F;1Azczc )P;: ? F;}Azclc’ A’czcr‘;:’ Aiz:ic)'

Then:

(1) Foreveryj € Na, Aj is an 1deal of T' if and only if T';;. *I‘]-_jch]-j -
C Ajj. In case T'j;, * I‘]Tthjj C Ajj, there 18 no need to insert

brackets in (T Aj;)T5 5, since (D75 AT 5 = T5 (8405 5)-
(2) IfAi= A, then A; is an ideal of T.
Proof. (1) follows from [4].

(2): From (1) above, we need T;_ I"i_iclA,-,- C A;;. But our
assumption reduces our need to I';;_ * Aicicri_i: C (1";1 A,-c,-c)l";cl ie.,
we need

(Tii, * A, i, T )i, C F;Aicic
where the latter is the ideal of the I';;-I';_ ; -bimodule generated by
i, * Aigio. Now (s, * A,i T3DTii, C i, * (A T )T )Tai.) ©
C T, * Aii, ST Avi,. O

For any j € Na, let §*(T'j;) :== {A;; C Tjj | Aj; is an ideal of
Fjj for which Fjjc *F]'*]%:Ajj - A]‘j and for =z € Fjj, a:I‘jch‘jcj - A]‘j
implies € Aj;}. In [4] it was shown that this class of ideals is closed
under intersections and
2.3 Proposition [4]. There is a one-to-one correspondence, which
preserves inclustons and intersections, between S*(T';;) and S*(T'i.i,)
given by

cele

Ay — DA — DT Aul T = A

Recall, an ideal I of a near-ring N is a 2-semiprime ideal if for
any left invariant subgroup A of N, A2 C I implies A C I. T is a
3-semiprime ideai if Nz C I implies z € I. The near-ring N is 2-
semiprime (resp. 3-semiprime) if 0 is a 2-semiprime (resp. 3-semiprime)
ideal of N. Any intersection of 2-semiprime (3-semiprime) ideals is 2-
semiprime (3-semiprime). It is clear that any 3-semiprime near-ring
is 2-semiprime; our interest here in 2-semiprime near-rings is mainly
because of the following which is easy to verify:
2.4 Proposition. Let N be a near-ring with identity. An ideal I of N
18 3-semiprime if and only if it 18 2-semiprime. {
2.5 Proposition. Any 3-semiprime (= 2-semiprime) ideal T of M,(T)
28 full.
PI.'fOOf. We use 2.1(1) above. Let U € M,(T") and suppose UM3(T)s}, C
T for all k € Ny. Then (51, U)M2(T)(s;,U) € 7T and hence s;, U € T
for all k € Ny. Then U = (s1; + s3,)U = st U +s3,U€T. O
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Let Sx(T;;) := {Aj; € Tj; | Ajj is a 3-semiprime ideal of T';;
which satisfies T'j;, * Fj_jchjj C Aj;}. From [4] we need two more
results:

2.6 Proposition [4]. Let A;; be a 3-semiprime ideal of 'j;. Then

(1) .’IJFjchjcj - Ajj implies z € Ajj;

(2) (I‘j_jchjj)Fj_C:;- i3 a 3-semiprime ideal of T'j ;..

2.7 Proposition [4]. There is a one-to-one correspondence, which
preserves inclusions and intersections between S;(I';;) and Sy(Tii,)
(given by the same map as in 2.3 above).

2.8 PI‘OpOSitiOl’l. Let1 € N2 be ﬁ:z:ed Let A = (AiiyAiicaAicia Aicic)
be an ideal OfP = (I‘,-,-,F,-ic,l’ici,l",«cic). Then

(1) Aii, € AT ={z e Ty, | 2T4: C Diils
(2)

Aii =T7 A = {z €Ty | Tui,z C Ay} and Ty, = F,-_iini C Ay
(3) A, ST AT = {z € Dii. | Tii.eTii € Auiks

(Diiy iy D Aii) = (Disy AT T3 A, Tt AuTi

ict?

if and only if for = € Tis,, 2T, C Ay implies z € Ay;,.

(4)

Proof. (1): Let z € A;;,. Then 2I';; C Ay I'ii © Ayi; hence z €
€ A,',-I‘i‘j ={zely, |zTi:C A} (by definition).

(2): Let z € A;,i. Then D;ilu.z C I‘,-ci(I‘i,-CAic,-) C A C
CTIii*xA; C I‘;}Aii by the definition of the latter. By 1.11 we
have z € PZ_ZCIA” Since I';_; * Ay € A, and A;,; is an ideal of the
I‘ic,'c—l",-,--bimodule [;.:, we get F;;%Aii C A;,;. Hence A = FﬁiAii
and so I';;_ * I‘ﬁ:Aii = Ty, * Aii € Ay;. For the second equality, let
x € Ty ; such that T'y;,o € Ay By 112, 2 € Ay = I’;;:Ai,- follows.
Conversely, if z € A;_;, then I';; x C Ty Az © Ayse

(3): Let z € A;_;,. Then zT;; C Ay Ti.i C© Ay hence z €
€ A,—c,-]."z-:} = I’;;:A,-,Ti—c} from (2) above. The equality FE:A“-I‘Z-_C% =
= {z €Ty, | Ts.2Ti.: C Ay} is obvious from (1) and (2) above.

(4): If the equality holds, then clearly z € T, with 2T ; C Ay
implies z € A,'il"z-_; = A;; . Conversely, let z € A,-,T‘E. Then zT';,; C
C A;; and by the assumption, z € A;;,. Thus Ay, = Ai,-I‘z-_c}. Let
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(TS F IA”F L — {a el | Diial’;,; C Aii}- Then Dy oyl C A;;
and by “the assumption, T,y CA;,. By 112 y € A;,;, follows.

2.9 Proposition. Let T be a 3-semiprime ideal of My(T"). Fori,j,k €
€ Ny and z € Pz'j.'

(1)

«lj;2 C Tpy implies z € Tjy;

wn particular, T;; 18 a 3-semaiprime ideal of T';;.
(2) J:ijrkj - 'Tij implies z € 7;1

Proof. (1): For any U € Mz(F) there is some ay E Tgi (k=1,i.) by
1.7, such that sf;Usf; = sf;Usi;s?; = sLU(sh; 4 88, )sh; = s¥; (s% +

1t 1)

+ sa'?) o= M € T since Ta;r € CEF],:E C T;;. Since T is 3-

lete z_] 1)

semiprime, s7; € T and hence z € T;; follows.
(2): Suppose zI'jxT'x; € T;; but = ¢ T;;. By (1) above, there is a

yely = I‘JLI‘M (cf. 1.10) such that zyz ¢ 7;;. Assume y = Z orarb,

where o, € {+,—}, a, € I'jz and b, € T't;. Then arobrow Q_f T;; for
some ry € {1,2,...,n}. Once again, by (1) above (with i = j), there
is a u € T'j; such that ar b,z war,bryz ¢ T;5. But arybryzuar bz =
(arobre )z(uar, )(broz) € T2k T'k; C T';i T35 € 745 a contradiction. ¢
2.10 PI‘OpOSitiOl‘l. Let1€ N, be ﬁ:ced and let A:(AiivAiic7Aici7Aicic)
be an deal of T' = (T, Ui, Ui i, Tisi ). Then A* 1s a 3-semiprime ideal
of M3(T") if and only of A satisfies:

(1) A;i 18 a 3-semiprime ideal of T'y; and

(2) ‘ zl';,: C A“(.’L‘ € Fiic) implies © € Aiic-

Proof. If T := A* is a 3-semiprime ideal of My(T), then A;; = 7T;; a
3-semiprime ideal of T';; follows from Prop. 2.10(1). If z € T';;, such
that zI';_; € Ay, then 2T ;. © ATy, © Ay, = 755, and by Prop.

2.10(2) we have z € T;;, = Ay;,.
Conversely, suppose (1) and (2) are satisfied. Let U € My(T)
such that UM,(I")U C A*. Suppose U [an a”] = [bll b12j|. By 1.8
azy az2

U(s3k + s32k) = shtk 4 552 for k € N, and
V—SL]U( $ik ““)sij( Mk 4 g5k ) € A* for all k,jEN,, z,y€l;.

y big bor\ .z by bak ybjk Thjk __  _ybjrzhjk *
ButV~sk1( + s, )sk]( + 5 )_Skk Spr = Spp €A
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and so ybjrzbjr € Agg. Thus Tijbjrlkjbjr © Agg for all j,k € Nao. By
(1), Aji is a 3—semiprime ideal of T';; and by Props. 2.6 and 2.10, also
A, =T lA”F is a 3-semiprime ideal of I'; ;.. This means, for any
k € N,, (Fk] ]k)I‘kk(Fk] bjk) C Agi and since Agg is a 3-semiprime
ideal of T'gg, I'k;bjk € Agx. By 1.12 we have bji € Aji for all j,k € Ns.
Hence UTT C AT; 50 U € A*. {

2.11 Corollary. Let i € Ny be fized and let T = (T'i;, Tis,, Ui i, Tisi,)
be @ morita context. Let T be a 3-semiprime ideal of My(T). Then:

Tii, = Tul;; = {z € Tis, | aTy,i C Tii},
(1) Ti.i =T; Tii = {z € Ti,i | i,z C Tii} and
Tii, =T;. Tl ; = {z € Tui, | Dus. 2T C Tii};

tele

T = (T, Tii Tiy Tii,) = (Tis, T T3, T ITH,P T ) =

1c1?

=TT 5 T T, T ).

1.7 T lele™ 12.? icy ’clc ite ’ zclc

(2)

Proof. (1): Let A := T, = (T3, T, Ti,i, Ti i, )- By Prop. 2.5, A* =
= (7.)* = T. The result then follows from Props. 2.10 and 2.8. (2)
follows by using (1) above twice; once for ¢ and then for ¢.. {
2.12 Corollary. Leti € Ny be fized. Let A;; be an ideal of T'y; such
that Ty, + T, 1A” C A;;. Let A be the 1deal A= (A“,A”I‘l i,F“lA”,
F;:A”I‘Zcz) of the morita context I’ (cf. Prop. 2.2). Then A* is a 3-
semzprzme ideal of M5(T") if and only of Ay s a 3- 3emiprz'me ideal of
T';;. If any one of these two conditions holds, then AMI‘_ = Apr =
= I‘]nlAJk for all j,k,n € N;.
Proof. The sufficiency is clear from Prop. 2.10. Conversely, since
zl;,i € A;; implies z € A”Fl ., once again Prop. 2.10 yields the result.
For z € An]ij, .T].-‘kj C Anj and so :Eijij C And‘]-k C Anr- By
the assumption and Prop. 2.9 we get z € A,i. Conversely, z € Apg
implies 2T'y; C A,j and so = € And‘;jl. Since I'nj * Ajr © Api and
Apk is an ideal of the I',,,-T'gx-bimodule T',,x, we have I‘;} Ajr € Apk.
Conversely, for z € Ay, we have I'y;Tjnz C TpjAj CTyjx Ay C
- I‘_lA]k Forj=n,z €,z = FnJF]nm C I"j'nlAjk, and for j = n,,
by 1.11 we get z € I, A]k Thus I‘ A]k = Ank. O
2.13 Prop051t10n. Let A = (AH,AH,AN,AM) be an ideal of the
morita contert I' = (I'11,1'19,T'91,T22). Then
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 5)+ 40

Before proceeding with the proof, we need:
2.14 Lemma. For each U € My(T), there 1s a Uy € Mz(l;-) with the

property:
ai1 a2 b11 b1z
IFuU = ,
f [021 azz] {bzl 522]

then U, | “11 +Aun a2+ Bz _ bin + Ann big + Axn
q as1 + A21 as9 + A22 b21 + A21 622 + AZ? .

Proof (by induction on w(U)). If U € My(I") with w(U) = 1, then
U = s%_ for some k,n € Ny, ¢ € ['y,,. Let U, := s}, where y = z +
+ Agn. Then U, € Mg(—g—) and it has the required property. Suppose
for all V € M,(T) with w(V) < m, m > 2, such a V; € Mz(%) has
been found. Let U € M,(T") with w(U) = m. Then U = U; + U; or
U = U,U, where U;,U; € My(T) with w(U;) < m and w(Us) < m.
If U = U1 + UQ, let Uq = (Ul)q +(U2)q and lf U = UlUQ, let Uq =
= (U1)4(Usz)q- It follows readily that for both possibilities, U, has the
desired property. We also remark that, even if Uy + U; = U = U; + U,
or Uy +U, = U = UjU} respectively, where w(U]) < m and w(Uj) < m,
then U, is well-defined since for each case, (U1)q+(Uz)q = (U1 )+ (Uz)q
or (Ur)g + (Uz)q = (Uq)q(U;)q respectively. ¢

Proof (of Prop. 2.13). For each U € M,(T), the U, € M(%) given
by the Lemma is obviously uniquely determined by U; hence we have
a well-defined function

r .
w: Ma(T') — MZ(Z), given by ¢(U) = Uj.
Since (U1 +Uz)y = (U1)q+(Uz)y and (U1Uz)g = (U1)q(Uz)g, it is a near-

ring homomorphism. Let us abbreviate the elements of I't and (%)4_

by [aij] and [a;; + A;j] respectively (meaning of course, for example

for [aij]7[aij] = [Z;i Z;z]) Note that Uq[a,‘j + A,‘j] = [bij -+ Aij]

if and only if Ula;;] = [bij + di;] for some dgn € Agp, k,n = 1,2,
Hence we get kerp ={U € My(T")|U, =0} ={U € M(D)|UTT CA*} =

= A*. Finally we show ¢ is surjective from which Mg}") & Mg(%)

will follow. Let V € M2(£) and let U be an element of M3(I') which




Substructures and radicals of morita contexts . .. 187

is obtained from V by replacing each sfj+A"" present in V by sf;. Of
course there may be many different such U’s (z in sj; can be replaced
by other representative from z + A;;); for our purposes any one such U
will do. A straightforward induction on w(V') will show that V = Uy;
hence ¢ is surjective. ¢

Let ¢ € N; be fixed. For & = 1,2, let A;; be a subgroup of T';;.
Then 7;(Ai1,Asp) = {m(a,b) | @ € A;y,b € Az} is a subgroup of T
(which is normal if each A;x is normal in I';). Let Ri(Ai1,Ai2) ==
= {U c MQ(F) | UF+ C_i Ti(Ail,Aig)}.
2.15 Proposition. R;(A;1, Ayz) 18 a right invariant subgroup of Ma(T).
It is a right ideal of Ma(T) if Ajx i3 normal in Ty for k =1,2. If Ay

28 a subnear-ring of T';;, then
@it Ri(Ai1, Aig) — Ay, defined by ¢;(U) := m;(U(7i(1)))

18 a near-ring homomorphism. It is surjective if A;;I'i; C Ay for all
7 =1,2. Moreover, kerp; C {U € Ri(Ai1,Ai2) | UR(Ai1,As2) = 0};
in particular, (ker p;)? = 0.
Proof. It is straightforward to see that R;(A;1, A;2) is a right invariant
subgroup, which is a right ideal of My(T") if the A;;’s are normal. We
show that ¢; is well defined, i.e. p;(U) € A;;. Firstly note that for any
U € Ri(Ai1,As2), Usl, = s¥ for some unique u € A;;. Thus
0i(U) = mi(U(1:4(1))) = mis(Usy(ria(1))) = mis(ski(ria(1))) = u € As.
Let Ui,Uz € Ri(Ai1, i) with Us}; = s and Uzs};, = si?. Then
(Ur 4 Ua)sl; = 372 and so ¢i(Uy + Uz) = uy +ug = o(Ur) + o(Us).
Furthermore, @;(U1Us) = 7ii(Uy(Uas};mii(1))) = mii(Ursgsi?mii(1)) =
= mii(8;0 857 mia(1)) = w85t 2 1ii(1)) = urug = @(Ur)p(Uz2). Let K €
€ kerg.oi and U € Ri(Ail,AiQ}. For any ajr € ij, i,k € Ny, and
for some b;; € A;; and by € Ay, KU [all a12] = K(7;(bi1,bi2)) =
a21 Q22

= Ks}ri(bi,bin) = sfl-'ri(bﬂ,biz) = 0 since K € kerp; implies k =
= @i(K) = 0 where Ks}, = sk. Thus (kery;) - Ri(Ai1,Ai2) = 0.
Finally, suppose A;;I';; € Ay for j = 1,2, Let d € A;;. Then 3;-11- €
€ Ri(Ai,Aiz) and p;(s%) = d. Thus ¢; is surjective. ¢

Once again, let ¢+ € N3 be fixed and for each k = 1,2, let Ag; be
a subgroup of T'x;. Let Ci(Ayq, Ag;) := {7} + 52 | zk € Agi, k= 1,2}
Note that if Ag; for £ = 1,2, then C;(A1;, Ag;) = Ci(T'y;,Toi) = C; (cf.
1.7).
2.16 Proposition. Suppose I';zpAr; € Aj; for all k,j € Ny. Then
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Ci(Ari, Ng;) 18 a left invariant subgroup of Ma(T') and if vi: Ci( A, Ag;)
— Ay; 18 defined by vi(si} +s32) := i, then v; i8 a surjective near-ring
homomorphism with (ker v;)? = 0.
Proof. C;(Aq;, Ag;) is clearly a subgroup of M(T). Let U € M, (") and
let 87} 4 522 € Ci(A1i, Az;). We show that U(s7} + s57) € Ci( Aui, Aai)
by induction on w(U). If w(U) =1, then U = szj for some k,j € N»,
Yy e ij. Then

sU.(s3 +s32) = st = sii + sk € CilBaiy Aai)
by 1.2 and since yz; € I'g;Aj; C Ags.

Suppose V(5% + s5,) € Ci(A1i,Ag;) for all V€ Ma(T') with
w(V) < m (m > 2) and s§; + sb. € Ci(Ari,Dgi). Let U € M, (T)
with w(U) = m. Then U = Uy + U or U = U, U for some Uj; € My(T)
with w(U;) < m, j = 1,2. Then U(s(} + s37) = Us(si} + s37) +
+ Us(sTt + 552) € Ci(Ani, Agi) by the induction assumption, or, by 1.7,
U(s2 4+ 422) = Dy(Un (5% + 522)) = Da(slk + o82) € Ci( A Ai), once
again by the induction assumption.

Note that by the assumptions on Ay; and Ag;, Aji is a subnear-
ring of I';;. Clearly v; is a group homomorphism and ~;((s7§ 557 )(s7} +
FoB)) = (B ST = ayy = (s + 520) - (o + 8). Tt is
clear that 7; is surjective and kervy; = {si} + s3; € Ci(A1i, Agi) | zi =
= 0} = {S::C': | T;, € Alcl} Thus, (ker(’yi)Z =0. ¢

3. Radical theory

Here we investigate the relationship between the radical of the
near-ring M>(T') and the radicals of the near-rings ['1; and I'y. We once
again stress our assumption that I' = (Ts:, Tis., Tiviy Disi, ) is always a
standard morita context for near-rings. We shall give two approaches to
establish this relationship. The first is by placing additional conditions
on a Kurosh—Amitsur radical, and the second will be by considering
conditions on a class of near-rings such that the corresponding Hoehnke
radical has the desired properties. Throughout this section M is a class
of 2-semiprime near-rings. Let ¢ be the corresponding Hoehnke radical,
ie. oN =N(I an ideal of N | N/I € M) for all near-rings N.
Conditions on p. Here we suppose that o is a Kurosh-Amitsur radical.
For more information on the relevant requirements for this to hold, [5]
can be consulted. Of importance here, are the following:
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Let R, := {near-rings N | pN = N} be the radical class deter-
mined by g. Then
3.1.1 R, is homomorphically closed;

312 pN e R, forall N;

3.1.3 R, is closed under extensions, i.e. if I is an ideal of N such that
both I and N/I are in R,, then N € R,;

3.1.4 if I is an ideal of N with I € R, then I C gN;

3.1.5 since M consists of 2-semiprime near-rings, R, contains all the
near-rings with zero multiplication.

Examples of such radicals are the Jacobson radicals J; and Js, the

Brown-McCoy radical G and the equiprime radical e determined by

the classes of 2-primitive, 3-primitive, simple near-rings with identity

and the equiprime near-rings respectively. If a 2-primitive near-ring N

has an identity, then it is 3-primitive and consequently the J; and J3

radicals of any near-ring with identity coincide. Additional properties

that the radical p may satisfy are:

o is right strong (resp. left invariantly strong) if whenever I is
a right ideal (resp. left invariant subgroup) of N with oI = I, then
I CpoN.

o is hereditary on right ideals (resp. hereditary on left invariant
subgroups) if whenever I is a right ideal (resp. left invariant subgroup)
of N € R,, then I € R,.

In the sequel, we let T := o(M3(T)). Since 7 is an intersection
of 3-semiprime ideals (= intersection of 2-semiprime ideals since M(I")
has an identity), 7 itself is 3-semiprime and thus full (cf. 2.5).

3.1.6 Proposition. Suppose o is right strong. Then o(T';;) C T;; for
allt =1,2.

Proof. Let i € N, be fixed. Let A;; = o(I';;) and let A;;, =T';,. Then
A;r is a normal subgroup of I';x and A;T'ip C Ay for each £ = 1,2. By
Prop. 2.15, ¢;: Ri(Aii, Aii,) — Ay is a surjective near-ring homomor-
phism with K? = 0 where K = ker ;. (Note the inconsistency here, as
well as in a few other places in the sequel of our notation; strictly speak-
ing for 7 = 2, we should write R;(Aii,,Ai;) instead of R;(Aii, Asi,).)
By 3.1.5,3.1.2 and 3.1.3 we get 'R,i(A,'i, Aiic) € Rg. Since Ri(Aii, A,‘,‘C)
is a right ideal of M>(T") and p is right strong, we get Ri(A, Aii,) C
C Q(MZ(F)) =T. Let z € o(T';;) = Aj;. Then s}, € Ri(Aii7Aiic) CT,;
hence z € T;;. ¢

3.1.7 Proposition. Suppose g 18 hereditary on right ideals. Then
T:i C o(Ty;) for all: =1,2.
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Proof. Let i € N, be fixed. For each k € N3, let A;x = T;x. Then A
is a normal subgroup of I';x and A;;T;, C Ay for all £ = 1,2. By Prop.
2.15, Ri(Aii, Aii,) is a right ideal of My(T') and ¢;: Ri(Ayu, Aii) —
— A;; is a surjective near-ring homomorphism. Let U € R;(A;;, Aii,)-
Then UT't C 7(Au,Au.) € (7)Y, Thus U € (T.)* = 7; hence
Ri(Aii, Aii,) € T = o(M(T')) € R,. By our assumption on p,
Ri(Aii, Aii,) € R, and thus also 7;; = Ay; € R, (by 3.1.1). Since
7:i is an ideal of T';;, we have 7;; C o(T';;) by 3.1.4.

Since T = o(M>(T")) is a 3-semiprime ideal of M;(T"), we have by
Cor. 2.11(2)

T. =(Ti, T, 7.0, Tii. ) =
:(q—ih zzP—I F 17—”7’T1c1c)

et

= (Tis, T i, Tii T3, Tii).

1.1 ictey Licte 11, !

Let 01(T) := (o(T11), o(T11)T57, T3 0(T11), (T3 o(T11))T 2_11) and let
02(T) == (T3 0(T22))T 15, T3 @(T'22), o(T'22)T'1y 5 0(T22))-
In general, neither of these need to be an ideal of the morita context I’
and they need not be equal. However, if g;(T") = p2(T'), then p1(T) is
an ideal of I" (cf. 2.2) and in this case we say the radical of I" exists and
call it the radical of the morita contezt I'. We denote it by o(T).
3.1.8 Corollary. Suppose g 13 right strong and hereditary on right
ideals. Then o(Tj;) = T;; for all j € Ny and o(I") = p1(T') = po(T);
hence o( My(T')) = o(T)".
Proof. By 3.1.6 and 3.1.7 we have o(T “) = 7;; and by the discussion
preceding the corollary, we get p1(I') = 7, = 02(T"). Hence p(I") exists
oo () — T T g T~ (T~ (T 0
3.1.9 Proposition. Suppose g 1s hereditary on left invariant subgroups.
Then T;; C o(T';;) for alli € N,.
Proof. Let : € N, be fixed and for each k& € N, let Ay; = Tii.
Then Ap; is a subgroup of I'y; and T'jp Qg € Aj; for all k,7 € No.
By Prop. 2.16, Ci(Aii, Ai,:) is a left invariant subgroup of M3(I') and
vi: Ci(Ai, A;;) — Ay is a surjective near-ring homomorphism. Now
Ci(Aii, Ai;) C T = po(M2(T)): Indeed, for all n,m € Ns, let ap, €
€ I'nm. For z; € A;; and z;, € A;,;, we have

; a a
(s% +s2%) | TH "2 = ri(mian, Tiain) + TiL (T a0, T ai2) € (T)T
€ a21 G213

since zxa;; € Ap;Ty; = Tiulij C Ty for all k, j € Ny, Thus s}/ —I—Sf:f €
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€ (7,)* = 7. Since p is hereditary on left invariant subgroups, we get
Ci(Aii, Ai i) and thus also A;; = T;; in R, (by 3.1.1). Thus 735 C o(Ti;)
by 3.1.4.
3.1.10 Proposition. Suppose o 13 left invariantly strong. For 1 € N,
fized, let A;; = o(Ty;) and let A;,; be the subgroup of I';_; generated by
Ti.ilii. If Tii A € Ay, then o(Ti;) € T
Proof. Firstly note that I'jzAg; € Aj; for all 5,k € N; by Propo-
sition 2.16, C;(Ai;,A;,;) is a left invariant subgroup of M,(T") and
7i: Ci(Aiiy Ag,i) — Ay is a surjective near-ring homomorphism with
K? = 0 where K = ker 6. By 3.1.5, 3.1.2 and 3.1.3 we get C;(Ayi, Ai i) €
€ R,. By the assumption on p, we get Ci(Au, Ayi) C o(Mz(T)) =T.
For z € o(T'ii) = Aui, 85 € Ci(Ais, Aii) € T hence z € Tj;. O

As in 3.1.8, we get:
3.1.11 Corollaries. If

(i) p 1s right strong and hereditary on left invariant subgroups
or if
(ii) o 1s hereditary on left invariant subgroups and left invariantly
strong such that T';; A; ; C o(T;;) where Aj ; is the subgroup
of I';,; generated by T'; ;0(T';;) for all j = 1,2
then

o(Ty;) = T;; for alli € Na, o(T) ezists and o( Ma(T)) = (o(T'))*. O

3.2 Conditions on M. Throughout this section,I'=(T'11,I'13,I'21,I'22)
is a fixed standard morita context and M is a class of 2-semiprime
near-rings with g the corresponding Hoehnke radical. We write 7 for
o(Ma(T)).
3.2.1 Proposition. Suppose M satisfies:

(I) If A is an ideal of Ma(T') with My(T")/ A € M, then T/ Aj; € M

for 1 € Ns.

Then o(T'ii) € Tii-
Proof. Let z € o(T;;) and let A be an ideal of M,(I") with M,(I")/ A €
€ M. By condition (I) z € o(T';;) C A;; and so s§; € A. Since this holds
for all such ideals A of My(T'), s%; € o(M2(T")) =7. Thus z € T;;. §
3.2.2 Proposition. Suppose M and [ satisfy:

(I1) For i € Ny, if Ay 18 an ideal of I';; with T'y;/Ay; € M, then
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Piic * FE:A“' C A;; and Mg(F)/A* e M

where A* = (A”,A”P;:,P;:A”,F;:A“Fz—;)

Then Ti; € o(Tis).

