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Abstract: The Erdés-Mordell inequality is extended on the spate closed
n-gons in E3. The inequality holds for any point O of the convex hull of the

n-gon. The equality is attained only for regular n-gons with the center O.

H. Ch. Lenhard [3] proved the following statement: Let A be a
closed n-gon with vertices Ag, A1,...,An—1 bounding a star shaped re-
gion in the plane and let O be a point in the interior of A such that all
sides of A are visible from O. Denote by R; the distance of the points
O and A; and let r; denote the distance of O to the line A;Ait1 (where
Ap, = Ag). Then '

n—1 n—1
T
(1) cos;;RiZ;ri

holds. Equality holds only if A 1s a regular n-gon with center O.

The inequality (1) for n = 3 is known as the Erdés—Mordell in-
equality. L. Fejes-Téth [2] conjectured (1) for convex plane n-gons.
Lenhard’s result confirms and generalizes Fejes-Toth’s conjecture, be-
cause (1) holds even for non-convex n-gons. In the present work we will
give a further generalization of (1), which is given in the following
Theorem 1. Let A be a closed n-gon in E® with vertices Ay, A1, - ..,
An_1 and let O be a point in the convez hull K(A) of A. Denote by
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R; the distance of the points O and A; and denote by r; the distance
of O to the line AjAiyy. Then inequality (1) holds. Equality in (1) is
attained iff A i3 a plane regular n-gon and O is its center.

To prove Th. 1 we shall need the following lemma:

Lemma. Let A be a closed space n-gon in E® with vertices Ag, Ay, ..
An—1 and let O be a point in the convez hull K(A) of A. Writing ¢; =
= |<1AiOA;11| we have

(2) Z @i > 2m .

Proof. Our proof is based on the following statement given by I. Fary
[1]: Let i, ¥ be two vectors and ¢ their angle. Denote by (o) the angle
between the orthogonal projections of i and ¥ in the direction o. Then

90=4_7r (P(U)dﬂ UEQv

Q
where §) 13 a unit sphere and o 1ts point determined by the direction o.
By applymg th_ls statement to the n- gon A we get

E% ——/Zsoz(d)dﬂ

. s =0
ThlS equality reduces the space case to a planar one. To prove (2) it
suﬂ"ices to show that

n—1

Z wi(c) > 2r forall occf.

Let A, denote the ortohogonal projection of A in the direction o. From
the definition of the convex hull, it follows that the point O belongs*
to the convex hull K (As) of As. The convex hull K(A,) of A, is
a polygon, whose vertices form a subset of the set of vertices of A,.
Because of convexity of K(A,), the sum of the angles between O and
the vertices of K(A,) equals 2r. Our assertion now readily follows. ¢

For the proof of Th. 1 we shall need another geometrical result,
known as a discrete case of Wirtinger’s inequality: Let A be a closed
space n-gon in E3 with vertices Ag, Ay, ..., Apn_; and with the centroid
at the origin of the coordinate system. Then

i . n—1 n—1
(3) | Y Ak Aral? > 4sin® T 4,
n

Equality hbld.s’ iff Ais a plane affine-regular n-gon. Inequality (3) was
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stated for plane n-gons by B. H. Neumann [4]. For a proof of the general
case see [5], [6].
Proof of Th. 1. We will proceed similarly as H. Ch. Lenhard. It is
more convenient to use now the notation |[<A;0A; 11| = 2p;. We will
show that even

n-—1 n-—1 n—1
s
(4) cos — E R; > Z vV Ri;Riy1cosp; > Z T
=0 1=0 1=0
holds. Namely,
2R;R;
oy = 2FiBe
R+ Rip

where P; is the intersection of the bisector of the angle R;OR;; with
the side A;A;y;. The second inequality in (4) now follows from the
inequality between the harmonic and geometric mean, with equality
only for R; = Ri41.

To prove the first inequality in (4), construct the central symmet-
ric 2n-gon B with vertices By, By, ..., Byp—1, with By, = By, with the
centroid at the point O as the origin of the coordinate system, so that

|Bi!=\/Ri |<IBZ‘OBH_11:§0,', Bn+i=‘“Bi, i:O,l,...,n~1.

Inequality (2) ensures, that this construction always gives at least one
2n-gon B. By applying the inequality (3) to the 2n-gon B we get

cos @; ,

2n—1 T 2n~1
2 2 2
(5) Z |Bkak+1| > 4sin o Z |Bi|*,
k=0 k=0
which is equivalent to
o 2ol 2n—1
— Bil* > Bi|-|B :
COSn k}_:o |Bx|* > ; |Be| - |Bi+1] cos o

Dividing both sides by 2, we get the left inequality in (4). Equality in
(5) is attained if and only if the 2n-gon is a plane affine-regular one
which, together with the condition R; = R;41,2=0,1,...,n—1, gives
that equality in (1) is attained iff the n-gon A is regular and O is its
center.
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Abstract: We show how a number of well-known results follow from a char-

acterization of torsion-free modules.

In this note we bring to light a result which seems to be lying
beneath the surface of a number of well known theorems and, once
stated, from which these theorems may be readily derived. To wit, let
R be a Noetherian ring and M a finitely generated R-module admitting
a finite free resolutions

F:0—F, 2 2 S M —.
We observe that M is torsion-free if and only if the ideal of minors
associated to the ith map in the resolution has depth greater than or
equal to ¢+ 1. The similarity with this statement and the one appearing
in the celebrated exactness theorem of Buchsbaum and Eisenbud [3] is
not coincidental. The result is essentially equivalent to their theorem.
However, it seems that bringing it to the fore allows one to see precisely
how the conditions of their theorem yield exactness. The result also
serves as the inductive step in an analogous characterization for M to be
a kth syzygy. Using this result, we can derive a theorem of Auslander—
Bridger appearing in [1] and extend a result of Bruns concerning the
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structure of kth syzygies to non-Cohen-Macaulay local rings. Finally,
though the proposition below doesn’t seem to explicitly appear in any of
the standard references on the subject, undoubtedly it is not new. OQur
primary purpose here is to demonstrate the central place it occupies.

Let F be given as above i.e., each F} is a free R-module of finite
rank and ¢; is a rank (Fi—1) x rank (F;) matrix with entries in R. The
rank of ¢; is the size of the largest non-vanishing minor of ¢; and we
will write I(¢;) for the ideal generated by minors of size rank (¢;). If
rank (¢;) = 0, take I(¢;) = R. With this we may state the result as
follows.

Proposition. Let M and F be as above. Then M i3 a torsion-free
R-module if and only if depth (I(4;)) > i+ 1 fori=1,...,n.

Proof. We begin the proof with a couple of remarks. First, recall that
for M as above, M 1is torsion-free if and only if every prime ideal associ-
ated to M is an associated prime of R. Furthermore, as the hypotheses
and conclusions of the proposition are preserved under localization,
we are free to localize at a prime ideal at any point in the argument.
Finally, recall that if R is local and the projective dimension of M
(denoted. p.d.g(M)) is finite, then the Auslander-Buchsbaum formula
states that depth (M) + p.d.r(M) = depth (R) (see [2]).

Now, suppose that M is torsion-free. Let i be the largest integer
for which depth (I(¢;)) < i. We seek a contradiction. Select a prime
ideal P containing I(¢;) such that depth(Rp) < i. It follows that
I(¢;) € P, for j > i. Therefore, upon localizing at P, the sequence F
splits at F;. Localizing at P and changing notation, we have I(¢;4+1) =
=R, I(¢;) # R and depth(R) < i. Thus F; = image(¢i+1) ® F; and
we may truncate F to obtain an exact sequence

F.0—F 2 . 2 m oMo

Thus p.d.g(M) <i. If p.d.g(M) < 1, image(¢;) is projective (free) for
some j < i — 1, so the truncated sequence splits to the left of F; and
it follows that I(¢;) = R, which isn’t so. Thus p.d.g(M) = i. Since
depth (R) < ¢, the Auslander-Buchsbaum implies i = depth(R) =
= p.d.g(M). Consequently depth (M) = 0. Therefore P, the maximal
ideal of R, is an associated prime of M, and hence R, since M is torsion-
free. Thus ¢ = depth (R) = 0 and this is the contradiction we sought.

- Conversely, suppose the depth condition holds. Let P be an as-
sociated prime of M. We must show that P is an associated prime of
R. We may assume that R is a local ring and P is its maximal ideal.
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Since depth (M) = 0, depth(R) < n (by the Auslander-Buchsbaum
formula). Moreover, as depth(I(¢.)) > n + 1, we must have I(¢n) =
= R. Thus the sequence F splits at F},_;, so we may truncate as before
to obtain
! f d’n—l ¢2 ¢1
F:0—F, _,— - —Fh—F—M-—0.
By induction on n (the case n = 0 is trivial), M is torsion-free, so P is
_associated to R, as desired. {
Corollary A (Buchsbaum-Eisenbud). Let R be a Noetherian domain
and
F:0-—F, %N 25 p 2Eo

a complex of finitely generated free R-modules. Then F is acyclic
(i.e., ker (¢;) = image(¢it1) for i > 0) if and only if: (i) rank(s;) +
+rank (¢;y1) = rank (F;) and (ii) depth(I(¢;)) > ¢, fori=1,... ,n.
Proof. Let K denote the quotient field of R and suppose the conditions
hold: We proceed by induction on n. If n = 1, the complex is exact by
McCoy’s theorem. Assume n > 1. Condition (i) implies that F @ K is
an acyclic complex of vector spaces. Hence the ith homology module
is a torsion module, for ¢ > 0. In particular, H1(F) is torsion. On the
other hand, by induction H;(F) = 0 for < = 2,... ,n. Thus F resolves
the cokernel of ¢,. By the Prop., condition (ii) implies that the cokernel
of ¢, is torsion-free. Hence its submodule H;(F') is torsion-free. Thus
H,(F) is both torsion and torsion-free, and therefore zero. That is, F
is acyclic. Conversely, if F is acyclic, then F ® K is an acyclic complex
of vectors spaces, so (i) holds. Clearly depth(I(¢1)) > 1. Moreover,

the cokernel of @, is torsion-free, so (ii) holds by the proposition. {
Remark. Of course the Buchsbaum-Eisenbud theorem holds for any

Noetherian ring, but we have presented the domain case to exhibit more
clearly how conditions (i) and (ii) determine exactness. However, essen-
tially the same proof works in general (with the aid of some additional
linear algebra). For example, one can show that the conditions (i) and
depth (I(¢;)) > 1 hold if and only if the complex F ® K is split exact,
where K now denotes the total quotient ring of R. Hence if (i) and (ii)
hold, H;(F) is torsion on the one hand and torsion-free on the other
(by the Prop., as in the proof above) and therefore zero.

Corollary B. Let R be a Noetherian ring and M a finitely generated

R-module. Then M is the kth syzygy in o finite free resolution of an R-
module N if and only if M admits a finite free resolution F (as before)
satisfying depth (I(¢;)) > ¢+ k fori=1,...,n.
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Proof. Suppose that M is the kth syzygy in a finite free resolution of
the R-module N. Then M = image(tr), where 1 is the kth map in the
resolution of N. We may take for F, the resolution of M, that portion
of the resolution for N whose first map is ¥g41. That depth(I(¢;)) >
> 1+ k forz = 1,...,n now follows from the Buchsbaum-Eisenbud
theorem.

Conversely, suppose M admits a finite free resolution F satisfying
the required depth condition. We proceed by induction on k. When k =
=1, M is torsion-free (by the Prop.) and it is well known that M can be
embedded in a free module (when R is not a domain, this requires that
M have finite projective dimension, which we are assuming). Therefore
M is the first syzygy in a resolution of the cokernel of this embedding.
Now suppose that k > 1. Let fi,..., f, generate Hom(M, R) and take
u: M — R™ to be the so-called universal pushforward (see [6]). In other
words, for each m € M, u(m) is the column vector whose jth entry is
fi (m) Let C’ = cokernel(u) Using * to denote R duals, we have exact
sequences _

. 0—M-—R"—(C—0

0 — C* — (R")* — M* —0

'Where exactneSS in the first sequence follows because M is torsion-free,
‘and exactness in the second sequence follows from the definition of
universal pushforward. Let @ C R be a prime ideal with depth (Rg) <
< k. Then I(¢1) € @, so Mg is a free Rg module. Therefore Mg is
free, so the second sequence splits over Rg. Therefore the dual of the
second sequence (i.e., the “double dual”) splits over Rq. Since My is
free this shows that C’Q = C’** and that the first sequence splits over
'RQ It follows that if we let ¢0 denote the composition Fy — M — R,
then depth (I (gbo)) > k + 1 and C admits a resolution satisfying the
.given depth condition for £ — 1. By induction C is a (k — 1)st syzygy
of the required form, so M is a kth syzygy, as desired. ¢
Corollary C (Auslander-Bridger). Let R be a local ring satisfying
Serre’s condition Sy and M a finitely generated R-module having fi-
nite projective dimension. Then M 1s a kth syzygy if and only iof M
- satisfies Sk (k> 1).
Proof. Recall that a finitely generated R-module N satisfies S} if for all
prime ideals P in the support of N, depth g, (Np) > min(k, dim(Rp)).
Now, let M satisfy Sg and F be a projective resolution. We want to see
that F satisfies the depth condition of Cor. B. As in the proof of the
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Prop., we let ¢ be the largest integer for which depth (I(¢;)) <i+k—1
and we select a prime ideal P containing I(¢;) with depth (Rp) <1+
+k—1. If we localize at P, then p.d.(Mp) =i > 0. Thus depth (Mp) <
< k — 1, by the Auslander—Buchsbaum formula. Since M satisfies Sg,
this implies depth (Mp) = depth(Rp). Thus Mp is free, so i = 0,
contradiction. A
Conversely, suppose that M is a kth syzygy and F is a resolution
of M. We may assume that F' satisfies the depth condition of Cor. B.
Let P C R be prime ideal. If dim(Rp) < k, then I(¢;) € P, so Mp is
Rp-free. Thus depth (Mp) = depth(Rp) = dim(Rp), since R satisfies
Si. Hdim(Rp) > k+1, depth (Rp) = k+1, for some :z > 0, as R satisfies
Sk. Thus I($it1) € P. Hence, p.d.(Mp) <1, so depth (Mp) > k. Thus
M satisfies Si. ‘
Remark. In [4] Bruns proves the following result which shows how to
construct kth syzygies of rank k from kth syzygies having rank greater
than k. Let (R,m) be a Cohen-Macaulay local ring and M a finitely
generated R-module having finite projective dimension. Suppose that
M is a kth syzygy having rank k+s, for s > 1. Then there exists a free
submodule F' C M such that FNmM = mF, rank (F) = s, and M/F
is a kth syzygy. In the corollary below, we use Cor. B to extend Bruns’
theorem to non-Cohen—Macaulay rings. In order to do this, we need to
observe that choosing basic elements on subsets of Spec(R) determined
by depth conditions can be done analogously to the more standard
method of choosing basic elements on subsets of Spec(R) determined
by height conditions. We follow the treatment given in [6] (which is
based upon [4]).
Basic Element Lemma. Let (R,m) be a local ring and M C R™ be
a finitely generated R-module with well-defined rank > k + 1. Suppose
that Mp 13 a free summand of (R™)p for all prime ideals P satisfying
depth(Rp) < k. Then there exists a minimal generator z € M such
that = 1s basic at P for all P satisfying depth (Rp) < k.
Proof. We first recall that a submodule M' C M is said to be t-
fold basic at P if at least ¢ minimal generators for Mp can be chosen
from the image of M'. The proof now follows along the same lines
as that of Cor. 2.6 in [6], once we verify the following statement. Let
{z1,...,25s} be a subset of a set of generators for M such that M’,
the submodule they generate, is ¢-fold basic at all primes P satisfy-
ing depth (Rp) < j — 1. Then M' is t-fold basic at all but finitely
many primes P satisfying depth(Rp) = j. To see this, suppose that
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{#1,... ,Z4,... ;Tm} is a set of generators for M and write A for the
n X m matrix whose columns correspond to the z;. Let A’ denote the
corresponding submatrix associated to M’. Then for any prime ideal
P such that Mp is a summand of (R")p, M’ is t-fold basic at P if
and only if I;(A’), the ideal of ¢ X ¢ minors of A, is not contained
in P. Now, since M' is t-fold basic at all P satisfying depth (Rp) <
< Jj—1, depth(L(A")) > j. If depth(L(A")) > j + 1, the statement
follows. Otherwise, letting ay, ... ,a; be a maximal regular sequence
in I;(A’), it follows that I;(A') C P and depth (Rp) = j if and only
if P € Ass(R/(a1,...,a;)R). Since Ass(R/(ay,...a;)R) is finite, the
statement follows in this case as well. ¢

Corollary D. Let (R,m) be a local ring and M a finitely generated
R-module with finite projective dimension. Suppose that M is a kth
syzygy having rank k + s, for s > 1. Then there exists a free submodule
F C M such that F N mM = mF, rank(F) = s, and M/F is a kth
3yzygy.