Proof. Let x € 7;;. Then s% € 7. Let Aj; be an ideal of I';; with
T'ii/Aii € M. By condition (II) we get s%; € T = o(M(T")) C A%
hence z € (A*)” =A;;. Thus z € Q(Pii). O

3.2.3 Theorem. Suppose M and T satisfy conditions (I) and (II).
Then o(T'y;) = Ti; for i € Ny, o(T) ezists and o(Mz(T)) = (o(T'))*.
Proof. By the previous two results and Cor. 2.11, we have that o(T)
exists and o(T") = 7,. Thus o(M3(T)) =T = (7.)* = (o(I))*. O

3.2.4 Proposition. The conditions (I) and (II) are equivalent to (A)
and (B) where:

(A) For i € Ny, if Ay 1s an ideal of T'y; with Tii/Aii € M, then

T, * PE:A,',' C A;; and Picic/Fi‘i:AiiPi‘c} € M.

(B) Let A = (All,Alg,Agl,Azg) be an ideal Of T". Then Mz(F/A) €
€ M if and only if Ti;/Aii € M for 1 € Na.

Proof. Suppose (I) and (II) hold. Let ¢ € N, and suppose A;; is an

ideal of I';; with F,‘i/Aii € M. By (H), Ty, = P;:Aii C A;; and so

for A = (Ai, AiiTy 5 T Aui T AuTi 1), A% is an ideal of My(T') for

which M5(T')/A* € M. By (I) we then get I'; ;. /T;;' Aul';; € M and

so (A) holds.

Let A = (Alla AIZ’ A21,A22) be an ideal of T'. If MQ(P/A) € M,
then My(T')/A* € M (by Prop. 2.13) and from (I) we get I';;/Ai; €
€ M. If Ty;/Ai;; € M, then (II) gives My(I'/A) = My(TY/A* e M
which shows the validity of (B).

Conversely, suppose (A) and (B) hold. Let A be an ideal of M,(T")
such that My(T')/ A € M. Then My(T'/A,) € M and by (B), T'yi/ A =
= (T'/A.)i: € M. Thus (I) holds. Let A be an ideal of I';; with
Pz‘,’/Aii € M. By (A), Ly, * P;:A“ C A;; and I‘,Czc/I‘;: A“P;j e M.
For the ideal

A= (Ali, A1, Agq, Agg) = (A117A11P;113 Fl_glAu,ngl Anrfgl) =
= (D37 D22l , T Aoz, A2oTr5, Ag2)

we then have T';;/A;; € Mfori € Na. By (B), Ma(T)/A* = My(T'/A) €
M which yields (II). ¢

Contrary to the ring case the conditions (I) and (II) for the near-
ring case can apparently not be expressed in terms of standard morita
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context without reference to ideals (e.g. in the case of (II), I';; € M
implies My(I") € M). The reason being that for an ideal A;; of T'y;,
A = (A1, ATy, T A1, T3 ATy ) is not necessarily an ideal of
T (cf. Prop. 2.2).

4. Examples

4.1. Let M be a class of 2-semiprime near-rings which has the matrix
extension property, i.e. if A is a near-ring with identity, then A € M
if and only if M, (A) € M where M,(A) is the n X n matrix near-ring
over A. Let N be a 0-symmetric near-ring with identity. Then I’ :=
= (N,N*t,N* N)is astandard morita context (all multiplications are
just the near-ring multiplication). In this case M>(T") =2 M,3(N) (cf.
[3]) and T and M clearly satisfy the conditions (A) and (B). Hence
o(Ma(T)) = (o(I'))*. But o(M2(T)) = o(M2(N)) and

(o(T))" = {U € My(N) | U [Z] - {gg%g” ~ (o(N)).

Hence o( M3(N)) = (o(IN))*, confirming a well-known result (cf. [7]).
4.2. Let M be the class of all 2-semiprime near-rings. Let I' =
= (T'11,T12,21,'92) be a standard morita context. By Prop. 2.9, if
A is a 2-semiprime ideal (= 3-semiprime ideal) of M,(T'), then A;; is a
2-semiprime ideal of I';; and so condition (I) is satisfied. If the context
I" has the property that for each 1 € N3, whenever A;; is a 3-semiprime
ideal of T';;, then T';;_ *Fﬁini C A;;, then also condition (II) is satisfied
by Cor. 2.12.

Let us mention that the context I' = (T'17,T12,021,T22) =
.= (N,G, H,M,(N)) (cf. [4]) has the property that for any ideal A;; of
Tii, Tiio * T3 Ay C Ay
4.3. Let M be the class of 3-primitive near-rings. Then p = J;. Ander-
son, Kaarli and Wiegandt [2] have shown that J; is a right strong radical
(a note of caution, they deal with left near-rings and consequently show
that Ja is left strong). Thus J3(T';;) C Ti; where T = o(M>(T")) for any
standard morita context I". This result also follows from condition (I)
which we now verify:
4.3.1 Proposition. The class of 3-primitive near-rings satisfies con-
dition (I). ‘
Proof. Condition (I) will follow from: M,(I") 2-primitive implies I';;
2-primitive for any standard morita context I' = (I'11,T'12,T21,T22)
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(by using Prop. 2.13 and the fact that the concepts 3-primitivity and 2-
primitivity coincide on near-rings with identity). If My (T') is 2-primitive,
there is a faithful M;(T")-group G which has no non-trivial My(T')-
subgroups. Let H = s},;G. Then H is a subgroup of G, for if h; = sla1
and hy = s},g, are elements of H, then h; — hy = si(g1 — g2) € H.
Here we have used the fact that for any distributive element U € M,(T),
U(g1 + g2) = Ugs + Ugs. Indeed, if g3 = 0 or g; = 0 it clearly holds.
Suppose thus g; # 0 and g, # 0. Then My(I)g; = G = M;(T")g2 and
so0 g1 = Vg1 and g2 = Wy, for some V,W € M,(T"). Then U(g, +g2) =
=U((V+W)g1) = UV +W))g1 = (UV)g1 +(UW)gy = Ugy + Uga.

We now show that H is a faithful I';;-group of type 2. Define
I‘,‘,‘ xH—-H by

(a,s5;9) — s&g forall aely;, g€ G.

It is well-defined since s%;g = sj;(s%g) € s;;G = H. Also, (a+b)(skg) =
= asjg + bsj;g and (ab)shg = s¥g = sti(shi(sk9)) = a(b(shg)) =
= a(b(s};9)). Thus H is a I';;-group. Moreover, if aH = 0, then s% €
€ (0: G)myry) = 0. Thus @ = 0 and so H is faithful. Finally, for
0 # si,g € H, we show I';;(shg) = H: Let 0 # slg' € H. Then
519" € G = My(T)(skg); say skg' = Usl,g for some U € My(T"). Then,
for some aj € T'j; (j = 1,2) we have sl;g' = sk(sk¢') = s, (Uskyg) =
= s;U(si; + 5809 = shi(sif + 5i55)g = sig = ai(s}g) € Giu(skg). As
the other inclusion is obvious, we have H = I‘,','(S}ig). Thus I';; is a
2-primitive near-ring. {
4.4. Let M be the class of equiprime near-rings. Recall, a near-ring N
is equiprime if anz = any for all n € N implies @ = 0 or £ = y. Then
o = e 1s the equiprime radical.
4.4.1 Proposition. The equiprime radical is right strong.
Proof. Let I be a right ideal of the near-ring N with e(I) = I. Let
P be any equiprime ideal of N. We show K := {z € I | zI C P) is
an equiprime ideal of I. It is clearly an ideal. Let a,z,y € I such that
arz — aiy € K for all ¢ € I. Then aizj — aiyj € P for all¢,j € I. If
a ¢ K, then aiy ¢ P for some ¢y € I. Suppose also z —y ¢ K. Then
zjo — yjo ¢ P for some j, € I. Since P is an equiprime ideal of N,
there is an ng € N such that (aig)ng(zjo) — (aio)no(yjo) ¢ P. But
(aig)no(zjo) — (aio)no(yjo) = aliono)zjo — a(zono)yjo € P since IN C
C I, which is a contradiction. Thus K is an equiprime ideal of I and
sol =e(I)C K;ie. I? CP. Let a € I. Then aNa = (aN)aCI? C P
and since P is an equiprime ideal, it is 3-prime and so ¢ € P. Thus
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I C P and we conclude that I C e(N). §

This result yields e(T';;) C 7;; where 7 = e¢(M3(T")). It also follows
from condition (I) which we now verify.
4.4.2 Proposition. The class of equiprime near-rings satisfy condition
I).
%’z'oof. Let A be an equiprime ideal of M3(I'). We show A;; is an
equiprime ideal of I';;. Let a,b,c € T';; such that anb — anc € A;; for
all n € T';;, ie. s?i"b_“"c € A for all n € T';;. Suppose both a and
b— c are not in A;;. Then both s% and s}, — s¢, are not in A and
consequently there is a U € M,(T) such that s&Us?; — s&UsS; ¢ A.
Now Us}; = s} + s5? for some z; € Ty;, j = 1,2 (cf. 1.7), and so
S?izib_'azic = s&(si+557)shi— st (s +551)s5; = shUshsh—sfUslsh; =
= s&Usl; — s&UsS; ¢ A; a contradiction. ¢
4.4.3 Proposition. Let I' = (I'y1,T'12,121,T92) be a standard morita
context such that T';;, *l"i_iclA,-i C A;; for any equiprime ideal A;; of T'y;.
Then T' and M satisfy condition (II).
Proof. Let A;; be an equiprime ideal of I';;. We show that A* is an
equiprime ideal of M>(T") where A is the ideal of I'=(T";;,i. . Ti.i, s, ),
cf. Prop. 2.2 and our assumption, defined by A=(A;,Au, A i, )=
(A, Aiiri:%,ri_iclﬁii, Fi_iclAiiF,-_j)- For this we need a preliminary re-
sult:
4.4.4 Lemma. Forn,k,j € Ny, ifa € T'ng, z,y € T'x; and abz —aby €
€ Ayj for all b € Ty, then a € Ay or z —y € Agj. In particular, for
n=k=j=1c, A = Fi_ilA,-iI‘i_% 18 an equiprime ideal of T';_;_.
Proof. As every equiprimecideal is 3-semiprime, we may use the second
part of Cor. 2.12 (which we often do without any further mentioning).
Ifad¢ Apr = l"i_nlAik, then ua ¢ Ay = Ai,‘]f‘;il for some u € I';,. Thus
uav ¢ A;; for some v € I'y;. For any ¢ € Ty, ¢ € T'j; and d € Ty,
(uav)d(gzc) — (uav)d(qyc) = [u(avdgz — avdqy) + avdqy) — vavdgy]c €
€ (Tin * Ap;)Tj; C ATy € Ayj. Since Ay; is an equiprime ideal of
Tii, we have qzc — qyc € A;; for all ¢ € T'ix, ¢ € I'j;. Thus gz — qy €
€ A“I‘J_zl = Ai]‘ for all ¢ € I';;. Since 1 = 1r,, € Tir = Tril'sk, we
have 1 = 3 oyg1hy where oy € {+,—}, g+ € I'ti and h; € T';x. Now

t=1

z—y=1lr—ly =oc1g1hiz+... +0mdmhAmT—0mgmhmy—...—0191h1Y.
For each t, otgihiz — o1gihey = (019:)[(hex — Rey) + hay] — (o191)hey €
€ I'ti * A;; € Agj, which is normal in I'y;, and we may conclude that
Ty E Akj. O
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Proof (of 4.4.3). We abbreviate an element ;11 z12 of I't by [z;;].
21 T22

Let A,B,C € M,(T') such that AUB — AUC € A* for all U € My(T).
Suppose A ¢ A* and B — C ¢ A*. Then [a;;] = Alzj] ¢ At
+ and [b;; — ¢;;] = Blzi;] — Clzi;] = (B — C)[zi;] ¢ AT for some
[2ij], [z:;] € TF. Suppose a := az; ¢ Ay and b — ¢ = bpg & Apg.
Now a ¢ Ag; = Akpl"j"Pl implies au ¢ Ay, for some u € T'j,. From
the above Lemma, we know there is a d € I'pp, such that audb —
—audc ¢ Agg. Let V= (5,7 +5,7)s%4 € My(T). Since AVB—AVC €
€ A*, also s3; AVB—si, AVC € A*. Thus (s34 AVB =53, AVC)[z;] =
= shi(s1) +5; )53 lbis] — siy (774557 ) ste[eis] = shud [bis]—s g2t cij] =

Y11 Y12

Y21 Y22
= 1,2. In particular, for t = ¢, we get yr; = audb — audc € Apg — a
contradiction. {

€ At where yi; = audbyy; — audcp; and yi,; = 0 for t =
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Abstract: Description of the form of solutions f: R—R of the functional
equation f(z + a(z)) = f(z) + f(a(z)) is given in the case where a: RT R+
is an involution (¢ o a = id). When o(z) = %, formal power series to the
above equation are also determined.

The present paper was motivated by the following problem pro-
posed by K. Lajké on the XX. International Symposium on Functional
Equations (Oberwolfach, 1982, cf. [3]): under what conditions the func-
tions
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(%) f(z) = az® + bz + 2a, a,b€R,
are the only solutions of the equation

(1)  flz+1/z) = f(z)+ f(1/z), z € RT (= (0,400))?
We give another proof of Lajké’s conjecture that (%) is the only

solution of (1) in the class of formal power series, some remarks on the
general solution of the equation

2)  flz+a(@)=f(z)+ fla(z)), o(a(z))=2z, z€RY,

and a theorem on the form of solutions of the equation

(3) f(¢(z) + () = f(#(2)) + f(¥(2)), = €RT,

with some specified ¢ and .
The equations (1)—(3) are Cauchy’s equations restricted to a graph

of a given function which were recently studied by many authors, cf.,

e.g., W. Jarczyk [2] and the references quoted therein. In particular,
equation (2) has been dealt with by J. Matkowski and M. Sablik [4], cf.

the last section of our paper.

1. Let F be the linear space (over R) of all formal power series

o0

F = {f(a:) = Z arz®, ar € R}

k=—oc0

and consider the mapping F': F — F, given by
[F(f)(z) = f(z +1/2) — f(z) - f(1/2), f € F, ¢ €R™.

The mapping F' is linear and solving (1) means determining ker F. We
have F(1) = —1, F(z) = 0, F(2?) = 2, so that the series (%) belongs
to ker F. Let us examine F(z*) where k € Z \ {0,1,2}. Since, for
ke N\ {0,1,2} we have

k-1
E\ ..
F k — k ) —k 2i—k
(z%) =2z" + 2z —{—;(z)m
and for k = —m, m € N,
F(z™) = (Z x2i+1)m Yz g™,
1=0

we see that any system {F(z*),...,F(z*)}, k; € 7\ {0,1,2} is lin-
early independent over R. Thus the series (%) are the only solutions of
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(1) in F.

2. We shall deal with equation (2) under the following hypotheses:
(H) The function a: Rt — RT is a continuous, strictly decreasing

involution (@ o @ = id), mapping bijectively R onto itself, and

the function ¢g: R* — R¥, given by

g(z) := z + o(z), z € RT,

is strictly increasing on [c¢,+), where ¢ = a(c).
Let us observe that ¢ is the only fixed point of a, we have lir% a(z) =
=400, lim a(z) = 0, ¢ maps [¢,+00) bijectively onto [2¢,+00), and
the sequence

zn = g"(c), n€NU{0}

(where g™ denotes the n-th iterate of the function g) is strictly increas-
ing and unbounded, so that

(4) [267 +OO) = U [xkvl‘k-i-l)'
k=1
Let ¢; == ¢ | [z;_1,5:)- Thus g; is an increasing continuous bijective
function from [z;-1,z;) onto [z;,z,11). Let us put
h; =gt

Therefore h;: [zi—1, %) — [T4, Tit1).
We have the following

Theorem 1. Under hypotheses (H), if fo: (0,2¢c) — R is an arbitrary
function, then the function

fo(z) if z € (0,2¢),
(6) f(z)={ foohjo...ohi(z) + fooaohjo...ohi(z)+ fooaohyp
o...0hij(z) + ...+ fooaohi(z) ifz € [zi,Tit1), 1 €N
is a solution of equation (2). If fo is continuous then so is f.
Proof. a) z € [¢c,+00). Let first z € [c,2¢). Then g(z) = g1(z) €
€ [z1,22), a(z) € (0,c) and from (4) we get
fz+a(z)) = fog(z)=foohiog(z) + fooaoh og(z) =
= fo(z) + fola(z)) = f(2) + fa(=))
and (1) is satisfied. Suppose now that f given by (4) satisfies (2) when-

ever T € [zg,Z,) and let 2 € [z,, Tpt1). We have gpp1(z) =z 4+ a(z) €
€ [Tn41,Znt2), and from (5) we obtain (since h,y1 0 gpyy =id)
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flz+a(z))=fognti(z)=foohio...0h,(z)+ fooaohjo
o...0hp(z)+ ...+ fooaohy(z)+ fo0oa(z) = f(z) + f o a(z).

Induction completes the proof in the case where z € [c, +00).

b) z € (0,c). Then y = a(z) € (¢, +00). Moreover ¢(y) = ¢ o
o ¢(z) = x, since ¢ is an involution. Thus we may apply case a) and
write

fle+a(z)) = faly) +y) = fla()) + f(y) = f(2) + f(a(2)).

The continuity of f follows from (H) and the continuity of fy. ¢
Now we are going to prove that the extension of fy to f, given by
(5), is unique.
Theorem 2. Let (H) be satisfied and let fy: (0,2¢c) — R be any func-
tion. There exists the unique solution f of equation (2) which coincides
with fo on (0,2¢).
Proof. Suppose we are given two solutions: f and f* of (2) such that

(6) f(z) = f*(z) for =z €(0,2c)
and that there is a t € (0,2c) such that f() # f*(¢). Because of (4),
z € [zi,ziy1) for some ¢ € N, thus A(t) € [z;—1, ;) and
(7) t=g;0 hz(t) = hz(t) +ao h,‘(f)
and « o hi(t) € (0,c). We now use (2) and (7) to get

f@) =fohi(t)+foaohi(t)# f*(t) = f*ohi(t) + f* oo hy(t).
But the second terms here are equal, because of (5), so we end up with
fohi(t) # f* o hi(t). Now, by the same argument with h;(¢) in place
of t we arrive at f o hj_1 0 hi(t) # f* o hi—1 o h;(t) and eventually at
fohio...oh;i(t) # f*ohio...0hi(t). Since hjo...0h;(t) here belongs
to [z, 1] = [¢,2¢) C (0, 2¢), we get a contradiction with (5). ¢

As a consequence of this theorem we get the following

Corollary. If (H) holds then every solution of equation (2) is given by
the construction (4).
Proof. Indeed, let f* be a solution of (2). Take the solution f of (2)
given by (4) with fo = f* | (0,2c). According to Th. 2, since f and f*
coincide on (0, 2¢), there is f = f*.
Remarks. (1) The interval (0, 2¢) is the maximal set on which one may
arbitrarily prescribe a solution to (2). Indeed, given any set M C (0, 2c¢)
let us take an zq € (0,2¢) \ M such that f(z¢) can be determined with
the use of the values of f given on M. Since f satisfies (2), the following
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may happen: either there is an z such that zo = z + a(z) = g(z) <
< 2¢, contrary to g(z) > 2¢; or (2) is satisfied either with zo, then
2o +a(zg) > 2c or for an y such that zo = a(y), then y +a(y) > 2¢. In
the latter case both arguments do not belong to M, so that the value
of f is not defined, contrary to the hypothesis.

(2) Since the function a(z) = 1/z, ¢ € RY, satisfies hypothesis
(H), Th. 1 determines also the general solution of equation (1).

(3) The solutions of (2) defined on (—o0, 0), respectively on R\ {0},
can be described in a similar way as those defined on R.

3. The following result by J. Matkowski and M. Sablik ([4], Th.
4) yields another construction of the general solution to (2) under more
general assumptions than (H).
Proposition. Let a: Rt — R be an involution satisfying a(c) = ¢
and a((0,c)) C (¢, +0) and a((c,+00)) C (0,c). Then every function
fo: (¢, +00) — R such that

(7) fo(2¢) = 2fo(c)

can uniquely be extended to a solution f: Rt — R of equation (2).
Moreover, if a and fo are continuous then so is f.

An analogous result can be obtained for equation (3), i.e., for
the Cauchy equation on the graph of a parametrically given curve

(¢(z),%(z))-

Theorem 3. Let ¢, : RT — RT satisfy ¢(c) = ¢, #((0,¢)) C (¢, +00),
¢((c,+00)) C (0,c) and

(8) ¢otp(z) = ¢(z) for = € (0,c] and op(z) = ¢(z) for z € (¢, +00).

Then every function fo: [c,+00) — R satisfying (7) can uniquely be
extended to a solution f: RY — R of equation (3). Moreover, if ¢, ¢
and fy are continuous then so is f.

Proof. Given an fy as claimed we define f as follows
fo(z + ¢(2)) — fo(é(z)) if z € (0,¢),
®  J@-{ .
fo(z) if z € [¢,+00)
The function f is well defined since z € (0,c¢) implies ¢(z) > c and

z + é(z) > c. If z € (0,c), then from (8) we get 1(z) € (0,c) so that
$(z) + () € (¢, +00) and
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fod(z)+ fo(z) = food(z)+ fo((z) + dot(z)) — foodog(z) =
= fo(é(z) + (=) = f(4(z) + ¥(z))-

If z € (c,+00), then ¢(z) € (0,¢), ¢ o ¢(z) € (¢, +00), whence ¢(z) €
€ (¢,400), ¢(z) + ¢¥(z) € (¢,+00). Therefore

fod(z)+ fop(z)= fod(z)+ ¢dog(z))— foodod(z)+ footp(z)=
= fo(¢(z) + ¥(2)) = f(d(z) + ¥ (=)

For z = ¢, (3) results from (7).

If the functions involved in its definition are continuous, then the
continuity of f given by (9) is obvious for z # ¢, whereas for z = c it
results from (7) and (9). ¢
Concluding remark. The question (cf. [1]) under what conditions
equation (2) has linear solutions only (or a finite-parameter family of
solutions) remains unanswered. In this connection, during the XXXI
International Symposium on Functional Equations (August 1993, De-
brecen), J. Matkowski proposed the following, more adequate, problem:

Consider the system of functional equations (2) with two given
involutions and establish conditions under which the only solution to
the system is the identity function.
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Abstract: An associative ring R is commutative if (and only if) for each
z,y € R, there exist integers m > 0, n > 0 and f(X), g(X),h(X) € X2z [X]
with f(1) = %1 such that [z,yz™ — f(y)z™] = 0 and [z — g(z),y — h(y)] = 0.
Further, we extend this result for one sided s-unital rings.

Throughout this paper, R will denote an associative ring with
center Z(R), and C(R) the commutator ideal of R. Let N(R) be the
set of nilpotent elements in R, and let N*(R) be the subset of N(R)
consisting of all elements in R which square to zero. A ring R is called
left (resp. right) s-unital if z € Rz (resp. z € zR) for every z € R.
Further, R is called s-unital if z € ReNzR for all z € R. If R is
s-unital (resp. left or right s-unital), then for any finite subset F' of R,
there exists an element ¢ € R such that ez = ze = z (resp. ez = z or
ze = ) for all z € F. Such an element e will be called a pseudo (resp.
pseudo left or pseudo right) identity of F'in R. We denote by Z <X,Y >
the polynomial ring over Z the ring of integers, in the non-cummuting
indeterminates X, and Y. As usual Z[X] is the totality of polynomials
in X with coefficients in Z and for any z,y € R, [z,y] = 2y — yz. For
any positive integer d, we consider the following ring property:
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Q(d): if z,y € R, and d[z,y] = 0, then [z,y] = 0.
By GF(q), we mean the Galois field (finite field) with ¢ elements,
and (GF(q)), the ring of all 2 X 2 matrices over GF(g). Set e;; =

L0 0 1 0 0]. '
:[0 O],em:[o 0],and622=[0 1]1n(GF(p))2forapr1me

In [7, Prop. 2], Komatsuo et al. proved the following important
result:
Proposition 1. Let R be a ring generated by two elements such that the
commutator ideal C(R), is the heart of R and C(R)R = RC(R) = 0.
Then R 13 nilpotent.

In view of Prop. 1, we see that Streb’s Theorem of [8] can be
stated as follows:
Theorem S. Let R be a non-commutative ring (R # Z(R)). Then
there ezists a factor subring of R which is of type (a)i, (a)i, (b), (c),
(@), (e), (£) or (o)

. |GE(p) GF(p) :
(a); 0 GF(p) | p a prime.
) 0 GF(p) .
(a)i 0 GF(p)|’ p a prime.
(b) M,(K) = [g n(ba)] | a,b e K}, where K is a finite field
with @ non-trivial automorphism n.
(c) A non-commutative division ring.
(d) A non-commutative ring with no non-zero divisors of zero.

(e) A finite nilpotent ring S such that C(S) s the heart of S and
SC(S)=C(5)S =0.

(f) A ring S generated by two elements of finite additive order such
that C(S) 1s the heart of S, SC(S) = C(S)S =0, and N(S) s
a commutative nilpotent ideal of S.

(g) A simple radical Ting with no non-zero divisors of zero.

Further, from the proof of [8, Korollar 1], we have the following:

Theorem ST. Let R be a non-commutative ring with 1. Then there

exists a factor subring of R which is of type (a);, (b), (c), (d), (d)’, (&)’

or (e)":

(a); [GF(;(p) gggg;] , P a prime.

(b) M,(K) = {[g n(ba)] | a,bc K}, where K 13 a finite field

with ¢ non-triviel automorphism 1.
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(c) A non-commutative division ring.

d A non-commutative Ting with no non-zero divisors of zero.

(d)) T =<1> 4S5 is a finite integral domain, where S is a simple
radical ring.

(d) A non-commutative ring with no non-zero divisors of zero.

(e) T =<1> +S, where S i3 a finite nilpotent ring such that C(S)
is the heart of S and SC(S)=C(5)S=0.

(e)) T =<1> 48, where S is a non-commutative subring of T
such that S[S,S] =[5,S5]S =0.

Now Th. S and Th. ST give the following Meta Theorem which
plays an important role in our subsequent study.

Lemma 1 (Meta Theorem). Let P be a ring property which is inherited

by factor subrings. If no rings of type (a)i, (a)ii, (b), (c), (e), or (g),

(f) (resp. (a)i, (b), (c), (), (d)', (&)’ or (e)") satisfy P, then every ring

(resp. every ring with unity 1) satisfying P is commutative.

Our objective is to prove the following results.

Theorem 1. Let R be a ring. Then R is commutative if (and only if)

for each z,y € R, there exist integers m > 0, n > 0, and f(X), g(X),

h(X) € X2Z[X] with f(1) = %1 such that [z,yz™ — f(y)z"] = 0 and

[z —g(z),y — h(y)] = 0.

Theorem 2. Let R be a right s-unital ring, and let m and n be non-

negative integers. Assume that for each y € R, there exists f(X) €

€ X?Z[X] such that [z,yz™ — f(y)z"] = O for all z € R. Then R is
commutative.

Theorem 3. Let R be a right (or left) s-unital ring. Then the following

are equivalent:

(1) R is commutative.