Proof. We follow the path laid out in Bruns’ original theorem. Let F as
above be a projective resolution of M. We may assume that F satisfies
the depth condition of Cor. B. Since depth (I(¢;)) > k + 1, Mp is free
for all prime ideals P satisfying depth(Rp) < k. As in the proof of
Cor. B, we may use the universal pushforward of M to further assume
that M C R™ for some n, and Mp is a summand of (R™)p, whenever
Mp is free. We now employ the Basic Element Lemma to find a minimal
generator z € M which is basic at all P satisfying depth (Rp)<k.In
particular, Rz is a free submodule of M and without loss of generality
we may assume that z is the “first” generator of M. It follows that a
minimal resolution for M/Rz has the form

. F':O——)Fnﬁ)---ﬁ)Fl—HFé——)M/Rz——)O

where ¢) is the matrix obtained from ¢; by deleting the first row and
F} is the free R-module on one less generator than Fy. Furthermore,
the choice of z implies that (M/Rz)p is free for all primes P satisfying
depth(Rp) < k, so depth(I(¢})) > k + 1. Hence the resolution for
M/ Rz satisfies the depth condition of Cor. B. That is, M/Rz is a kth
syzygy. The process may be repeated if M/Rz has rank greater than
k. O

Remark. Unfortunately, Cor. B does not shed a lot of light on the
Evans-Griffith Syzygy Theorem (see [6]), which states that kth Syzy-
gies with finite projective dimension have rank > k (when the ring R
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contains a field). Using Cor. B in a manner analogous to its use in
Cor. D, one can easily see that it suffices to find a minimal generator z
whose order ideal has depth > k. For then M/Rz would be a (k — 1)st
syzygy, and induction would yield the result. (For rings containing a
field such z exists.) This is exactly the original line of thought followed
by Evans and Griffith. The point of Cor. B is that one need not have
any standing assumption on the ring (like the Cohen—Macaulay prop-
erty) as long as one replaces height by depth in a characterization of
kth syzygies. (See also [7] or [5], where for rings containing a field, the
Evans—Griffith estimates on the ranks of syzygies are improved.)
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Abstract: In this paper the existence of the solution of a three-point bound-
ary value problem belonging to a system of nonlinear differential equations
d— = f(t,z), =z, f€R™, Az(0)+ Ajz(t;) + Cz(T) = d

is investigated by using a new version of the numerical-analytic methods. The
approximate solution is determined and an estimation for the error is given.

1. Introduction

In the literature different numerical, analytic and functional-ana-
lytic methods are known to investigate both the two- and the n-point
boundary value problems depending on the type of the equation and
the boundary value condition ([1], [4], [5]).

When the existence of the solution can be supposed some nu-
merical methods aim mainly at the approximate determination of the

solution ([2], [6]).
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The analytic methods (i.e. those of the continuous closed form)
based mostly upon various series expansions are generally used for qual-
itative investigations (uniqueness, stability) ([3], [10], [11], [12]).

When using functional analytic methods the given boundary value
problems are substituted by a suitably chosen equivalent operator equa-
tion ([4], [12]). For certain three-point boundary value problems — see
papers ([7], [8]) — this operator equation is an integral equation, which
is' set up by using a suitably chosen Green-function. These integral
equations are generally investigated by using contraction and fix-point
theorems.

The so-called numerical-analytic methods which have been devel-
oped in the last some years [9] give the opportunity of investigating the
two most important approach for solving the boundary value problems
— the existence and the approximate determination of the solution —
simultaneously.

These methods are fairly widely used (see monograph [9]), mostly
for handling periodic or two-point nonlinear boundary value problems.

When the boundary value problems are of more general nature

(three- or n-point b.v. problems) and, in addition, even degenerate ma-
trices are contained the evaluation and the mathematical foundation
of numerical analytic methods based on successive approximations are
facing several difficulties. In this connection we mention the determina-
tion of the successive approximation satisfying the boundary conditions
and the proof of the uniform convergence, the determination of the nec-
essary and sufficient conditions ensuring the existence based upon the
features of the approximate solutions. '

In this paper both the existence of the solution and the approx-
imate solution of a three-point boundary value problem belonging to
a system of nonlinear differential equations are investigated by using a
numerical-analytic method. It is worth mentioning that the earlier ver-
sions of the numerical-analytic methods are not suitable for solving our
problem due to the singularity of the matrices in the boundary value
conditions.

Let a nonlinear differential equation be given

(1) z=f(,z), = feR* te€[0,T],
with a three-point linear boundary value condition
(2) Az(0)+ A1z(t1) + Cz(T) =d

where z, f,d are points of the n-dimensional Euclidean space R™ while
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A, A, C are constant matrices of type n x n and #; € (0,T'). Matrices
A, Ay, C are allowed to be singular, but it is supposed that there exist
constants ky and ky (ky # ko) satisfying

(3) @th+hAr+pr+%@2—hﬂo]¢a

It will be shown that a {z,(¢,z¢)} sequence of functions depending on
the parameter =, can be constructed on the set of continuous functions
satisfying the boundary value conditions (2) such that for certain value
of the parameter z, the sequence of functions uniformly converges and
its limit is the solution of the nonlinear boundary value problem (1),
(2). The existence of the solution for the underlying problem is proved
by using the properties of the approximate solution. An estimation for
the error of the approximate solution is given.

2. Construction of successive approximations

Let D denote a closed, connected domain in R™. Let us suppose
that the domain of definition of the right hand side function f(¢,z) in
Eq. (1) fulfills

4) (t,z) € [0,T] x D

and the following conditions hold
(i) f(t,z) is continuous in its domain of definition (4);
(ii) f(t,z) is bounded by the vector M

|f(t,2)l < M, (t,z) €[0,T] x D,

and f(t,z) satisfies the Lipschitz-condition in the variable z with ma-
trix K: ‘

(5) |f(¢,2") — f(t,2")] < K|z’ — 2",
where the vector |f(¢,z)] is

[f(t2)l = (11t @), - -, [ falt, 2)]),

and both the vector M = (M;,M,,... ,M,) and the matrix K =
= {Kij, 1,7 =1,... ,n} contain only non-negative constant elements.

In relations |f(¢, )] < M and (5) the inequalities are meant com-
ponentwise. Those boundary value problems (1), (2) will be investi-
gated, for which the parameters M, K, A, A;, C, d, ki, k; and the
domain of definition (4) satisfy condition (3) and the following condi-
tions:
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1. The set Dg, the collection of those points zo € R™ belonging
— together with their F-neighbourhood — to the set D, is non-empty

(6) Dp # 0,
where B(zo) = LM + Bi(z0),
[‘31(5130) — [lk1!+ |QC_2_~—.t.lkli

where H = D™', D = k1A + ko A1 + [k1 + £(k2 — k1)]C. (The $-
neighbourhood of the point z is the following {z: z € R™, |z — 2| <
< B}.)

2. The highest eigenvalue A(Q) for the matrix @ = Z(K + @) is
less than unity

(7) A@) <1,

where

H [lH(d‘<A+A1 +C)zo)l + %lHAllM],

G = [k + ](—kl’;ﬂﬂ |HA|K.

A sequence of functions {z,,(t,z0)} whose elements satisfy the bound-
ary value conditions (2) in every point z¢ € D is constructed.
Let us consider the functions determined by the following formula:

3 1 T
Tm(t,To) = :co—l—/ [f(t,:vm_l(t,:co))——f/ f(s,2m—1(s,z0))ds|dt+
8) oT 0
+a [le—I— t_(k2 — kl)t], m=12,...; zo(t,z0) = o,
1

where o = (01, ..., Ton) is a parameter of dimension n, a = (ay, ..., ap)
is an unknown vector chosen such that the functions (8) satisfy the
boundary value conditions (2) for every point zo € Dg. Substituting
the functions (8) into the boundary value conditions (2) the following
system of linear algebraic equations is obtained

1
(9) Da = Td(mo,xm_l),

where
Cl(il!o,:l!m_l) =d— (A + Al + C)il)o—

(10) —Al/otl[f(ﬂ Zmr(t, 70)) - %/on(s, Zm—1(s,0))ds | dt.
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From (9) we get a = #Hd(zo,Zm-1), and from (8) we obtain the
sequence of functions we wanted to get

mm(t,mﬂ) = ZO(:EOamm-—l)-i'
t T
+/0 [f(t,zm_l(t,:ro)) - %/0 f(s,a:m_l(s,z?))ds dt+

(11) :
+t_(k2 — kl)Hd(l'o, xm—l),
1

zo(t,xo) = zg, m=1,2,...
where 2zo(zg,Tm-1) = zo + k1Hd(z0,2m-1), and d(zg,Tm—1) can be
expressed from (10).
The convergence of the above constructed functions is stated in

Theorem 1. Let the function f(t,z) in Eq. (1) be continuous in the
domain (4) and satisfy the conditions (5). Furthermore, if the param-
eters of the boundary value problem (1), (2) satisfy the conditions (6),
(7) then

(i) the functions of sequence (11) satisfy the boundary value con-
ditions (2) for each zo € Dg;

(i1) lm z,(t,z0) = 2*(¢t, o), where the limit function is a solu-
m-—+00

tion for the integral equation

z(t) = zo(zo,z)+

D [ rteeo) - & [ 1o )i + Lt - a0

where

20(1,'0,56) =zy + le[d — (A-I— Al + C)EO—

_ A, /0 b [f(t,m(t))——% /0 ' f(s,m(s))ds] dt];

(iii) z*(0,z0) = 2o (:co,a:*(t,aco)) and the limit function z*(¢, zo)
satisfies the boundary value conditions (2) i.e. z* is a solution for the
perturbed boundary value problem

& = f(t,z) + A(zo)
(13) Az(0) + Arz(t:) + Cx(T) = d,
where
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1 . 1 (T .
Alzy) = EUCZ — k1)Hd(z9, V(t,mo)) - T/ f(t,:c (t,a:o))dt,
0

d(zo, (1, z0)) = d— (A + A + C)zo—
4, /Otl [f(t,xf(t,mo)) ——%/OTf(s,z*(s,xg))ds] dt:

(iv) the deviation of functions z*(t,zo) and z,(t, o) is governed
by the inequality :
(14) 2" (t,20) = zm(t, 20)| < Q™ (E — Q)" B(20).
Proof. It will be shown that in the space C(0,T) of continuous vector
functions the sequence of functions given by (11) is a Cauchy-sequence
and therefore it is uniformly convergent. First we prove that zo € Dy

implies &, (t,z0) € D.for each element of the sequence.
From (11) we get

1

/Ot [f(t,:to(t,lvo)) -z /OTf(s,xo(s,xo)’)ds] dt’+

T
| = k)| [Hd(w0,20)| + [k | Hdl(0, 20)].
Using Lemma 2.1 in [9, p. 31] it is obvious that if f(¢) € C[0,T], then

[Tro-3 [ sow] ] < (1-2) [+ £ [N <
< a(t) Dax, lF(,

llil(t,l'o) - l'o' S

where a(t) = 2t(1 — %), a1 (t)] < L. Thus
[21(t,20) — 20| < ()M + [| (ks — k)| + Il | B (o, 20)].
1

Furthermore, from (10)
|[Hd(z0,z0)| <

11 1 T
< |H(d—(A+A1+C')m0)|+lHA1/ [f(t,mo)—T/ f(s,:vo)ds]dt' <
0 0

t T
5|H(d—(A+A1+C’)a:O)|+|HA1|/O [f(t,:co)—-lf/o f(s,:co)ds]dtl,
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T
|Hd(zo, 20)| < [|H(d — (A+ A1+ C)ao)| + §|HA1|M]
therefore
T
(15) Iml(taxo)—rol < 2M+ﬂ1($0),

and z1(t,z0) € D when z, € Dy.
In a similar way, using induction we obtain

T
Izm(t7z0) - 1’0' < EM +,51(370),

that is z,(t,z0) € D, when z¢ € Djp.
We prove that {z,(t,z0)} is really a Cauchy-sequence. Let us
consider the following difference:

zo(t, zo) — z1(t, 20) = /ﬁt{ (t,z1(t, zo))—l/ f(s,z1(s, xg))ds dt—

_/Ot [f(t,zo(t,mo)) —%/OTf(s,:co(s,xo))ds]dt+
+%(k2—k1)H[—A1 /Otl [f(t,xl(t,a:o))—%/(;Tf(s,xl(s,wg))ds]dt+

4, /0“ {f(t,zo(t,xo)) ——%,—/OTf(s,:co(s,xo))ds]dt]+

+k‘1H [d((l)o, 131) — d(mo, .’EQ)] .
Rearranging and using Lemma 2.1 of [9, p. 31]

lzo(t, o) — z1(t, z0)| < 1—— / |f t , z1(t, .’EO)) (t zo(t, xo))|dt+
—/ |7 (t,21(¢, 20)) — £ (£, zo (%, 70)) ;dt+[|k |+\MH|H‘A1|-
[ 1 - / | (t,21(t, 20)) — f(¢, zo(t, o)) |dE+

-{j% tﬁf(t,zl(t,:co))— (t zo(t, o)) |dt] [Ik‘ ]+l-—kl)zthA1[K’
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T ,
[(1 _ %) /o (@1 ()M + By (wo))dt + % /t (aa ()M + ﬁ1(xo))dt] +

t T
+K[(1- %) /0 (aa())M + (o)) dt + /t (ca ()M + ﬁl(mo))dt] .
Applying Lemma 2.2 of [9, p. 31] we get
lmz(t, 1‘0') — $1(t, $0)| S K[O(g(t)M + al(t)ﬂl (560)]-{—

+G[oa(t)M + o1 (t1)B1(20)]

where

ay(t) < %al(t) and a;(t) < g,

consequently

| 0T T

(22(t, 20)—21 (¢, 20)| < K [§M+ﬂl(z0)]a1(t)+G[§M+ﬂ1(xo)] a(t1),
thus : '

(16) |z2(t, 20) — 21 (2, o) S Q@(fﬂo),
with o C '

Q=G 4Gl Bleo) = TH -+ fr(zo).
Equality ( 1 1) 1mmed1 ately gives

Tmt1(t, To)—2Zm(t, o) = — [kri—i(kz-—h)] HA, /Otl [[f(t,:cm(t,xo))——

f(t Tm-1(t, :co))] 1/ [f(,s Tm(s, :co)) f(s,:cm_l(s,zo))]ds]dt-l—

1

/[[f(t T, 20)) — F (b Tmor(t,70))] — T»/OT[f(s,a:m(s,zo))_

~f(s,2m_1(s,z0))] ds] dt

and

|em41(t, 20) ~Zm(t, 20)| < G[ -7 / |#m (£ 20) = @m—1(t; 20)|dt+
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(17) t—l-/:lfb‘m(t,xo); -’Bm—l(t,ﬂ:o)|dt]+

+K [(1 - = / Imm(t o) — Tm—1(t, mo)ldt-I-
_/ |zm(t,20) — Tm-1 (2, mo)]dt]

Using induction and (15) and (16) it can be shown that

(18) |Zm1(t20) — 2m(t, 20)| < Q™ B(20),
supposing the validity of inequality
(19) |Zm(t,20) — Tm_1(t,70)| < Q™' B(z0).

In fact, using inequalities (17) and (19) we get
t\ [
|2t 1(t, 30) — Tm(t, 30)| < G[(l - %) / Q™ B(zo)dt+
‘ 0

+’% Qm 1ﬁ(x0)dt} +A[ 1—— / Q™! B(zo)dt+

11

23

-|—%/tTQ’"‘1ﬁ(mo)dt] GQ™ 1 4( xo)[ 1——- / dt+t1/ dt]+

+I{Qm“1ﬂ(xo)[(1—— /dt+—/ dt]

= Q" B(z0) [Gau(t1) + Kaa(t)] Q™ 'B(20) [§(G+I&’)] =Q@"B(z0).

Introducing the notation
Fmt1(t) = |Zmt1(t, 20) — 2m (2, 20)|
and using (18),

J

(20)  |Zmas(tT0) = Tm(t, o) <D rmiilt) < QT Z Q*B(=0)-

i=1
From (7) we get

ZQ’ < ZQ’ (E-Q)™", lim Q" —0,

where E is the unit matrix. Hence from (20) one can easily get that
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{zm(t,z0)} is a Cauchy-sequence, therefore it uniformly converges to a
continuous limit function z*(¢,z¢):

im z,(t,z0) = z*(¢,20).
m-—00

It is evident that taking the limit (m — oo) in (11) the limit
function z*(¢,z¢) is a solution of the integral equation (12). Since all
the elements of sequences (11) satisfy the boundary-value conditions
(2), therefore so does the limit function too.

From (12) it is easily seen that z*(0,z0) = zo(z0,z*(¢,z0)) and
z*(t,z¢) is a solution of the perturbed boundary-value problem (13),
which is equivalent to the integral equation (12).

It is easy to see that taking the (j — oo) limit in (20) the in-
equality (14) holds for the deviation of the limit function from its mtt
iteration. {

3. Some properties of the limit function

It is demonstrated how the right-hand side of the system of differ-
ential equations can be modified in such a way that the solution of the
Cauchy-problem belonging to the newly constructed equation satisfies
the given boundary value condition.

Theorem 2. If the conditions of Th. 1 are satisfied then in an arbitrary
pownt zo € Dg a unique requlating parameter pn = (p1,... ,un) of the
form

T
(21) p= %(kz — k1) Hd(zo,2*(t,z0)) — %/0 f(t,z*(t,z0))dt,

can be constructed, where z*(t,z¢) 1s the limit function of the sequence
of functions {zn(t,z0)} given by (11). Under these conditions the so-
lution = = z(t) = z*(¢, o) of the Cauchy-problem

(22) i=fo)+u  a(0)= z(z)
Zo(.’llo) = Zp (:Eo,:l,'*(t,xo)) = Tq + le [d — (A + A1 + C)CIZ()—

1 T

— A /Ot1 [f(t,:c*(t,:co))—T i f(s,:c*(s,:co))ds]dt]

satisfies the boundary value conditions (2) i.e. it is a solution of the
perturbed boundary value problem (13) with A(zq) = p.
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Proof. Th. 1 implies that the function z(t) = z*(¢, zo) is a solution for
both the integral equation (12) and the Cauchy-problem

i = f(t,z) + le(k2 — k1) Hd(z, 5 (t, 70)) —

T
_% [) f(t, z*(t, :co))dt,

z(0)=z¢(zo) =20 (xg,w*(t,mo)) =zo+ki H [d—(A+A1 +C)zo—

—A; " f(t,a:*(t,xo))—% Tf(s,x*(s,:co))ds dt
Al |

and, in addition, z*(¢,z,) satisfies the boundary value conditions (2).
This means that we have found the parameter u of the form (21) for
which the function z(t) = z*(¢,z¢) is a solution of the initial value
problem (23). It can be shown that this parameter value is unique,
since for any other value of the parameter p (not of the form (21))
z* is a solution of the Cauchy-problem (22) but does not satisfy the
boundary conditions (2).

Let us suppose that the statement above is not true. Then there
exist two such values y', p", p' # p" that the solutions of the Cauchy-
problem (22) z(t, zo, ') and z(t, zo, ") with g = p' and p = p"' satisfy
even the boundary value conditions (2). Then using (12) the following
identity for the difference of these solutions is obtained

2(t, 70, ") — 2(t, 3o, ') = /0 {[f(t,m(t,zo,,u”)) (2t 20, 1))]

1 T
T ; [f(37$(8,1!0,,u”)) —f(s,x(s,:cg,y'))]ds dt-+

(23)

+%(k2 — k) Hd(zg,z(t,u'")) — %(kz — ki) Hd(zo,z(t, pn"))—
—kH [Al/o 1 [(f(t,x(t,:co,/.z")) — f(t,:v(t,:co,,u')))——

-7/ (7,00, 20,4) — f(S,x(s,wo,u’)))ds] dt].

Supposing |z(t, zg, ") — z(¢, 2o, p#')| = r(t) and using Lemma 2.1 of [9,
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p- 31],
r(t) < 1{[(1 - %) [r(s)ds + %/tTr(s)ds] + |§(k2 — k) |14 ]
| [ 06009 = 0,500, 200) = 3 [ (505200,
[ [(tsatts 0~
1

etz ) = 3 [ (500,00 0,200 s ] <
< [t [E 2 agae [ (1= 2) [ rcran+ 2 [ rcwa s
R (Y S |
t<6](i-2) [“rae B [ o]+
’+K[(1 -7 r(t)dt + % / Tr(t)dt]- |

Let |r(¢)lo = (sup [ri(t)],... ,sup |rn(t)]). We have
1 i

—f(s,z(s, zo, ,u')))ds] dt‘ + |k H||A4]

r(t) < [Gal(tl) + Kozl(t)] Ir(t)]o < Qlr(®)lo,

r(t)‘ga[p— / QIr(lodt + 2= er(t)|0dt]

+K[(1—%)/0 Q|r(t)|odt+—;—,/t Q|r(t)}odt] <

< Q[Gay(tr) + Kay(t)]|r(®)|o < @*|r(t)lo, - - -
r(t) < Q"[r(t)lo, ie. [r(t)lo < Q™Ir(t)lo.

Since all the eigenvalues of the matrix @ are within the circle of
unit radius, therefore the last inequality holds only if |r(¢)jp = 0, i.e.
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p' = p'. This is a contradiction, thus there exists only one parameter
value p. ¢

The following statement gives a necessary and sufficient condition
for the existence of the solution of the boundary value problem (1), (2).
Theorem 3. Let us consider the initial value problem

T = f(taw)
(24) 2(0) = 2% + ki H [d —(A+ Ay + C)zt—

—Ay Otl [f(t z*(t, z8)) — Tfo (s,m*(s,za‘))ds]dt]

connected to the given differential equation. If the conditions of Th. 1
are fulfilled, then a solution of (24) z = z*(¢) 13 a solution of the original
boundary value problem (1), (2) if and only if the determining function
A(zg) assumes the value zero at point z§:

T
(25) A(w(’;):%(kz—kl)ﬂd(xg,w*(t,m;‘)‘))—-% /0 £t (¢, 23))dt =0,

where z*(t, z§) is the limit function of the sequence of function zm (¢, z}).
In this case z*(t) = z*(t, ) and the deviation of z*(t) from its (¢, z5)
mth approzimation is determined by inequality (14).

Proof. Since the function z*(t,z0) is a solution of the Cauchy-initial
value problem (23) and satisfies the boundary-value conditions (2),
therefore if inequality (25) holds, then the problems (24) and (23) are
equivalent at value o = z§. In such a way we proved that (25) is a
sufficient condition.

The necessity of the condition (25) is a consequence of the fact
that if z = 2*(¢) is a solution of the boundary value problem (1), (2)
with the initial value

2°(0) = 2% + ky H [d —(A+ A+ O)al — 4y /0 1 {f(t,:c*(t,a:g))—

_% /OT f(s,z*(s,xa‘))ds} dt],

then the solution z = z(t,z}, u) of the Cauchy-initial value problem
satisfies the initial value conditions (2) exactly at y = A(z§) = 0. Then
equality z(t, z§, #) = z*(¢) holds and according to Th. 2 the parameter
p = A(z}) = 0 is unique. Thus z*(t) = z*(¢,z}) and the following
inequality holds
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|2*() = zm(t, 25)| < Q™(E — Q)" B(z5). 0
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Abstract: Studies of a physical problem (cf. [4]) led to the functional equa-
tion

(1) flgz) = :—q(f(:c +1)+ f(—1)+2f(z)) forall z€R
with the boundary condition
(2) f()=0 forallz with |z|>Q:= %

where ¢ €]0,1[ is a fixed real number. In this paper the general solution of
(1) with unbounded support is given. It can be shown that in the case of
unbounded support a function on a special interval can be chosen arbitrarily
and then uniquely extended to a solution of (1). Furthermore, investigations
are done on the continuity, differentiability, measurability and integrability of
such solutions.

Studies of a physical problem (cf. [4]) led Prof. R. Schilling to the
functional equation given below. It was known that in the case ¢ = %—
there is a continuous solution with bounded support. Now the question
arose to find all the solutions of this equation. At the moment the
problem is far from being solved completely, but in the sequel there
will be given some partial answers:

Let the functional equation

(1) f(q:r:):%q—(f(z-l—l)—{—f(:c—l)+2f(:c)) forallz €R

and the boundary condition
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(2) f(z)=0 forall z with |z|>@Q:= i—_q_;i
be given, where ¢ €]0,1[ is a fixed real number. First of all we conduct
some investigations on the boundary condition (2). As in our consid-
erations the set {z | f(z) # 0} plays a more important role than the
support supp (f), which denotes the closure of this set, we abbreviate

S(f) :=A{z| f(=) # 0}.

I. The boundary condition

In this chapter we show that the boundary condition (2) is natural
in some sense. This is done in the subsequent theorem. Therefore, let
q €]0,1[ be a fixed real number, Q = 1%3. First we give a short lemma
and start with a remark:

Remark 1. ¢(Q + 1) = @, which can easily be verified by direct
computation.

Lemma 1. Let f be a solution of (1) whose support 13 contained in the
interval | — 0o, b] for some b € R. Then the following holds:

(i) If b > @, then supp (f) C] — o0, Q); moreover, if ¢ # 1, then

S(f) €] - o0, QL.

(ii) If b < Q, then f is identically 0.

Proof. Let supp (f) C] — 00,b]. As the case b = @ is evident, we only
have to deal with the other two possibilities:

(1): Suppose that > Q. Then b(1—g¢) > g and therefore b>¢(b+1) >
>q¢@+1)=Q. Nowletz >b+1. Thenz+1>z>z—-1>,
and thus we have f(z + 1) = f(z) = f(z — 1) = 0, which implies
that f(gz) = 0 by equation (1). Thus in this case we have supp (f) C
C] — 00, g(b+ 1)]. Define a sequence (b,) by by := b, bpt1 1= ¢(bn + 1).
As shown above, for by > @ this sequence is strictly decreasing and has
the lower bound (). Furthermore, by induction one can immediately
see that supp (f) C] — o0, b,] for any n € N. Therefore the sequence
(br) is convergent, the limit B fulfills B > @ and B = ¢(B + 1), which
implies that B = @, and we have supp (f) C] — o0, Q].

In the case supp (f) C] — oo, @] we have

£(Q) = F(a(Q +1)) = ;f;(f(@) +FQ+2)+2f(Q+1)) = %f(Q)-

Therefore, if ¢ # 7, we have f(Q) = 0 and S(f) C] — o0, QI.
(ii): Suppose that b < Q. Then b(1—¢q) < ¢, and therefore %—1 <b.
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We first assume b > 0. In this case for z > % > b we have

f(z+1) = f(z) = f(gz) = 0, and therefore by equation (1) we get
supp (f) €] — oo,% — 1]. Define the sequence (b,,) by by := b, bpy1 =
= b,/q — 1. This sequence is decreasing, and by induction we get
supp (f) C] — o0, b,] for each n where b,_; > 0. On the other hand,
this sequence (b, ) cannot have a lower bound, because this bound would
be the limit, fulfilling % — 1= B, ie. B = @, a contradiction. Thus
there is an n such that b, < 0, and supp (f) C] — 00, 0].

Now we assume b < 0: For z > bwehavez +1 >z > b and
gz > b. Therefore f(z) = f(qz) = f(z + 1) = 0, which implies that
f(z —1) = 0. Thus supp(f) C] — 00,b — 1], and by induction we get
supp (f) = 0. 0

A similar lemma can be proved in the same way for supports
bounded from below:

Lemma 2. Let f be a solution of (1) whose support is contained in the
interval [a, 00| for some a € R. Then the following holds:
(i) If a < —Q, then supp (f) C [~Q, oo[; moreover, if ¢ # 1, then
(ii) If a > —Q, then f i3 identically 0.

Combining these two lemmata, we get the following
Theorem 1. Let f be a nonvanishing solution of (1), then S(f) is con-
tained in ezactly one of the following intervals, and it is not contained
n any proper subintervals:

(a’) fOTq # 711_'. ] —'Q)Q[ OT]—OOaQ[ O'I"]—Q,OO[ or R;
(b) fOT q= % ] - QaQ[ OT]_ OO7Q[ OT]_ Q,OO[ or R or [_Q7Q]

or ] - Qa Q] or ['—Qa Q[ or ] — 00, Q] or [—Q7 OO[

Proof. In Lemma 1 it was shown that a nonempty support bounded
from above has @ as its least upper bound, Lemma 2 gave the answer for
bounds from below. The restriction to open intervals for S(f), except
for the case ¢ = %, was also shown in these two lemmata. Later on it
will be shown that all these cases really can occur.

II. Solutions with unbounded support

a) General results

In this chapter we give some general results on the solutions of
equation (1) and also present general solutions with unbounded sup-
ports. First we start with a uniqueness theorem (cf. [2]):
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Theorem 2. Let f,g: R — R be solutions of (1) which coincide on the
half-open interval [—1,1[. Then they are identical.

‘Proof. We give this proof by induction and show that f coincides with
g-on any interval [—n, n[, where n is a positive integer. For n = 1 this is
true by assumption. Now suppose that f and g coincide on the interval
[-n,n[,and let z € [-(n+1),n+1[\[-n,n[. Then eithern <z <n+1
or —n—1 < z < —n. In the first case choose y := z—1 € [—n,n]. Then
¥,y — 1,qy € [-n,n[, and by (1) we have g(z) = g(y + 1) = 4¢g(qy) —

—g(y—1)—29(y) = 44f(qy) — fly— 1) = 2f(y) = fy + 1) = f(z).
Similarly, choose z := z + 1 in the second case. {

Next we give a theorem how to get all the solutions in the case of
unbounded support. By Th. 2 it is sufficient to give the restriction of
the solution to the interval [—1,1].

Theorem 3 (cf. [2]). Let h: [-1,1[—= R be an arbztmry function. Then
there exzists ezactly one solution of (1) such that the resiriction of this
solution to the interval [—1,1] coincides with h. In other words: Any
function h: [=1,1[— R can be uniquely eztended to a solution of (1).
Proof. Let h: [-1,1[— R be given. We first extend h by induction to
the intervals [—1, n[ for each natural number n and then to the intervals
[—n, 00l: |
Let f, := h: [-1,1]— R. Suppose that fn is given on [~1,n[ for
‘some nonnegative integer n. We define f,4; on the interval [—-1,n + 1]

by v '
falz) ” for z € [~1,n]
frt1(z) = {4qfn(q($ 1))—fa(z—2)—-2f,(z—~1) otherwise

(it is easy to see that forn <z < n+1 we have ¢(z — 1),z -2,z —1 ¢
€ [-1,n[). As — by definition — any two functions f,,, f, coincide
“on the intersection of their domains, this family of functions uniquely
defines a function Fy on the interval [—1, co[. We continue like before:
Suppose that F,, is given on the interval [—n,oo[. We define Fy,4; on
the interval [—(n 4 1), 00 b

Fo(z) - for z € [—n, oo
Fopi(z) = )
4qF(q(z+1))—Fn(z+2)—2F,(z+1) otherwise.
Like before, this family of functions uniquely defines a function f on
the whole real line. We only have to show that f is a solution of (1):
Let z € R. (o) If £ < 0, then there is an n € N such that
—(n+1) <z -1 < —n. By definition, f coincides with F,; on
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the interval [—(n 4 1),00[. Thus — by definition of F,1; — we have
£(z ~1) = Fuga(s ~ 1) = 4qFa(gz) ~ Fa(z +1) — 2Fa(e) = 4qf(gz) —
— f(z +1) — 2f(z), which is nothing else but equation (1).

(B) 2z >0, then thereisann € Nsuchthat n <z +1 < n+
+ 1. Like before, we have f(z+41)= fot1(z+1)=4q¢fn(qz)— fn(z—1)-
—2fn(z) = 4qf(gz) — f(z — 1) — 2f(), and (1) is fulfilled, too. ¢

The next two theorems deal with solutions whose support is
bounded from above. First we give a uniqueness theorem.
Theorem 4. Let f,g be solutions of (1) whose supports are contained
in the interval | — 00, Q). Then f = g iff the restrictions of f and g
to the interval |Q — 1,¢Q] coincide and f(Q) = ¢(Q). (The second
condition 1s necessary only in the case g = i)
Proof. We define a sequence (z,) by 2o := Q — 1, 2441 = q(zn + 1).
As 29 < @, we have z, < 2,41 < Q for any n € N, and lim z, = Q.

n—x
Now suppose that f and g coincide on the interval |z, z,41] for some

nonnegative integer n, and let = €]z,41,Zpy2]. By definition of the
sequence (z,) we have z = ¢(y + 1) for some y €|z, £,41], which also
implies that y +2 > y +1 > Q. Using equation (1) for the value y + 1,
we get g(z) = g(q(y +1)) = 5, (9(¥) +9(y +2)+29(y + 1)) = Lg(y) =
= ZlE f(y) = f(z). Thus by induction we get the result that f and ¢
coincide on the interval |Q — 1, Q[ and — by assumption — their values
at the point @) are identical, thus they coincide on the interval |Q —1, Q]
and, therefore, on the interval |Q — 1, co].

Now let yo := @ — 1 and yp41 = %yn — 1. The sequence (y,) is
strictly decreasing and unbounded, thus there is a nonnegative integer
k such that y; < 0, yx—; > 0. We will show that f and g coincide on the
interval |yx, 0o[. Let 0 < m < k, and suppose that f and ¢ coincide on
lym, o[ For z €]ym41,ym] wehave z+2 > z+1 > g(z +1) > y,, and
can derive from equation (1) that f(z) = g(z), i.e., f and ¢ coincide on
]Yym+1,00[. A usual induction argument shows that f and g coincide on
Jyx, oo[ and, therefore, on [0, co].