(i1) For each z, y in R, there ezxist non-negative integers m > 0,
n >0 and f(X) € X2Z[X] with f(1) = £1 such that [z, yz™ —
— f(y)z™] = 0, and for each € R, either = € Z(R), or there
ezists g(X) € X2Z[X] such that z — g(z) € N(R).

(i)  For each y € R, there emists f(X) € X°Z[X] with f(1) = £1
such that [z,yz™ — f(y)z"] = 0 for all z € R, provided m,n
are fized non-negative integers.

Theorem 4. Let R be a right s-unital ring. Suppose that R satisfies a

polynomaal identity

[f(‘Y)aY]Xm + /\(Xv Y)[X,g(Y)])\*(X,Y) =0,

where m 18 a non-negative integer, A(X,Y) and X\*(X,Y) are monic

monomials in L <X,Y>, f(X) and g(X) are polynomials in XZ[X] with
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f(1)==1 and g(1)==+1, and every monomial of A(X,Y)g(Y)A*(X,Y)
has degree > 2 in Y. Suppose that n = (f'(1),4'(1)) is non-zero, where
f(X) and ¢'(X) are the wsual derivatives of f(X) and g(X) respec-
twely. If R satisfies the property Q(n), then R is commutative.

Following [4], let P be a ring property. If P is inherited by every
subring and every homomorphic image, then P is called an h-property.
More weakly, if P is inherited by every finitely generated subring and
every natural homomorphic image modulo the annihilator of a central
element, then P is called an H-property.

A ring property P such that a ring R has the property P if and
only if all its finitely generated subrings have P, is called an F-property.
Lemma 2 ([4, Prop. 1]). Let P be an H-property, and let P' be an
F-property. If every ring R with unity 1 having the property P has the
property P’, then every s-unital ring having P has P'.

Lemma 3 ([3, Th.]). If for every z, y in a ring R, we can find a
polynomial py () with integer coefficients which depend on z and y
such that [z%p, 4(z) — z,y] = 0, then R is commutative.

Lemma 4 ([1, Lemmal). Let R be a ring with unity 1. If for each z,y €
€ R, there ezists an integer m = m(z,y) > 1 such that z™[z,y] = 0,
or [z,y]z™ = 0, then necessarily [z,y] = 0.

Lemma 5 ([5, Th.]). Let f be a polynomial in non-commuting inde-
terminates x1,T3,...,T, with coprime integer coefficients. Then the
following statements are equivalent:

(1) For any ring R satisfying f =0, C(R) 1s a nil ideal.

(2) For every prime p, (GF(p))2 fail to satusfy f = 0.

In [2], Chacron defined the cohypercenter C'(R) of a ring R as
the set of all elements a € R such that for each £ € R there holds
la,z — f(z)] = 0 with some f(X) € X?Z[X], which is a commutative
subring of R ([2, Remark 12]). Indeed Chacron proved the following
result:

Theorem C (Chacron, [2]). Suppose that R satisfies the following con-

dition:

(C) For each z,y € R, there ezist f(X),g(X) € X*1[X] such that
[z — f(z),y — g(v)] = 0.

Then we have the following:

(1) C'(R) is a commutative subring of R containing N(R);

(2) N(R) 1s a commutative ideal of R containing C(R);

(3)  N(R)C'(R),R]=[C'(R),RIN(R) = 0 and [C'(R), R] € N*(R).
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In this paper, we hall study rings satisfying condition (C) of Th. C
by making use of the recent result of W. Streb [8], which we called
Streb’s classification. v ‘
Theorem SC (Streb [8]). Suppose that a ring R satisfies the following
condition:

(SC) For each z,y € R, there ezists a polynomzal f(X,Y) €
€l<X, Y>[X Y7 <X,Y > each of whose monomial terms is
of length > 3 such that [z,y] = f(z,y).

Then there ezists no factor subring of R which 1s of type (e) or (f).

Therefore, if R is mon-commutative, then there exists a factor subring

of R which is of type (a), (b), (c) or (d).

The next result is crucial in our subsequent study is immediate
by Th. C, and Th. SC.

Theorem KT. Suppose that a ring R satisfies (C). Then there ezists
no factor subring of R which is of type (c), (d), (e) or (f). Therefore,
if R is non-commutative, then there exists a factor subring of R which
is of type (a) or (b). .
Proof of Th. 1. Let Pibe prime. Consider the ring [GF(’)(p) : gigg] )
Set x = eg3 and y = eyy in our hypothesis to obtain :

[e22, e12e5; — fe12)eqs] # 0
for all integers m >0, n>0 and f(X)€ X2Z[X] with f(1)= +1. Fur-
ther, consider the ring M,(K), a ring of type (b). Let z = [g 77(0‘/)} ,
(n(7) # ) and y = e12. Then

[z,y2™ = f(y)2"] = [z,y]z™ = y(y = ()™ # 0
for all integers m > 0, n > 0 and f(X) € XZZ[X] Hence, R is
commutative by Th. KT. ¢ :
Corollary 1. Suppose that for each z,y € R, there ezist integers | > 1,
m>0,n>0, and f(X),g(X) € X?Z[X] such that [z,yz™ —y'z"] =0
and [z — f(z),y — g(y)] = 0. Then R is commutative.
Lemma 6. If R is a right s-unital and not left s-unital, then R has a
factor subring of type (a);.
Proof. There exists ¢ € R such that z ¢ zR, (R is not left s-unital).
Let e, f € R such that re =z and ef =e. Thenzf =z. Put y =z —
— fr. Theny # 0, y2 =0, ye = y and ey = 0. Let M be an ideal of
< e,y > which is maximal with respect to y ¢ M. Put I =<e,y> /M,
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E=e+M,j=y+ M. Thus ye = § and &j = 0 = §*. So we have I =
=<e&>+¥yZ and 7 is the smallest non-zero ideal of I. Hence §Z is an irre-
ducible right <€>module. Next, we can see that 4 = {s e<e> |gs=0}
is an ideal of I which does not contain 7, so A = 0. Therefore <é&>
is a commutative primitive ring and so a field. Since €2 —& € A = 0,
I =¢el @yl is of type (a). O ,

Proof of Th. 2. Trivially, we can check that no rings of type (a); or
(b) satisfy our hypothesis. In view of Lemma 6, R is s-unital. Hence,
by Lemma 2, we may assume that R with 1. If m = n = 0, then [z,y —
— f(y)] = 0. Therefore, R is commutative by Lemma 3. Henceforth,
we may assume that m > 0, or n > 0. Then z = ey and y = e
in (GF(p)): p prime, fails to satisfy [z,y]z™ = [z, f(y)]z". Hence,
by Lemma 5, R has no factor subrings of type (d). Further, suppose
that R has a factor subring T of type (e)’. Take s,t € S such that
[s,2] # 0. Then there exists f(X) € X2Z[X] such that [s,t] = [s,](s +
+1)™ —[s, f(¢)](s + 1)™ = 0, which is a contradiction. Therefore, R is
commutative by Lemma 1. {

Lemma 7. Let R be a ring with 1. Suppose that for each z,y € R,
there ezists non-negative integers m, n and f(X) € X?Z[X] such that
[z,yz™ — f(y)z™] = 0. Then N(R) C Z(R).

Proof. Suppose that a € N(R), and a € R. Then [z,a]z™ =
= [z, fi(a)]z™, for m; > 0, ny > 0, and some f;(X) € X?Z[X]. Also,
[z, fi(a)]z™ = [z, f2(f1(a))]z™2, for some my > 0, ny > 0, and some

f2(X) € X?Z[X). Thus
[:c,a]a:m1+m2 = [$,f2(f1(a))]$"1+"2_
Continuing this process, we can see that
[17, a]wm1+...+mt — [SL’, ft( .. fl(a) . )]$n1+...+nt’

for some my > 0, ny > 0 and some fr(X) € X2Z[X], k =1,---,t.
Since a € N(R), for sufficiently large ¢, we get

o, a4 =,
and so
[.’II,CL](.’E + 1)m1+"'+mz — 0’

for my +---4+m; > 0. By Lemma 4, [z,a] = 0. Thus, N(R) C Z(R). ¢
Proof of Theorem 3. It suffices to show that each of (ii) and (iii)
implies (i).
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(i1)=(1): Consider the ring (GF(p))2, p a prime. Then we see that
(€22, e12€5% — f(e12)el,] = e12 # 0, for any integers m > 0, n > 0 and
f(X) € X?Z[X] with f(1) = £1. Accordingly, R has no factor subrings
of type (a);. Thus in view of Lemma 6 and its dual, R is s-unital. By
Lemma 2, we may assume that R has unity 1. Since N(R) C Z(R),
by Lemma 7, R satisfies all the hypotheses of Th. 1. Therefore, R is
commutative.

(ii))=(i): In case m > 0, we have shown above that R has no
factor subrings of type (a)i;. If m = 0, then we consider in (GF(p))2, p
a prime, = = €59 and y = e, in our hypotheses to obtain [es2, 1255 —
— f(e12)ed,] # 0 for any integer n > 0 and f(X) € X?Z[X]. Hence, R
has no factor subrings of type (a);. In view of the dual of Lemma 6,
if R is left s-unital, then R is also right s-unital. By Th. 2, R is
commutative. §

Corollary 2. If R is a right (or left) s-unital ring, then the following

conditions are equivalent:

(1) R 1s commutative.

(2) For each z,y € R, there exist integers [ > 1, m > 0, n > 0 such
that [z,yz™ — y'a™] = 0, and for each ¢ € R, either z € Z(R)
or there ezists f(X) € X?Z[X] such that z — f(z) € N(R).

(3) For each y € R, there exists an integer | > 1 such that [z, yz™ —
—y'z™] = 0, for all z € R, where m, n are fized non-negative

integers.
Following Kobayashi [6], let © be the additive mapping of Z <X, Y >
to Z defined as follows: For each monic monomial X, -+, Xy, (X is

either X or V), ©(Xy,---,X;) is the number of pairs (4,7) such that
1<i<j<tand X; = X, X; =Y. Trivially, one can see that, for
any f(X,Y) € Z <X,Y > O(f(X,Y)) equals the coefficient of XY
occurring in f(X +1,Y 4+ 1).

Let N be the set of all non-negative integers, F(X,Y) €
€ 7 <X,Y >, and (m,n) € N x N. Then (m,n)-component of F,
the sum of all monomials of degree (m,n), that is, of degree m with
respect to X, and of degree n with respect to Y, is denoted by Fi ».

Using the above definition, we state the following:
Lemma 8 ([6, Th.]). Let R be a ring with unity 1, and let F(X,Y") be
a polynomial in T <X,Y > of total degree d. Suppose that the greatest
common divisor of {(m — D){(n — )O(Fpnn) | m+n =d, m,n > 0}
is positive. If R satisfies the identity F(X,Y) =0, then R satisfies the
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identity (XY — Y X) = 0. Therefore, if moreover R has Q(I), then R
18 commutative.
Proof of Th. 4. By Lemma 1, it is enough to show that R has no
factor subrings of type (a)i, (b), (d) or (f). It is easy to see that no
rings of type (a);; satisfy

[F(X), Y]IX™ + A(X, Y)[X, g(Y)]\*(X,Y) = 0,
where m is a non-negative integer. In view of Lemma 5, we also see

that R has no factor subrings of type (d). Further, by Lemma 6, R is
s-unital. Hence, in view of Lemma 2, we may assume that R has unity

- The sum of all monomials which have the maximal degree in
[F(X), Y]X™ + MX, V)X, g(Y)]A"(X, )
is one of the following:
a X Y]X™, b\(X, V)X, Y'I\N(X,Y),
and
| alXF Y]X™ 4+ bA(X, V)X, Y\ (X, Y),
where aX* and bY"' are the leading terms of f(X) and ¢(Y), respec-
tively. Now it is easy to see that
O(a[X*,Y]X™) =ak and O(NX,Y)X, Y \*(X,Y) = bl

Hence, by Lemma 8 there exists a positive integer, n such that n[z,y] =
= 0 for all z,y € R. Since R satisfies Q(d), we may assume that
(n,d) = 1. If T is any factor subring of R, then T inherits the property
that n[z,y] = 0 for all z,y € T. Thus T satisfies Q(d).

0

Next, suppose that R = M,(K). Let ¢ = [g U(a)]’ (n(a) #

# a), e = g (1)] Then, by our assumption, we get [f(c),elc™ =
= —X(c, €)[c, g(e)]A*(c,e) =0. But ¢ is invertible, so we have [f(c),e]=
=0. So [f(c),1+€]c™ = —A(c,1+¢€)[c,g(1+€)]A*(¢,14+e) = 0. There-
fore, ¢'(1)lc,e] = le,g(1 + €] = 0. Now, [f(c),c + ele™ =
= —Ae,c+e)lc,g(c+e)]A\*(c,c+ e) and both ¢ and ¢+ e are invertibe,
then we obtain [c,¢g(c + ¢)] = 0. We have

g(a) (n(g(a)) —g(a))(n(a) —a)™*
0 n(g(a)) '

Therefore, [c, g(c + €)] = 0 means that n(g(a)) = g(a), and this implies

g(c+6)=[
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that [g(c), e] = 0. Hence, it follows that
(4 e+ 6™ = ~A(1+e,0)[1 + e, g(N(1+e,) =0,

and hence [e, c]f'(1) = [f(1+e¢),c] = 0. This together with [c, e]g'(1) =
= 0 implies that d[c,e] = 0. By Q(d), we get [c,e] = 0. Thus we have
a contradiction.

Finally, we suppose that R is of type (e)'. Choose s,t € S with
[s,t] #0. Then

[s,81f'(1) = [f(1+5),8)(1+5)™ = =A(1+s,1)[1+s5,g(£)]A*(1+s,1) = 0.

S0.0 = [5,8(1) = [f(1+5), 1+8](1+8)™ = —A(L+s, 1+H)[1+s,g(1+
+ A (1 + 5,1+ 1) = —[s,t]¢'(1). Hence d[s,t] = 0. By Q(d), we have
[s,t] = 0 which is a contradiction. {

Corollary 3. Let R be a right or left s-unital ring. Suppose that R
satisfies the polynomial identity [f(X),Y]X™ + [X,9(V)|N\*(X,Y) =
= 0, where m s a non-negative integer, A*(X,Y’) i3 ¢ monic monomsial
in L<X,Y > f(X), g(X) are polynomials in XZ[X] with f(1) = +1,
g(1) = £1, and every monomial of g(Y)A*(X,Y) has degree > 2 in Y.
Suppose that d = (f'(1),¢'(1)) 18 non-zero. If R satisfies Q(d), then R
18 commutative.

Proof. As in the proof of Th. 3, we can see that R has no factor
subrings of type (a); and R is s-unital. Therefore, R is commutative by
Th. 4. §

Corollary 5. Let R be a right or left s-unital ring. Suppose that R
satisfies the polynomial identity [X* Y]X™ — [X, Y] X™ = 0, where
k>0,1>1, m>0, andn > 0. Letd = (k,I). If R satisfies Q(d),

then R is commutative.
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Abstract: We study properly (B,C)-smooth and properly C-calm spaces,
where B and C denote classes of topological spaces. Both proper smoothness
and proper calmness are invariants of a recently invented author’s proper
shape theory and are described by the use of proper multi-valued functions.
The dual notions are also examined.

1. Introduction

The notions and results in this paper belong to the part of topo-
logy that could be described as proper shape theory. As shape theory
is an improved homotopy theory designed to handle more successfully
complicated spaces so is proper shape theory a modification of proper
homotopy theory made with the same goal to provide us with a new
insight into global properties even of those spaces for which the classical
proper homotopy gives doubtful information.

In [7] the author has described proper shape category of all topo-
logical spaces using Sanjurjo’s method of multi-valued functions from
[12]. Our approach was formally very similar to the one taken by Ball
and Sher [2]. Instead of proper fundamental nets we considered proper
multi-nets. The other steps were identical. We defined a notion of
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a proper homotopy for proper multi-nets and took for the morphisms
of the proper shape category Sh, proper homotopy classes of proper
multi-nets.

In the present paper we shall introduce and investigate proper
shape invariants called smoothness and calmness. It is useful to consider
these notions in terms of arbitrary classes B and C of topological spaces.
In other words, we shall define Mf’ ¢_smooth and Mg-calm spaces and
explore their properties. In our notation the letter “M” suggests the
use of multi-valued functions while “p” replaces “proper” or “properly”.

Let us describe the content of the paper in greater detail. In §2 we
recall notions and results from [7] that are necessary in further develop-
ments. The next §3 studies Mf'c—smooth spaces. The idea is that we
require that small enough proper multi-valued functions from members
of a class of spaces B into a given space X which are properly homo-
topic over members of another class C are already properly homotopic
through sufficiently small proper multi-valued functions. This concept
is related to the notion of n-types of Whitehead and it could be re-
garded as a substitute for it in the proper shape theory. We prove that
this is an invariant in the category Shy, explore the role of classes B
and C, and study what kind of maps will preserve and inversely preserve
.Mf 'C_smooth spaces. The classes of proper B-surjections and proper
B-injections from [8] are of key importance.

In the following §4 we consider Mf -calm spaces. The calm spaces
have proved useful in shape theory and geometric topology and are dual
in many respects to the movable spaces of Borsuk [4] just as smooth
spaces are dual to tame spaces which becomes clear when comparing
this paper with [9]. For the first time we have now this concepts in the
proper shape theory of arbitrary topological spaces.

Since the method of investigating properties of spaces by looking
at maps from some objects into a space has an obvious dual approach
where we utilize maps from a space into those objects, we also consider
in §§5 and 6 so called Nf’ C_smooth, PPB’ C_smooth and Np3~calm classes
of spaces, where the change from the letter “M” to the letters “N” and
“P” should reflect duality between these notions. As the reader will
see this duality is striking.

Finally, in §7 we consider dependence of these notions on classes
B and C under the assumption that they are connected with each other
by morphisms from [8].
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2. Preliminaries on proper shape theory

In this section we shall introduce notions and results from [7] that
are required for our theory.

Let X and Y be topological spaces. By a multi-valued function
or an M-function F': X — Y we mean a rule which associates a non-
empty subset F'(z) of Y to every point z of the space X. An M-function
F:. X — Y is préper provided for every compact subset C of Y its small
counterimage F'(C) = {z € X| F(z) C C} is a compact subset of X.
On the other hand, F is proper provided for every compact subset C' of
Y its big counterimage F''(C) = {z € X| F(z)NC # 0} is a compact
subset of X. We shall use the term proper to name either proper or
proper. However, in a given situation, once we make a selection between
two different kinds of properness it is understood that it will be retained
throughout. Instead of proper multi-valued function we shall use the
shorter name M-function

Observe that for single-valued functions the two notions of proper-
ness coincide. Classes of proper and proper M-functions are completely
unrelated [7]. It follows that each of our notions and results on Mp-
functions actually has two versions.

In this paper by a cover we mean an open normal cover [1]. Let
Cov (Y) denote the collection of all covers of a topological space Y.
With respect to the refinement relation > the set Cov (Y') is a directed
set. Two covers o and 7 of ¥ are equivalent provided ¢ > 7 and 7 > 0.
In order to simplify our notation we denote a cover and it’s equivalence
class by the same symbol. Consequently, Cov(}") also stands for the
associated quotient set.

If o is a cover of a space Y, let o© be the collection of all covers
of ¥ which refine o while o* denotes the set of all covers 7 of ¥ such
that the star st(7) of 7 refines o. Similarly, for a natural number n,
o*™ denotes the set of all covers 7 of Y such that the n-th star st™(7)
of T refines o.

Let Inc (YY) denote the collection of all finite subsets ¢ of Cov(Y7)
which have a unique (with respect to the refinement relation) maximal
element which we denote by [¢]. The notation Inc(Y’) comes from
“indices of covers”. The set Inc(Y) will be used as indexing set for
proper multi-nets into Y. We consider Inc (Y") ordered by the inclusion
relation and regard Cov(Y') as a subset of single-element subsets of
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Cov (Y'). Notice that Inc(Y) is a cofinite directed set.

For our proper shape theory the following notion of size for M-
functions will play the most important role. Let F: X — Y be an
M,-function and let o € Cov(X) and v € Cov(Y). We shall say that
F'is an M7 "-function provided for every A € « thereis a C'4 € v
with F(A) C C4. On the other hand, F is y-small or an M -function
provided there is an « € Cov (X)) such that F'is an Mp"7-function. For
an M7 -function F': X — Y we use S(F| o) to denote the family of all
a € Cov (X) such that F is an M “-function.

Next we introduce the notions which correspond to the equiva-
lence relation of proper homotopy for proper maps. Let F and G be
M,-functions from a space X into a space Y and let v be a cover of Y.
We shall say that F' and G are properly y-homotopic or M,J-homotopic

and write F <~ G provided there is an M -function H from the prod-
uct X X I of X and the unit segment I = [0, 1] into ¥ such that
F(z) = H(z, 0) and G(z) = H(z, 1) for every 2 € X. We shall say
that H is a proper y-homotopy or an M,/-homotopy that joins F' and G

or that it realizes the relation F ~ G.

The following lemma from [7] is crucial because it provides an ade-
quate substitute for the transitivity of the relation of proper homotopy.
2.1 Lemma. Let F, G, and H be M,-functions from a space X into
a space Y. Let o € Cov(Y) and 7 € o*. If F X G and G ~ H, then
FXH.

The proof of Lemma 2.1 requires an interesting proposition from
A. Dold’s book [10, p. 358] on covers of the product X x I of a space
X with the unit segment I. We assume that the reader is familiar
with this result and the notion of a stacked covering of X x I over a
cover of X. For a cover o of X X I, we shall use D(X, o) to denote
the collection of all covers 7 of X such that some stacked covering of
X x I over 7 refines 0. As a consequence of the above proposition, this
collection is always non-empty.

The following two definitions correspond to Ball and Sher’s def-
initions of proper fundamental net and proper homotopy for proper
fundamental nets.

Let X and Y be topological spaces. By a proper multi-net or an
M,-net from X into ¥ we shall mean a collection ¢ = {F;}ccmc(y)
of M,-functions Fr.: X — Y such that for every v € Cov(Y) there
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is a ¢ € Inc(Y) with Fy3 X F, for every d > c¢. We use functional
notation ¢: X — Y to indicate that ¢ is an Mp-net from X into Y.
Let MNy(X, Y) denote all My-nets ¢: X —Y.

Two Mp-nets ¢ = {F.} and ¢ = {G.} between topological spaces
X and Y are Mp-homotopic and we write ¢ ~ 1 provided for every

v € Cov(Y) there is a ¢ € Inc(Y) such that F; X G4 for every d > c.
On the other hand, we write ¢ ~ 1 and call v and ¢ M-homotopic

provided there is a ¢ € Inc(Y") such that Fy < Gy for every d > c.

It follows from Lemma 2.1 that the relation of M,-homotopy is an
equivalence relation on the set MN,(X, Y). The M,-homotopy class
of an Mj-net ¢ is denoted by [¢] and the set of all M,-homotopy classes
by Shy(X, Y).

Our goal now is to define a composition for M,-homotopy classes
of Mp-nets. Let ¢ = {F.}: X — Y be a Mpy-net. Let ©: Inc(Y) —
— Inc(Y) be an increasing function such that for every ¢ € Inc(Y)

the relation d, e > ¢{c) implies the relation Fy K F,. Here we make
an assumption that an increasing function ¢ from a partially ordered
set P into itself always satisfies the condition that ¢(p) > p for every
p € P. Let C = {(c, d, e)]c€Inc(Y), d, e > p(c)}. Then C is a
subset of Inc(Y") x Inc (Y') x Inc(Y) that becomes a cofinite directed
set when we define that (¢, d, €) > (¢', d', €') if and only if ¢ > ¢/,
d>d', and e > e'. We shall use the same notation ¢ for an increasing
function ¢ : C — Cov (X X I) such that F,; and F, are joined by a proper
(w(c, d, e), [c])-homotopy whenever (c, d, €) € C. Let @: C — Inc(X)
be an increasing function such that [g(c, d, €)] € D(X, ¢(c, d, ¢)) for
every (c, d, e) € C. In [7] it was proved that there is an increasing
function ¢*: Inc(Y) — Inc(X) such that (1) ¢*(c) > @(c, ¢(c), ©(c))
for every ¢ € Inc (Y'), and (2) ¢* is cofinal in @, i. e., for every (¢, d, €) €
€ C there is an m € Inc(Y) with ¢*(m) > @(e, d, €). With the help
of functions ¢ and * we shall define the composition of M,-homotopy
classes of Mp-nets as follows.

Let ¢ = {F.}: X =Y and ¢ = {Gs}: Y — Z be Mp-nets. Let
x = {H,}, where Hy = Gy 0 Fipy=(s)) for every s € Inc(Z). Ob-
serve that each H, is a Mj,-function because the composition of two
Mp-functions is an Mp-function. In [7] it was proved that the col-
lection x is an Mp-net from X into Z. We now define the composi-

tion of Mp-homotopy classes of M,-nets by the rule [{G,}] o [{F.}] =
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= [{Gy(s) © Fprype(s))}]- This composition of M,-homotopy classes of
Mp-nets is well-defined and associative. '

For a space X, let +¥ = {I,}: X — X be the identity Mp-net
defined by I, = idx for every a € Inc(X). It is easy to show that
for every Mp-net w: X — Y, the following relations hold: [¢] o [t*] =
=[] = [+F]o[¢].

We can summarize the above with the following main result from
[7].

2.2 Theorem. The topological spaces as objects together with the M,-
homotopy classes of Mp-nets as morphisms and the composition of M-
homotopy classes form the proper shape category Shy.

The above constructions may be done without any reference to
proper and proper M-functions. In this way we shall get the shape cat-
egory Sh. On the other hand, in both cases, we may require that all M-
functions belong to a class of M-functions which is closed with respect
to pastings from the proof of Lemma 2.1 in [7] and compositions. In
particular, we may assume that they are either upper semi-continuous
or lower semi-continuous.

B,C_
3. MP¢-smooth spaces

In this section we shall explore the following interesting notion
which in the case of compacta reduces to the author’s (B, C)-smoothness
from [5] and [6].

Let D be a class of spaces, let F' and G be Mp-functions from a
space X into a space Y, and let o be a cover of Y. We shall say that
F and G are properly o-homotopic over D and write F~p G provided
there is a cover 7 of X such that for every M, -function H from a mem-
ber of D into X the compositions F' o H and G o H are M, -homotopic.

Let B and C be classes of topological spaces. A space X is Mf’ c.
smooth provided for every cover o of X there is a cover 7 of X with
the property that for M -functions ' and G from a member of B into
X the relation F~¢ G implies the relation F' < G . A class of spaces is
Mf’ C_smooth provided each member of it is M}?’ ¢_smooth.

We shall first show that the property of being Mf »C_smooth is a
proper shape invariant, i. €., that if X and Y are equivalent objects of
the category Sh, and X is Mf’ C_smooth then Y is also Mf’c—smooth.
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In fact, a much better result is true. The Mf »C_smooth spaces are
preserved under the following weak form of domination.

A class of spaces B is M,-dominated by a class of spaces A pro-
vided for every B € B and every 8 € Cov(B) thereis an A € A and an
M -function G: A — B such that for every a € Cov (A) we can find

an M;j‘—function F:B— Awith Go F 3 idg.