We finish the proof by one more induction process: Suppose that
f and g coincide on [—n, co[ for some nonnegative integer n. Then for
cz€[—(n+1),-n[wehavez +2 >z +1 > —n, g(z +1) > —n, thus
equation (1) gives f(z) = g(z), and f and g coincide on [~(n + 1), oo].
Thus f =g. ¢ :

We can use the same ideas to give all the solutions of equation (1)
under the assumption that the support is bounded from above:
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Theorem 5. Let h: ]Q — 1,¢Q] — R be an arbitrary function, and
a real number which is arbitrary in the case ¢ = % and 0 otherwise.
Then there exists a unique solution f of (1) such that the restriction of
f to the‘interval |Q —1,¢Q)] 13 zdcntzcal to h, f(Q) = a and supp (f) C
C] = o0, Q).
Proof. The uniqueness has’ been shown in the preceding theorem. For
the existence, we will make an extension of h: As in Th. 4, let (z,) be
the sequence given by zo := Q@ — 1, Zp41 := q(zn + 1). Let ho = h, and
h, defined on the 1nterva1 Jzo, $n+1] by induction:
hn(z) for « €]zo, Tnt1]

(o) = { Lhaly) for z=a(y+1) Eltnts, nse)

As any two of the functions hp,h., coincide on the intersection of their
domains, they uniquely define a function heo: |Zo, @[— R. Next we
extend to the interval ]z, 0o[ by the formula

hoo(z) for z E]:eo,Q[ '

go(z):={ a forz =@
0 - forz > Q. ’
Now we use the sequence (y,) defined as in Th. 4 by y, := @ — 1,
Ynt1 = —yn 1, which is strictly decreasing and unbounded, thus

there is a nonnegatlve integer k such that yx <0, yxk—1 > 0. Let m be
an integer, 0 < m < k, and suppose that g, is defined on |y, co[. For
T €lYm+t1,Ym] We have z+2>z+1>q¢(z+1)> ym, thus we may
define gm+1 on JYym+1, 00| by , .
Gmr1(z)i= {gm(i'?) : for z €lym, oo]
+1(z)= ; .

" 499m(9(z+1)) ~gm(2+2)=2m(z+1) for & €lYm+1, yml-
By this process we get an extensmn of h to the interval |y, oo, which
we call fo: Jyi, o[ R.

Now suppose that f,: Jyx —n,co[— R is defined for a nonnegative
ipteger n. Then we define fri1: ]y;c —n—1,00[— R by

_{fn(ﬂf) , for z €]y —n, oo]
fn+1( ) 4qfn(g(z+1))— fa(z+2)—2fa(z+1) otherwise.
(As yx < 0, it is easy to check that the numbers z + 2, z + 1, ¢(z + 1)
are greater than y; — n for z €lyx —n — 1,yx —n).)

By the same arguments as before the family of functions (f»)
uniquely defines a function f: R — R. We only have to check that this
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function f fulfills equation (1). From the construction it is evident that
f(Q) = a, supp (f) C] — 00, Q] and f coincides with h on ]@Q ~ 1,¢Q)].
Let z € R: v

(o) z < yx + 1: There is a nonnegative integer n such that yx —
—n—1<z—1<y;—n. As f coincides with f,4; on Jyr —n — 1, 00|,
and from the definition of f,4+1 (the formula given above defines the
value at z — 1) we immediately get that (1) is fulfilled.

(B) ye +1 <z < yo+1 = Q: Once more the definition of the
functions g,,, shows that (1) is fulfilled.

(7) Q@ < z < @+1: Here we can use the definition of the functions
h, to show that equation (1) is fulfilled.

(8) = > Q + 1: As supp(f) C] — o0, @], equation (1) is trivially
fulfilled. ¢

From equation (1) it is evident that in any case when f is a solution
of (1), then also the function z — f(—z) is a solution of (1). Therefore,
without giving any new proofs we can reformulate Ths. 4 and 5 for the
case that supp (f) C [-@, oo[:
.~ Theorem 6. Let f,g be solutions of (1) whose supports are contained
in the interval [~-Q,o00[. Then f = g iff the restrictions of f and g to
the interval [—qQ,1 — Q] coincide and f(—Q) = g(—Q). (The second
condition 13 only necessary in the case ¢ = i)
Theorem 7. Let h: [—¢Q,1 — Q[— R be an arbitrary function, and «
a real number which 1s arbitrary in the case ¢ = i— and 0 otherwise.
Then there erists a unique solution f of (1) such that the restriction
of f to the interval [—qQ,1 — Q| 13 identical to h, f(—Q) = a and
supp (f) € [-Q, oo
Remark 2. Ths. 5 and 7 show that in the case ¢ = i really both cases
S(f) g] - OO,Q[ and Q € S(f) C_:] - OO)Q] (TCSp. S(f) g] - Q)OO[ and

—Q € S(f) C [~Q,00[) can occur.

: Next we conduct investigations on the solutions of (1) under spe-
cial conditions like continuity, differentiability, measurability, integra-
bility. With respect to the remark before Th. 6, we may restrict our-
selves to the cases S(f) C R and S(f) €] — o0, Q]. The main question
will be: Which conditions have to be imposed on the defining function h
(cf. Th. 3 resp. 5) in order that the solution f has the desired property?

b) Continuous solutions

It is evident that in this case h has to be continuous. The answer
concerning the necessity of further properties on h is given below:




36 W. Forg-Rob

Theorem 8 (The case S(f) C R). Let h: [-1,1]— R be continuous.
Then the unique solution f of (1) defined by h (unique extension by
Th. 3) is continuous iff llm h(z) = (49 — 2)R(0) — h(-1).
Proof. We use the notatlons fn and F,, of Th. 3.

. “only if”: hm1 h(z)= f(1) =(4¢—2)h(0)—h(—1) by equation (1).

“if”: The construction of f given in Th. 3 is very useful: f; :=
=h: [-1,1[— R. If f, is given on [—1,n[ for some nonnegative integer
n, then f,1; is defined on [—1,n + 1] by
falz) for z€[—1,n|
fry1(z) = {4 ‘ .
qfn(@(z—1))— fal(z—2)—2f,(z~1) otherwise.

As f, is supposed to be continuous (induction hypothesis), we only have
to show that f,41 is continuous at the point n (in the neighbourhoods of
any other point f,4; is given as a composition of continuous functions).
To be more prec1se We only have to show that hm fn+1(:v) Fat1(n),

(‘*‘) - Jim fa(@) = 4gfa(g(n = 1)) = fa(n = 2) = 2fa(n - 1).

n= 1 (*) is fulfilled because of our assumptlon on h.
n > 1: By definition of fn we have '

lim fale) = lim (40fas(g(e = 1)) = fas(s = 2) ~ 2faa(z — 1)) =
= lim(dafalele — 1)~ fale —2) ~ 2fu(e ~ 1)) =
" (because f, coincides with f,_; on [~1,n — 1[)
= lm (44fu(e(®)) = fule = 1) = 2fa(=)) =
 tafu(aln 1) = faln = 2) = 2fa(n — 1) = faa(n)

(because n — 1 is an interior point of [~1,n[, and

fn is continuous on [—1, n).

Thus the functlon F of Th. 3 is continuous on [~1, oo[. .We proceed
once more by induction, showing that each F, is continuous. These
functions are inductively defined by

Fo(z) » for z € [~n, oo]
Fn+1 (.’E) = .
4¢F,(q(z+1))—Fo(z+2)—2F,(z+1) otherwise.
Here we have to show that the function F w-b1 is continuous at the point
~n, to be more precise, we have to show:
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l/i‘m Frt1(z) = Fo(—n).
But

m Foia(e) = lim (49Fn(e(e +1) = Fa(e +2) = 2Fa(z +1)) =
49Fu(q(z)) = Fu(z + 1) — 2Fu(z)) =
= (4gFu(g(-n+1)) = Fa(-n +2) = 2F(-n+ 1)) =
=4¢F,_1(¢(—n+1))—~Fp—1(—n+2)—2F,_1(—n+1)=F,(—n) for n>2.
For n = 1 we compute like before

Jim Faia(s) = 4gFu(g(—n +1)) = Fa(=n+2) = 2Fn(-n+1) =

= lim (
z,/—n+1

= 4¢F(0) — F1(1) — 2F1(0) = Fi(—1) by the condition on A.

Thus each Fj, is continuous, and therefore the solution f is continuous. {
Before we deal with the case S(f) C] — o0, @], we introduce some

notation. This will be useful to make the theorems on this case S(f) C

C] ~ o0, Q] more easily readable — and the same notation is also useful

to treat the question of differentiable solutions.

Definition 1. Let ¢ €]0,1][.

B(g):= { Q—ap—a1gt—...—amq™
qm
(ezceptional points). For real z and integers m > 1 we define the set
M(g,z,m) by

lm,aiel, m >0, aizl} uU{Q}

M(q,z,m):= {(ll,... ylm) l q"z +lpg™ + ...+ lhg=Q,
Lel l,...,ln, >0}
(m-tuples). Furthermore, let S(g,z,m) denote the sum
S(q,z,m) := Z (=D)bttm .
(U1, Im)EM(q,z,m)

(As usual S(q,z,m) = 0 whenever M(g,z,m) = {.) Finally, let C(q)
denote the set

Clg):={z eR| n}grlw S(g,z,m) =0}

(points of continuity, as we will see later on).
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Proposition 1.
(a) For z € R the following rela,tzon holds: z € E(q) iff M(q,z,m) #
# 0 for some m € N.
(b) {1} x M(q,z,m) C M(q,z,m+ 1) for any m and for any z.
(c) For any = € R there ezists a natural number g such that for
any m 2 mq the relations M(q,z,m + 1) = {1} x M(q,z,m)
~and S(q,z,m + 1) = —S(q,z,m) hold. Furthermore, the sets
M(q,z,m) are finite. .
(d) The set E(q) only contains zsolated poznts “and for any compact
“interval J the set J N E(q) is finite.
(e) R\E(q) € C(q). |
(f), Recursion formula for S(g,z,m):

- Sleemml) = i(—l)'l -$(g,z+ l——'mlm)

whére u denotes the greatest integer with u < Q +1- q z.
Proof. (a) First suppose that z € F(q).

- Case 1: z = Q. Then gz +q= q(Q + 1)= Q, Which"implie‘s that
M(g;z,1) £0. S

gl L T ‘
Case 2: ¢ = 9=% aqum = fmg ,Wherem,aiEZ,mZO, a; > 1.

Then
Tz + (ag +.1)¢" + d1¢? +. -I-amq

—q(Q+1 1-ap—a1¢" —...~amg™) +(a0+1)g" +ar¢*+. . .Aamg™ ! =

=¢(Q+1)=

Thus M(q,z,m +1) # §. Now suppose that M(g,z,m) # § for some
m 2> 1: Then there are integers l4,. .. ,l, > 1 such that ¢z + Img™ +
+ ...+ 1l1¢ = Q, which implies that :

_Q—hq' — .. —lng™ q(Q+1)—hq — o= lpg™

h qm - g™
Cancellation of the factor ¢ gives . o
| Q1) = ... —Ipgm?
- qm— -1 '

If I; > 1, this expression shows that z € E(q), otherw1se we proceed
cancelhng like before until we get the desired expression.




On a problem of R. Schilling I. 39

- (b) Let (l,... ,lm) € M(q,z, m) Then q »’C-qu _|_ ot lhg=
= Q , which 1mphes that .

_ Tl 4 lng™ ..+ e +1q—qQ+q——q(Q+1)—Q,

in other words, (1,13,...,ln) € M(g,z,m +1). S 5

(c) Case 1: z > Q. In this case M(¢g,z,m) = (Ofor any m, because

the relation ¢(@ + 1) = Q immediately implies that ¢™Q + ¢™ + ...+

! = Q. Therefore, as z > Q and Iy,... [, > 1 we immediatély

get "z + g™+ ...+ lig > ¢"Q +q¢™ +. = Q. Thus1tls
impossible to find elements belonging to M (q, z m) _

Case 2: z = ). From the computation of Case 1 it follows imme-
diately that M(q, Q,m)={(1,..., 1)}

Case 3: z < Q, z ¢ E(q). Then M(q,z,m) = (?) for any m.

Case 4: z<Q, t€ E(q). Then 0<¢(Q—z)= ((Q+1) (z:+1))=
=Q—q(z+1)and @ —g¢(z+1) = ¢(Q — z) < @ — z, which implies
that z < ¢z + 1) < _Q, and a usual induction argument shows that
r<qgr+q<gz+¢@d+qg<...<qmz+q¢"+...4+¢<...< @, and
this strictly increasing sequence tends to Q Now choose an integer n
such that

Q~q<q"m+q"+...+Q<Q.

Let m > n be an arbitrary integer and (l1,... ,lmn) G'M(q,x,m). Sup-
pose that [; > 2, then

Q=q"z+Ilng"+...+hg2q™ w+q + +q+q>Q q+q—Q,

a contradiction. Thus the only posmbhty is that [; = 1. From this fact
we deduce that Q@ = ¢(Q +1) = ¢™z + g™ + ...+ 1g. Cancellation
of the factor ¢ gives QQ = ¢™~ Iz + lmq"‘ 1. + laq, which 1mphes
that (Iz,... ,Im) €.M(g,z,m—1), in other Words We have shown that
M(q,z, m) C {1} x M(q,:c m —1).

A Thus in any case M(q,:v m—l—l)—{l}xM(q,:c m) form>m0
holds. Furthermore, for any fixed natural number m the set M(g,z,m)
is finite, because all the numbers ¢,q?%,... ,q™ are positive. The for-
mula for the sum S(g,z,m).is a trivial consequence of the. equation for
M(q,z,m) given above.

(d) From the proof of (¢) we see that E(q) is a subset of the 1nterval
[—00,@]. Thus we only have to show that the intersection of E(g) with
any interval [a, Q[ (for a < Q) is finite. Let a <@, and as in the proof
of (c) choose an n such that @ —g¢ < ¢"a+¢™+...+¢ < ¢q. Now suppose
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that z € [¢,Q[. Then Q@ —¢ < ¢"z+¢"+ ...+ ¢ < @, and combining
(a) and the computation in the proof of (¢) we immediately see that
z € E(q) iff M(q,z,n) # 0. A simple computation also immediately
gives that the intersection of M(q, z,n) and M(q,y,n) is empty, if z #
# y. If M(q,z,n) is nonempty, then there is an n-tuple (l,...,1,)
such that Q@ = ¢"z + [,¢" + ...+ l;q. Thus

Q—qg<qtatq™+...+q<q"a+1,q"+.. . +1h1¢<qg"z+1q¢"+.. . +l¢=0Q.

As the numbers ¢, ¢%,... ,q" are positive, there are only finitely many
n-tuples (I1,...,l;) which fulfill the inequality ¢"a+l,¢" +...+ ;¢ <
< Q. Thus there are only finitely many points z € [a, Q[ such that
M(g,z,n) # 0.

(e) By (a), for any z € R\E(q) we have M(g,z,m) = 0 for any
m. Thus for any m and any such z we get S(g,z,m) =0.

() M(g,z,m+1):=

qm+1x+1m+1qm+1+lmq’"+...+11q=Q,
= {(ll>"' ylmy lmt1) | LELIy,... lmy1>0 }

Fixing [;, the condition can be written as

"t hg g™+ b =Q=q¢(Q+1) or
"+ (- 1)+ lnpag™ T+ + e =qQ or
i -1
qm

From the last condition we immediately get

M(g,z,m+1)= J{l} XM(q,:c—l—lq——,ni,m).
=1

qm<$+ )+lm+1qm—|—...+lquzQ-

The formula for S(g,z,m + 1) is a trivial consequence, because the
union above is disjoint and M(q,y,m) is empty for y > Q. {

We will need the set C(g) in order to describe continuity resp.
differentiability properties. As the description of the set E(q) is much
easier to handle than the definition of C(g), we try to find a relation
“easy to handle” between the sets R\E(q) and C(g). In Prop. 1(c) it
has been shown that R\ E(¢) C C(g). Thus the question arises whether
this inclusion is proper or not. At the moment only a partial answer
can be given:

Proposition 2.
(a) If g €]0,1] is transcendental over the field Q, then C(g) = R\ E(q).
(b) If q €]0,1[ is algebraic over the field Q, it has a minimal polyno-
mial in the algebra Q[Z]. We normalize this polynomial not as
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usual (leading coefficient = 1), but with integer coefficients-whose
g-c.d. is equal to 1 (this polynomial is unique up to the factor :f:l)
Let this polynomial be denoted by p(z).
(bl) If p(1) is even (i.e., the sum of the coefficients is even), then
Cla) = R\B(g). | : o
(b2) If ¢ < % and p(2) = a— bz*, where a, b, k are positive integers and
a+b zs odd, then R\E(q) is a proper subset of C(q). ‘
Proof. Let T € E(q) Suppose that (ll,lz, <y 1lm) € M(g,z,m) and
(5, 0,...,I,) € M(q,z,m). Then

0=Q~Q=(qmz+lmqm+ A hg)— (" g ..+ 1g) =
=(lm ~U)g™ + ...+ (L — g

(a) Let ¢ be transcendental over the field Q. Then no nonzero
polynomial with integer coefficients can have ¢ as a zero. Therefore,
M(q,z,m) contains exactly one element, and S(q,z,m) #0.