3.1 Theorem A space X is Mf’c—smooth if and only if it is Mp-
dominated by a class of Mf’c-smooth spaces.

Proof. Since every space M,-dominates itself, it remains to prove the
“if” part. Let a cover o of X be given. Let n € o*. By assumption,
thereis an M5 ¢-smooth space ¥ and an MJ-function D: ¥ — X such
that for every ¢ € Cov(Y) there is an M;-function U: X — Y with

GoF Lidy.
Let § € S(D, n). Since Y is MP ¢-smooth, there is an € € Cov (Y)
such that for every M -functions K and L from a member of B into ¥

the relation K ~¢ L implies the relation K 2.

Pick a U as above. Let W be an M;-homotopy joining idx and
DoU. Let 7 € Cov(X) belong to D(W, n) and S(F, e). Then 7
is the required cover of X. To verify this, consider a member B of
B and MT functions F, G: B — X with Frvc G. Let K and L be
UoF and UoG. Then K a,nd L are M;-functions from B into Y’ with

K<¢ L. It follows that K 2 L so that after composing with D we
obtain F & DolUoF = DoK 2 DoL = DoUoG A G. Hence,
FRG. ¢

The M,-domination is weaker than the quasi Shj-domination and
thus also weaker than Sh,-domination [8]. Recall that a class of spaces
A is Shy-dominated by a class of spaces B provided for every X €
EAtherelsaYEBandM -nets ¢: X — Y and ¢: Y—+Xw1th
the composition % o ¢ M,-homotopic to the identity Mp-net X on X.
On the other hand, A is quasi Shy-dominated by B prov1ded for every
X € A and every o € Cov(X) there isaY € B and Mp-nets ¢: X —
— Y and ¥: Y — X with the composition 1 o My homotop1c X
The notion of quasi Sh,-domination is similar to the notion of quasi-
domination in [3].
3.2 Corollary. A space is MB -smooth if and only if it is either Shy-
dominated or quasi Shy domznated by a class of MB C_smooth spaces.
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Another example of M,-domination provides the notion of being
properly B-like. Recall that a space X is properly B-like, where B is a
class of spaces, provided for every o € Cov (X) there is a member Y of
B and a proper map f: X — Y such that the inverse f~': Y — X is
an My -function. In [8] we showed that if a space X is properly B-like,
then X is M,-dominated by B. Hence, we get the following conclusion.
3.3 Corollary. A space X is Mf’c-smooth if and only if it is properly
D-like, where D is a class of Mf’c-smooth spaces.

In the following two theorems we explore in which way does the
definition of Mf’ ¢_smooth spaces depend on classes B and C. The first
result uses the following notion from [9].

Let B and C be classes of spaces. A space X is Mf’c-tame pro-
vided for every o € Cov(X) there is a 7 € Cov (X) such that for every
B € B and every M -function F': B — X thereis a ¢ € C and an
My -function H: C — X with the property that for every a € Cov (C)

there is an M -function G: B — C with F’ X HoG. A class of spaces

is MPB’ C_tame provided each member of it is Mf’ C_tame.

3.4 Theorem. Let A and C be classes of topological spaces and let B
be a class of M}j“’c—tame spaces. Then every ME’A-smooth space X is

also Mf’c-smooth.
Proof. Let a cover o of X be given. Let p € o*. Pick a u € Cov (X)
such that for M}'-functions F' and G from a member of B into X the
relation F4 4 G implies the relation F' < G. Let 7 € u*.

Consider M -functions F, G: B — X such that B € B and
FZ¢ G. Then there is a B € Cov (B) with the property that for every

M B_function K from a member of C into B the compositions F o K
and G o K are M -homotopic. Let a v € BT belong to both S(F, 7)

and S(G, 7). Smce B is MA C_tame, there is a § € Cov (B) such that
for every A € A and every M}‘,S -function L: A — B thereis a C € C
and an M -function K: C — B so that for every a € Cov(C) there is
an MJ-function J: A — C with I A Kol.

Let A€ Aandlet L: A — B be an M]f—function. Pick a C' and
a K as above. Our choices imply Fo K ~ Go K. Let N be a M; -
homotopy which realizes this relation. Let o € D(N, 7). Choose a J
as above. Then we obtain FoL ~ FoKoJ &~ GoKoJ ~ GolL.
It follows that FA 4 G and therefore F 2 G. ¢
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3.5 Theorem. Let A, B, C, and D be classes of spaces such that B
and D are My-dominated by A and C, respectively. If a space X is
M;;A’D-smooth, then it is also Mf’c-smooth.

Proof. Let a cover o of X be given. Let 7 € ¢*. Since X is MJ;“’D—
smooth, there is a p € 77 such that for MB-functions K and L from a

member of A into X the relation K~p L implies the relation K ~ L.
Let 7 € o*. Then 7 is the required cover of X. Indeed, consider a
member B of B and .M;—functions F, G: B — X such that FicG.
Let 3 € Cov(B) belong to both S(F, r) and S(G, 7) and be such

that for every Mf -function R from a member of C into B we have

FoR L GoR. Since the class B is M,-dominated by the class A,
there is an A € A and an Mf -function J: A — B such that for every

a € Cov(A) there is an My -function E: B — A with Jo E Lidgp.
Let K and L be the compositions F o J and G o J, respectively.
Then K and L are M Iﬁ’—functions from A into X. We claim that ngq) L.
In order to verify this, let a € S(J, ). Suppose that D € D
and T: D — A is an M -function. Let § € S(T, a). We utilize now
the assumption that the class D is M,-dominated by the class C to
select a C € C and an M}function W: C — D with the property
that for every cover v of C there is an M -function V: D — C with

WoV 2 idp. The composition JoT oW is an M]/f -function from
C into B. It follows that there is an M, -homotopy P: C'x I — X
joining FoJoT oW and GoJoToW. Let v € D(P, 7). Choose
a V as above. Then we have KoT = FoJoT <& FoJoToWo
oVZGoJoToWoV X GoJoT =LoT. Hence, KoT 2~ LoT
and the claim has been verified.

Now our assumption implies existence of an M;-homotopy
@: AxI — X joining K and L. Let a € D(Q, 7). Pick an E as
above. Then we obtain that ¥ ~ FoJoE = KoE X LoE =
= GoJoE X G.Hence, FLG. {

3.6 Corollary. Let A, B, C, and D be classes of spaces such that B
and D are (quasi) Shy-dominated by A and C, respectively. If a space
X is M;"D-smooth, then it is also Mf’c-smooth.

The following weak form of the notion of being properly B-like is
more in line with our point of view because it is based on M, -functions.
It offers us the possibility to improve Cor. 3.3 in Th. 3.7.

Let C be a class of spaces. A space X is M]‘f—like provided for
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every o € Cov(X) there is a member Y of C and a cover a of ¥ such
that for every f € Cov(Y) there is an ]\Jf—function F: X — Y such
that F'~! is an M ?-function.

3.7 Theorem A space X is Mf’c-smooth if and only if it is M}?—like,
where D is a class of Mf’c-smooth spaces.

Proof. Let a cover o of X be given. Let 4 € o*. Since X is Mg)-
like, there is a ¥ € D and a cover a of Y such that for every 8 ¢
€ Cov(Y) there is an Mf—func.tion R: X — Y such that R™! is an
Mg #-function. Since Y is MP €-smooth, there is a # € Cov (Y) such
that for M. f -functions K and L from a member of B into Y the relation

Kﬁc L implies the relation K ~ L. Choose an R as above and let
T € S(R, B). The cover 7 is the one we were looking for. In fact, let
B € B and assume that F, G: B — X are M -functions with FicG.
Let K and L be RoF and Ro(G. Then K and L are Mf—functions

from B into Y and Kr[ic L. As in the proof of Theorem 3.4 in [9], it
follows that F X R"1oRoF X R'oRoG & G. Hence, FX G. {

In the rest of this section we shall address the question of identify-
ing those proper maps which will preserve or inversely preserve ]fo’ .
smooth spaces. The answer provide proper maps studied in [8] whose
definitions we now recall.

Let B be a class of spaces. A proper map f: X — Y is called an
MP-injection provided for every o € Cov(X) there is a 7 € Cov (X)
and a £ € Cov (Y) such that for M -functions F' and G from a member

B of B into X the relation fo F L f o G implies the relation FF < G .
A propermap f: X — Y is le,—pla,cz'd provided for every o € Cov (X)

there is an M -function J: Y — X such that Jo f Ridx .

Observe that every proper map f: X — Y which has a left proper
homotopy inverse (i. e., for which there is a proper map g: ¥ — X
with the composition go f properly homotopic to idx) is ]\lzl,—placid.
The same is true if the map f has a left Shy-inverse. Moreover, an
M Iﬂ—placid proper map is an MI‘,s -injection, where S denotes the class of
all topological spaces.

The following result shows that Mf -injections inversely preserve
J\/IPB’ C_smooth spaces. .

3.8 Theorem. If f: X — Y is an Mf-injection and Y is ]\/If’c-

smooth, then X is also Mf’c-smooth.
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Proof. Let a cover o of X be given. Smce f is an M —1nJect10n there
is an a € Cov (X) and ﬂ € Cov(Y) such that for MO‘ functions F' and

- G from a member of B into X the relation” f o F' ~ f oG 1mpl.1es the
relation F' ~ G . We utilize now the assumption that Y is My 5, C_smooth
to select ay € Cov (Y) with the property that for M- functlons ‘K and

L from a member of B into Y the rela,tlon K NC L 1mphes the relatlon
KX L. Letr e Cov (X) be a common reﬁnement of a and f(7).

 Then 7.is the reqmred cover. In fact, let F.and G be M _functions
from a member B.of B into X and assume that FLlc G. Let K and

L be f o F and foG. Then K and L are- Mﬂ functlons from B into

Y. The Tast relatlon 1mpl1es Ix Le L Yo that K ~ L. It follows that.
FRG:{ . v

- An example of M ! placrd maps prov1de 1nclu51ons 14, x of the M-
‘retracts A of a space X Here, we will say that a closed subset A of a
_ space X is an.Mj-retract-of X prov1ded for every cover o of A there is
an M" funct1on R X —Asuch that a € R(a) for every a €A Hence '
the followmg is a consequence of Th. -3.8. s
3.9 Corollary An M, rctmct of an: MB C-smooth space is MB .
smooth. : : : e

For the- preservatron of My 5, C—smooth spaces from the domaan to
the codomain we must assume: that the map f is elther M i 'pla,c1d or
~ thatitis an My B.C -bijection.. Let us recall the deﬁn1t1ons of these not1ons'

from [8]. : : : v ‘
. . Let Bbea class of spaces A proper map f+X =Y is an MB
sur]ectzon prov1ded for every o € Cov(X) and every 7 € Cov (V) there
isap€ Cov (Y) such that for every M§ 4 functlon F from a member of
- B into Y there is an M function G Wlth F f G A Spec1al case
of MB-sur_]ectlons are Mp -placid maps, i. ‘€. proper maps f X =Y

such that for every o € Cov(X) and every 7 € Cov- (Y) there is an
| My function J: ¥ — X with foJ. ~ idy . In“faet, every M -placid .
map is an M S—sur_]ectmn where S denotes the class of all topologlcal
spaces. S :

Observe that a proper map f X — Y Wlnch has a r1ght proper
homotopy inverse (i ‘e., for which there is a proper map. g: Y — X
with f o g properly. homotoplc to idy) is My -placid. ‘The same is true
if the proper map has a r1ght Shp-inverse. :




224 Z. Cerin

At last, for classes B and C of spaces, a proper map is an Mf’c—
bijection if it is both an Mf—injection and an Mg—surjection. We shall
use a shorter name Mf—bz’jection for an Mf’ 5_bijection.

3.10 Theorem. If a map f: X — Y is My -placid and X is Mf’c-
smooth, then Y is also Mf"c-smooth.

Proof. Let a cover o of Y be given. Let 7 € 0* and a = f~(x). Since
X is M} ¢-smooth, there is a # € Cov (X) such that for MFf-functions

K and L from a member C of C into X the relation Kﬂc L implies the
relation K X L. Now we utilize the fact that f is M -placid to select

an Mf—function H:Y - X withidy ~ foH. Let M: Y x I —» Y be
an Mp-homotopy that realizes this relation and let ¢ € D(M, 7). Let
v € S(H, ). Let a7 € Cov(Y) be a common refinement of { and ~.
Then 7 is the required cover of Y. Indeed, consider M’z’,'—furictions F

and G from a member B of B into Y and assume that FlcG. Let K
and L be Ho F and H o G. Then K and L are Mf—functions from B

into X. From the last relation it follows that Kﬂc L so that K ~ L.
Composing this relation with the map f we obtain fo K ~ folL.
Our choices imply the following chain of relations F ~ foHoF =
=foK & foL =foHoG ~ G. Hence, FX G. §

It has been shown in [8, (3.1)] that another important example
of M -placid maps provide properly refinable maps. We call an onto
proper map f: X — Y between spaces properly refinable provided for
every cover T of Y and every cover o of X there is an onto proper map
g: X — Y such that f and g are T-close and ¢~ is an M -function.
We call g a proper (o, 7)-refinement of the map f. The notion of a .
refinable map between compact metric spaces was first defined by Jo
Ford and James Rogers Jr.. The above extension to arbitrary spaces is
particularly suitable for our theory.

The existence of a properly refinable map from a space X onto a

space Y clearly implies that X is M, Y} -like. Hence, as a consequence
of Ths. 3.7 and 3.10 we obtain the following analogue‘of_ Th. 1.8 in [11]

for M €-smooth spaces.

3.11 Corollary. Let f: X — Y be a properly refinable map. Then the
space X is Mf’c-smooth if and only if Y is Mf’c—smooth.

3.12 Theorem. If a map f: X — Y is an M B-bijection and the
domain X is MPB’ C_smooth, then the codomain Y is also Mf’ C_smooth.
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Proof. Let a cover o of Y be given. Let g € 0* and @ = f7!(p). Since
X is Mf’ C_smooth, there is a § € Cov (X) such that for Mf-functions

K and L from a member of B into Y the relation Kﬁ/c L implies the
relation K ~ L. We now use the assumption that f is an M}? -injection
to select a v € B and a A € pT such that for M -functions P and

() from a member of C into X the relation folP 2 f o @ implies the

relation P £ Q. Let p € A*. At last, since f is also an MPB -surjection,
there is a 7 € ' such that for every M;-function F' from a member

of B into Y there is an M -function K with F’ X fo K. Then 7 is the
required cover of Y.

In order to verify this claim, assume that B is a member of B
and F, G: B — Y are M, -functions with FXeG. In other words,

suppose that there is a cover ¢ of B such that F o H ~ G o H for every
Mg-function H from a member of C into B. Choose M, -functions
K, L: B — X and M}-homotopies V, W: B X I — Y such that V; =
=F Wy =G, Vi = foK, and W, = foL. Let § € £t be from
the intersection of sets S(K, ), S(L, v), D(V, p), and D(W, u). Let
C be a member of C and let H: C — B be an Mg—function. Our

choices imply the following extended chain of relations fo K o H K

L FoHZLZGoHX foLoH. Ttfollowsthat foKoH & foLoH.
Since K o H and L o H are the M -functions from C into X, we get

KoH X LoH. Thus, we have checked that Kr/ic L. The way in
which we selected the cover § implies that K < L. Therefore, F &
KfoK R fol X G.Hence, FX G.

B
4. MP-calm spaces

In the present section we shall transfer from shape theory into
proper shape theory the important invariant of calmness. This concept
was invented by the author [6] for compact metric spaces. We shall
define Mf -calm spaces with respect to a class B of spaces in order to
cover all possible variations of calmness (see [6]).

Let B be a class of spaces. A space X is Mf—calm provided there
is a cover o of X with the property that for every cover 7 of X we can
find a cover p of X such that M2-functions F' and G from a member C
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of C into X which are My -homotopic are also M -homotopic.

We shall first consider how this definition depends on the class 5.
Once again the M,-domination offers an answer.
4.1 Theorem. If a class of spaces B is My-dominated by another such
class C and a space X is j\/[;f-calm, then X is also ]\/If-calm.

Proof. Since X is Mg-calm, there is a cover ¢ of X such that for
every v € Cov(X) there is a ¢ € Cov(X) so that for MZ-functions

K and L from a member C of C into X the relation K < L implies
the relation K ~ L. Then o is the required cover. Indeed, let 7 be

an arbitrary cover of X. Let v € 7*. Choose a cover p as above. Let
a B € B and MgZ-functions F' and G from B into X be given and
assume that F X G. Let H be an MJ -homotopy joining F' and G.
Let 8 € D(H, o). We can assume that § is so fine that both F' and G
are ]\4pﬂ »@-functions. Since the class B is M,-dominated by the class C,
there is a C € C and an Mf—function D: B — C such that for every

v € Cov(C) there is an M)-function U: C' — B with idp £ Do
Let K and L be the compositions ' o D and G o D, respectively. Then
K and L are MgZ-functions from C into X with K R L. Our choices
imply K <~ L. Let E be an My -homotopy joining K and L. Let v €
€ D(E, v). Choose a U as above. Then we have the following chain
ofrelatlonstFoDoU KoU X LoU = GoDoU X G.
Hence, F ~ G. O

Our goal now is to show that Mf—calmness is indeed a proper
shape invariant. We can prove a far better result, namely that it is
preserved under Shy-domination.
4.2 Theorem. A space is Mz‘f-calm if and only if it is Shy-dominated
by an Mg-calm space.

Proof. Let X be a space, let ¥ be an Mpc—calm space, and assume
that ¢: X — Y and ¢: ¥ — X are Mp-nets such that the composition
¥ o ¢ is Mp-homotopic to the identity Mp-net X on X.

Since Y is Mpc—calm, there is a cover a of Y with the property that
for every cover § of Y there is a v € Cov (Y") such that M]-functions
K and L from a member C of C into Y which are M *-homotopic are
already Mpﬂ—homotopic. Let p € o*.

Since ¢ is an M,-net, there is an index ¢ € Inc(Y) such that
F;, X F, for all d, e > c. Choose a d > ¢ and a cover o of X so that
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Fyis an MI‘,’ »#_function. Then o is the required cover. Indeed, let a
cover T of X be given. Let v € 7*. By assumption, there is an index
a € Inc(X) such that a > {v} and G o F} ~ idx , where z = ¥(a),
6 = *(a), y = {6}, and z = p(y). Notice that G, is an Mg"’—function.
Let M: X x I — X be an M, -homotopy that realizes the last relation.

Let e € D(M, v) and B € &*. Select an index w > z such that Fj £ Fy,
for every b > w. Observe that the condition w > z implies that Fy, and
F, are joined by an Mg-homotopy N: X xI—=Y. Let £ € D(N, 9).
Pick a cover v of Y with respect to a and § as above. Finally, we select
an index b > w and a 7 € £+ such that Fy is an M Y-function.

Let P: X xI —-Y bean M pﬂ—homotopy joining Fp and F,, and
let R: X xI — Y be an M}-homotopy joining Fy and Fy. Let p
be from the intersection of sets D(P, 8) and D(R, p). Consider Mp2-
functions F' and G from a member C of C into X and assume that
F 2 G. Let K and L denote compositions Fy o F' and Fy 0 G, re-
spectively. These are M) -functions and K = FFoF K FyoF &
X F,0G=1L,ie., K~ L.By assumption, it follows that K £ L. This
relation implies the following chain F,oF £ FyoF =
=K ﬁL:FboG g F,, o G. Hence, FwoFréJFwoG so that we get
G, o F,o0F <~ GgoFy, oG . But, we also have relations Gy 0o F, 0o F' &
X GroF,oF, FXG 0F,0F,GXGyoF,0G,and G,0F,0G ~
X Gz o F, o G. Together these relations imply the desired conclusion
FLG. )

The next result is typical for shape theory. It shows the role
of Mf »€_smooth spaces and is similar to the author’s theorem that a
(B, C)-smooth and C-calm compactum is B-calm [6].
4.3 Theorem. Let B and C be classes of topological spaces. If a space
X 15 both Mf’c-smooth and .Mg-calm, then it 13 also Mf-calm.
Proof. Since X is MS-calm, there is a cover o of X such that for every
7 € Cov(X) there is a p € Cov(X) with the property that for M2-
functions K and L from a member of C into X the relation K <~ L
implies the relation K ~ L.

Let 8 € Cov(X). We utilize the assumption that X is Mf’c—
smooth to select a 7 € Cov(X) such that for M -functions F' and

G from a member C into X the relation FLe G implies the relation

rla. Finally, choose a cover o € 7T as above.
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Consider M}f’—functions F and G from a member B of B into X

and assume that FF < G. Let K: BxI — X be an M -homotopy
joining F' and G. Let v € D(H, o). For every M]-function H from a
member C of C into B the compositions K and L of H and F and H
and G, respectively, satisfy K < L. It follows that K < L. Hence,

Fl; G, and we get the desired conclusion F' i3 G. 0

In the rest of this section we shall consider the question of identi-
fying those proper maps which will preserve or inversely preserve MPB -
calm spaces. The answer provide proper maps studied in [8] whose
definitions have been recalled in §3. The following result resembles Th.
3.8.
4.4 Theorem. If f: X — Y is an Mg-z’njection and Y is Mg-calm,
then X is also Mf-calm.
Proof. Since Y is Mf—calm, there is a cover a of ¥ such that for every
B € Cov(Y) there is a v € Cov(Y') with the property that for every
M -functions K and L from a member of C into ¥ the relation K R L

implies the relation K 210, Leto= fY(«). Then o is the required
cover of X.

In order to check this, assume that 7 is a cover of X. Since f is
an Mz‘f—injection, there is a 7 € Cov(X) and a f € Cov(Y) such that
for M -functions F' and G from a member of C into X the relation

foF L f oG implies the relation F ~ G. Pick a v as above. Let
o € Cov(X) be a common refinement of 7 and f~*(y).
Let C' € C and assume that M2-functions F, G: €' — X satisty

F X G. Let K and L be the compositions f o F'and f o G, respectively.
Then K and L are Mp7 -functions from C into ¥ and we have K ~ L.

It follows that f o F g f oG and therefore that FF < G . ¢
The following result gives a partial converse to Theorem 4.4.

4.5 Theorem. If a proper map f: X — Y is properly refinable and
the codomain Y is Mg-calm, then f is an ]\/Ig-injection.

Proof. Let a cover a of X be given. Since Y is Mf—calm, there is a
o € Cov(Y) with the property that for every 7 € Cov(Y) we can find
a o € 7T such that for Mg-functions K and L from a member of C into
Y the relation K < L implies the relation K ~ L. Let £ € 0*? and
B € a*. Since f is properly refinable, there is a proper map g from X
onto Y such that f and g are {-close and g™ is an Mf—function. Let
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7 € S(¢g7", B). Next, we select a p as above and let n be a common
refinement of 8 and g~*(o).

Consider Mz? -functions F' and G from a member C of C into X

and assume that fo F 5 foG. Let K and L be the compositions
go F and g o G, respectively. Then K and L are M2-functions from C

into Y. From the previous selections we get K = go F e foF L

foGQ e goG = L and thus K < L. Our choices now imply that

K L L. Tt follows that F £ g logoF = g7loK £ g oLl =
=g logoG (el Hence, FF ~ G . {

4.6 Corollary. The image Y of an Mg-calm space X under a properly
refinable proper map f: X — Y is Mf-calm if and only if the map f
s an Mg -injection.

In an attempt to prove an analogue of Theorem 3.10 for Mf -calm
spaces instead of Mj-placid maps we must use the following stronger
form of this notion. A proper map f: X — Y between spaces is M-
placid provided for every cover ¢ of X there is a cover a of ¥ such that

for every cover p of X and every cover § of Y there is an M-function
J:Y — X which is both an Mg-function and an Mp* ?-function and

fodJ and idy are sz?—homotopic.

4.7 Theorem. If a proper map f: X — Y is M -placid and the
domain X is M‘S-calm, then the codomain Y is also Mg-ca.lm.

Proof. Since X is Mf-calm, there is an 0 € Cov(X) such that for
every 7 € Cov(X) we can find a p € Cov(X) with the property that
for Mg¢-functions K and L from a member of C into X the relation
K £ L implies the relation K ~ L. Since f is My -placid there is a
cover a of Y such that for every cover p of X and every cover 6 of ¥
there is an M-function J: Y — X which is both an M2-function and
an M ?-function and there is an Mg -homotopy H joining foJ and
idy. Then « is the required cover of Y.

To check this, let a cover 8 of Y be given. Let § € 8* and let
7= f1(6). Pick a p and a J as above. Let v € S(J, o). Then « has
the required property. Indeed, let D and E be M) -functions from a
member C of C into Y and assume that D ~ E. Let K and L be the
compositions J o D and J o E, respectively. Then K and L are M)-
functions from C' into ¥ and since J is an My -function we obtain
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that K ~ L. It follows from our selections that K ~ L so that after
composing with f we get f o K X foL. Thus, we have the following
chain of relations D & foJoD = foK % foL = foJoE 2 E.
Hence, D LE. O

4.8 Theorem. Let C be a class of spaces. Let X be an M}?—calm
space. If amap f: X — Y is an Mf—bz’jcctz’on, then the space Y is also
Mpc-calm.

Proof. Since X is Mf-calm, there is an o € Cov(X) such that for

every f € Cov(X) we can find a v € Cov(X) with the property that
for MJ-functions K and L from a member of C into X the relation

K < L implies the relation K Lr.

Since f is an Mf-injection, there is a £ € Cov(Y) and an n €
€ Cov(X) such that for M} -functions K and L from a member of C
into X the relation fo K L folL implies the relation K ~ L. Let
o € £*. Then o is the required cover of Y.

In order to check this, let a 7 € Cov(Y') be given. Let a p € 7*
refines 0. Put f = f7!(u). Choose a cover 7 as above. Since f is an
Mpc—surjection, there is a ¢ € nT such that for every Mg-function F
from a member C of C into Y there is an M)-function K: €' — X with
FXfoK.

Consider M¢-functions F' and G from a member C' of C into V'
and assume that F' < G'. Choose M -functions K and L from C into X
such that ¥ £ fo K and G & fo L. From the previous two relations

we obtain f o K 3 folL. It follows that K ~ L and therefore K 2r
and foK & folL. Combining the last two relations, this time we shall
get the conclusion F' ~ G . {

5. Nf*c-smooth and PPB’C-smooth classes

The notion of an Mf '€ _smooth class of spaces allow us to obtain
two new properties that are preserved under M,-domination. They
could be considered as dual to the notion of an Mf »C_smooth space.
While in the previous three sections we investigated a space X by look-
ing at small proper multi-valued functions from members of a given
class of spaces B into X, we now change our point of view by concen-
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trating on small proper multi-valued functions from X into members
of B.

Let B and C be classes of spaces. A class of spaces X is (1) N} ¢-
smooth and (2) PP €-smooth provided the class B is (1) M;¥:¢-smooth
and (2) Mz‘f »*_smooth, respectively. In other words, provided that
(1) for every B € B and every o € Cov(B) there is a 7 € Cov(B)

with the property that for M -functions F' and G from a member

of X into B the relation F~¢ G implies the relation F < G;
(2) for every B € B and every o € Cov(B) there is a 7 € Cov (B)
with the property that for My -functions F' and G from a member

of C into B the relation F~y G implies the relation F < G .
We shall say that a space X has one of the above properties pro-
vided the class {X} consisting just of a space X has this property.
The three versions of proper smoothness share many properties.
We shall now state and prove the N and the P versions of most results
from §3.
5.1 Theorem. A class X of topological spaces is Nf’c-smooth if and
only if it is My-dominated by an Nf’c-smooth class of spaces.
Proof. Suppose that X is Mp,-dominated by an Nf’c—smooth class
Y. Then the class B is Mg’c—smooth so that B is Mf’c—smooth by
Theorem 3.5. Hence, & is Nf’c-smooth. O
5.2 Theorem. A class X of spaces is PPB’C-smooth if and only ifit
M,-dominates a PPB’C-smooth class of spaces.
Proof. Similar to the proof of Th. 5.1. {
5.3 Theorem. Let A, B, and C be classes of spaces. If a class X
of spaces is both N}?’A-smooth and M}f’c—tame, then X is also Nf’c-
smooth.
Proof. Let a member B of B and a cover o of B be given. Since X
is NPB’A-smooth, there is a m € Cov(B) such that for My -functions

F and G from a member of X into B the relation FX 4 G implies the
relation F <~ G. Let 7 € 7*. Then 7 is the cover we have been looking
for.