(bl) For 2 elements ({1,1,, .. m) € M(q,z, m) and ({1,1,...
II,) € M(q,z,m) the mlmmal polynomlal p(z) of ¢ is a divisor of the
polynomial (I, — I,,)z™ + (i = )z (by Gauss lemma, from . el-

ementary algebra). Thus the even number p(1) is a divisor of (I,
—U)+...+(ly = 1)), in other words: I; + ...+ {,, and h+...+ l'
are either both even or both odd. Therefore, all the terms in the sum
S(g, x,m) have the same sign, which implies that S(q, z,m)#0.

(b2) In order to show that in this case R\E(q) is a proper subset
of C(q), we give an element z € E(q) Wlth S C’(q) Let r be the
smallest positive integer such that

q— q
l—q
and let m := k + r. (Such an integer r exists, because Q T < 1)
Now define (14,...,1,) by : :

,+(3a—1)qr <1,

2a, ifz=7r
l;:=<b ifi=

1 otherw1se

and let z := Qfllqlgr',;'ﬁlmqm. We determine the set M(q,z,m). Of
course, (I1,...,ln) € M(q,z,m). Now let (I},...,1,) € M(q,z,m).
Then [} > 0, and the polynomial (I}, — lm)z™ + ... + (I} — 1)z is a
multiple of a — bz* in the ring Z[Z], i.e., there is a polynomial s(z) with
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integer coeficients such that (I, —I)z" + ...+ (I} = l1)z = (a — bzF)-
-8(z). This fact implies that the first nonvanishing difference I —I; is an
integer multiple of a. Now suppose that j <rand l; =1,... ;1 =
=13, #1;. Thenl; > l;+a=1+a. As the sums l.g™+...+1lq
are equal for all (14,...,1,) in M(q,z,m), we have

1>0.¢™+...+1lig>q™ +. ot qgtad =

—q" m—j
g +¢'(a+q™).

As g < %, we have ¢(3a — 1)< ¢g-3a<a + q¢™ 7, and therefore,
9—q9
1-—
According to the minimality of r we must have j > r—1. On the other
hand, deg((a — bz*) - s(z)) = k + r, which implies that deg(s) < r.
Thus the only possibilities are that s(z) = z™! - (a + f2) with integer
coeflicients «, 3.

Case 1: k> 1, Thenll, ;=1—ab>0andl,_, =l,_1+aa >0,
which implies that o = 0.

Case 2: k = 1. If r = 1, then clearly oo = 0 (the left-hand-side

polynomial has no constant term). If r > 1, then
Il =b—pb>0, which implies that § < 0;
Il_,=1+aa>0, which implies that a > 0;
Il =2a—ab+ Ba>0, ie (24 B)a> ab.

1> l;nq 4+ +l'1q > —|—q1+1(3a—1)

we immediately get a = 0.
any case we have a = 0 and, therefore,

(24 fla, fi=r
I;=24 (1-p)b, ifi=m for some integer f

Asg=% <
Thus 1

1
33
n

1 otherwise.

The condition I} > 0 implies that the only possible values for # are 0 and
—1. Thus the set M(q,z,m) contains exactly two elements, namely,

M={Q1,...,1,2a,1,...,1,b),(1,...,1,a,1,... ,1,2b)}.

As1.....12al.....10=1.... .1al.... 1.2band (14+...+ 1+ 2a +
+1+. +1+b)—(1+ +1l+a+14+...4+14+20) =a—0bis
odd, the sum S(g,z,m) is equal to 0. As (3a ~ 1)¢" < 1, we have
(3a — 1)g"! < 1+ ¢™*!, which implies that

Ql—¢)—g=0<1+(1—2a)¢"™ + (1 —b)¢™"" resp.
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Q—-qg<q™Mz4qg+...+¢q™

As we had seen in the proof of Prop. 1(c), this condition guarantees
that for any n > (m+1)—1 we have S(¢,z,n+1) = —S(g,z,n). Thus
S(q,z,n) = 0 for any n > m, which implies z € C(q). ¢
Theorem 9 (The case S(f) C] — 00,Q]). Let h: ]Q —1,¢Q] — R be
a function, and o a real number which fulfills a = 0 in the case g # i.
Then the unigque solution f of (1) which coincides with h on Q@ —1, ¢Q)
and fulfills f(Q) = a and S(f) C] — 00, Q)] 3 continuous iff a =0 and
b fulfills the following condition:

(i) case ¢ < 3: h =0 (in other words: in this case the zero function

i8 the only continuous solution);

(i) case ¢ > %: h is continuous and I\lfén . h(z) = 4qh(qQ).

Proof. We use the notatios =, An, Yn, gn, fn of Th. 5.
First suppose that f is continuous. As f(Q) = lim f(z) =

= h\% 0 = 0, we must have a = 0, furthermore, h must be contlnuous

Ao lim h(z) = lim f(z) = f(Q - 1) = 4af(sQ) - F(@+1) -

—2f(Q) = 49f(qQ) = 4¢h(¢Q). Now let z €]Q—1, ¢Q] be arbitrary, and
define a sequence (zy,) by 2o := 2, zp41 := ¢(2n,+1). Then lim z, = Q,

(zn) is strictly increasing, and because z, +2 > z, +1 > @, we have
F(zas1)=Fla(za+ V=1 (f(zn) +f(zn+2)+2f(2a +1)) = —qf(zn)-
Thus, f(z,) = (E) (z) and therefore

0= £(Q) = lim f(z,) = lim (%)nf(zj-

The right-hand-side limit exists and is equal to 0 iff ¢ > I or f(2) =0.
For the reverse direction we may suppose that ¢ > 1, a =0,
hm h(w) = 4qh(qQ) and h continuous. We use the construction of
the solutlon f of Th. 5. Let (z,) be the : sequence given by z¢ :=Q —1,
Tnyr = ¢(zn + 1). Let hg := h, and h, be deﬁned on the 1nterva1

o, Zpt1] by induction:

hn(z) for z €]zo, Tn1]

hnia(z) == { 1

1,0 (y) for z=q(y +1) €lznt1, Tnsal-

If h, is continuous on |zg,Z,+1], then by definition it is e€vident that
hpy1 is continuous in ]zg, Znt2] \ {Znt1}. To prove continuity at the
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point z,4; it is only necessary to compute lim hp4;(z):

AN
li hn Ii ——h - —1
I\lgxlﬂ +i(e) = I\lgalﬂ 4q (q )
1
= ki h —"_ n\Tn :hn n .
Am n(z) " (zn) +1(Znt1)

Thus the function hs
nuity of the function

: 1@ — 1,Q[— R is continuous, and for the conti-

hoo(z) for z €]Q —1,Q]

0 forz > Q

we only have to show that zl% heo(z) = 0. By assumption k is bounded
n |Q — 1,¢Q], let us say, by a constant M. But then we have ho

bounded on [Zn, Tnt1] by (& ) M, which immediately implies that g
is continuous at (). The next extension is done via the sequence (y,,)

go :]@ — 1, 00[— R: :1:—+{

of Th. 5, defined by yp := Q —
integer k such that y; < 0,

1, and the nonnegative

oo,

L Yn41 = 'léyn -
Yx—1 = 0. For g,, defined on |y,

0 <m <k, we define g1 on Jymt1,00[ by
7m+1($) =
_ { gm () for z €lym,o0[
4qgm(q(z + 1)) — gm (5 + 2) — 2gm(z + 1) for T €lym+1,Ym)-

Once more using an induction
continuous under the assumpt
the definition, the only critical

m=0: lim z) = lim T
z\yogl() z\yogO(

= 4490(q(y0 + 1)) — go(

m > 0: We use the fact that g
its domain:

lim gmi1(z)= 11m(
T\ Ym
= dggm(a(ym + 1)) -

Thus the function fo: ]y,

fa: lyr —n,00[— R is continug

the formula

argument, we have to show that g, is
ion that g, is continuous. According to
| point is the point y,:

= xli\ﬁ,lo h(z) = 4qh(qQ) =
Yo +2) — 2g90(yo + 1) = g1(yo)-

m 15 continuous at the interior points of

499m(q(z+1)) = gm(z+2) ~2gm(z+1)) =
7m(ym + 2) — zgm(ym + 1) = gm+1(ym)-

oo[— R is continuous. Now, if
ous, fni1 is defined on Jyr —n — 1, oo by
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s (z)-:{fﬂ(w) | for z €]yx—n; oo
AR 4qfn(q(z+1))— fa(z+2)—2fn(z+1) otherwise.

Thus it is continuous at any point except pos51bly the point y; — n:
n=20,k=0: :

Jim fi(e) = Jim fo(z) = Jim go(z) = lim h(z) = 4¢h(qQ) =

=4qfo(q(yo + 1)) — fo(vo +2) — 2fo(yo + 1) = fi(yo)-
n=0,k>0: v

li lir =1 =
Jm fie) = lim fo(z) z_l\I?ggk(,x)

= A (4ggk-1(g( +1)) — gr1(z +2) — 211 (z + 1)) =
= lim (4ggx(a(z + 1)) — gi(z +2) — 2gx(z + 1)) =

=4qgr(q(yr + 1)) — gx(yr +2) — 205 (yx + 1) =
= 4q¢fo(q(yx + 1)) = folyr +2) — 2fo(ys +1) = f1(yx).
n>0:

z\lllm fnt1(z) + hm n(4qfn(q(m + 1)) falz +2)—2fn(z + 1)) =

= 4¢fn(g(ye—n+1)) = falyr—n+2)=2fn(ye—n + 1) = fat1(yx—n).
This fact proves that the resulting solution f of (1) is continuous
everywhere. {
Of course, it was necessary to have h continuous in the preceding
theorem in order to get a continuous solution. And — together with the
boundary condition hgl ) h(z) = 4¢gh(gQ) — this is also sufficient in

the case g > Z' The question arises: What can be said about solutions

f in the case ¢ < i, if the defining function A is continuous and fulfills
this boundary condition?

Theorem 10 (the case S(f) C] — 00,Q]). Let ¢ < I, a € R, a =
=01qg< i, h:]Q—1,¢Q] — R be continuous and nonvanishing,

{Tgl 1h(:r:) = 4qh(qQ), and let f be the unique solution of (1) which

extends h and fulfills S(f) C] — 00, Q] and f(Q) = a. Then the set of
points where f is continuous coincides with C(q).

Proof. We use the notations of Ths. 5 and 9. The proof in Th. 9 shows
that f is continuous on the set |Q — 1, @[. Furthermore, if one chooses a
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point z €]Q —1,¢Q] such that h(z) # 0, then the sequence (z,,) defined
by zo := 2z, Za41 1= ¢(2n + 1) tends to @, and the values are given by
flzn) = (;—q)nf(z). This sequence tends to infinity in the case ¢ < 1,
and it has a constant value, different from 0, in the case ¢ = i. Thus
the function go: ]@ — 1, 0o[— R has exactly one point of discontinuity,
namely the point z = Q.

Now for the solution f the equation

f(z) =4¢f(q(z +1)) - f(e +2) - 2f(z +1)

holds. By usual induction argument from this equation we can derive
the formula

k
(=) = 4¢ Y (=D)L F(g(e+1)+(=1)* ((k+1)f (e +k)+kf(w+k+1))
1=1
for any natural number k: In the case & = 1 this formula is nothing else
but equation (1), and using equation (1) for the expression f(z + k) we
get

f(z) =

k
=4g ) (-D"'Lf(g(a+1))+(-1)F (k+1) f(z+k) +kf(z+k+1)) =

=1

k
=4g Y (-1 1f(q(a+1)+(-1)*kf(a+k+11

=1
H-1)*(k+1)(4q.f(g(z+k+1)) — f(z+k+2) — 2f(z+k+1)) =
k41

=4q Y (1)L f(g(z + 1))+

=1
=Dk +2)f(z+k+ 1)+ (k+ 1D f(z + k+2)).

Now suppose that £ < @), and let k¥ be an integer such that z + &k > Q.
As S(f) €] — o0, @], we immediately get

k
f(z) =4¢) (-1 f(g(z +1)).
=1

Repeating this formula for the arguments ¢(z + [) we immediately get
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k k
flz) =4g Y (-1 hdg Y (1) . f(d*2 + hie® + L),

=1 =1
and by a usual induction argument, for any natural number m we get
k
f(CE) = (—4q)m Z (_1)11+...+1m_ll . lm.f(qu_*_lmqm_*_' ) +llq)

11, Im=1

Now we may choose m large enough such that ¢™z +¢™ +...+ ¢ >
> @ — 1. As f is continuous in the interval |@ — 1, 0o[, except at the
point @, f can be discontinuous at z only, if at least one of the values
q"z + lng™ + ...+ l1q is equal to @), because otherwise we can find a
whole neighbourhood U of z such that ¢"y + l,,¢™ +... +1l1¢ # @, for
any y € U. Thus f is continuous on the set R\ E(q).

For a detailed description of the points of continuity of f now let
z € E(q), and let m be chosen large enough such that ¢™y 4+¢™ +...+
+4¢ > @ —11in a neighbourhood U of z. Furthermore, we choose k large
enough such that y + &k > Q fory € U and M(q,z,m) C {1,2,... ,k}™
(the last condition makes sense because M(q,z,m) is a finite set). As
m, k are fixed, let us abbreviate M (g, z,m) by M and use the notation
P for the set P := {1,2,... ,k}™ \ M. Then {1,2,...,k}™ is the
disjoint union of M and P. Thus fory € U

iy ,
fly) = (—49)™- Z (—1)ll+"'+l’"-ll ol F(@" Y+ g™+ .+ lg) =

I, Im=1

=(—4)™ D (D f(@™ Y g™+ L)+
(L, dm)EM

+H—4)™ Y (D) f(q™y A+ g™ + -+ Lig).
(I1y-..,lm)EP

As P is a finite set, we can choose a neighbourhood V of z such that
teVCU and ¢"y+lng™+...4+hq#Q for any (ly,....,ln)EP, y € V.
Then the sum oo (=1)htetm gy coidm f(q"y+H g™+ . .+ l1q)
I, ln)EP

describes a corgtlinuou;efunction on V, because f is a continuous on the
set |@ — 1,00[\{@}. On the other hand, for (I1,... ,lm) € M we have
@™y +lmg™ +.. .+ he) = f(¢"y— "z + ¢z +Inq™ + ...+ lhg) =
= f(¢™(y — z) + Q) by the definition of M(g,z,m). Thus we have
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Yoo (YL f(gY F g™ o+ g) =

(11, lm)EM
= Y (el f(g(y - 2) + Q) =
1y lm)EM
=flq"(y-2)+Q)- > (DTt =

(11,... ,Im)EM
= f(qm(y - (l:) + Q)S(qa T, m)
As f is discontinuous at the point @), f is continuous at z (in the
neighbourhood V'), if and only if S(g,z,m) = 0. These arguments hold
for any m large enough, therefore, we may conclude that f is continuous

at z iff z € C(q). ¢
In general, it is not easy to decide for a point z € E(q) whether it

belongs to the set C(g) or not. A special case is the case ¢ = 1. In this
case a complete description of the set C(g¢) can be given. As a conse-
quence, in this case the points of (dis-)continuity of the solution f can
be given explicitely. The following theorem will give this description,

and an example will illustrate this fact.

Theorem 11. Let ¢ = i. For any integer p > 0 let the sequences
a(p) = (ag,a1,09,...) and B(p) = (Bo,P1,...) be defined as follows:
@ := p(mod 8) (the remainder term of the division by 8), By = B2,
and the next terms are defined by induction a;4y = f;(mod4), Biy1:=

= L:'"l'—l for i 2.0. (The sequence a(p) is constructed like the 4-adic
expansion of p, except the first element ag.) Now let L denote the set

L:= { cz|? > 0, and the sequence o(p) fulfills the conditz'on:}

P ag =7, or there 13 an ¢ > 1 such that a; = 3 ’
Then B(}) = {Q-plp € Z,p > 0} and B(})NC(3) = {Q—plp € L},
Proof. :

_ . 1__ — m
E(q):{Q ag a’lq .. amq ‘m,a,EZ,mZO,azzl}U{Q}:
qm
={Qq¢ ™™ —ayg ™ —...—am | m,a; € Z,m > 0,a; > 1} U{Q}.

Now g = % and Q = %—, thus ¢~ = 4 and, therefore,

E(i){Q ~plp€Z,p >0}

In order to find C’(i) we compute the values S(i, z,m) for z € E(i)

For the sake of simplicity let us denote S(p,m) := 5(%,Q — p,m)
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for integers m,p > 1. (From the proof of Prop. 1(c) we know that

S(g,Q,m) = (—1)™ for any m, any q.) Of course, we use the recursion
formula from Prop. 1(f):

S(aem+1) = S (-1 (3.2 + ),
=1

where u denotes the largest integer with u < Q@+1—¢™z. In the special
case ¢ = i and z = @ — p this formula reads as

S(p, mu):Z(—U’z.s( Q—Jp{-—— m) =y (~1)'1.S(p4™(1-1), m).
=1 =1
What is the upper bound u? By definition, we have to look for all [
such that there is an m-tuple (I2,... ,ln+1) with the property
"Nt g1 g™+ b+ =Q
resp.
Qe ™ =z tlpp+... +hd ™™ +lg™ =

=Q—-pt+lmy1+...+Lgd " +1g7™.
Thus the equation

1
3—(4’"+1 — D4 p=lapr1+... 4+ L4a™ 4 14™
should have a solution, which is possible if |
4m+l 4m —1
l-4mS—“-3_+P‘ 3 =p+4".