Indeed, let X € X and let F, G: X — B be M, -functions such
that F'~¢ G. By definition, this means that there is a cover a €
€ Cov(X ) such that a belongs to both S(F, 7) and S(G, 7) and the com-
positions F'o K and G o K are M, -homotopic for every Mg -function
K:C — X from a member of C into X. Now we utilize the fact
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that X is also M;;‘t’c—ta,me to select a cover § of X such that for every

A € A and every Mf—function H: A — X thereis a C € C and an
Mg -function K: C' — X so that for every v € Cov(C) there is an
M -function D: A — C with H REKoD.

Consider an A € 4 and an Mf—function H: A — X. Choose a
C and then a K as above. By assumption, the compositions F o K
and G o K are joined by an My -homotopy W. Let ¢ € S(W, 7) and
v € D(C, §). Pick an M-function D as above. Then we obtain the fol-

lowing chain of relations Fo H ~ FoKoD X GoKoD X~ GoH.
It follows that F~ 4 G . Hence, F X G. {

5.4 Theorem. Let A, B, and C be classes of spaces. If a class X of
spaces is PPB’A-smooth and the class C is Mg’A-smooth, then X is also
PPB’ ¢ -sm.ooth. ;

Proof. Similar to the proof of Th. 5.3. {

5.5 Theorem. Let A, B, C, and D be classes of spaces such that B and
D are My-dominated by A and C, respectively. If a class X of spaces is
Nf’p-smooth, then it is also Nf’c-smooth.

Proof. The assumption that X is N;t’D—smooth means that A is
M P-smooth. Since B is M,-dominated by A, it follows from (3.1)
that B is Mf’p—smooth. But, since D is Mp-dominated by C, we get
that B is M;V’C-smooth and therefore that X is NPB’C—smooth. o
5.6 Theorem. Let A, B, C, and D be classes of spaces such that B and
C are Mp-dominated by A and D, respectively. If a class X' of spaces is
Pf’v-smooth, then it is also PPB’C—smooth.

Proof. See the proof of Th. 5.5. {

There seems to be no analogue of (3.7) for N7+ €-smooth and PJ>¢-
smooth spaces. In order to state versions of (3.8) we need the following
dual form of the notion of an M f -injection.

Let B be a class of spaces. A class F of proper maps is Nf—
injective provided for every B € B and every ¢ € Cov(B) there is a
7 € Cov (B) such that for every f: X — Y from F and for every M-
functions F' and G from Y into B the relation F' o f ~ G o f implies the
relation F < G. A proper map f: X — Y is an Nf—z’njection provided
the class {f} is N -injective.

For a class F of maps let ' and F" denote collections of all
domains and of all codomains of members of F, respectively.

5.7 Theorem. If F is an Nf-injective class of proper maps and the
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class F' is Nf’c-smooth, then the class F" is also Nf’c-smooth.

Proof. Let a member B of B and a cover ¢ of B be given. Since the
class F is MPB-injective, there is a u € Cov(B) such that for every
proper map f: X — Y from F and all M}-functions F, G:Y — B

the relation F o f & G o f implies the relation FF = G. We utilize now

the assumption that the class F' is MPB »C_smooth to select the required
cover 7 of B such that for every member X of 7' and all M -functions

P, Q: X — B the relation P~ Q implies the relation P L£Q.

Let Y be a member of the class 7" and let F, G: Y — B be M-
functions and assume that F~¢ G. Let f: X — Y be from the class F.
Let P and ) be the compositions F o f and G o f. It is easy to check
that PLe Q. Tt follows that P & Q and therefore that FF < G. §

In a similar way one can prove the following dual result for the
PPB »€_smooth classes of spaces.

5.8 Theorem. If F is an Nf-injective class of proper maps and the
class F" is PPB’C-smooth, then the class F' is also PPB’C-smooth.

5.9 Theorem. If F is a class of M}l, -placid proper maps and the class
F' is Nf’c-smooth, then the class F' is also Nf’c-smooth

Proof. Let a member B of B and a cover o of B be given. Let u €
€ o*. Since the class F" is Nf’c—smooth, there is a 7 € ™ such that
for every member V' of F" and all My -functions P, Q: Y — B the

relation P<¢ Q implies the relation P £ Q. Then 7 is the required
cover. Indeed, let X be from the class 7' and let F), G: X — B be
M -functions and assume that FicG. Let f: X — Y be a proper
map from the class F. Let § € Cov(X) be from the intersection of
sets S(F, 7) and S(G, 7) and have the property that Fo H <~ Go H
for every Mg -function H from a member of the class C into X. Since
fis Mll,—placid, there is an M}f-function J:Y - X with Jo f L idx.
Let P and @) be the compositions F'oJ and G o J. Then P and () are
M -functions and PZlc Q. It follows that P X Q. Our choices imply
F L FoJof=PofXQof=GoJof~ G. Hence, FXG.
5.10 Corollary. An M,-retract of an Nf’c-smooth space is itself
Nf’c—smooth.

5.11 Theorem. If F is a class of M, -placid proper maps and the class
F'" s Nf’c-smooth, then the class F' is also properly Nf’c-smooth.
Proof. The proof is similar to the proof of Th. 5.9. {
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In the next result that corresponds to Th. 3.12 we shall use a
notion of Nf—surjective class of proper maps from [8] whose definition
we now recall. Let B be a class of spaces. A class F of proper maps is
Nf -surjective provided for every B € B and every o € Cov(B) there
is a 7 € Cov(B) such that for every f: X — Y from F and every
My -function F': X — B there is an Mj-function G: Y — B with
F X Gof. A propermap f: X — Y is an Nf-surjectz‘an provided
the class {f} is Nf—surjective. Also, a class of proper maps which is
both Nf-injective and Nf—surjective is called Nf’c—bijectz’ve. We shall
use Nf—bz’jective for an Nf’ B_bijective class of proper maps. A proper
map f is an Nf'c-bz’jectz’on provided the class {f} made up of f alone
is Nf’ C_bijective. An NPB—bijection is defined analogously.

5.12 Theorem. If F is an Nf-sﬂrjectz’ve class of Mg-surjections and
the class F'" is Nf’c-smooth, then the class F' will be also NE'C—
smooth.

Proof. Let a member B of B and a cover o be given. Let A € o*.

Since the class F" is Nf’c—smooth, there is a v € Cov (B) such that
for every member YV of 7" and all M -functions K, L: Y — B the

relation K~¢ L implies the relation K A L. Let p € v. We utilize now
the assumption that the class F is MPB -surjective to select the required
cover T € uT of B such that for every map f: X — Y from the class F
and every My -function F': X — B there is an M}'-function K: ¥ — B
with FAX Ko f.

Consider a member X of ' and M -functions F, G: X — B and

assume that F<¢ G. In other words, assume that there is a cover § €
€ Cov(X) such that Fo H ~ G o H for every M/ -function H from a
member of the class C into X. Let f: X — Y be from the class F.
Pick M}-functions K, L: Y — B such that FEKofandGA Lof.

Let V and W be M) ¥ -homotopies which realize the last two relations.

Let o € 67 be from the intersection of sets D(V, ) and D(W, u) and
let £ € Cov(Y) be from the intersection of sets S(K, 1) and S(L, p).
Since f is an MC—surjection there is a ( € Cov(Y) with the property
that for every C € C and every M ¢_function M: C — Y there is an

My -function H: C — X with M ~ f oH.

Let C be a member of the class C and let M : C' =Y be an Mg—
function. Choose an H as above. Then we obtain the following chain
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of relations: KoM X KofoH X FoH L GoH £ LofoH X
LoM. It follows that Ko M < Lo M. In other words, we checked
that K~¢ L. Now, we conclude that K A L. This time we have
FAKofR2LofX G Hence, FZL.0

The situation with PPB »€_smooth classes of spaces is much simpler
as the following theorem shows. The proof of it is left to the reader.
5.13 Theorem. If F is an .NPB—surjective class of proper maps and the
class F' is PP C-smooth, then the class F'" is also PP:C-smooth.

6. Nf—calm classes

In this section we shall do for M f -calm spaces what we have done
in §5 for Mf »C_smooth spaces. In other words, we shall introduce a
dual notion called NPB -calmness. It applies to classes of spaces and it
satisfies five theorems which are analogues of results in §4.

Let B and X be classes of spaces. The class X is Nf—calm provided
the class B is MpX—calm, i. e., provided for every B € B there is a cover
o of B with the property that for every cover 7 of B we can find a
cover o of B such that for every member X of X and M2-functions

F, G: X — B the relation F' X @ implies the relation F L G. A space

X is Nf—calm provided the class { X'} consisting of X alone is Nf-calm.
The following two theorems are easy consequences of Ths. 4.2 and

4.1, respectively.

6.1 Theorem. If a class of spaces B is Shy-dominated by another such

class C and a class of spaces X is N]f-calm, then X is also Nf-calm.

6.2 Theorem. A class of spaces X is Nf-calm if and only if it is

M,-dominated by an Nf-calm class of spaces Y.

6.3 Theorem. If a class of proper maps F is Nf-injective and the

class F' is Nf—calm, then the class F" is also NPB-calm.

Proof. Let a member B of B be given. Since the class F' is N5-calm,
there is a cover o of B such that for every 6 € Cov (B) thereis a p €
€ Cov (B) with the property that for every Mg-function K and L from

a member X of F' into B the relation K < L implies the relation

K 2 L. Then o is the required cover of B.
In order to check this, assume that 7 is a cover of B. Since the
class F is Nf—injective, there is a § € Cov(B) such that for every
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proper map f: X — Y from F and all M?-functions F and G from Y
P

into B the relation F o f LGo f implies the relation FF ~ G. Pick a
o as above. We can assume that o refines 6.

Let Y be amember of the class 7" and let M2-functions F,G: Y —
— B satisfy F X G. Let f: X — Y be from the class F. Let K and

L be the compositions F o f and G o f, respectively. Then K and L
are Mﬁ’—functions from X into B and we have K <~ L. Tt follows that

Fofri G o f and therefore that F <~ G. ¢

The N. f -calm classes of spaces are inversely preserved under Mé-
placid maps.
6.4 Theorem. If F is a class of le,-placz'd maps and the class F'' is
Nf-calm, then the class F' is also Nf-calm.
Proof. Let a member B of B be given. Since the class F" is NpB—calm,
there is a 0 € Cov(B) such that for every y € Cov(B) we can find a
o € Cov(B) with the property that for M¢-functions K and L from
a member Y of F'' into B the relation K <~ L implies the relation
K X L. Then o is the required cover of B.

To check this, let a cover 7 of B be given. Let u € 7*. Pick a
o as above. We can assume that p refines u. Let F and G be Mp-

functions from a member X of F' into B and assume that FF ~ G . Let
W be an M -homotopy joining F' and G. Let § € Cov (X) be from the
intersection of sets D(W, o), S(F, p), and S(G, p).

Let f: X — Y be a map from F. Since f is Mé—placid, there is an
Mg—function J:Y — X such that idx KJo f.Let Kand L be FolJ
and G o J. Then K and L are M2-functions from Y into B and we have
K X L. It follows from our selections that K X L so that we have
the following chain of relations. F L FoJof=Kof X Lo f =
=GoJof A G Hence, FLG. )

6.5 Corollary. An M,-retract of an NPB-calm space is itself Nf-calm.
6.6 Theorem. Let B be a class of spaces. If F is an Npg-bz’jective class
of proper maps and the class F'" is Nf-calm, then the class F' is also
Nf-calm.

Proof. Let a member B of B be given. Since the class F" is Nf-calm,
there is an a € Cov (B) such that for every p € Cov(B) we can find
a m € Cov(X) with the property that for M -functions K and L from
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a member Y of F" into B the relation K ~ L implies the relation
KXL.

Since the class F is NE-injective, thereis a A € Cov (B) such that
for every proper map f: X — Y from F and all M;-functions K and L

from Y into B the relation K o f R Lo f implies the relation K ~ L.
Let 0 € A\*. Then o is the required cover of B.

In order to check this, let a 7 € Cov(B) be given. Let p € 7*.
Choose a cover 7 as above. We can assume that 7 refines both ¢ and
i. Since the class F is also Nf—surjective, there is a ¢ € 7T such
that for every proper map f: X — Y from F and every M$-function

F: X — B there is an M -function K: Y — B with F' ~Kof.
Consider a member X of F' and Mﬁ—functions F and G from X

into B and assume that ' ~ G. Let f: X — Y be a map from the
class F. Choose two M;—functions K and L from Y into B such that

F X Kofand G &~ Lo f. The last two relations imply the relation

Kof R Lo f. It follows that K ~ L and therefore that K & L. Thus,
we obtain the following chain of relations : F ~ Kof ~ Lo f & G.
From here we conclude that FF <~ G . {

7. Covered and extended classes

In this section we shall explore dependence of all proper shape
invariants which were defined on classes of spaces involved under the
assumption that these classes are connected by either surjections or
injections. The connection can be through one of the following two
notions.

Let F be a class of proper maps and let B and C be classes of
spaces. We shall say that the class C is F-covered by B provided for
every C € C thereis a B € B and an h: B — C from F. Similarly, the
class C is F-extended by B provided for every C' € C thereis a B € B
and a k: C — B from F.

For a class of spaces B we shall use B;, Bs, and By to denote the
classes of all Mf—injections, Mf—surjections, and Mf—bijections. Also,
B*, B°, and B® denote the classes of all N},B-injections, Nf—surjections,
and Nf -bijections. Moreover, if F and G are classes of maps we let 7§
denote the intersection F (3.
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We begin with the result on ]\/I}fg »C_smooth spaces and continue to
cover all our proper shape invariants. The proofs are mostly omitted.
7.1 Theorem. Let A, B, C, and D be classes of topological spaces. If
a space X is Mf’p—smooth and either
(cc) B is {X}i-covered by A and D is {X }'-covered by C,

(ce) B is {X}*-covered by A and D is A®-extended by C,

(ec) B is Ds{X}*-extended by A and D is {X}'-covered by C, or

(ee) B is Cs{X}°-extended by A and D is A°-extended by C,

then X is also Mf’c-smooth.

7.2 Theorem. Let A, B, C, D, and X be classes of spaces. If X is
N;"D-smooth and either

(cc) B is Xi-covered by A and D is X'-covered by C,

(ce) B is X'-covered by A and D is A,-extended by C,

(ec) B is Dy X°-extended by A and D is X'-covered by C, or

(ee) B is DyX*-extended by A and D is B®-extended by C, then X is
also Nf’c~smooth.

7.3 Theorem. Let A, B, C, D, and X be classes of topological spaces
such that B is Xy-covered by A and X is both N;‘”D-smooth and MI?’C-
tame. Then X is also Nf’c—smooth.

Proof. Let a member B of B and a cover ¢ of B be given. Let u €
€ o*. Since the class B is Xj-covered by the class A, there is an A €
€ A and an M;*-bijection h: A — B. Let § = h™'(p). We utilize
now the assumption that the class X is N;t’ D_smooth to select an € €
€ Cov (A) such that for M;-functions P and ) from a member X of

X into A the relation P~p () implies the relation P L (). Since h
is an M,¥-injection, there is a A € Cov(A) and a v € pt such that
for M;‘-functions P and @Q from a member of X into A the relation
hoP < hoQ implies the relation P ~ Q. Let x € v*. At last, choose
the required cover T € kT of B using the fact that A is an Mf—surjection
such that for every M -function F' from a member X of & into B there
is an M;‘—function P:X > Awith FRLhoP,

Consider an X € & and M -functions F, G: X — B and assume
that Fc G . Pick M]f‘—functions P, Q: X — A and M;-homotopies V
and W joining F' and h o P and G and h o @), respectively.

Our goal now is to show that P~p Q. In order to do this, we
must find a cover ¢ of X sothat Po N <~ Qo N for every Mg—function
N from a member of D into X. First, observe that the assumption
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about F' implies the existence of a § € Cov (X) such that the relation
FoM ~ GoM holds for every Mg -function M from a member of C
into X. Let ¢ € 8" be from the intersection of sets D(V, k), D(W, &),
S(F, 7), and S(G, 7). Since X is MPD’C-ta,me, there is a £ € Cov (X)
with the property that for every ]\/sz -function N from a member D of
D into X thereis a C € C and an M;g -function M : C' — X such that
for every v € Cov(C) we can find an M -function K: D — C with
NAMoK.

Let D€ D andlet N: D — X be an Mg—function. Pick a C' and

an N as above. By assumption, there is an M -homotopy Z joining
FoMand GoM. Let v € D(Z, 7). Choose a K as above. Our choices

imply that ho(PoN) &% FoN A FoMoK &~ GoMoK ~
~ GoN X ho(QoN). It follows that ho(PoN) < ho(QoN)
so that Po N <~ Q o N and our claim has been verified.

Now, we conclude that P 2 Q and therefore ho P X ho Q. Thus,
we obtain now F ~ hoP £ hoQ & G. Hence, F X G. §
7.4 Theorem. Let A, B, C, D, and X be classes of spaces. If X is
N;"D-smooth and either
(cc) B is CsXi-covered by A and C is A'-covered by D,
(ce) B is CsXi-covered by A and C is A*-extended by D,
(ec) B is D;-extended by A and C is B*-covered by D, or
(ee) B is X;-eztended by A and C is B5X;-extended by D,
then X is also PPB’C-smooth.
7.5 Theorem. Let B and C be classes of spaces. If a space X is Mf-
calm and the class C is either {X}t-covered or {X}°-extended by B,
then X is also Mg—calm.
7.6 Theorem. Let X, B, and C be classes of spaces. If X is Nf-c&lm
and the class C is either Xy-covered or Xj-extended by B, then X is also
Nz‘f-ca,lm.
Proof. (C is Xj-extended by B). Let a member C of C be given. Since
the class C is &;-extended by the class B, thereis a B € B and an MPX-
injection k: C'— B. Since X is N/-calm, there is a cover o € Cov (B)
such that for every 7 € Cov (B) thereis a p € Cov (B) with the property
that for every X € & and all Mg-functions K and L from X into B
the relation K < L implies the relation K ~ L. Let v = k(o). Then
~ is the required cover of C.
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Let 6 be a cover of C. Since k is an Mf-injection, there is a 6 €
€ Cov(C) and a7 € Cov (B) such that for M/ -functions F' and G from
a member of X into C the relation ko F' ~ ko G implies the relation

FLG. Picka o as above and let € € Cov (C) be a common refinement
of # and £~ 1(p).
Consider M;-functions F' and G from a member X of & into C

and assume that F < G. Let K and L be the compositions k o F' and
ko(G. Then K and L are M;’—functions with K <~ L. It follows that

K X L and therefore that F 2 G. O
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Abstract: Coefficient estimates and distortion theorems are obtained for
meromorphic starlike univalent functions with alternating coefficients. Fur-
ther class preserving integral operators are obtained.

1. Introduction

Let ¥ denote the class of functions of the form
1 o0
1.1 z)= - mz
(1.1) flz) = -+ ,fi:l amz
which are regular in the punctured disc U* = {z: 0 < |z| < 1}. Define
D°f(z) = f(2).

1 .
D]f(z)::+3a13+4a222+ =

(22 f1z)

z

DQf(:) = D(D]f{z)).
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and forn =1,2,3,...

(D" f(2))

D"f(:) = D™ () = = + 3 (m +2)ame™ =

In [4] Uralegaddi and Somanatha obtained a new criteria for mero-
morphic starlike univalent functions via the basic inclusion relationship
Bhyi1(a) C Bp(a),0 S a<1,ne Ny ={0,1,...}, where B,(a) is the
class consisting of functions in ) satisfying

DHf(z)

(1.2) Re{ DF ()

2}<—a, lz] <1, 0Za<l neNg.

The condition (1.2) is equivalent to

D™t f(z) _ 1+ (3 —2a)w(z)
DfG) T ltu()

(1.3)

w(z) € H={w regular, w(0)=0 and |w(z)|<1,zeU={z: |2| < 1}},

or, equivalently,

prtt F(z) -1
D f(z)
Drt1 f(z)

(1.4)
O +2a —3

< 1

We note that By(a) = *(a), is the class of meromorphically starlike
functions of order a (0 < a < 1) and Bo(0) = X*, is the class of
meromorphically starlike functions.

Let o 4 be the subclass of ¥ which consists of functions of the form

1 p—
(1.5) f(2)= ;+alz—agz2+a323...=§+ Z(—l)m_lamzm, am >0
m=1

and let 0% (a) = Bp(a)Noa.

In this paper coefficient inequalities, distortion theorems for the
class 0} ,(a) are determined. Techniques used are similar to these of
Silverman [2] and Uralegaddi and Ganigi [3]. Finally, the class preserv-
ing integral operators of the form
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4

(1.6) F(z) = tf(t)dt (¢ >0)

1s considered.

2. Coefficient inequalities

Theorem 1. Let f(z) =1+ Y apnz™. If

m=1

o0

(2.1) > o (m+2)"(m + a)lam| < (1—a),

then f(z) € Bp(a).
Proof. Suppose (2.1) holds for all admissible values of @ and n. It
suffices to show that

Dn+1 f(Z) _
Dn+?;(£§z) <1 for |2|< 1.
D7) + 2a—3
We have
w N
D f(z) S (m+2)"(m + 1)a,z™t
D™ f(z) _ m=1 <
DnHLf(z) = = <
D7 f(z) + 20 -3 21 —a)— >, (m+2)*(m—1+ 2a)apzm*H!
m=1

S (m +2)"(m + 1)lan|

m=1
< =

21 —a)— > (m+2)"(m =1+ 2a) am|

m=1

The last expression is bounded above by 1, provided

Y (42" (m+1lam| <21 —a) = > (m+2)"(m — 1+ 2a)|an]
m=1 m=1

which is equivalent to (2.1), and this is true by hypothesis. ¢
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For functions in ¢% () the converse of the above theorem is also
true.

Theorem 2. A function f(z) in o4 is in 0 (@) if and only if

(2.2) > (m+2)"(m+ a)am < (1 - a).

m=1

Proof. In view of Th. 1 it suffices to show the only if part. Suppose‘

Re{w_z}z

Dnf(z)
(2.3) 14 Z (=)™ 1(m + 1)"ma,z™
= Re O=O < —«
L4 55 (-1 m o+ 2
Choose values of z on the real axis so that (25;%(;) — ‘7) is real. Upon

clearing the denominator in (2.3) and letting z — —1 through real
values, we obtain

1— i(m + 2)"ma, > a(l + i(m + 2)”am)

m=1 m=1

which is equivalent to (2.2). ¢

Corollary 1. Let the function f(z) defined by (1.5) be in the class
0% nl(a). Then

(1-a)
Ay <
T (m+2)(m+a)

Equality holds for the functions of the form

_1 _1ym—1 (1—0[) s
fm(z) = 2+ (=) (m+2)*(m +a)”

(m>1).

3. Distortion theorems

Theorem 3. Let the function f(z) defined by (1.5) be in the class
0% n(a). Then for 0 < |z| =r<l,

1 1-— l—«o
(3.1) - W lf(z)|_“ m—j
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with equality for the function

(3.2) f(z) = 3711(1—__'_0—) at z = r,ir.

Proof. Suppose f(z) is in 0% ,(a). In view of Th. 2, we have

3"(1+a) z am < Z(m+2)"(m+a)am <(1—-a)

m=1 m=1

which-evidently yields
i 1 -
= n(1+a)

Consequently, we obtain

1 & 1 > 1 l—a
2)| < = < = m< =t —r.
| f( )I_r+m§=1a r _r+rm§=1:a _r+3"(1+a)r,
Also . oo . o ) .
) —
> - m~s > -
[f(2)] 2 = m§=1 ™ 2 - rmgzlam s

Hence the results (3.1) follow. ¢
Theorem 4. Let the function f(z) defined by (1.5) be in the class
0hn(a). Then for 0 < |z| =r <1,

1 1-— 1 l-«

(3.3) v s SIS ey

The result is sharp, the extremal function being of the form (3.2).
Proof. From Th. 2, we have

3"(1+ a) Z My < Z (m+2)"(m+ a)am < (1 —a)
m=1 m=1

which evidently yields

Zm“ < _Ll-a
"= 3n(14a)
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Consequently, we obtain

) 1 & 1 l-a
|f(z)lﬁﬁ+2=:mam7' S +Zmam_— m-
Also ~
1 1 1—a
|f(z|>——2mamr Zﬁ—n;mamzr_z_m

This completes the proof. <>

Putting n = 0 in Th. 4, we get
Corollary 2. Let the function f(z) defined by (1.5) be in the class
04 ola) =a4(a). Then for 0< |2| =r < 1,

1 1-a , )]<1+1——a
—r2 14a

r? 14

The result s sharp.
We observe that our result in Cor. 2 improves the result of Urale-

gaddi and Ganigi [3, Th. 3 (Equation 4)].

4. Class preserving integral operators

In this section we consider the class preserving integral operators

of the form (1.6).
Theorem 5. Let the function f(z) be defined by (1.5) be in the class
0% n(a). Then

z

— —c—1 m
F(z) = cz /t fydt==+> (- —C+m+1 , ¢>0

0 m=1

NI:——A

belongs to the class o% (B(a,n,c)), where

(14+a)(c+2)—c(l—a)
(I1+a)c+2)+c(l—a)

Bla,n,c) =

The result 13 sharp for
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l—a

f(z)— 3"(1+0£)

Proof. Suppose f(z) € 0 ,(a), then

oo

> (m+2)"(m+ a)am < (1-a).

m=1

In view of Th. 2 we shall find the largest value of B for which |

o0

(m +2)"(m + B) c ‘
Z (1—ﬁ) c-Fm—}—lamsl'

m=1
It suffices to find the range of values of § for which

e(m +2)"(m+6) _ (m+2)"(m+ )

0= Blctm+1) = 0=a) for each m.

Solving the above inequality for f we obtain

(m+a)c+m+1)—me(l —a)
(m+a)c+m+1)+c(l—a)

B <

For each « and c fixed let

(m+a)(c+m+1)—me(l—a)

F(m) = m+a)ctm+D+e(l—a)
Then N
F(m+1)— F(m) = B >0 for each m,
where
A=cm+1)(m+2)(1—a)
and

= [(m+1+a)(c+m+2)+c(1—a)][(m+a)(c+m+1)+c(1—-a)].

Hence F(m) is an increasing function of m. Since

(1+a)(c+2)—¢(l—a)

FO= ot rdi-a)

the result follows. ¢
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Remark. Putting n = 0 in the above theorems, we have the results
obtained by Uralegaddi and Ganigi [3].
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Abstract: The purpose of this note is to provide Feller type strong law of
large numbers for sums of i.i.d. B-valued random variables with multidimen-
sional indices.