Therefore, ;5 + 1 is an upper bound for ! — let us denote by u(p,m)
the greatest integer less or equal to ;2 + 1.

Now we start computing the values S(p, m):

m = 1: We have to find all the solutions for the equation gz +
+lhig=Q = q(Q + 1), which is equivalent to @ —p+1; = Q + 1. The
only possible choice is I; = p + 1, therefore

S(p,1) = (-1 (p+1).
m = 2: Suppose that p = 8 + a, where r € Z, r > 0, and

a € {0,1,2,...,7}. Then the upper bound u(p,1) is 2r +1 for a €
€ {0,1,2, )and 2r + 2 for a € (4,5,6,7).
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a € {0,1,2,3}:
2r+1
S(p,2) =Y (-1)l(8r+a—4(l-1)+1) = (~a—1)(r+1).
a € {4,5,6, 7}:—1
2r+2
S(,2) =Y (-D'L(r+a-4(1-1)+1)=(a—T)(r +1).
=1
Thus
5(p,2) = (r + 1)p(a),
where

—a—1 fora€{0,1,2,3}
o(a) =
a—T for o€ {4,56,7}.

m = 3: As p = 8r + a, we now suppose that r = 4s 4+ § (s €
€Z,s>0,6€{0,1,2,3}). Then u(p,2) =2s+1 for § € {0,1}, and
u(p,2) =2s + 2 for é§ € {2,3}.

§e{0,1}:

2341

S(p,3)= ) (-1)".1.S(p—16(1—1),2) =
=1
2841

=) (-1)\.LS(8r+a—82(1-1),2) =
=1

2s5+1

=Y (-DLL(r—2(1—1) + D)p(a) =

23841
=Y (-1)"L(4s+ 6+ 3 —20)p(a) = —(6 + 1)(s + 1)p(a).
=1

§e€{2,3}:

2842

S(p,3)=> (-1'.LS(p—16(1—1),2) =
=1

23+2
= D (=D)LL (45 4+ 6 +3 = 2p(a) = (6= (s + ().

Thus
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5(m,3) = (s + )p(a)(é),
where 1 is given by
—6—1 foré € {0,1}

¢(6):{5—3 for 6 € {2,3}

Using the sequences a(p) and fB(p) defined in the statement of this
theorem, we have

S(p,1) = (-1)™*(m+1), S5(p,2) = (Bo + 1)p(cn)
S(p,3) = (b1 + 1)v(a1)p(a).

Now we may proceed by induction:

S(pyk+2) = (B + 1ib(an) .. b(an)b(en )plao) for k> 1.
This formula is true for £k = 1, and £k — &k + 1: By definition of the
sequences a(p) and B(p) the bound u = u(p, k+2) is given by 2841 +1

in the case ag41 € {0,1} and by 28x41 + 2 in the case a4y € {2,3}.
Thus we have

S(p,k+3) = i(—l)l.l.S(p — 41— 1),k +2) =

= Z( 1)V1(48k41 + 3 + argr — 20)¢(ax) .- ¢(az)¢(al)¢(ao) =

(by the same computation as before)

= (Brps + (e (k) - (a2) (e )p( o).

From the last formula it follows that S(p,m) = 0, if and only if ¢(ay) =
= 0 or ¢¥(a;) = 0 for some ¢ > 1. The first is fulfilled iff oy = 7, the
latter is fulfilled iff @; = 3 for some ¢ > 1, which proves the theorem. ¢
Remark 3. The first elements of the set L in the preceding theo-
rem are given by L = {7,15,23,24,25,26,27,28, 29, 30, 31, 39,47, 55,
56, 57, 58,59,60,61,62,63,71,79,87,88, 89,90, 91, 92, 93, 94, 95, 96, 97
98,99,. }

The following example is very easy to construct and shows in the
case ¢ = ;}; that the point @) — 7 really is a point of continuity, though
the defining function h (and the value a) at the beginning do not look
as if this were true. o
Example Let ¢ = 3, then Q = 3, and let h be defined on |Q—1,¢Q] =
=] 3 12] to be constant equal to 1, and let a € R be arbitrary. It is
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evident that A fulfills the conditions of Th. 11. By the construction of
Th. 5 f is given by

0 for = €]Q, oo]

a forz =@

1 for z €]Q — 1,Q]
1-2a forz=0Q-1

-1 forz €]Q —2,Q — 1]
—143a forz=0Q -2

2 for z €]Q — 3,Q — 2]
2—4a forz=@Q -3

-2 forz €)Q —4,Q — 3|
—243a forz=0Q—4

flz)=¢1 for z €]Q — 5,Q — 4]

1-2a0 forz=0Q-5

-1 for z €]Q — 6,Q — 5]
—1l+a forz=Q—6

0 forz €]Q —7,Q — 6]
0 forz=Q -7

0 forz €]Q — 8,Q — 7|
2 forz=0Q —8

2 forz €]Q —9,Q — §]

It is clear that f is continuous at the point @ — 7, but not continuous
at thepoints @, @ -1, Q0 —-2,Q-3,Q—-4,Q -5 Q—6,Q —8.

After this example we close this section on continuous solutions
and turn over to

c) Differentiable solutions

Like in the continuous case, the solutions without any boundary
conditions are much easier to handle, and for the proofs we again use

the constructions of the solutions given in Ths. 3 and 5.
Theorem 12 (The case S(f) C R). Let p be a positive integer,
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h: [-1,1[— R an arbitrary function, and let f be the unique solution of
(1) which coincides with h on [—1,1[. Then f is p-times differentiable
(resp. p-times continuously differentiable) iff h is continuous, continu-
ously exztendable to H: [-1,1] — R and H is p-times differentiable
(resp. p-times continuously differentiable) and fulfills the following sys-
tem of equations:

( 4¢.H(0) =H(-1)+ H(1) + 2H(0)

4q.q.H'(0) =H'(-1) + H'(1) + 2H'(0)

{ 4¢.¢>.H"(0)=H"(-1)+ H"(1) +2H"(0)

( 4¢.¢7. HP(0) =HP (1) + HP (1) + 2HP(0).

Remark: As H is defined on the closed interval [—1, 1], differentiability
is to be understood in the following sense: At any point in the open
interval | — 1,1[ the derivative H'(z) exists, at the point 1 the left
derivative of H exists, and at the point —1 the right derivative of H
exists. In the case of continuous differentiability this function H' has to
be continuous on the whole interval [—1, 1] and similarly for derivatives -

of higher order.
Proof. We use the notations f,, and F;, of Th. 3.

“only if”: f is a continuous solution, which coincides with A on
[—1,1[. Therefore h has to be continuously extendable to the function
H:[-1,1] — R. Furthermore, f is p-times differentiable (resp. p-times
continuously differentiable) and fulfills the equation

4q.f(gz) = f(z = 1)+ f(ze + 1)+ 2f(z) forall zeR.

Differentiating this equation with respect to z up to p times and putting
z = 0 gives the system of equations for h. As H is the restriction of f
to the interval [—1, 1] it is clear that H has to be p-times differentiable
(resp. p-times continuously differentiable).

“if”: Suppose that h fulfills the conditions of the theorem. Th. 8
guarantees that the unique solution f is continuous (from the first equa-
tion of the system for H). Thus we only have to show that this solution
is p-times differentiable (resp. p-times continuously differentiable). Now
let f1 := h:[-1,1]— R. If f, is given on [—1,n[ for some nonnegative

integer n, then f,1; is defined on [-1,n + 1] by
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fa(2) for z € [-1,n]
fry1(z):= { 4 -
gfn(g(z—1))— fa(z—2)—2f,(z—1) otherwise.

As f, is supposed to be p-times differentiable (resp. p-times continu-
ously differentiable) by induction hypothesis, we only have to show that
frn+1 is p-times differentiable (resp. p-times continuously differentiable)
at the point n (in the neighbourhood of any other point f,41 is given
as a composition of p-times differentiable (resp. p-times continuously
differentiable) functions):

Case n = 1. Left side: Here we have f3(1) = H'(1),... ,fék)(l) =
= H®)(1), because f, is continuous and coincides with k on [—1,1]
and therefore with H on [—1,1]. Right side: We have to take the right
derivatives of the defining expression:

£P01) = 49.¢5 £7(0) = £P(=1) - 2, (0) =
= 4¢.¢F. H®(0) — H®(~1) — 2HP(0) = HP(1).
Thus in this case the right and left derivatives are identical. In the
case of p-times continuous differentiability we have to show that f, (p)

is continuous at the point 1. From the left: H(?) is continuous on the
left at 1, and therefore also f2(p ). From the right: As H(?) is continuous

on the right at 0 and —1, the definition of f; shows that f(p ) is also
continuous on the right at 1.

Case n > 2. The crucial point is that for z < n and z > n we
have two different expressions defining the value of f,41(z), but we can
very well use the fact that any two of the functions (f,) coincide on the
intersection of their domains:
n<z<n+l fn-l-l('r) = 4q_fn(Q(z - 1)) - fn(z' - 2) - 2fn(w - 1);
n—1l<z<n: fn+1($) = fn(il?) = 4qfn_ I(Q(m - )) - J[n—1(5C - 2)_

_2fn 1(1:—1) - 4q‘fn(Q(z"‘1)) fn(x_ ) 2fn(x"'1)
As these two expressions are identical and f, is p-times differentiable
(resp. p-times continuously differentiable) on its domain, we immedi-
ately get that f,4; is also p-times differentiable (resp. p-times continu-
ously differentiable) at the point n.

Thus each of the functions f, is p-times differentiable (resp. p-
times continuously differentiable) and, therefore, the resulting function

Fi:[-1,00[— R is p-times differentiable (resp. p-times continuously
dJﬁ'erentlabIe)

The next step is dealing with the functions F, defined on [~n, oo
which are given by
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F.(z) for z.€ [—n, 00|
Fn+1($) = .
4qF,(¢(z+1))—Fo(z+2)—2F,(z+1) otherwise.
Like in the case of the functions f,, here we have to verify that F,,; is
p-times differentiable (resp. p-times continuously differentiable) at the
point —n.
Case n = 1. Right side: F(k)( -1)= F(k)( —1) = HF)(-1). Left
side: Fi(—1) = H(-1) = 4¢H(0) — H(1) —2H(0). For -2 < z < -1

we have

Fy(z) = 4qFi(g(z + 1)) — Fi(z +2) - 2F1(z +1) =
=4qH(¢g(z +1))— H(z +2) —2H(z + 1).
Thus it is possible to compute the left derivatives
F® (1) = 4q.¢*. H®(0) — H®(1) = 2H® (0) = H®(-1).

As in the case of f; the continuity of F2(p ) at the point —1 in the case
of p-times continuous differentiability immediately follows by the same

arguments,
Case n > 2.
—n—1<z<-n: Fpyi(z) =49F(q(z +1)) — Fp(z +2) — 2F,(z +1).
—n <z < -—n+l: Fopi(z) = Fp(z) = 4¢Fn—1(¢(z+1))— Fpa1(z+2)—
—2Fn1(z+1) = 4qFn(q(z+1))—Fp(z+2)—2F,(z+1).
Thus we have one expression for all arguments z such that —n — 1 <
< z < —n+1, which is p-times differentiable (resp. p-times continuously
differentiable) because F,, is supposed to be p—tlmes differentiable (resp
p-times continuously differentiable).
Thus the solution defined by h is p-times differentiable (resp. p-
times continuously differentiable).
The question of differentiable solutions in the case that S(f) C
C] — o0, @] is similar to handle. An answer in this case can be given,
the proofs are very similar to the case of continuous solutions.
Theorem 13. Let h: |Q — 1,¢Q] — R be an arbitrary function, and
a a real number which 1s arbitrary. in the case ¢ = % and 0 otherwise,
and let f be the unique solution which eztends h and fulfills f(Q) = a,
S(f) €] — 00, Q). Furthermore, let r be a natural number. Then f s
r-times differentiable (resp. r-times continuously differentiable) on the
set R\ E(q) if and only if the function h fulfills the following conditions:
(a) h:]Q —1,9Q] — R is continuous;
(b) h is continuously eztendable to a function H: [Q — 1,9Q] — R,
where
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(bl) H is r-times differentiable (resp. r-times continuously differen-
tiable),

(b2) H fulfills the following conditions:
H(Q —1) =4¢.H(¢Q)
H'(Q-1) =4¢".H'(4Q)

......

HONQ — 1) =4¢" 1. HM(4Q).

Remark. As H is defined on the closed interval [@ — 1,¢Q)}, differen-
tiability is to be understood in the following way: At any point in the
open interval |Q) —1, ¢Q[ the derivative H'(z) exists, at the point ¢Q the
left derivative of H exists, and at the point @ — 1 the right derivative
of H exists. In the case of continuous differentiability this function H'
has to be continuous on the whole interval [Q — 1, ¢Q] — and similarly
for derivatives of higher order.

Proof. “only if”: Suppose that f is r-times differentiable (resp. r-times
continuously differentiable) on the set R \ E(g). As this set contains
the interval |@Q — 1, @[, we immediately get:

(a) h = f|]Q — 1, ¢Q] is continuous.

©) Jp he) = B f0) = lm saflle+ 1) =
= I{mQ4q.f(:z) = 4¢.f(¢Q) = 4q.h(¢Q). Thus h can be extended
o\

continuously to a function A on [@ — 1, ¢@Q] which fulfills H(Q — 1) =
= 4¢H(qQ).

(b1) We have H(z) = 4¢.f(q(z + 1)) and ¢(z + 1) € [¢Q, ¢(¢Q +
+1)] €]JQ —1,Q[ for each z € [Q — 1,¢Q]. As f is r-times differentiable
(resp. r-times continuously differentiable) on the interval |Q — 1, @], it
is evident that the same holds for H. '

(b2) From the formula H(z) = 4q.f(g(z + 1)) we immediately get
H'(Q—-1) = 4¢%. f'(¢Q) = 4¢%.H'(¢Q), and by induction for any integer
k1< k<r HO(Q —1) = 4¢51. ) (¢Q) = 4¢*1 H® (4Q).