1. Introduction

Let {Xs,7 € N7} be a field of independent and identically dis-
tributed (i.i.d.) random variables taking values in a separable Ba-
nach space (B, || ||). N" denotes the positive integer r-dimensional lat-
tice points, r is positive integer. Assume that points of N are denoted
by 7 = (mq,..., M), &t = (n1, ...,n;) etc. and ordered by coordinatewise
partial ordering. For i = (ny,...,n,) € N7, we define S5; = > X5 and

r k<n
|a| = [] ni. Throughout this paper, 2 — co means || — co. Further,
i=1
let {ar,n € N"} be an increasing directed (directed upwards) family of
positive numbers, i.€ am < az whenever m < 7t and ap — oo as n— 0o.
In order to bring into focus the main aim of this paper we start
with a description of Fazekas’ result [2]. Let B be separable Banach

space, 1 < p < 2 and {Xz,7 € N"} beii.d. B-valued random variables.
Assume that E||X:[|?(log™ [ X1])¢! < oo. I Sa/lal'/? 5 0 as A —
— 0o then S;/|7A|'/? — 0 a.s. as 7 — oo. Our main aim is to establish
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the strong law of large numbers with an arbitrary normalizing family
and no moment restriction assuming on a random field {Xz,7 € N"},
which is also a generalization of some results obtained for a field of real
random variables (cf. Gut [3], Klesov [4]). We exploit the concept of
Mikosh and Norvaisa [8], and assume similar properties for normalizing
family of positive numbers {az,7n € N"}.

2. Auxiliary lemmas

In this section we collect some auxiliary results needed later on.
Let {an,n € N"} be a field of positive numbers such that lim ap = oo
X n—oo
and let there exist a sequence Dy, k& > 1 of finite subsets of N" such
that Dy T N7, and satisfies the following conditions:

(A) Set Iy = Dy — Dy_1, k> 1. If i € I, then (7_7,) C Dy,

(B) There are constants d > 1, C;,Cy > 0 such that for every
k.7 € Iy, the relation C1d* < az < C,d* holds;
(C) For every k there exist disjoint rectangles Ey; and an appro-
priate index set Ry such that Iy = |J E;
IER;

k—oo REI;

Conditions (A), (B), (C) and (D) come from Mikosh and Nor-
vaisa [8] and field of numbers satisfying them is said to have the weak
star property. For examples of the weak star property see Mikosh [7],
Mikosh, Norvaisa [8] and the star property see Li, Wang, Rao [5-6].
Lemma 2.1 (Mikosh, Norvaisa [8]). Let {Xa,7n € N"} be a field of
independent, symmetric B-valued r.v.’s. Assume that (A)—(D) hold.
Then the condition

(2.1) > ) P(ISs.ll >ed*) <oo, Ve>0

k leER;

(D) vp lim max d~* i d'|{t € Ri : Ex N (7) #0}] < o
=1

i3 equivalent to the strong law of large numbers

(2.2) Safan — 0, a.s. asn— oo

Lemma 2.2. Let {Xz,7 € N"} be a field of independent, symmetric
B-valued r.v.’s. Assume that (A)—~(C) hold and
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(2.3) I Xz|| € ag a.s. (I_c e N™),
(2.4) Sa/an — 0 in probability.

Then for all p > 0, E“SEH/dka — 0 as k — oo uniformly in l € R.

Proof. Lemma V-1-1 of Neveu [9] implies that, the family {za,n €
€ Nr} converges to @ if the net {zs,7 € K} converges to z for any
infinite linearly ordered subset (K, <) of N7, thus by Lemma 3.1 of de
Acosta [1] E||Sn/axa||P — 0 as & — oco. Then it is easy to see that for
an arbitrary | € Ry, klirr;o EHSEH “p/d’”’ — (. Since for every k, Ry are

. . Pk
finite, therefore lergo%%):E||SEklll /d*P — 0. 0

3. Results

Let M; = card{n € N" : ap < j} and m; = M; — Mj_, for every
integer 7 > 1.
Theorem 3.1. Let {X5,7 € N"} be a field of i.i.d. Banach space valued
random variables and {az,n € N} be an increasing directed field of

positive numbers. Suppose that there ezist jo > 1 and positive numbers
Cs3, Cy such that

(3.1) VisjoMj < CsMj_1, Y i7*M; < Cyj 2 M;.
Then =

(3.2) ZP(IXﬁl > ap) < 00,

(3.3) Sﬁr/laﬁ — 0 in probability

are equivalent to
(3.4) Salan — 0 a.s.

Proof. It is enough to prove (3.2) and (3.3)=>(3.4). We assume, without
loss of generality, that {X,7 € N} are symmetric. Let us put

Y; = X;(|X;] > a3) and To=) Y5

i<n

By the virtue of (3.2) and from the Borel-Cantelli lemma follows
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(3.5) (52 —Tr)/an — 0 a.s. asn — oo.

Therefore it is enough to prove T;/az — 0 a.s. as i — oo. Let us put
Vet = ([T || - B| Tp. |-

Thus by Th. 2.1 of de Acosta [1] we have

ZP({Q%):IVHde > 6) < Z Z P(le1|/dk > E) <

k=1 k=l lE R},
S EY Y B < EY Y Y Bl <
k=11€Ry k=11€R, ]EEH
C
*Z Y Y B < 2L S Bvael.
k=11eR; jeEx AENT

On the other hand
> E||Vi]*/ak = ZE{HXH I(IX|| < ag)}/ag <
k

<C+CY im

i>1

SC+CY B{IXIPIG-1<|IX] <)} Y i%m

i>1 i>j

lQ bod]

mB{[| X|*I(| X|| <)} <

for some constants C.
Now let us observe that by assumptions and Abel transform we get

Zi_zmi < CZi—SMi < Cj~2Mj.
Hence P29 2]

D BIVilP /e <C+C Yy i MGE{|IX|PIG-1< (X <)} <

k i>1
(3.6)
<C+C ) miP(] |X||>z)<C+CZP(||X||>an) < 0.
i>1
Therefore by the Borel-Cantelli Lemma
. al/d* 8.
(3.7) :lrreljaé):W“I/ —0 as

It follows at once from (3.3) and (3.5) that Ty /ax £ 0and by Lemma 2.2
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(3.8) E”TEk,/dk” — 0 uniformly in | € Ry.
Now, let us observe that (3.7) and (3.8) imply
Tg, /d* — 0 a.s. uniformly in I € Ry

and applications of Lemma 2.1 complete the proof.

Remark. Let us observe that condition (3.2) is essential. However,
it is necessary for (3.4), but (3.3) does not imply (3.2). We will give
appropriate example. Let {X},k > 1} be a sequence of i.i.d. random
variables with probability density function

_ [ K1 +n|z])/(z*In?|z]), for |z] > 2
f(m)_{ L1+4mn2)/(1+1Wn2), for|z|<2 |

where constant k = In?2/(1 + 21n2).

n
It is easy to see that ) X;/n — 0 in probability but condition (3.2) is
=1
not satisfied.

Corollary 3.1. Let a; = |7|'/?, 1 < p < 2 then M; = O(j7(logj)™1)
(cf. Smythe [10]) and (3.1) is satisfied. Convergence of series (3.2) is
equivalent to E|| X |[P(log, || X]™!) < oo.
Thus by Th. 3.1 we can obtain immediately result of Fazekas [2].
The following corollary is not only generalization of Marcinkiewicz
SLLN but give us a better and deeper understanding of strong laws for
random variables with multidimensional indices.
Corollary 3.2. Let ap = ni/Pl e ni/p’, 1<pi<2, 1<,
't = max(pi,...,pr), ¢ = card{i : p; = t,1 <1 < r}. Thus M; =
= O(j*(log, 7)?~") and (3.2) imply E||X||*(log, | X||9!) < co. Then
the following are equivalent:

(i) Sﬁ/ni/m-...-ni/l’raﬂ .. a8 T — 00;
(ii) Sﬁ/n}/pl-...-ni/”’—P»O as N — oo.
Furthermore, let us observe that for r=1 all increasing to infinity, posi-

tive sequences {as, 7 € N"} have the weak star property and assumption

(3.1) implies the well-known Feller condition Y a; >=0(n/a2).
k>n
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Th. 3.1 and corollaries are established for separable Banach space
(B, || ). In what follows we will assume geometric conditions on the
space (B, || []).
Theorem 3.2. Let Banach space (B,|| ||) be of type 2, {Xn,n € N},
{arn,n € N"} are such as in Th. 1 and EX5 =0, n € N". If moreover
(3.1) and (3.2) are satisfied then

Sn/an — 0 a.3. as 7 — oo.

Proof. A family {z;,7 € N"} is said to be Cauchy if for every ¢ >
> 0 we have d(z5,z5) < ¢ whenever 71,7 > k. for suitably chosen
k. in N". Since B is of type 2 one can prove using estimation as in
(3.6) that, {Yz/aa,n € N"} is a Cauchy family. Hence {Yz/as, 7 €
€ N} convergence in L%, then converges almost surely. Further, by
multidimensional version of Kronecker Lemma and arguments as in
proof of Th. 3.1, we deduce the assertion of Th. 3.2. §
Acknowledgement. The author wishes to thank the referee for many
helpful comments. '
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Abstract: A simple procedure is developed in order to calculate all evo-
lutionarily stable strategies not involving at most three pure strategies. By
means of this procedure especially all evolutionarily stable strategies of an at
most four-dimensional payoff matrix can be determined.

Applying game-theoretical methods to problems in population dy-
namics, Maynard Smith and Price ([15]) introduced the notion of an
evolutionarily stable strategy (ESS). Such a strategy is in some sense
robust against new strategies invading the population. For literature
concerning theoretical investigations on ESS’s cf. e.g. [1]-[14] and [16].
The aim of this paper is to give a simple necessary condition for ESS’s
and to show how one can determine for a given payoff matrix all ESS’s
with “large” support.

In the following let n denote a positive integer and let I =
= {i1,...,is} © N := {1,...,n} with i; < ... < i,(0 < s < n).
If not stated otherwise, all indices run from 1 to n. Let A = (a;;) and
B = (b;;) be real matrices with b;; = 1 and b;; = b;; for all ¢, j. Further
let a,b,c € R and put

1 1 a b
C’:=( (11> and D:=|a 1 ¢
@ b ¢ 1
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Let R™ denote the set of all n-dimensional real row vectors. For a
vector z and an index : let z; denote the component of z corresponding
to 7. By 2T < yT(z,y € R™) we mean z; < y; for all 7 (here and
in the following T denotes transposition). Put S := {z € R"|z; >
> 0forallzand Y z; = 1}. p € S is called a Nash-equilibrium of A
if pApT > zApT for all z € S. Let N(A) denote the set of all Nash
equilibria of A. p € N(A) is called an ESS of A if pAzT > zAz7T for all
z € S\ {p} with zApT = pApT. Let E(A) denote the set of all ESS’s of
A. For z € R™ define the support supp z of z by supp z := {i|z; # 0}.
Put S(I) := {z € S|supp = = I}. For every i let e; denote the unique
element of S({:}). A is called strictly I-copositive if zAzT > 0 for all
z € R*\ {(0,...,0)} with z; > Ofor all i € I. A is called strictly
copositive if it is strictly N-copositive. Observe that in case |I| < 1
strict I-copositiveness coincides with positive definiteness.

A fundamental problem in evolutionary biology is the determina-
tion of E(A) for a given payoff matrix A. The following lemma says
that for the sake of determining N(A4) or E(A) we can restrict ourselves
to matrices having 0 in their main diagonal:

Lemma 1 (Cf [3]) N(A) = N((a,-j —-CL]'J')) and E(A) = E((ai]‘ —ajj)).
Proof. > (z; —yi)(aij — aj;)zj = (zx —y)T Az for all z,y,z € S.
,J
A further simplification of the problem of determining E(A4) is
provided by the following lemma:

Lemma 2 (cf. [2] and [13]). The supporis of two different ESS’s yof A
are incomparable.

Proof. Assume there exist two distinct ESS’s p, q of A with supp p C
C supp ¢. From gAq” = 3 qi(e;AgT) < Y qi(qAqT) = qAqT it follows
that e;AqT = qAq” for all i € supp ¢. Since supp p C supp ¢, we would
have pAgT = Y pi(e;AqT) = ¥ pi(¢AqT) = qAqT and hence, because
of ¢ € E(A), also gApT > pApT. But this contradicts p € E(4). ¢
Next we want to characterize the Nash equilibria of A:

Theorem 3 (cf. [13]). Let p € S(I), assume k € I and put py :=
.= —ex ApT. Then t. f a. e.:
(i) pe N(A).
(i) (a) and (b) hold:

(a) (Po,Piys--- ,Pi,) 18 a solution of
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1 L PR PRI £ PR Tiy 0
= ;
1 A, iy SN a,i, Z;, 0

"~ (b) (po,--- ,pn) i3 a solution of

1 aiy e Ain To 0
L L)< )
1 apy ... apn Ty 0

Proof. (i) = (ii):

pApT = S pi(e;ApT) < Y pi(pApT) = pApT shows that e;ApT =
= pApT = exApT = —py for all i € I and that e;ApT < pApT =
= ey ApT = —p, for all i. ‘
(ii) = (i): :
zApT = Y zi(eiApT) < Y wi(—po) = L pi(—po) = L pi(eidp”) =
= pApT forall z € S. '

Now we are going to show a way of calculating all ESS’s of A:
Theorem 4 (cf. [1] and [4]). Let p € S(I), assume k € I and put
po := —exApT. Then t. f a. e.:

(i) p € E(A).
(ii) (a) - (c) hold:

(a) (po,pi,s--- ,pi,) 18 the unique solution of (1) over R;

(b) (po,-.. ,pn) satisfies (2);

(C) if |J| > 1 then (aik +akj —aij — akk)i,jej\{k} 18 strictly (J\I)—

copositive, where J := {i|(ex — e;)ApT = 0}.

Proof. Assume p € E(A). Then, by Th. 3, (po,Piy».--,pi,) is a
solution of (1) over R. Suppose, there exists another solution of (1)
over R. Then there would exist such a solution (qo, gi,,- .- ,4:,) With
g;i > 0 for all 2 € I. But then ¢ € R™ defined by ¢; ;=0 for alls ¢ I
would be an element of S\ {p} with ¢Ap” = —py = pApT and pAqT =
= —qo = qAqT contradicting p € F(A). Hence (1) is uniquely solvable
over R. The rest of the proof follows from Th. 3 and [12].
Remark. Let F denote the matrix in (1) and assume k € I. Then |F|
can be expanded in the following way: Subtract the row corresponding
to k from the rows corresponding to the elements of I \ {k}, expand
the resulting determinant along the first column, subtract the column
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corresponding to k£ from the columns corresponding to the elements
of I'\ {k} and expand the resulting determinant along the first row.
This shows |F| = (—1)|(a;x + ax; — aij — akk)ijer\{x}|, the latter
determinant being positive in case there exists some p € E(A) with
support I, according to [12]. Hence (—1)'{|F| > 0 in this case and
therefore, using Cramer’s rule, (a) and (b) can be translated in this
case into equations and inequalities involving certain determinants.
The next problem is to decide whether a given quadratic matrix

is I-copositive. First we remark that for the sake of investigating strict
I-copositiveness of a quadratic matrix we can restrict ourselves to sym-
metric matrices having 1 in their main diagonal:
Lemma 5 (cf. [11]). T. f. a. e.:
(1) A s strictly I-copositive.
(ii) (a) and (b) hold:

(a) aj; > 0 for all i;

(b) (ZEdaiiy i strictly I-copositive.

2y@iag;
Proof. We have a;; = e,-Ae;-F for all ¢, and in case a;; > 0 for all ¢ we

havé‘z %(l‘h/aii)(fﬂj, /ajj) =z AzT for all z € R™.
2,J

The following lemma shows how one can reduce strict I-copositive-
ness of an n-dimensional matrix in case n > max(1, |I|) to strict I-
copositiveness of a matrix of dimension n — 1:
Lemma 6. Assumen >1 and k¢ I. Then t. f. a. e.:
(1) B s strictly I-copositive.
(ii) (b,'j — bikbjk)i’j;ék 18 strictly I-copositive.
Proof. zBzT = (:Ilk-i— Z bikmi)Q + Z (bij_bikbjk)wil'j for all z € R™.

i#k t,J#k

By Lemma 6, strict I-copositiveness of an n-dimensional matrix
can be reduced to strict [-copositiveness of a matrix of dimension
max(1,|I]). Hence, in order to settle the case |I| < 3 completely, one
has to characterize strict copositivity of matrices of dimension two and
three. This is done by the following theorem:
Theorem 7 (cf. [11]).
(1) C s strictly copositive iff a > —1.
(ii) D is strictly copositive iff a,b,c > —1 and (a+b+ ¢ > —1 or

|D| > 0 (or both)).

Proof. (i) follows from zCzT = (z; —z3)? +2(a+1)z, 2, for all z € R?
and (ii) was proved in [11].
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Concluding remark. By the described method, for a given n-dimen-
sional payoff matrix all ESS’s with a support of cardinality > n —3 can
be determined. Especially, all ESS’s of an at most four-dimensional
payoff matrix can be calculated in this way.
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The solution of some of the problems will be awarded in U.S.$ by the author.

1. Number theory

1.1. In a forthcoming paper of A. Sarkozy, V. T. Sés and myself we
investigate the following problem: Denote by Fi(n) the size of the
largest set of integers 1 < a; < a3 < --- < a; < n, | = Fy(n) for which
the product of no k a’s can be a square. We obtain fairly accurate
upper and lower bounds for Fi(n).

We also discussed the following problem which is not mentioned
in our paper: Let 1 < a; < ay... be an infinite sequence of integers,
assume that the product of an odd number of a’s is never a square. 1.
Ruzsa proved that the density of such a sequence is at most 1/2 (Th. 4.1
in the cited paper). Clearly it can be 1/2. To see this let the a’s have
an odd number of distinct prime factors.

A related problem states as follows: Let a1 < a2 < --- < aj < n,
assume that the product of an odd number of a’s is never a square.
Denote max! = g(n). Determine or estimate g(n) as accurately as pos-
sible. It is easy to see that for a fixed but small ¢>0, g(n) >n(3+c),
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and I. Ruzsa showed that g(n) < n(1 — ¢) (Th. 4.2 in the cited paper).

ERD(”)S, P, SARKéZY, A. and SOS, V. T.: On product representation of integers
I. The paper will soon appear in the European Journal of Combinatorics
RUZSA, 1.: General multiplicative functions, Acta Arithm. 32 (1977), 313-347.

1.2. This is a problem of P. Cameron and myself. Denote by f(n) the
number of sequences of integers 1 < a; < a3 < -+ < a; < n (¢ is not
fixed) for which no a; is the distinct sum of other a’s. Is it true that

(1) F(n) = 230Fe) ¢

The integers 7 <t < n show tliat f(n) > 2%, but we expect that f(n)
is not very much larger than 22.

CAMBERON, P. and ERDOS, P.: On the number of sets of integers with various
properties, Number Theory, Banff (A.B. 1988) de Gruyter, Berlin, 1990, 61-79.

1.3. Let A = {a; < ap < ...} be an infinite sequence of integers. f(n)
denotes the number of solutions of n = a; + a;. A + A will denote the
set of integers which can be written in the form a; 4+ a; i.e. the set of
integers for which f(n) > 0.

A is called a basis of order r if every integer is the sum of r or
fewer a’s. It is called an asymptotic basis of order r if all but a finite
number of integers are the sum of r or fewer a’s. An old conjecture of
P. Turan and myself states that if A 1s an asymptotic basis of order 2
then

(1) limf(n) = oo
and perhaps there 13 an € > 0 for which for infinitely many n

(2) f(n) > elogn.

| offer for a proof or disproof of (1) 500 dollars.

Perhaps (1) holds already if we only assume that the upper density
of the integers for which f(n) >0 1s 1.

It follows from an old result of mine that (2) if true is best possible
(apart from the value of €).

Unfortunately these old problems seem unattackable at the mo-
ment. Perhaps the following related problem is not hopeless. Denote by
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ga(z) the number of integers n < z for which f(n) > 0 (i.e. ga(z) =

= > 1, ajaj € A). Is it true that for every € > 0 there is a

n<zc
n=a;+a;

sequence A for which for every z

g(z)>(1—¢e)z

but for everyn, f(n) < c¢(¢). In other words f(n) is bounded but most
of the numbers can be written in the form a; +a;. I would be satisfied if
one would show that there is ¢ sequence A for which the upper density
of the integers n with f(n) > 0 s > 1 —¢ but f(n) < c(¢). Both
A. Sarkozy and I believe that if f(n) < c then the upper density of the
integers n with f(n) > 018 <1 —¢ where ¢ = g(c).

For the literature see the excellent book of HALBERSTAM, H. and ROTH, K. F.:
Sequernces, Springer Vrlg, Berlin.

1.4. M. Nathanson, J. Spencer and I proved a few years ago that there
is a basis of order three for which f(n) < 2 with at most finitely many
exceptions. We used the probability method. Perhaps there is a basis
of order three for which f(n) = 1 for all but finitely many exceptions
(i.e. there is a sequence A for which every integer n = a; + a; + a; but
the integers apr + an are all distinct with a possible finite number of
exceptions). It is not very likely that the probability method will help
here.

1.5. St. Burr and I posed a few years ago the following problem. Let
A be a sequence of integers for which the density of the integers with
f(n) > 0 is positive. Can one always decompose the sequence A as the
union of two disjoint subsequences A = Ay U Ay for which the density
of Ay + Ay and As + Ay 18 also positive? As far as I remember we
could not settle this question. While writing this paper I several times
thought that I can prove that there 1s a basis A of order two for which
for any decomposition A = A1 U Aj the sequences Ay + Ay and Az + A,
can not both have bounded gaps. But unfortunately I could never quite
finish the proof. Thus the problem is still open.

For problems 1.3, 1.4 and 1.5 the interested reader should consult besides the book
of H. Halberstam and K. F. Roth also several recent papers of M. Nathanson, J.
Spencer, P. Tetali and myself, many of which are joint papers.
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1.6. A sequence A = {a; < a3 < --- < a; £ n} is called a Sidon
sequence if the sums a; + a; are all distinct. Put max! = g(n).
P. Turan and I proved

(1) g(n) < n¥ +eni.
Perhaps
(2) g(n) =n? + O(1).

(2) is perhaps too optimistic, but I am fairly sure that for every e >0

(3) g(n) = n* + o(n®).

| offer 500 dollars for a proof or disproof of (3).
I conjecture that for every t and n > ng(t)

(4) | g(n+t)<g(n)+1
and perhaps fort < en?
(8) g(n+1) <g(n)+1.

(4) and (5) if true would imply that the growth of g(n) is fairly regular.

The older literature on Sidon sequences can be found in the book of H. Halberstam
and K. F. Roth “Sequences”.

2. Combinatorics

2.1. Let G(n)-be a graph of n vertices. Assume that there is a k for
which every subgraph of m vertices (1 < m < n) of our G(n) has an
independent set of size 7+ — k (k is fixed, n is arbitrary). Is it then
true that the vertez set of G can be decomposed into three disjoint sets
S U8, US; where S; and S; are independent and Sz < f(k), i.e. G(n)
is the union of a bipartite graph and a bounded set? The question is
open even for k = 1.

A. Hajnal and I proved that there is a graph G of infinite chromatic

number every subgraph of m vertices of which contains an independent
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set of size 2(1 —¢€). Does this remain true if 2:(1—¢) is replaced by
2 — f(m) where f(m) — oo?

A. Hajnal, E. Szemerédi and I have the following very annoying
unsolved problem: Let h(n) tend to infinity arbitrarily slowly. Is it
true that there is a G of infinite chromatic number every subgraph of
n wertices of which can be made bipartite by the omission of < h(n)
edges? | offer 250 dollars for a proof or disproof. '

ERDOS, P., HAJNAL, A. and SZEMEREDI, E.: On almost bipartite large chro-
matic graphs, Annals of Discrete Math. 12 (1982), 117-123.

2.2. Denote by G(n; f(n)) a graph of n vertices and f(n) edges. It
is easy to see that every G(2n + 1;3n 4 1) contains an even cycle and
3n + 1 is best possible.

Let now S be a subsequence of the even numbers. Let f(n;S)
be the smallest integer for which every G(n; f(n;S)) contains a cycle
whose length is in S. In particular can we find a sequence S of density
0 for which f(n;S) < en? A. Gyéarfas and I conjectured that if the
sequence S consists of the powers of 2 then f(n;S)/n — co. We have
no guess what happens if S consists of the numbers 2u?. It follows from
an old result of B. Bollobas that if S is an arithmetic progression of
even numbers then f(n;S) < cn.

BOLLOBAS, B.: Cycles modulo k, Bull. London Math. Soc. 9 (1977), 97-98.

2.3. Problem 2.2 originated as follows. A. Hajnal and I conjectured
that if G has infinite chromatic number and if ny < ng < ... 18 the
sequence of the sizes of distinct odd cycles of G then Y —1—11—' = oo and
perhaps > 1 > cz holds for infinitely many z. We never could get

n; <z
anywhere with this problem. P. Mihok and I later conjectured that if
G has infinite chromatic number then for infinitely many u G has a

cycle of length 2*. This problem also remained unattackable.

Three years ago A. Gydrfas and I conjectured that if G is a graph
every vertex of which has degree > 3 then G has a cycle of length
2%, We finally thought that this was not true but could not find a
counterexample, we concluded that probably for every k there is a graph
every vertez of which has degree > k but there 18 no cycle of length 2%.
The problem is still open and perhaps is not very difficult.
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2.4. Here is a problem of R. Faudree and myself. Consider all the
graphs of n vertices. Denote by

(1) 3<a; << <a; <n

the lengths of the cycles occurring in any of these graphs. Denote by
f(n) the number of possible sequences (1). Clearly f(n) < 2"2, We
easily showed f(n) > 2%. Probably

f(n)= — e, V2 <e<2.

It is easy to see that for n > 5, f(n) < 2”2 but we could not prove
that f(n)/2™ — 0 and that f(n)/2% — co.

2.5. Let f(n) be the smallest integer for which every graph of n vertices
every vertex of which has degree > f(n) contains a Cy4 (i.e. a cycle of
length 4). Is it true that for n > ng

(1) fin+1) 2 f(n)?

If this is too optimistic is it at least true that there is an absolute
constant ¢ for which for every m >n

(2) f(m)> f(n) —c?
The proof of (2) is perhaps easy, but so far the problem is open.

2.6. Let G be a four-chromatic graph, m; < ms < ... be the lengths
of the cycles of G, can min(miy1 — m;) be arbitrarily large? Can this
happen if the girth of G 1s large?

2.7. R. Faudree, R. H. Schelp and I have the following question: Let
G(n) have girth > 2s and every vertex has degree > k. Is it then true
that the number of cycles of distinct lengths of our G(n) 18 > ck®? We
proved this conjecture only for s = 2 and ran into unexpected difficulties
already for s = 3.

2.8. The n-dimensional cube C(™ has 2" vertices and n2"~! edges. A
very old conjecture of mine states that every subgraph of (1 + &)n2m2
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edges of C(™ contains a Cy (i.e. a C?). This conjecture is still open
and | offer 100 dollars for a proof or disproof. Denote by f(n) the smallest
integer for which every subgraph of C{™) of f(n) edges contains a Cy.
I conjectured that

f(n) <n2"% 4 C2"

for sufficiently large C, but here I overconjectured since H. Harborth
and his students proved

f(n) > n2"? 4 no2"

for some fixed positive a. The ezact determination of f(n) is perhaps
not hopeless and would even be of some interest for small values of n.
Is there an Erdés-Stone type theorem for the subgraphs of C(™)?