“if”: Suppose that h fulfills conditions (a) and (b). Like in Th. 9
first we show that the solution f is r-times differentiable (resp. r-times
continuously differentiable) on the interval |Q — 1, Q[. Let (as in Th. 5
resp. Th. 9) 2o := Q@ — 1, znt1 := ¢(z + 1). From Th. 9 it follows that
f is continuous on the interval |@Q — 1,QJ, and from the construction
it is evident that f is r-times differentiable (resp. r-times continuously
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differentiable) on each of the open intervals |z,,zn41[ for n > 0. Fur-
thermore, the conditions (b2) immediately show that the left deriva-
tives (of order k, 1 < k < r) at the point ¢@Q coincide with the right
derivatives at this point. If H is r-times continuously differentiable, the
left and the right limits of f(")(z) coincide with H("(¢Q) = f((¢Q)
when z tends to ¢@). Thus f has the desired properties on the interval
|zo, z2[. Now we may proceed by induction: Suppose that f is r-times
differentiable (resp. r-times continuously differentiable) on the interval
]zo,zn[ (n > 2). Then f is given on the interval |z1, zn41[ by the for-
mula f(z) = ;—q.f(—;’- — 1), where the right hand side uses arguments
of the interval ]zg,z,[. Thus f is r-times differentiable (resp. r-times
continuously differentiable) on the interval |z1,zn+1[, and as the in-
tersection of |zg,z,[ and ]z1,zn41] is nonvoid, f has this property on
the interval |zg, z,+1[. We may conclude that f is r-times differentiable
(resp. r-times continuously differentiable) on the interval |Q —1, Q[ and,
therefore, on the set |@Q — 1,00[\{Q}. For further investigations on f
we use the formula derived in Th. 10: Let be z < 0, let ¥ € N be such
that z +k > @, and let m € N be such that ¢z +q¢™+...4+¢> Q1.
Then
k
fl@)y= (4™ > (1)t f(g e g™+ A lg).

l1,...,lm=1

The right-hand-side expression is a finite sum of terms, where each
argument depends continuously on z and is contained in the interval
1@ —1, 0o[. Thus if none of these arguments is equal to @, this property
holds in a whole neighbourhood of z, and f is given in this neighbour-
hood as a finite sum of r-times differentiable (resp. r-times continuously
differentiable) expressions. Therefore, f is r-times differentiable (resp.
r-times continuously differentiable) in this neighborhood. On the other
hand, from Prop. (1) we know that the set where at least one of these ar-
guments in the right-hand-side éxpression is equal to @ is the set E(q),
which proves the statement that the solution f is r-times differentiable
(resp. r-times continuously differentiable) on the set R\ E(q). ¢
The preceding theorem gives two possibilities to make the set of
points where f is not r-times differentiable “small”:
— f is r-times differentiable at () or
— the sum of coefficients at f(Q) (used in the proof of Th. 13 in the
sum expression for f(z)) is equal to 0.
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A precise answer will be given in the following two theorems.
Theorem 14. Let h and a be as in Th. 13 and suppose that h fulfills
conditions (a) and (b). Then the solution f is r-times differentiable
(resp. r-times continuously differentiable) at the point Q, if and only if
h is identically 0 and o = 0, or q fulfills the condition 4"+ > 1.
Proof. We may assume that h is nonvanishing, and we give the proof
by induction. .

r = 1: First suppose that f is differentiable at Q. Then f is
continuous at (), and we have o = 0 and 4¢ > 1 by Th. 9. Let z €
€]Q — 1, ¢Q] be arbitrary such that h(z) # 0. Then the sequence z :=
= 2, Zpt1 := ¢(2n + 1) tends to @, and from the right derivative at Q
we have f'(Q) = 0. Thus

' . f(zn) = (@)
P=SQ) = Jim T

Now
F(zn41)—f(Q) = f(zn41) = fg(zn+1)) = %f(zn) = ;ll—q(f(zn)—f(Q))

and

Znt1 — Q@ =q(zn +1) — ¢(Q + 1) = ¢(2n — Q),
which implies

f(zn) = £(Q) _ (L)" (=) - £(Q)
Zn — Q B 4‘]2 zZ—= Q .
This sequence tends to 0 iff 4¢2 > 1.
Now suppose that 4¢> > 1. Then 4¢ > 1, which implies that fis
continuous at (). We have to show that the left derivative of f at Q
is equal to 0 and — in the case of continuous differentiability — that

li/r‘qQ fi(z) =0. Asin Th. 5,let 2o = Q@—1, zp41 = g(zn+1), and let M

be a bound for the function A on |Q — 1,¢Q] =]zo, ;). (Such a bound
exists because h is continuously extendable to the compact interval
[£o,21].) Then f is bounded by (%q)n.M on the interval |z,,Z,y1].
Now suppose that (z,)nen is an arbitrary, strictly increasing sequence
tending to Q. Without loss of generality we may assume that z, >
> @ — 1. Then for each n € N there is a unique m € N such that
Zn €]Tm, Tm+1]. Let us denote this m by m(n). Then nlgréo m(n) = co.

Furthermore,
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Izn - QI 2 lxm(n)+1 - Q] = qm(")|$1 - Q',
and

|F(zn) — Q)] = |f(2a)] < (%)WM
Thus

zm—Q 17 ¢z — Q|  \4¢® Q—z1’
which goes to 0 when n tends to infinity. Further, if H is continuously
differentiable then H' is bounded by some constant N on the interval
[zo,z1]. As f fulfills the equation f(z) = 4¢f(¢(z + 1)) in the interval
120, Q[ we immediately get f'(z) = 4¢*f'(¢(z + 1)) in this interval.
Thus f' is bounded by (ﬁ;)nN on the interval [z,,z,4+1]. By the
same arguments as before we can conclude that li/m fl(z)=0.

Now the step r — r+1: Suppose that f is (r+1)-times differen-
tiable in |Q—1, c0[. Then f is r-times differentiable at @, which implies
4q > 4¢% > ... > 4¢™! > 1. As the function H fulfills H®(Q-1)=
= 4¢*H®) (¢Q) for any k, 0 < k < r, each of these functions H¥)
is either identically 0 or nonconstant. Nonconstant differentiable func-
tions have a nonvanishing derivative, and, therefore, if A is nonvan-
ishing, the only possibility is that H{") is nonconstant. Thus there is
a point z €]zg, 1] such that f(M(z) = H((2) # 0. Once more we
use the sequence 2y 1= 2, zpy1 = ¢(zn + 1). From f(z) = 4qf(q(z +
+ 1)) we derive f(0(z) = 4¢g™t1 (I (g(z + 1)), especially FN(z,) =
= 4¢™ () (2,41), which implies

f(r)(zn) - (4qi+1 ) n‘f(r)(z)-

Comparing the right and left derivative of f(") at the point Q, we get
(r) — f(n 1 \n f(0
_ )0y — fin d0(2) = F(Q) ()
0 f (Q) nli—»rréo Zp — Q nll—?go(élq"‘l‘z) z — Q )
As f(")(2) # 0, this limit is equal to 0 iff 4¢"*2 > 1. On the other hand,
suppose that 4¢""2 > 1. Then 4¢™! > 1, and as H is (r + 1)-times

differentiable in [@Q — 1,¢Q)], the r-th derivative H(") is continuous on
[@ — 1,¢Q)] and therefore bounded by a constant M. With the same

arguments as before we can conclude that f(") is bounded by (Z#)nM

on the interval |z,,2,41]. Now suppose that (z,).en is an arbitrary
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strictly increasing sequence tending to Q. Like before, we may assume
that zo > @ — 1, and denote by m(n) the unique m € N such that
Zn €|Tm,Tm+1]. Then

f(’”)(zn)_f(r)(Q)’ . (F=)" "M ~( ] )m(n>_ M
SCTE O P vy e

As 49"t2 > 1 we immediately get that f (r+1)(Q) exists and is equal to
0.

Zn

Further, if H is (r + 1)-times continuously differentiable then
H(+1 is bounded by some constant N on the interval [zg,z1]. Like
before we get the equation f(r+1(z) = 4¢™2f(+)(g(z + 1)) in the
interval |zg, Q[. Thus f("+1) is bounded by (;i—q%—ﬁ)nN on the interval

[Zn, Znt1]. From this we can conclude that li/:r‘xz2 frt(z) =0. ¢

Corollary 1. The only solution f of equation (1) which fulfills S(f) C
Cl] — 00, Q] and which is C*® on R is the zero function.

Proof. The preceding theorem shows that for a nonvanishing C°°-
solution the inequality 4¢"t! > 1 has to be fulfilled for any natural
number r. But this is impossible because 0 < ¢ < 1. ¢

Corollary 2. Let h and o be as in Th. 13 and suppose that h fulfills
conditions (a) and (b). Then the solution f is r-times differentiable
(resp. r-times continuously differentiable) on the whole real line, if and
only if h is identically 0 and o = 0, or q fulfills the condition 471 >
> 1. '
Proof. First suppose that f is r-times differentiable on R. Then fis
r-times differentiable at @, which implies (by Th. 14) that 4¢"+! > 1.
On the other hand, suppose that 4¢"t! > 1. By Th. 14, f is r-times
differentiable (resp. r-times continuously differentiable) in the interval
]Q — 1, 00[. Thus from the formula

k
f(z) = (—4¢9)™. Z (—1)attlm s Im f(@™z + g™ + ... +119)
Iy Im=1
of Th. 13, where z < Q, z + k > Q, and m is chosen large enough such
that the arguments on the right side are greater than @ — 1, we imme-
diately get that f is r-times differentiable (resp. r-times continuously
differentiable) on the whole real line. ¢ -
Theorem 15. Let h and o be as in Th. 13, and suppose that h fulfills
conditions (a) and (b) and 4¢™! < 1. Then the solution f is r-times
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differentiable (resp. r-times continuously differentiable) on the set C(q),
and not r-times differentiable at the points of the set E(q) \ C(q).

Proof. In Th. 13 it was proved that f is r-times differentiable (resp.
r-times continuously differentiable) in the set R\ E(g). Now let =z < Q,
z € E(q), and choose m large enough such that ¢™z + ¢™ + ... +
+ g > @Q — 1. Furthermore, choose an integer k such that z + &k > @
and M(g,z,m) C {1,...,k}™ asin Th. 10. As in the stated theorem,
let M := M(q,z,m), P := {1,2,... ,k}™ \ M. Asin Th. 10, in a

neighbourhood of z the formula

k
f) = (4™ > (Dt f(g Y+ g™ ) =
11,... ,lm=1

= (—4q)™. Z (=)t 1 (™Y g™ 4 lg)+
(1,0l )EM

H—4g)™ D (DTt (g Y+ g™ -+ i) =
(I1,-.-,lm)EP

= (—4q)™. Z () Hm 1l f(@™ Y+ g™ A+ )+
(I1,-..,lm)EP

+(—4q)™.f(¢"(y — z) + Q)-S(¢,z,m)
holds. The first sum gives f in this neighbourhood of z as a finite
sum of r-times differentiable (resp. r-times continuously differentiable)
terms, thus the second summand makes the decision whether f is r-

times differentiable (resp. r-times continuously differentiable) at the
point z.

Case 1: z € C(g). In this case S(q,z,m) = 0, thus f is r-times
differentiable (resp. r-times continuously differentiable) at. z.

Case 2: = ¢ C(q). In this case S(g,z,m) # 0. As f is not r-times
differentiable at @, it cannot be r-times differentiable at z. ¢

After these investigations on differentiable solutions we turn over
to measurable and integrable solutions. However, one question has
not been discussed because it is still unsolved: Do there exist analytic
solutions (of course, only in the case S(f) C R)?
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d) Measurable solutions

In this section we deal with measurability in the sense of Borel
or Lebesgue (i.e., the term “measurable” is to be understood in this
sense). The results are very simple:

Theorem 16 (the case S(f) C R). Let h: [~1,1[— R be an arbiirary
function, and let f be the unique solution of equation (1) which coincides
with h on [—1,1]. Then f is measurable if and only if h is measurable.
Proof. “only if” is obvious. “if”: Suppose that % is measurable.Then
from the construction given in Th. 3 and from the o-additivity of the
measure it follows immediately that f is measurable. {

A similar result holds for the case S(f) C] — o0, Q]:

Theorem 17 (the case S(f) C]—o00,Q]). Let h: |Q@ —1,¢Q] — R be an
arbztmry function and o a real number which is arbitrary in the case
qg= 5 and 0 otherwise, and let f be the unique solution of equation (1)
whzch coincides with h on |Q — 1,qQ] and fulfills f(Q) =a, S(f) C
C] — 00,Q]. Then f is measurable if and only if B is measumble
Proof. Like that of Th. 16; the construction of f from h has been given
in Th. 5. ¢

More interesting than these “trivial results” on measurable solu-
tions are the following about

e) Integrable solutions

It will be shown that the vector space of integrable solutions for
a given number ¢ is at most of dimension 1 over the field of reals.
Furthermore, the very interesting result is that any integrable solution
has bounded support, in other words, for any integrable solution § (f) C
C [-Q,Q] holds. Thus the result on the dimension of this space of
solutions follows immediately from the theorem of Baron and Volkmann
[1]. We prepare the results by a lemma:
Lemma 3. (a) Let f be a Lebesgue (resp. Borel)-integrable solution

of equation (1). Then the function F(z) := f] fd)\ (A represents

the usual Borel resp. Lebesgue measure) is well deﬁned and has the
properties:
(i) F' is continuous,
(ii) lim F(z) =0,
(ii) im F(z)= [; fdX €R,
—+00
(iv) F(qe) = Y(F(z + 1) + F(z — 1) 4+ 2F(z)) for any z € R.
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(B) Let f be a solution of equation (1) whose improper Riemann
integral over R ezists. Then the function F(z) :== f f(t)dt 13 well

defined and has the properties:
(1) F' 1is continuous,

(ii) lim F(z) :0,

(i) im F(z)= [2_f(t)dt € R,

(iv) F(qz) = 4(F(ac + 1)+ F(z — 1) 4+ 2F(z)) for any z € R.
Proof. (a): (i), (ii), (iii) are well-known from elementary integration
theory (e.g., cf. Hewitt—Stromberg [3]). (iv) can be derived as follows:

i(F(z +1) + F(z — 1) + 2F(z)) =

1
:Z(/ fdA+/ fdA+2/ fdA):
J—o0,z41] ]~o0,z—~1] ]—o0,z]

-3([_ remao+]

—00,1]

f(E—l)dA(£)+2/ f(&) d,\(g))i

—00,I]

= i/ (FIE+1)+ F(E=1)+27(€))dN(¢) =
J—00,2]

1
7 L GLGEY B CEICES )

(8): (i) is well-known from elementary analysis, (ii) and (iii) are
immediate consequences of the definition of the Riemann integral from
—00 to 0o. (iv) can be computed similarly to the case (a):

Floo)= [ f0de= [ flar)edt =

=o [ UG+ + 1)+ A0 =

— 00

_ i(/zﬂf(t)dtqt/x—lf(t)d“rz/_;f(t)dt) -

—o0 —00

_ %w(m +1) + F(z — 1)+ 2F(z)). ¢

Theorem 18. Let f be a solution of equation (1) which s Riemann
(resp. Borel- resp. Lebesgue-) integrable and let the value of this integral
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be 0. Then f vanishes almost everywhere (in the Borel resp. Lebesgue
case) resp. f is equal to O except on a zero set (in the Riemann case).
Proof. We use the function F' defined in Lemma 3. Then it follows
that F' fulfills the following conditions:

(a) F is continuous,

(b) lim F(z)=0= lim F(z),

(¢) F(qz) = 3(F(z + 1)+ F(z — 1) 4+ 2F(z)) for any z € R.
As F is continuous and tends to 0 when z tends to +oo, it has a
maximum value M at some point 5. Now let 2o = qyg. Then

1
M = F(zo) = Flqyo) = 7(F(yo +1) + Fyo — 1) + 2F(y0))-
As M is maximal, this equality can only hold if
F(yo+1) = F(yo — 1) = F(yo) = F(ayo) = F(z0) = M.

Case 1: x 76 0. Define a sequence (z,) by =, =: ¢n4+1. Then
Yo = z1, and repeating the above argument by induction, we get that
the sequence (F(z,)) is constant with value M. As lim z, = oo we

immediately get that M = 0. T

Case 2: o = 0. The computation given above shows that F(1) =
= M, and we may proceed with the value z¢o = 1 like in Case 1.

Thus in any case we get M = 0. The same arguments show
that also the minimum of F' must be equal to 0, and therefore F' van-
ishes identically. As a trivial consequence the assertion of the theorem
holds. ¢
Corollary 3. The set of Riemann integrable solutions of equation (1)
as well as the set of Lebesgue (resp. Borel) integrable solutions is at
most of dimension 1.

Proof. Integration is a linear mapping from the set of all integrable
solutions into the one-dimensional space R. By the preceding theorem,
the kernel of this mapping contains only the zero function. Thus the
dimension of the space of integrable solutions cannot exceed 1. ¢
Theorem 19. Let f be an integrable solution of equation (1) (in the
Riemann or Borel resp. Lebesgue sense). Then f wvanishes almost
everywhere outside the interval [—Q, Q).

Proof. We use the function F' of Lemma 3: Let G be the value of the
integral of f, i.e., zli_'rro1o F(z) = G € R. Now let € > 0 be arbitrarily

chosen. There exists a number z such that |F(z) — G| < ¢ for any
z > z. Without loss of generality we may assume that z > @. Thus
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for any z > z + 1 we have that F(z — 1), F(z), F(z + 1) < G + ¢ and,
similarly, F(z — 1), F(z), F(z + 1) > G — ¢, which implies that G —
—¢& < F(gz) < G +¢. In other words, the inequality |f(z) — G| < ¢
holds for any z > ¢(z + 1). Repeating this argument, we immediately
get |[F(z) — G| < ¢ for any = > Q, because the sequence z, ¢(z + 1),
q(g(z +1) + 1), ... tends to Q. As e was chosen arbitrarily, we may
conclude that F(z) = G for any 2 > Q. Similarly, using the same
arguments in the other direction, we conclude that F(z) = 0 for any
z < —@Q). As a trivial consequence, f must be 0 a.e. (resp. except on a
zero set outside the interval [—-Q, Q]. ¢

After these results on solutions with unbounded support we make
a short break. A paper on solutions with bounded support will follow.
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Abstract: For any integer n > 2 a set D of vertices of a graph G of order
p is defined to be a P<,-dominating set (total P<n—dom1natmg set) of G if
every vertex in V(G) — D (respectively V(G)) is at distance at most n — 1
from some vertex in D other than itself. The P<p-domination number, 'yn(G)
(total P<y-domination number +}, (G)) is the minimum cardinality among all
P<p-dominating sets (total P<,-dominating sets) of G. It is shown that if @
is a connected graph on p > 2n vertices, then T (G)+vi(G) < 2p/n. Aset T
of vertices in a graph G is P<,-independent if the distance between every two
vertices of I is at least n. A f’<n—dominating set that is also P<,-independent
is called a P<,-independent dominating set. The minimum cardinality among
all P<,-independent dominating sets in a graph @G is the P -independent
domination number of G and is denoted by iy (G). It is shown that if G is a
connected graph of order p > n, then i, (G) + (n — 1)y (G) < p.
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The terminology and notation of [2] will be used throughout. Re-
call that a dominating set (total dominating set) D of a graph G is a set
of vertices of G such that every vertex of V(G)— D (respectively, V(G))
is adjacent to some vertex of D. The domination number (total dom-
ination number) of G is the minimum cardinality of a dominating set
(total dominating set) of G. Further, the distance d(u,v) between two
vertices u and v of G is the length of a shortest u — v path if one exists,
otherwise d(u,v) = oo. In [5] generalizations of the above-mentioned
domination parameters are defined and studied. For an integer n > 2, a
set D of vertices of a graph G is defined to be a P<,-dominating set (to-
tal P<n-dominating set) of G if every vertex in V(G) D (respectively
V(G)) is at distance at most n — 1 from some vertex in D other than
itself. The P<,-domination number v,(G) (total P, -domination num-
ber 14(G)) is the minimum cardinality of a P<,-dominating set (total
P<,-dominating set) of G. Hence v2(G) = 7(G) and (@) = %(G).