ERDOS, P. and STONE, A.: On the structure of linear graphs, Bull. Amer. Math.
Soc. 52 (1940), 1087-1091.

CHUNG, F. K. R.: Subgraphs of a hypercube containing no small even cycles, J.
Graph Theory 16 (1992), 273-286.

CONDER, M.: Hexagon free subgraphs of hypercubes, J. Graph Theory 17 (1993),
477-479. v

3. Combinatorial geometry

3.1. Let fi(n) be the largest integer for which there are n points
z1,...,Tp in k-dimensional FEuclidean space for which for every z; there
are at least fr(n) points z; equidistant from z;. First let us discuss k =
= 2 i.e. our points are in the plane. I conjectured fa(n) < n® for every
e >0 if n > ng(e), and perhaps fy(n) < n/1°81°8 " The lattice points
show that fy(n) > nc/loslosn,

In 1946 I conjectured that among any n points in the plane the
same distance can occur at most n'T¢/19818 ™ times and the above con-
jectures would give a very considerable strengthening. | offer 500 dollars
for a proof of fy(n) = o(n®), but only 50 dollars for a counterexample.
fa(n) < en’? is trivial and J. Pach points out that a result of J. Pach
and M. Sharir gives f(n) < en?/5. Any further improvement would be
very welcome. A recent letter of P. C. Fishburn shows that perhaps the
set x1,... ,T, which gives the largest value of fa(n) may not be given
by the lattice points. Fishburn proved that 6 is the smallest integer
for which f;(6) = 3 and 8 the smallest integer for which f5(8) = 4.
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E. Makai, J. Pach and I proved

(1) ein’d < fi(n) < cond
and |
n n
In (1) the upper bound holds in the stronger form that if among our n
points z1,... ,z, there are k = c/n points, say y1,... , Yk, no three of

these on a line, then there exists an 7, 1 <1 < k, such that y; does not
have more than c,n®/* equidistant points z; from it. Probably

faln) = g +O(1).

In a finite time we may publish a quadruple paper about these results.

3.2. Denote by d(z,y) the distance between the points z and y and
by D(z1,...,2,) denote the diameter i.e. the maximum of d(z;,z;).
Let z1,z2,... ,2, be n points in the plane for which d(z;,z;) > 1 and
the diameter is minimal. It has been known since A. Thue (1910) that
asymptotically the minimum is given by the triangular lattice. Let
Zi,...,T, be a set which implements the minimum of the diameter.
Denote by h(n) the number of incongruent sets which implement the
minimum of the diameter. I would guess that A(n) — co as n — oo but
as far as I know it has not even been proved that 2(n) > 2 forn > ng. It
is generally believed that for n > ng no subset of the triangular lattice
implements the minimum of the diameter but that any set z1,...,z,
which implements the minimum of the diameter has a large intersection
with the triangular lattice, but as far as I know nothing has been proved.

I conjectured that if z1,...,z, implements the minimum of the
diameter and if n > ng then our set contains an equilateral triangle of
sides 1. I could not prove it but felt that it should not be hard. To my
great surprise both B. H. Sendov and M. Simonovits doubted the truth
of this conjecture. | offer 100 dollars for a counterexample for infinitely
many values of n but only 50 dollars for a proof.

3.3. Inscribe n non-overlapping squares into a unit square. Denote by
ai,dasg,... ,a, the sides of these squares. Let

f(n) = max }3 a;.
i=1
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It is easy to see that
fE*) =k
and I conjectured that

(1) F(R? +1) = k.

I conjectured (1) more than 60 years ago. Perhaps the proof (or dis-
proof) of (1) will not be difficult.

3.4. Let z1,z2,...,2, be n points in the plane in general position
i.e. no three on a line and no four on a circle. Let h(n) be the largest
integer for which these points determine at least h(n) distinct distances.
I conjectured that h(n)/n — oo but could not even prove that h(n) >
>n — 1, in fact I could not exclude that h(n) < cn for some ¢ < 1.

3.5. It is easy to see by the well-known construction of H. Lenz that
one can give 3n points in six-dimensional space which determine n® +
+ 6n? equilateral triangles of size 1 for 4 | n. It suffices to take three
suitable orthogonal circles and take n points on each of them which form
7 inscribed squares. I conjectured that in siz-dimensional space one
cannot have 3n points which determine (1 + &)n® equilateral triangles
of size 1. If one just asks for equilateral triangles of any size one can
of course get somewhat more equilateral triangles, but their mazimal
number i3 probably less than (1+&)n®. Perhaps I overlook a trivial point.
Many related questions can be asked but I leave their formulation to
the interested reader.
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Abstract: We prove the inequality v,(G) + (n - 1)v,(G)<p, where G is

any connected graph on p>2n — 1 vertices, and v, (G) and ’)/,tl(G) denote the
minimum cardinalities of vertex sets D and D; such that each vertex z is at
distance less than n from some yeD,, y#z, and each z¢D is at distance less
than n from some ye€D. Our method yields a very short proof of a recent
theorem due to Henning et al. [Math. Pannon. 5/1 (1994), 67-77].

In this note we provide a very short proof of a recent result due to
Henning et al. [1] on generalized domination parameters of graphs. Our
method, at the same time, also yields a somewhat stronger assertion.
(For further related results, see [2].)

Let G be a connected graph with a p-element vertex set V(G)
(p > 1) and with edge set E(G). The distance d(z,y) of two vertices
z,y € V(G) is the smallest number of edges in a path joining z to y.
Let n > 1 be an integer. Adopting the terminology of [1], a D C V(G)
is a P<,-dominating set (total P<,-dominating set, respectively) if each
vertex € V(G) — D (each = € V(G)) is at distance less than n from
some y € D, y # z. (Sometimes such a D is simply called a (total)
(n — 1)-dominating set in the literature.) The minimum cardinality of
a P<,-dominating set and of a total P<,-dominating set is denoted by
12(G) and 4% (@G), respectively.
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The main result of [1] states

(1) n(G) +75(G) < 2p/n

provided that G is connected and its order, p, is at least 2n. Here we
prove the following stronger assertion.

Theorem 1. If G is a connected graph of order p > 2n — 1, n > 2,
then

(2) n(G) + (n — 1)7v4(G) < p.

Proof. Since every (total) P<,-dominating set of any spanning tree T
of G is a (total) P<n-dominating set in G as well, it suffices to prove
the assertion for trees. Hence, let T be a tree of order p > 2n — 1 >
2> 3. We denote d(T) = max, yev(r) d(z,y) (the diameter of T) and
r(T) = mingey(ry max, ey (r) d(z,y) (the radius).

Suppose first that d(T) < 2n — 2. Then r(T) < n —1, and a
‘central’ vertex within distance n — 1 from every vertex of T forms
a P<p-dominating set. Therefore, 7,(T) = 1 and vL(T) = 2, ie.,
o (T) + (n — 1)74(T) = 2n — 1 < p. Hence, the assertion is valid for
‘small’ diameter (which is always the case for p = 2n — 1), allowing
us to apply induction on p. This can be done if T has an edge e such
that both components T1,Ts of T — e contain at least 2n — 1 vertices
(and, in particular, whenever d(T) > 4n — 3). Indeed, in this case
T(T) £ 1n(T1) + ¥a(T2) and 7,(T) < vo(Th) + 75,(T2), thus v.(T) +
F(n = 1)7(T) < (n(T2) + (1= LT+ (T3 - (m— 1y (T)) <
<|V(Ty)| + |V(T3)| = p follows by induction.

Suppose 2n — 1 < d(T) < 4n — 4, and that T — e contains a
‘small’ component for each edge e € E(T). Choose an edge e = uv
such that the smaller component (the one of order < 2n — 2), say the
component containing u, is as large as possible. Then all components
Ty,T3,... , T of T — v have orders at most 2n — 2. Define the height
h; of T; as the length of a longest path P; C (T; U v) starting at v,
where (T; U v) denotes the subgraph induced by V(T;) U {v}. By the
assumption d(T) > 2n — 1, some T} have h; > n; say, h; > n for 1 <
<: <k and h; < n for k <t < m (where k = m is possible). For
2 < k we denote by v; the vertex of P; at distance A; — n + 1 from
v. Since |V(T})| < 2n — 2, v; P,-dominates T; for each 7, moreover
v Pcp-dominates {vq,... vk} U {T | £ < j < m}. Hence T (T) <
< 4i(T) < k + 1, implying (2) for p > (k + 1)n.




Small n-dominating sets 273

To obtain sharper bounds on v,(T) and v5(T'), we consider the
subtree T' = (T" U {v1,...,vk}), where T" is the connected component
of T — {vy,... ,vx} containing v. If d(T") < n — 3, we have v,(T) =
=1(T) = k and p > [V(T1)| + ... + |V(Tk)| 2 kn, implying v,(T) +
+ (n — 1)v5(T) < p. On the other hand, if d(T") > n — 2, then
p > (k+ 1)n — 1 holds, with equality if and only if 7" has order n — 1
and the subtree rooted at v; is a path of length n — 1 in each T;. In
this case, however, {v1,... ,vt} is already a dominating set, therefore
(D) =k, vo(T) £k +1, 7a(T) + (n =17 (T) < (k+1)n—1=p. O
Remarks. Since 7,(G) < 4% (@) whenever G has no isolated vertices,
the inequality (2) immediately implies (1). Certainly, every example
showing the tightness of (1) (see [1] where an infinite family of graphs
G with 7,(G) = 5(G) = p/n is exhibited) yields that (2) is tight,
too. However, (2) is best possible in a much stronger sense as well;
namely, its left-hand side cannot be replaced by (1 —¢)y,(G)+(n—1+
+ &)L (@), for any € > 0. To see this, take k — 1 (> 1) vertex-disjoint
paths T3, ... ,Tx—_; of length n—1 and one path of length 2n—2. Joining
a new vertex v with one endpoint of each 7}, we obtain a tree T of order
p=(k+1)n—1, with v,(T) = k and v5(T") = k + 1, hence v,(T) +
+(n — 1)7L(T) = p and v,(T) < vL(T). Further ‘isolated’ examples
are the paths on 3n — 1, 4n — 2, 4n — 1 vertices (the corresponding
parameters are v, = 2,2,3 and v}, = 3,4,4), and all connected graphs
G of order p = 2n — 1 (72(G) = 1 and 7.(G) = 2). It may be true,
however, that if p is ‘sufficiently large’ with respect to n, then v,(G) +
+ (n — 1)7L(G) < p holds unless v,(G) = v5(G) = p/n, or G is a
k-branched tree constructed above plus possibly a few additional edges
among its ‘short’ branches.
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Abstract: Hajés’ theorem asserts that if a finite abelian group is a direct
product of cyclic subsets, then in fact at least one of the factors must be a
subgroup of the group. A cyclic subset is the “front end” of a cyclic subgroup.
The main result of the paper is an analogous result. Namely, that the same
conclusion holds for finite abelian groups of odd order with certain more
general type of factors. The proofs mainly rely on characters of finite abelian
groups.

1. Introduction

Throughout the paper the word group is used to mean finite
abelian group. The groups are written multiplicatively with identity
element e. We need the concept of factoring subsets into subsets. Let
G be a finite abelian group. If B, A1,... , Ay are subsets of G such that
each b in B is uniquely expressible in the form

This work was supported in part by the Hungarian Research Fund Grant
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bzal---an, aleAl,...,anEAn,

and each product aj - - - a, belongs to B, that is, if the product Ay --- A,
is direct and is equal to B, then we say that B is factored by subsets
Ai,...,An. The equation B = A; --- A, is also said to be a factoriza-
tionof B. If e € BNA;N---NA,, then the factorization B = A; -+- A,
and the subsets B, A1, ... , A, are said to be normed. Clearly the prod-
uct A;---A, is a factoring of B if and only if 4;---A, = B and
|A1|---|An| = |B|. Direct product of subsets is a straightforward gen-
eralization of direct product of subgroups which is a commonly used
construction. However factoring a finite abelian group into certain type
of subsets also admits important applications.

The subset A of G is called cyclic if it is of form {e, a,a?,... ,a" '}
where a is an element of G\ {e} and r is a positive integer. We denote
this subset of G shortly by [a,r]. Loosely speaking the cyclic subset
[a,r] consists of the “first consecutive” r elements of (a) the cyclic
subgroup generated by the element a. We would like to point out that
it is assumed that |a| the order of a is at least r.

To settle a famous geometric conjecture of H. Minkowski G. Hajos
[2] proved that if a finite abelian group is a direct product of cyclic
subsets, then at least one of the factors must be a subgroup of the group.
In order to generalize Hajés’ theorem we can try to extend the family of
subsets that occur in a factorization of a given finite abelian group. Of
course this extended family should contain the cyclic subsets. Beside
cyclic subsets we will consider subsets of form [a,r] U g[a, s], where the
union is disjoint. We would like to show that if a finite abelian group is
factored into the above type of subsets, then at least one of the factors
must be a subgroup. We are able to verify this fact in the special case
when the order of the finite abelian group is odd. This is the main
result of this note. On the other hand the result does not extend to
abelian groups of even order as the following example shows. Let G be
the direct product of two cyclic groups of order four, say G = (z) X (y),
where |z| = |y| = 4. Choose the subsets A and B to be A = [z,2] U
Uy?[z,2], B = [y,2] U z?yy,2]. Then as it is easy to verify G = AB
is a factorization of G and none of the factors A and B is a subgroup

of G.
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2. Result

If A and A' are subsets of G such that for every subset B of G, if

G = AB is a factorization of G, then G = A'B is also a factorization
of G, then we shall say that A is replaceable by A'. Rédei [3] made use
of group characters to study replaceable factors. If A is a subset and y
is a character of G, then x(A) denotes the sum

> x(a).

a€A
Rédei showed that the factor A can be replaced by A’ if |A| = |A'| and
if from x(A) = 0 it follows x(A') = 0 for each character x of G. The
set of characters x of G for which x(A) = 0 we call the annihilator of
the subset A and it is denoted by Ann(A). Using this concept Rédei’s
test reads that if |A| = |4'| and Ann(A) C Ann(A’), then the subset A
can be replaced by the subset A'.
Lemma 1. Let G be a finite abelian group of odd order and let A be
a subset of G such that A = [a,7] U gla, s], where the union is disjoint
and v + s is odd. Then Ann(A) C Ann([a,r + s]).
Proof. Let B = [a,r + s]. First note that Ann(B) consists of each
character x of G for which x(a) # 1 and x(a""°) = 1. Indeed, if
x(a) =1, then x(B) =r + s and if x(a) # 1, then

r—+s
x(B) = X x(a™)
, 1 - x(a)
which proves the claim. Thus it is enough to verify that from y(A4) =0
it follows that (i) x(a) # 1 and (ii) x(a"**) = 1.

To prove (i) assume the contrary that y is a character of G for
which x(A4) = 0 and x(a) = 1. Now 0 = x(4) = r + x(g)s or equiva-
lently x(g) = —(r/s). Taking the absolute values of both sides we have
s =r. Hence r + s is even which is not the case.

To prove (ii) consider a character y of G with y(A4) = 0. Now
0 = x(A)x(a) = x(Aa). From x(A) = x(Aa) after cancelling we get
x(e) + x(g9) = x(a") + x(ga®). Drawing complex numbers on the plane
the reader can verify easily that as the roots of unity occurring are
of odd order x(e), x(¢g) is a rearrangement of x(a”), x(ga®). Hence
x(e)x(g) = x(a")x(ga®), which is equivalent to 1 = x(a™**). ¢

If G = AC is a factorization of the finite abelian group G, where
A = [a,r]Ugla, s], then by Lemma 1 A can be replaced by B = [a,r + 3]
to get factorization G = BC. Now B must contain r + s elements and
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so |a| > r+s. Thus when A is a factor of a factorization then |a] > r+s
holds. We would like to point out that this is not the case in general.
Let G = (z) x {y), |z| =5, |y| = 3 and A = [z,3]Uy[z,4]. Now [A| =7
and |z| < 7.
A subset A of G is called periodic if there is an element g € G\ {e}
such that Ag = A. The element g is called a period of A.
Lemma 2. Let G be a finite abelian group of odd order and let A be
a subset of G such that A = [a,7] U g[a, s|, where the union is disjoint
and r + s is odd. If A is periodic and |a| > 1 + s, then A = (a).
Proof. As |a| > r 4 s so it is enough to prove that (i) a™* = e and (ii)
g=a".
If x(a™?®) = 1 for each character x of G, then a™* =1. So to
_prove (i) we consider C = {x : x(a"t*) = 1} and we show that C
in fact coincides with the character group G of G. Note that C is a
subgroup of G and Ann(A) C C. Let z be a period of A. By Th. 1 of
[4], x(A) = 0 whenever x(z) # 1. Counting the number of characters
x of G for which x(z) # 1 we get a lower bound for IAnn(A)l.

, |Ann(A)| > |a[ —;IG! (x)l = |G| — lG : (w)' =
=|GI(1 - (1/]z])) = |GI(1 = (1/p)) > IGI(1/2) = (1/2)IG|.

Here p is the smallest prime divisor of |G|. As lAnn(A)| > (1/2)|G|,
Ann(A) generates G and consequently C = G.

To prove ¢ = a” assume the contrary that g # a”. Let x be a
character of G for which y(A4) = 0. Applying x to ¢ # a" we face to
two possibilities, (a) x(g) = x(a") and (b) x(g) # x(a”). We establish
an upper bound for ‘Ann(A)|. If x(g) = x(a™), then x(ga™") =1 and
the number of these characters is IG : (ga_r)| —1 < |G|/p — 1 since
x(A) = |A| # 0 for the principal character x of G. Turn to the case
when x(g) # x(a") and let B = [a,7]U a"[a,s] = [a,r + s]. By Lemma
1, from x(4) = 0 it follows that x(B) = 0 and so

0=x(4) —x(B) =
x([a,7]) + x(9)x ([a, s]) = x([a,7]) = x(a")x([a; s]) =
= x(la, s]) (x(9) — x(a")).

Hence X([a,s]) =0 and consequently x([a,r]) =0. Therefore x(a) # 1,
x(a®) = 1, x(a™) = 1. If t is the greatest common divisor of s and
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r, then x(a') = 1. The number of these characters is IG : (at)l —-1<

< |G|/p—1. We now combine the lower and upper bounds for | Ann(A4)|
together.

G|(1 = (1/p)) < |Ann(4)| <|G|/p—1+]Gl/p—1 < |G|(2/p)-

Cancelling |G| we get 1 — (1/p) < (2/p) or equivalently p < 3 which is
not the case. {

Theorem 1. Let G be a finite abelian group of odd order and A,,... , Ay
be subsets of G such that A; = [a;,m;]U gi[ai,si]. fG=A1--- Ay is a
factorization of G, then A; 1s a subgroup of G for some s, 1 <1 < n.
Proof. For n = 1 the theorem holds and so we proceed by induction on
n. Replace the factor A; by B; = [ai, i+ s;] for each ¢, 1 <4 < nin the
factorization G = A; - -+ A, to get the factorization G = By --- B,. By
Lemma 1 this can be done. From the factorization G = By --- By by
Hajés’ theorem it follows that at least one of the factors B; is a subgroup
of G. We may assume that B; = H is a subgroup of G since this is only
a matter of indexing the factors. In the factorization G = A; Ay Ap
replace A; by By = H to get the factorization G = HAy --- A,. From
this we get the factorization G/H = (AyH)/H:--(A,H)/H of the
factor group G/H. By the inductive assumption some of the factors
(A;H)/H, say (A;H)/H, is a subgroup of G/H, that is, HA; is a
subgroup of G. Continuing in this way we have that

H, HAy, HA Ay, ..., HAy-- Ay

are subgroups of G. Let K = HAy---Ap_1. lf g1 € K, then A1 C K
and so K = A;A, - A, _; is a factorization of K. By the inductive
assumption one of the factors is a subgroup of K and so of G.

In the remaining part of the proof we assume that g; ¢ K. Let
b e A,. From the factorizations G = A1A2--- A, and G = HA;--- A,
by multiplying with 5~ we have that G = A1 A --- Ap_y (b_lAn) and
G=HAy---A, 4 (b”lAn) = K(b“lAn) are also factorizations of G.
As G = K(b_lAn) is a factorization of G, b~1A, is a complete set
of representatives of G modulo K. There is an element ¢; in b 1A,
such that tb_lK contains ¢;. Now g1ty € K. Let Cp = [a1,r1] U
U [a1,51]g1ts. We claim that K = CpAy--- A, is a factorization
of K. Indeed, products coming from CyA; -+ Ap—1 occur among the
product coming from A;A; -+ An_4 (b_lAn). But these latter ones are
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distinct as G = A1 A, --- A, (b"'lAn) 1s a factorization of G. From
K = CyAy--- A,—1 by the inductive assumption we have that one of
the factors is a subgroup of K. If this is not Cj, then we are done.
Thus we suppose that C} is a subgroup of K. Now C} is periodic and
so by Lemma 2, Cy = (a1). Consequently g1, = a* or equivalently
ty = g7 'al* € b™'A,. If t, = e for some b € A,, then ¢y —a1 and
Ay = (a1). If t) # e for each b € A,, then

ety =g a € [] b7 4n
. bEA,
and so by Lemma 4 of [1], A, is periodic. Now by Lemma 2, 4, =

= (an>- O
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Abstract: We consider here s-unital rings R satisfying the following con-
dition: For each subset F' of R having at most four elements, there exist
non-negative integers m=m(F'), n=n(F), r=n(F), s=s(F), t={F) and
t' =¥ (F)such that m>00rn>0, n+t+t #r+1orm+s>1if m=n>0,

!
and 2 [z", 9]’ = £ 2" [z,y™]y* for all 2,y € F. Under appropriate additional
conditions we prove some commutativity theorems for R. Especially, in the
“global case”, where F' = R, instead of ¥ C R, |F|<4,i.e. wherem, n, 1, 8, ¢
and ¢ are fixed, we improve some earlier results obtained by several authors,
among them H. A. S. Abujabal and the present author.

1. Introduction

We investigate here the commutativity of a ring R satisfying the
following property

(P4) For each subset F' of R having at most four elements, |F| <
< 4, there exist non-negative integers m = m(F'), n = n(F), r = r(F),
s=38(F), t =t(F) and t' = ¢/(F) such that :

(1) zt (2™, y]z* = 2" [z,y™]y° for all z,y € F.

Our general assumption on the above integers will be:
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(2) m(F) > 0 or n(F) > 0 for each FF C R, |F| <4,
and moreover
3) if m(F) = n(F), then n(F) +¢(F)+t'(F) #r(F)+1
: or m(F)+ s(F) > 1 for each F C R, |F| < 4.

The assumption (2) is natural, since for m(F') = 0 and n(F) = 0 the
condition (1) is trivially satisfied. Concerning the condition (3) we re-
mark that if m(F) = n(F), n(F)+{(F)+t'(F) = r(F)+1 and m(F)+
+ s(F) =1, ie. s(F) = 0, then for every ring R with the additional

condition
(4) [z,[z,y]] =0 forall z,y € R

the condition (14) (resp. (1-)) is surely fulfilled (if R is of character-
istic 2). Namely, for such a ring, in view of (4), (1) is equivalent (see
Lemma 2) with

(5) n:r"“"'t’_l[a:,y] = 4+ma"[z,yly™ ! for all 2,y € F.

Since a non-commutative ring can satisfy (4), the condition (3) is thus
also reasonable. Thereby, we have denoted by (i), resp. by (i) the
condition obtained from a condition (i) which contains the sign + by
setting 4+, resp. — instead of +.

A similar condition denoted by (Q4) with

(1") z [z, y]z* = 4y [z,y™]y° for all z,y € F

instead of (1), we consider in another paper [13].

If in (Py),r(F) = 0 for each FF C R, |F| < 4, resp. in (Qa),
s'(F)y=0for all F C R, |F| <4, then (P4), resp. (Q4) is a special case
of (Q4), resp. of (Py). Otherwise, these two conditions are not easily
comparable.

We remark that instead of (1) we could consider

(1" 2! [2", ylzt = +y°[z,y™]z" for all z,y € F.
But going from R to the opposite ring R, (1") becomes
(1" :ct[w",y]mtl = dz"[z,y™]y® for all z,y € F',

where F' = F is considered as a subset of R'. Thus, we see that it
suffices to consider only one of the conditions (1) and (1"): the results
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concerning one can be obtained as corollaries from the results concern-
ing the other of the conditions.
For F =R instead of FC R, |F|<4, the condition (P4) reduces to
(P) There exist non-negative integers m,n,r,s,t and t' such that

(6) zt [z™,y]z* = £2"[z,y™]|y® for all =,y € R,
and
(7) m >0 or n >0, and if m =n, then n+t+t' # r+1 or m+s > 1.

We tell (P) the globalisation of (P4), and (P4) a localisation of (P), and
in this connection we will talk about the local and the global case of a
statement or a condition.

Occasionally we will make other additional conditions on R, or on
integers m(F), n(F), r(F), s(F), t(F) and t'(F). For the local case we
will additionally assume (4) or

(I—A) For each z € R, z € A or there exists f(X) € X?Z[X] such
that z — f(z) € A, for a suitable non-void subset A of R.
In both cases we will need one of the conditions: ‘

(8) mlz,y] = m[z,y]f(y) = [z,y] = [z, y]kf(y),
(8" nlz,y] = nlz,ylf'(v) = [z,9] = [z,y]*' f'(y),
(8") (nF Dlz,y] = [z, y]f"(y) = [z, 9] = [z, y]k" ' (y),
(8") 2[z,y] = [,y]f"(y) = [z, y] = [&, y]k" [ (y)

for all z,y € F in the local case, and for all z,y € R in the global case.

Thereby, k, k', k" and k"' are appropriate integers (or polynomials in
XZ[X] taken at X = y), and

(9) F(X)= (X +1)mte=t 4 xmts—l 4
(9" (X)) =—(X + D iatanier it grbt o1 4
(9") f'(X)=—n(X+1)PHH I XrbH =1 L (X 1) £ X7+ (nF ),

and

(9///) f“’(}f) — —(){ + 1)t+t' + }ft'H/ _ (}( + 1)r +XT42

are polynomials in XZ[X] for suitable values of m,n,r,s,t and #'.
Obviously, (8), resp. (8') implies 4

(8)* mlz,y] =0=[z,y] =0 forall 2,y € F, [z,y]y* =0,

resp.

(8")* n[z,y] =0= [z,y] =0 forall z,y € R, [z,y]y® = 0.
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Concerning (8"), resp. (8"") we have only

(n F e,y = 2,91 (y) = (0 F1)[z,4] =0,

[z,y] = [z,y]&" f"(y) = [z,4] =0,
resp.

Q[Tv y] = [m,y]f”(y) = 22[3"7?/] =0,
[l‘w y] = [m,y]k”f"(y) = [IB, y] =0

for all r.y € F. [z,y]y? = 0. Therefore, the conditions

(8")* (nFD[r,y) =0=[r,y] =0 for all z,y € F, [ac,y]yz =0
resp.

(8"")* 2%[z.4] =0 = [z,y] =0 forall z,y € F, [z,y]y? =0,

which we will also consider here, does not follow from (8"), resp. (8"").
We remark that in the local case, the condition (8), (8)*, resp.
(81 (&V* . resp. (8")*. resp. (8"")* follow from

Qlg) ¢qlz.y]=0=[z.y]=0forall z,y € R
with ¢ = m. resp. ¢ = n, resp. ¢ =n F 1, resp. ¢ = 2.

But the conditions (8). (8" are surely satisfied if [z, y]f(y), resp.
[#.y]f'(y) 15 torsion-free or m.. resp n is relatively prime to the additive
order of [z,y]f(y). resp of {z.y!f'ty) Similarly, the conditions (8"),
(8"") are satisfied provided |z yjf"ty). resp [r.y]f"(y) 1s a torsion
element, and n F 1. resp 2 1s relatively prime to the additive order of
the element [z,y]f"1y). resp. [z.y]f"'(y) Finally. (8)* (8')*. (8")* and
(8"")* are satisfied if and only if [z.y| 15 torsion-free or the additive
order of |z,y] 1s relatively prime to m.n,n F 1 and 2. respectively.

In the global case some commutativity results were obtained by
H.A.5. Abujabal and the present author in [2|. and more generally in

[4] For a very special form of (1/]) with s = ¢ = 1 (in our notations).
but for m > 1 and » > 0 depending on = and y were combined by
Ashraf and Quadn with (I-A) for some commutative subset A of N(R).
They proved that each ring R satisfying these two conditions must be
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commutative ([4], Th. 1). Later H.A.S. Abujabal, M. Ashraf and M.
Obaid enlarged this result to the case where t' > 0 also depending on z
and y ([4], Th. 1). They also proved the corresponding result for (1)
instead of (1) (assuming that R is s-unital ([1], Th. 2). Recently, H.
Komatsu, T. Nishinaka and H. Tominaga [11] proved somewhat more
(f(y) with f(X) € X%?Z[X] and f(1) = 41 instead of y™, and A = N
instead of A C N and A commutative) ([11], Th. 3.2)) and without
condition (I—A) for ¢’ > 0 and r > 0 fixed) ([11], Th. 3.3; see also [12],
Th. 1).

Our aim is to prove here two commutativity theorems for the
local case, and three theorems for the global case. The second local
theorem is partially connected with the results of Ashraf and Quadri,
resp. of Abujabal, Ashraf and Obaid mentioned above. The second
global theorem we proved here improves all results of [2] and [3].

2. Results

In the local case we combine first the condition (P4) with (4) and
prove
Theorem 1. Let R be an s-unital (a left, or right s-unital) ring satis-
fying (P4) and (4). Then R s commutative provided for each F C R,
|F| <4, any one of the following conditions is fulfilled:
1) m(F) > 0, n(F) > 0; m(F) > 1 or s(F) > 0; F satisfies (8) if
r(F) >0 and (8) or (8) if r(F) =0 and (m(F),n(F)) # 1;
2) n(F) =0, m(F) > 0; F satisfies (8) (and r(F) =0 or s(F)=0);
3) m(F)=0, n(F)>0; F satisfies (8') (and t(F) =0 ort'(F)=0);
4) m(F)=1, n(F) > 1, s(F)=0; and F satisfies (8");
5 m(F)=n(F)=1, s(F)=0.
Theorem 2. Let R be an s-unital (a left, resp. right s-unital) ring
satisfying (Py) and (I-N). Then R is commutative provided for each
F C R, |F| <4, one of the following conditions is fulfilled:
1) m(F)>0,n(F)>0;, m(F)>1ors(F)>1; (t(F)=0o0rt(F)>
> 0 and s(F) =0, resp. t'(F) =0 or t/(F) > 0 and r(F) =0);
F satisfies (8)* for r(F') > 0, except for n(F) =1, t(F) =0 or
t'(F) =0, and (8)* or (8)* for r(F) =0 and (m(F),n(F)) # 1;
i) n(F)=0, m(F) > 0; (s(F) =0, resp. r(F) = 0); end F satisfies
(8)%;
i) m(F) =0, n(F) > 0; (¢(F) = 0, resp. t/(F) = 0); and F satis-
fies (8')*;
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) m(F) = 1, n(F) > 1, s(F) < 1; (((F) = 0 or t(F) > 0 and
s(F) = 0, resp. t!(F) = 0 or t'(F) > 0 and r(F) = 0); and F
satisfies (8")* for s(F) = 0;

v) m(F)=n(F)=1, s(F) < 1; ({{(F) =0 or t(F) > 0 and s(F) =
=0, resp. t'(F) =0 or t'(F) > 0 and r(F) = 0); and F satisfies
(1-) and (8"")*.

Th. 1 we use in several occasions. Th. 2 is connected with the
above mentioned results ([1], Th. 1) and ([4], Th. 1). The localisation
in our theorem is not properly complete, but the equation (1) is more
general, and moreover, in (I-A) we assume A = N, and not that A is
a commutative subset V.

~In the global case, for a semi-prime ring R we can drop the condi-
tion (I-N) in Th. 2 and weak all of the other conditions in this theorem.
Precisely, the following theorem holds true:
Theorem 3. Let R be a semi-prime ring satisfying (P). Then R is
commutative provided one of the following conditions is satisfied:
a)m>0,n>0,m>1o0rs>0;

b) n=0,m>0; andr =0 or s =0 for m even;

c) m=0,n>0;andt=0 ort' =0 for n even;

d)m=1,n>0,s=0;,t>00rt=0and n even, orn and t' —r
odd.

Similarly, in the global case, it is possible to drop the condition
(4) in Th. 1, for any ring R, under an appropriate sharpening of other
conditions in this theorem:

Theorem 4. Let R be a left, resp. right s-unital (an s-unital) ring
satisfying condition (P). Then R is commutative provided one of the
following conditions is fulfilled:

AAm>0,n>0,m>1ors>1;t=00rs=0, resp. ' =0 or
r =0 (only if R is left, resp. right s-unital); R satisfies (8) for
7 >0, ezcept forn =1 and t =0 or t' =0, and (8) or (8') for
r =0 and (m,n) # 1;

B) n=0,m>0;r=00rs=0 (for m even); and R satisfies (8);

C) m=0,n>0;,¢=00rt=0 (for n even); and R satisfies (8');

D)m=1,n>0,s<1;t=00rs=0, resp. t' =0 orr =0 (only
if R is left, resp. right s-unital); and R satisfies (8'") for s = 0.

The conditions (8), resp. (8) or (8') in Th. 4 A), which are trivially
satisfied if i = 1, can be eliminated if we assume that R satisfies (P)
for m = mj, n=nj,r=rj,s=s;1t= tj and t' = t%, where j
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runs over a finite index set J such that the greatest common divisor
(mj: 3 € J)is equal to 1:
Theorem 5. Let R be a left, resp. right s-unital (an s-unital) ring
satisfying (P) for m =mj, n=n;, r =r;, s = s;, t =t; and t' =},
where j Tuns over a finite index set J, such that (m;:j € J)=1. If
moreover, for each j € J,

m; >0, n; >0; m; >1 or s; >0
t; =0 or SjIO,t;-:() or ;=10
(only if R s left, resp. right s-unital),

then R 13 commutative.
Since, as just mentioned, Q(m(F)) = (8) = (8)*, and Q(n(F)) =
= (8') = (8')*, we have especially the following results:
Corollary 1. Let R be an s-unital (a left, resp. right s-unital) ring
satisfying (P)s and (4). Then R is commutative if for each FF C R,
|F'| <4, one of the following conditions is fulfilled:
1"y m(F) > 0, n(F) > 0; m(F) > 1 or s(F) > 0; R satisfies
QUn(F) if r(F) > 0, and G(m(F)) or Q(n(F) if r(F) = 0
and (m(F),n(F)) # 1;
2") n(F) = 0, m(F) > 0; R satisfies Q(m(F)) (and r(F) = 0 or

o(F) = 0);
3") m(F) = 0, n(F) > 0; R satisfies Q(n(F)) (and t(F) = 0 or
t'(F)=0)

4"y m(F)=n(F)=1, and s(F)=0.
Corollary 2. Let R be an s-unital (a left, resp. right s-unital) ring
satisfying (Py4) and (I-N). Then R is commutative if for each F C R,
|F'| <4, one of the following conditions is fulfilled:
iy m(F) > 0, n(F) > 0; m(F) > 1 or s(F) > 1; (¢(F) = 0 or
T(F)>0and s(F)=0, resp. t'(F) =0 or t'(F) > 0 and r(F) =
= 0); F satisfies Q(m(F)) for r(F) > 0, except for n(F) = 1,
t(F)=0 ort'(F) =0, and Q(m(F)) or Q(n(F)) if r(F) =0 and
(m(F), n(F)) £ 1;
i) n(F) =0, m(F) > 0; (s(F) =0, resp. r(F) = 0); and F satisfies
Qm(F));
iii") m(F) =0, n(F) > 0; (t(F) =0, resp. t'(F) =0); and F satisfies
Qn(F));
iv) m(F) =1, n(F) >0, s(F) =1; ({(F) =0, resp. t'(F) = 0, or
#(F) > 0 and r(F) = 0).
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Corollary 3. Let R be a left, resp. right s-unital (an s-unital) ring
satisfying condition (P). Then R is commutative provided one of the
following conditions 13 fulfilled:
AYm>0,n>0,m>1ors>1,t=00rs=0, resp. t' =0 or
r =0 (only if R is left, resp. right s-unital); and R satisfies Q(m)
forr >0, except forn =1 andt = 0 ort' =0, and Q(m) or
Q(n) forr =0 and (m,n) #1;
B)Yn=0,m>0;5s=0o0rr =0 (form even); and R satisfies Q(m);
CYm=0,n>0;t=0o0rt =0 (for n even); and R satisfies Q(n);
DYm=1,n>0,s=1;t=0, resp. t' =0 orr =0 (only if R 1is
left, resp. Tight s-unital).
Cor. 1 follows immediately from Th. 1, Cor. 2 from Th. 2, and
Cor. 3 from Th. 4. Cor. 2 is related to the mentioned results of [1] and
[4], and Cor. 3 contains almost all main results of [2] and also of [3].

3. Preparations for the proofs

In all of our theorems, except for Th. 3, we suppose that R is an
s-unital (a left or/resp. right s-unital) ring. It is well known that in
an s-unital (a left, resp. right s-unital) ring R, for arbitrary elements
z,y there exists an element e such that ez = ze = z and ey = ye = y
(ex = x and ey = y, resp. ze = ¢ and ye = y). We call such an element
e a local (left, resp. right) unity for z and y. Also, it is known ([14],
Lemma) that if R is a left, resp. right s-unital ring, and for every two
elements r and y in R there exists a positive integer k¥ = k(z,y) and an
element e = e(z,y) such that z*e = z¥ and y*e = yF, resp. ex* = z*
and ey® = y*, then R is s-unital.

We state first some known results we will use in this paper. The
following two lemmas are well known and easy to prove.

Lemma 1. Let R be a ring with unity element 1, and z,y € R. If
zFy = (z + 1)k,y =0 or yz* = y(z + 1)", = 0 for some non-negative
integers k and k', then y = 0.

Lemma 2. Let x and y be given elements of an arbitrary ring R. If
[z,[z,y]] = 0, then [z*,y] = kz*~1[z,y] for all integers k > 1.

The next lemma, for f(X) € XZ[X] a fixed polynomial, is a very
special case of a result due to Streb ([14], Hauptsatz 3; see also [2],
Th. S), and is also generally valid by a result due to Bell ([6], Th. 1).

In the present form it was proved in a simple manner by this author
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([13], Lemma 3).
Lemma 3. Let R be a ring with the following property:

for arbitrary elements z,y in R there exists a polynomial

B0 4x) € X21X] such that [z,4] = [+, 411 (v).
Then R 13 commutative.

The first of the next two results is due to Kezlan and Bell, and
the second to Herstein.
Theorem KB ([5], Th. 1; [10], Theorem). Let f be a polynomial in
n non-commuting indeterminates X1,... , X, with (relatively prime)
coefficients. Then the following are equivalent:

1) for any ming R satisfying the polynomial identity

flzy,...,zn) =0 for allzq,... ,z, € R

the commutator ideal C = C(R) of R is a nil ideal;
2) for every prime p, the matriz ring R = My(GF(p)) fails to satisfy
the above identity;
3) every semi-prime ring R satisfying the above identity is commu-
tative.
Theorem H ([8], Theorem). Let R be a ring. If for each z € R there
exists a polynomial f(X) € XZ[X] such that z — f(z) € Z(R), then R

18 commutative.

4. Proofs

The next three lemmas concern a ring R which satisfies the condi-
tion (P4). The first of them shows that the ring R in all our theorems,
except for Th. 3, is in fact an s-unital ring. This will enable us to prove
these theorems for a ring with unity element 1 (see [9], Prop. 1).
Lemma 4. Let R be a left, resp. right s-unital ring satisfying (Py).
Then R is s-unital, provided for each F C R, |F| < 4, any one of the
following conditions is fulfilled:

1"y m(F) > 0, n(F) > 0; t(F) = 0 and m(F) > 1 or s(F) > 0,
or t(F) > 0 and s(F) > 0, resp. t'(F) = 0 and m(F) > 1 or
r(F)>0ors(F)>0, ort/(F)>0and r(F)=0;

2"y n(F)=0, m(F) > 1; and s(F) =0, resp. r(F) =0;

3" m(F)=0, n(F)>1; and t(F) =0, resp. t'(F) = 0.
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Proof. Let x and y be arbitrary elements of R, and e a left, resp. right
local unity for x and y. Set F' = {z,y,z + 1,y + 1}.
Case 1"): Let e be a left local unity for z and y. If ¢(F) = 0, then

'
e''le", 2] = +e"[e,x™])z°, hence z = ze™ £ z™* F z™ez?,

and thus, z € tRif m(F) > 1 or s(F) > 0. If ¢(F) > 0 and s(F) = 0,
then

- z"'[z"‘, elz! = £27[z,¢e™], i.e. 27T e™ = 2"t for z € {z,y}.

Let now ¢ be a right local unity for z and y. If t'(F) = 0, then

[e", z]e! = +c"[e,2™]z, hence z = ez & e a™ T F g™,

and thus, z € Rz if m(F) > 1 or r(F) > 0 or s(F) > 0. If /(F) > 0,
and r(F) =0, then
z'[z" elat = +[z,e™]e’, hence z = ™.

Case 2"): Let e be left, resp. right local unity for x,y. Then

for s(F)=0, z"[z,e™] =0, ie. 2Tl =2"Tle™

Tesp- for r(F)=0, [e,2™]z° =0, ie 2™ =ez™t?,

for z € {z,y}.
Casc 3"): For t(F) = 0 and a left local unity e resp. for ¢'(F) = 0
and a right local unity e, we have
e''[e”, ] =0, resp. [e", x]et =0,
hence,
x =ze™, resp. t =€e"z.
The next lemma we need only for the global case, but we state it
in the general local case:
Lemma 5. No matriz ring M,(GF(p)), p prime, can satisfy (Py),
such that for cach F' C R = M2(GF(p)), |F| <4, one of the following
conditions s fulfilled:
a) m(F) >0, n(F) >0, and m(F) >1 or s(F) > 0;
b) n(F) =0, m(F) >0, and r(F) =0 or s(F) =0 for m(F) even;
c) m(F)=0, n(F)=0, and t'(F) =0 or t(F) =0 for n(F") cven;
d) m(F) = 1,n(F) >0, s(F)=0; and t(F) > 0 or {(F) = 0 and
n(F) even, or n(F) and t'(F) — r(F') odd.
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Proof. Let e;; be the matrix in R with entree 1 on the position ¢, j,and
with 0 elsewhere. Set F = {e11,€22,€12,€12 + €21}-
Case a): = = e12 + €1 and y = ey for n(F') odd, resp. y = eqy
for n(F') even fail to satisfy (1). :
Case b): = = e12 + €21 and y = ey; for m(F') odd, and y = e;2,
T = ez3, resp. £ = e for m(F') even and t'(F) = 0, resp. t(F) = 0, fail
to satisfy (1).
Case c): Similar to Case b).
Case d): v = €11 and y = ey for t(F) > 0, and z = e12 + €21 and
y = e3 for t(F) = 0 and n(F') even or n(F) and t'(F) — r(F) odd, fail
to satisfy (1).
The following Lemma will be used in the proof of Th. 2 and that
of Th. 4, and thus we need its general local form:
Lemma 6 (cf. [2], Lemma 5). Let R be a ring with unity 1 which sat-
isfies (P4). Then every nilpotent element of R is central, i.e. N(R) C
C Z(R) provided for each FF C R, |F| < 4, one of the following condi-
tions 18 fulfilled:
i"y m(F)> 0, n(F)>0;, m(F)>1ors(F)>1; and F satisfies (8)*
for r(F) > 0, ezcept for n(F) =1, t'(F) = 0 or t(F) = 0, and
(8)* or (8)* if r(F) =0 and (m(F),n(F)) #1;
ii") n(F) =0, m(F) > 0 and F satisfies (8)*;
iii") m(F) =0, n(F) > 0 and F satisfies (8')*;
iv'"y m(F)=1, n(F) > 1, s(F) <1, and F satisfies (8'")* for s(F) =
= 0;
v m(F)=n(F) =1, s(F) <1, and for s(F) =0, F satisfies (1_)
and (8"")*.
Proof. Let z € R and a € N(R) be arbitrary, but fixed elements. We
have to prove that [z,a] = 0. Since @ € N(R), there exists a minimal
positive integer p such that

[z,a*] =0 for all integers &k > p.

If p = 1, we have nothing to prove. Suppose that p > 1 and set b =
= aP~ !, Then

(11) o[z, b] = [z,b%] = [z, b]b* for all integers k > 1
and
(11) bz, b] = —[z, blb.

We will prove that [z,b] = 0, which in view of the minimality
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of p contradicts to the assumption that p > 1. For this purpose set
F={z,b,z+1,b+1}.

Case i"): Setting b for y in (1), in view of (11) we get
(12) 2t [z, bzt = 0.
Now, setting b+ 1 in (1) and using (12), we obtain

z"[z(b+1)™](b+1)* = 0.

Since b+ 1 is invertible, the last equation, in view of (11) and Lemma 1
yields

(13) m[z,b] = 0.

If n = 1, then setting  + 1 for z in (12), we get

(z +1)"[z,8)(z + 1)* =0,
and if t = 0 or t' = 0, then by Lemma 1, follows [z,b] = 0. Also, for
r(F) > 0, (8)* and (13) imply [z,b] = 0. Let now r(F) = 0. Then for
n=1,t>0andt > 0, and also for n > 1, (1) with b, resp. = instead
of z, resp. y, gives

[b,z™]z® =0
and thus (1), for b+ 1, resp. = instead of z, resp. y, becomes
(6+1)¥[(b+ 1), z)(b+ 1) = 0.

In view of (11) and the invertibility of b+ 1, this yields

(13") ' nlz,b] = 0.

If (m,n) = 1, then (13) and (13') imply [z,b] = 0. If (m,n) # 1, then
we have (8)* or (8')*,and then (13) or (13') implies [z, b] = 0 again.

Case ii"): If n(F) =0, m(F) > 0, then (1) for y = b+ 1 becomes

"z, (b+1)"|(b+ 1) =0,
hence by (11) and the invertibility of b + 1, after applying Lemma 1,
we get m[z,b] = 0. This in view of (8)* implies [z, b] = 0.

Similarly, we can get [z,b] = 0 in Case ii").

Case iv"): If s(F) = 1, then (1) for y = b and the same equation
for y = b+ 1 easily give z™[z,b] = 0, and this using Lemma 1 implies
z,b] = 0.

0 Let now s(F') = 0. Setting b + 1 for z, and z for y in (1), we get
in view of (11) and (11'),
(n F1)[b,z] = (—nt' + nt £ r)b[b, z],
hence
(n F1)*z,b] =0,
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and thus, by (8")*, [z,8] = 0.
Case v"): For s = 1, we can get [z,b] = 0 as in Case iv'). Let
now s = 0. Then for z = b+ 1, and y = z, (1-) becomes
(b+1)¥[b,2](b+ 1) = —(b+1)7[b, ],
hence, in view of (11) and (11') we have
2[z,b] = (—t' +t — r)b[z,b], ie. 2%[z,b] =0,
which by (8")* gives [z,8] = 0. ¢

Now we can go to the proofs of our theorems.

By Lemma. 4, all rings in our theorems, except for Th. 3, are s-
unital, and according to ([9], Prop. 1) we can and will assume that, in
all these theorems, R is a ring with unity 1.

Proof of Th. 1. In view of (4) and Lemma 2, the identity (1) is
equivalent with (5), and also with

(14) LIIt_H [xn,y] — [.'En,y]:L'H_tl — imr[w,ym]ys — j:ys[x,ym]mr'

From (14) and Lemma 4 we easily see that R is s-unital. Now we can
assume that R is a ring with unity 1. We fix z and y in R, and set
F={z,y,z+1,y+1}.

Case 1): Setting in (5) y 4+ 1 for y, and combining equality (5)
with the obtained one, we get

ma"[z,y)(1 - f(y)) =0,
hence, using Lemma, 1,
(15) mlz,y] = mlz, y]f(y),
where f(X) € XZ[X] is given by (9). Similarly, from (5), if r(F) = 0,
we get
(1) n[z,y] = n[z, ylf'(v),

where f'(X) € XZ[X] is given by (9').
Using (15) and Lemma 1, from (5) we easily obtain

(16) nlz,y] = nlz, y|f(v),
and similarly, from (5) and (15'), if 7(F) = 0 we can get
(16") m[z,y] = mlz,y]f'(y).

If r(F) > 0, then by assumption, F' satisfies (8), and thus (15)
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implies
(17) [z, 9] = [z, y]kf(y)-

Let now r(F)=0. If (m,n) = 1, then from (15) and (16), resp.
(15") and (16') follows (17), resp.

(17" [z,y] = [z, 9]k f'(y).

If (m,n) # 1, then, by assumption, F satisfies (8) or (8'), and thus (15)
implies (17) or (15') implies (17).

Case 2): In this case instead of (5) we have

mz"[z,yly™T*~! =0, resp. n[m,y]m”'*'t'*'tl_l =0,
which by applying Lemma 1 give
m[m’y] = 0’ resp' n[$7y] = 07

i.e. in view of (8)*, resp. (8')*, [z,y] = 0.

Case 3): Since m = 1, and s = 0, in this case (5) becomes

nlz,ylz"tst "1 = +[z,ylz" for all z,y € F.
From this equation we easily get
(n F D[z, 9] = [=,9]"(y),

where f''(X) € XZ[X] is given by (9"). But the last equation, in view
of (8"), implies

(17) [z,y] = [z, y]&" f" (v).

Case 4): Now (5_) becomes
[z,y]zttt = —[z,y]z” for all z,y € F.
This implies
2[z,y] = [=, 9] /" (y),
i.e. by (8"),

(17///) [l',y] — [x’y]klllflll(y),

where f'"'(X) € XZ[X] is given by (9").
Thus, the ring R in Th. 1 satisfies the condition of Lemma 3, and
so R is commutative. {

Remark. Since obviously, for every prime p, the matrix ring R =
= M,(GF(p)) fails to satisfy (4), then by Th. KB, for every ring R, (4)
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implies

(4") [z,y] € N(R) forall z,ye€R. ,
For an s-unital (a left, resp. right s-unital) ring R in Th. 1, we can
replace (4) by the weaker condition (4'), assuming the conditions i)~
v"") of Lemma 6 (and the conditions 1")-3") of Lemma 4) were satisfied.
Namely (by Lemma 4, R is unital, and) we can assume that R has a
unity 1. Moreover, according to Lemma 6, N(R) C Z(R), hence by (4),
[z,y] € Z(R) for all z,y € R, and especially we have (4).

Proof of Th. 2. By Lemma 4, the ring R in this theorem is s-unital..
and we can assume that R is with unity 1. But, then, according to
Lemma 6, N(R) C Z(R). Since, moreover, R satisfies (I-N), R in fact
satisfies the conditions in Th. H, and hence R is commutative. ¢
Proof of Th. 3. By Lemma 5, no matrix ring M,(GF(p)), p prime,
can satisfy (P) in situation of Th. 3. Since R is semi-prime and R
satisfies (P), R must be commutative in view of Th. KB. ¢

Proof of Th. 4. According to Lemma 4, the ring R in this theorem
is s-unital, and thus we can assume that R is a ring with unity 1. But,
then R satisfies all conditions of Lemma 6, and thus, N(R) C Z(R).
Moreover, in the situation of Th. 4, in view of Lemma 5, no matrix ring
M,y(GF(p)), p prime, can satisfy (P), hence in view of Th. KB, C(R) C
C N(R). Therefore, C(R) C Z(R), and thus R satisfies all conditions
of Th. 1, and so R is commutative. ¢

Proof of Th. 5. The ring R in this theorem obviously satisfies con-
dition 1') of Lemma 4. Therefore, R is s-unital, and so we can assume
that R is a ring with unity 1. Moreover, since m; > 1 or s; > 0,
similarly as we have got m|z,b] = 0 in the proof of Lemma 6, we can
get m;j[z,b] = 0 for all j € J. But, this with (m;: j € J) = 1 implies
[,0] = 0. Hence N(R) C Z(R). Also, for each j € J, R satisfies
condition 1") of Lemma 5, and thus, in view of Th. KB, C(R) C N(R).
Hence, C(R) C Z(R), and R surely satisfies (4). Now, as in the proof
of Th. 1, we can prove that »

(15) mjle,y] = m;[z,y]fi(y) for all =,y € J,
where f;(X) € XZ[X]. This, in view of (m;: j € J) = 1, yields
(2] = [2,4] Y mym! f5(y) for all 2,y € B,
=
and some integers m} (j € J). Therefore, R is commutative according
to Lemma 3.
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For the appropriate examples in the local, resp. global case, and
also for other related results, we refer to [1] and [4], resp. [2] and [3].

We give here an example showing that a ring R can satisfy a local
condition of the form (P,), which seems to does not satisfy a global
condition of the form (P).
Example 1. Let M = M(p) be the ring of all infinite lower triangular
matrices over a Galois field GF(p), p prime, and k be a positive integer.
We denote by My = M} (p) the subring of M generated by the identity
matrix I and all matrices (a;j) € M such that a;; = 0for: =1,2,...
and a;; =0for¢ > k,orj > k. Let R be the union of all the M. Then
R is a ring with unity I.

The regular matrices in Mj; form a finite group of order
(p — 1)_11316_(%z =: my and thus, a™* = I for all regular matrices a €
€ Mj. A non-regular matrix b € My is nilpotent, and b* = 0 for all
such matrices b. For sufficiently large p, we have m; > k, and hence

(18) ™ € Z(R) for all z € M.

Now, for each finite subset F' of R, there exists an integer k such
that F' C M}, and thus for

(19) m = m(F) = mg,n = n(F) = o(F)my

and arbitrary non-negative integers r = r(F), s = s(F'), t = t(F') and
t' = ¢/(F) we have -

2t [z", Y]zt = £27[z, ym]y® for all z,y € F.

Thereby, 0 = o(F) is a non-negative integer. Especially, the ring
R satisfies a condition of the form (P4). Since R is obviously non-
commutative, R fails to satisfy some of the additional conditions in our
Th. 1 and Th. 2. Actually, the condition (8)* is not fulfilled, and thus
also the condition (8) cannot be satisfied. Namely, for b = e;; € My,
k > 1, we have b2 = 0. On the other hand, for z = e € Mg, k > 2,
we have

mylz,b] =0, but [z,b] =ex #0.

We remark that in view of (18), C(R) C N(R) by a well known result
due to Herstein [7].
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