In [5] sharp bounds for the P<,-domination number and total
P<p-domination number of a graph are established. In particular the
following two results were obtained.

Theorem A. If G is a connected graph of order p > n, then v,(G) <
< p/n.
Theorem B. If G s a connected graph of order p > 2, then

t —
T(G) =2 for 2<p<on—1
and 2p
(@) < P for p>2n—1.

We now investigate relationships between these two generalized
domination parameters. Observe that if G is a connected graph on p
vertices with 2 < p < 2n — 1, then rad(@) < n — 1 and so 7,(G) +
+vE(G) = 3. We thus con51der graphs of order p > 2n. Allan, Laskar
and Hedetniemi [1] showed that, if G is a connected graph of order
p > 3, then y(G) + 1(G) < p. The following theorem generalizes this
result.

Theorem 1. For an integer n > 2, if G 1s a connected graph of order
p > 2n, then

1e(G) + 71n(G) < 2p/n.

Proof. Let n > 2 be an integer. If T is a spanning tree of a connected
graph G of order at least 2n and v,(T) + v5(T) < 2p(G)/n, then
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Yo (G) + YL (@) < 7a(T) + 7L(T) < 2p(G)/n. Hence we shall prove
the theorem by establishing its validity for a tree G. We proceed by
induction on the order of a tree of order at least 2n.

Let T be a tree of order 2n. Then diamT < 2n — 1, and so
radT < n —1 or T is bicentral with radT < n. If radT < n — 1,
then a central vertex of T is within distance n — 1 from every vertex.of
T, while a central vertex, together with any other vertex of T, forms a
total P<;,-dominating set of T'. Hence in this case, 7n(T)+7n(T) =3<
" < 2p(T)/n. If, however, rad T = n, then the central vertices of T form
a total P<,-dominating set (and hence certainly a P<,-dominating set)
of T and so v, (T) + v4(T) = 4 = 2p(T)/n. Hence the theorem is true
for a tree of order 2n. ' ’

Assume that y,(T') + v5(T') < 2p(T")/n for all trees T' with
2n < p(T') < k, and let T be a tree of order k. If diam T' < 2n—1, then
Yo(T) +~vE(T) <4 < 2p(T)/n. So we may assume that diam T > 2n.

Suppose that there exists an edge e of T such that both compo-
nents of T — e are of order at least 2n. Let Ty and T, be the components
of T —e. Then 2n < p(T;) < k and so, by the induction hypothesis, for
i € {1,2}, T} has a P<,-dominating set D; and a total PSn—‘dominating
set D} with |D;| + |D}| = v(Ti) + vL(T:) < 2p(T;)/n. Then Dy U Dy is
a P<n-dom1natmg set of T and D} U D), is a total P<,-dominating set
of T with v,(T) +~+:(T) < |D, U D2| +|D} U Dy| < 2p(T)/n. For the’
remainder of the proof we shall therefore assume that, for each edge e
of T', at least one of the (two) components of T — e is of order less than
2n. In particular, we note that 2n < diam T < 4n — 2. Let diam T = d
and let u,v be two vertices of T' such that d(u,v) = d > 2n. Let the
u —v path in T be denoted by P : u = ug, uy,... ,ug = v. To complete
the proof we consider four lemmas. .

Lemma 1. If 2n < p(T) < 3n — 2, then vo(T) + v5(T) < 2p(T) /n.
Proof. Let T;,T; and T3 denote the components of T — u,_quy,, T —
—Ug—nUd—n+1 80d T —{tn_1Un, Ud—nUd—nt1}, respectively, containing:
u,v and u, respectively. Since p(T) < 3n — 2, it follows that d < 3n —
—3; 50 d(Un—1,Ug—nt1) = d+ 2 —2n < n — 1. Moreover, since P is
a longest path in T, the vertex u,_; (ug—n41) is at distance at most
n — 1 from every vertex in Ty (T3, respectively). As p(T3) = p(T') —
—(p(T1) + p(T2)) < 3n — 2 — 2n = n — 2, every vertex of T3 is within
distance n—2 from both un_; and ug_p41 in T It follows that y,(T) =
= 72(T) = {un—1,ud-nt1}| = 2; s0 1a(T) + ’Yn(T) =4 < 2P(T)/”
This completes the proof of Lemma 1. ¢
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Lemma 2. If p(T) > 3n—1 and 2n < d < 3n—3, then v,(T)++5(T) <
< 2p(T)/n.

Proof. Let T, T, and T3 be defined as in the proof of Lemma 1. Since
d<3n-—3,d(up_1,Ug—nt+1) < n—1. Moreover, as P is a longest path
in T, up—1(ud—n+1) is at distance at most n — 1 from every vertex in
Ty (T3, respectively).

If p(T3) < n — 1, then every vertex of T3 is within distance
n—1 from both u,_; and ug_ny1; consequently, v,(T)+~L(T) =4 <
< 2p(T)/n.

Suppose that n < p(T3) < 2n—1. Then p(T) > 3n and diam T3 <
<2n—2;sorad T3 < n—1. We show that there exists a central vertex
of T3 that is distance at most n —1 from u,_y or ug_p4q. If this is not
the case, then, for w a central vertex of T3, w is at distance n — 1 from
both up, and ug—n. Since d(un, ud—n) = d—2n < n—3, w is not a vertex
of the u, —ug4_, path. Let Q : v = wg,wy,... ,w, be the shortest path
from w to a vertex of the u, — uq_, path. Then, necessarily, w, = u;
for some j € {n+1,...,d—n—1} and V(Q) N V(P) = {u;}. Let
T' and T" denote the components of T3 — ww; containing w; and w
respectively. Since the wy —uy, path (of order n—1) does not contain the
vertex ug_,, we observe that p(7") > n. Further, if p(T")<n-—1, then
it follows that w; is a central vertex of Ty at distance n — 1 from both
Un—1 and ug_nt1, which contradicts our assumption. Hence p(T"') >
> n, and so p(T3) > 2n, which again produces a contradiction. Hence
there exists a central vertex w (say) of T3 that is at distance at most
n — 1 from 4,1 or ug_py1, and from each vertex of T3. Thus D =
= {Un—1,Ud—nt1,w} is a total P<,-dominating set (and so certainly a
P p-dominating set) of T'; so yn(T) +v5(T) < 6 < 2p(T)/n.

If p(T3) > 2n, then it follows from the induction hypothesis
that T3 has a P«,-dominating set D' and a total P<,-dominating
set D" with |D'| + |D"| = vn(Ts) + v4(Ts) < 2p(Ts)/n. So Dy =
= D'"U{un—1,U4—nt1} is a P<p-dominating set of T' and Dy = D" U
U {tn—1,%4—nt1} is a total P<p-dominating set of T with v,(T) +
1+ 74(T) < 1Dy |+ Dol +4 < 25(T3)/n+ 2(p(Ty) + P(T5))/n = 25(T)/n.
This completes the proof of Lemma 2. {

Lemma 3. If 3n — 2 < d < 4n — 3, then v,(T) + vL(T) < 2p(T)/n.

Proof. Necessarily there exists an integer z, 1 <: < d—1, such that the
components of T'—u;_ju; and T —u;u;41 containing u are, respectively,
of order less than 2n and of order at least 2n. From the assumption
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that, for every edge e of T', T — e contains a component of order at most
2n — 1, it follows that d —2n+1<: < 2n — 1.

Let T and T3 be the components of T — u; containing u and v,
respectively. We note that T and T; are both of order less than 2n.
Further, let degu; = r and denote by 77,73, ... ,T, the components of
T —u; and by w; the vertex in T} adjacent tou; in T'(: = 1,2... ,r). We
note that wy = u;—1 and wy = u;yy. If r > 3, then for j € {3,...,r}
we observe that, since one component of T' — u;w; contains P and is
therefore of order at least 2n, the component T]’- is of order at most
2n — 1.

We consider two possibilities.

Case 1: Suppose that 1 = 2n — 1 or 2 = d — 2n + 1. With-
out loss of generality, we may assume (relabelling the path P by v =
= Ug,U1,... ,uqg = U if necessary) that ¢+ = 2n—1. Since p(T}) < 2n-1,
T] = Py,—y and {un_1} is a P<,-dominating set of T]. We consider
two possibilities. -

Case 1.1: Suppose that d = 3n — 2. Then ug,; = ug_py1 and
every vertex of Ty is within distance n — 1 from uy,_;. Consequently, if
r =2, then v (T)+v5(T) < {tn-1,U2n—1}+{tn-1, U2n—2,U2n-1}| =
=5<2(3n—1)/n <2p(T)/n. We now consider the case where r > 3.
Let {3,...,r} =I=1; U I, UI; where

Li={jel|p(Tj)<n-1},
L ={jel|n<p(T})<2n-2},
L= {j e I|pT)=2m 1),
If y € I, then ug,—1 is within distance n — 1 from every vertex of T]{. If
j € I,, then since p((V(T;)U{ugn_l})) <2n-1, T]{ contains a vertex z;
such that {z;} is a P<,-dominating set of T]’- and d(ugn—_1,2;) <n—1. If
j € I3, then rad T} < n—1. Let z; be a central vertex of Tj. It follows,
therefore, that vn(T) < {un—1,u2n-1} + [ U {2} +| U {z;}| =
JEI: JEI3
= 2+ || + |I5] and 5(T) < [{un—1,u2n—2,%2n-1}] +| e {z} +
. 2
+ ljéJI {zj,w;} = 3+ L] +2|L]; s0 ¥a(T) +75(T) < 5+ 2|1+ 3| L]
3
However, p(T) > d+1+n|L|+(2n—1)|I3| = 3n—14n|lz|+(2n—1)| L]
Hence 2p(T)/n > 6 — 2/n + 2|L| + (4 — 2/n)|I5]| > 5 + 2|L| + 3|13| >

2 (T + 7 (T)-
Case 1.2: Suppose that 3n—1 < d < 4n—3. Then d—n+1 >
> 2n — 1 and 50 ug—py1 € V(T3). Further, since p(T;) < 2n — 1,
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{tg—n41} is a P<,-dominating set of Tj. Since d < 4n — 3, we observe
that d(ud__n+1,u2n_1) =d - 3n + 2 _<_ n—1.
If r =2, then

'Yn(T) + 71:(T) < |{un—13 ud-—n+l}| + |{un—1a U2 -2, u2n—17ud~n+1}i =
=6 <2(3n)/n < 2p(T)/n.

If r>3,thenlet I={3,...,r} =L UL UI3UI; where
Li={jel|p(T})<in—d—3),
L={jelldn-d-2<p(Tj)<n-1},
Li={jel|n<p(T)<m—2},

L ={j € T|p(T)=2n—1}.
If j € I, then, since d(ug—nt1,u2n-1) = d — 3n + 2, it follows
that ug—n41 is within distance n — 1 from every vertex of T' If y € I,
then ug,_1 is within distance n — 1 from every vertex of T’ If y € I,
then 77 contains a vertex z; such that {z;} is a Pcp- dommatmg set of
T’ and d(uzn—1,2;) <n—1. If j € Iy, then radT’ <n—1. Let z; be
a central vertex of 7. We now consider two possibilities.

Case 1.2.1: Suppose that |I3| > 1. Then it follows that v,(T) <
< Huntotan1,ua-nis} | 4] U {53141 U, o)) = 3+ 15|+ 4] and
3 4

To(T) £ Hun-1,u2n-2,%2n—1,va—ni1}+| U {z;}+] U {z;,w;}| =
JEIs JEI,

= 4+ |} + 2|L]; so ¥ (T) + vL(T) < 7+ 2|I3| + 3|I;|. However,
+ (2n — 1)|14]. Hence 2p(T)/n > 8 —2/n + 2|I3] + (4 — 2/n)|I4| > 7 +
+2/I5] + 3| L] = ya(T) + 7, (T).

Case 1.2.2: Suppose that |I;| = 0. Then it follows that v,(7T) <
< Htn-1,Ua—nt1 Y+ I+ L] = 24| |+ L] and 5(T) < 44+|I3|+2|L);
80 Yn(T) + 75 (T) < 6 + 2|I3| + 3|L4]. However, p(T) > d + 1 + n|Is| +
+(2n — 1)|I4] > 3n +n|l3] + (2n — 1)|L4]. Hence 2p(T)/n > 6 +2|I3| +
+3|L] > 7 (T) + 94(T).

Case 2: Suppose that d —2n + 2 <4 < 2n — 2. Then, since d >
23n—-2,n<d-2n+2<1<2n—-2<d—n. Hence up—3(ug—ny1)
is a vertex of T (13, respectively). In fact, as P is a longest path
in T and as p(T}) < 2n—1 (1 < i < 2), {un-1} {ud-n+1}) is a
P<p-dominating set of T (T}, respectively). Furthermore, since ¢ <
<2n—2, dlup—1,u;) =1—n+1<n-—1 and since i1 > d — 2n +
+ 2, d(ud_n+1,u )=d—-n+1—17 < n-—1. Consequently, if r = 2,
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then ¥n(T) + 74(T) < {un-1, %a—nt1}| + {tn-1,%i, 4g—nt1}| = 5 <
< 2(3n — 1)/n < 2p(T)/n.
Ifr>3,thenlet I={3,...,r} =L UL UI;UI, where
Li={j EI[P(TJ{) <max(2n—i1—1,2n+1—d—1)},
L=1{j EI]max(Zn—i—1,2n+i_d_1)SP(TJ{)Sn_l},
L={jel|n<p(T]) <2n-2},
Ii={j €I|p(T})=2n-1}.

If j € I, then p(T}) < 2n—i—~2or p(T;) < 2n+i—d—2. If
p(T;) < 2n — 1 — 2, then since d(up—1,u;) =1 —n + 1, it follows that
Up—1 is within distance n — 1 from every vertex of T}. If p(T}) < 2n +
+ ¢ — d — 2, then, since d(ug—n4+1,u;) = d—n+1—1, it follows that
Ud—n+1 18 within distance n — 1 from every vertex of T]{. If j € I, then
u; is within distance n — 1 from every vertex of T}. If j € I3, then T
contains a vertex z; such that {z;} is a P<,-dominating set of T} and
d(ui,z;) <n—1. If j € I, then radTJ'- < n—1. Let z; be a central
vertex of T J' We now consider two possibilities.

Case 2.1: Suppose that |I| > 1. Then it follows that v,(T) <
< Hun—1,ui, gmnta }| + | ;& Lzt A ;& 1@t =3+ |Is| + 1| and

To(T) £ Hn—1,uisuaenii -+ U {z}+| U {zj,w;}| =3+ ||+
j€ls JEI

+2|1af; 50 yn(T) + 7 (T) < 6 + 2| 5| + 3| La].

I max(2n —i—1,2n+:¢—d — 1) = 2n — ¢ — 1, then p(T) >
> (d+1)+(2n—:=1)|L|+n||+ (2n — V)| L] 2 2n+d — i + n|l] +
+ (2n — 1)|I4] > 3n + n|L| + (2n — 1)|L4], since d — i > n. Hence
2p(T)/n 2 6+ 2|Is| + (4 — 2/n)|Ls| 2 6+ 2|T3] + 3|14] 2 Ya(T) + 1n(T).

Kmax(2n—¢t—-1,2n+t—d—1)=2n+1i—d— 1, then p(T) >
> d+1)+@n+i—d=-D|L|+n|L]+@n -1 > 2n+1+
+ n|l3| 4+ (2n — 1)|I4| > 3n + n|Is| + (2n — 1)|L4], since 1 > n. Hence
2p(T)/n 2 6 + 2| Is| + 3[1a| > yn(T) + 7 (T).

Case 2.2: Suppose that [I;| = 0. Then it follows that v,(T") <
< Hun-1,va—nt1}+ 1] + | La] = 2+ |I3| + | 1a] and 7 (T) < 3+ || +
+ 2|14]; s0 Yu(T) + vL(T) < 5+ 2|I3| + 3]1,|. However, p(T) > d+1+
+n|lz|+ (2n — 1)|I4] > 3n — 1 +n|l3| + (2n — 1)|14]. Hence 2p(T)/n>
>6—2/n+2|I3| + (4 — 2/n) L] 2 54 2|I5| + 3|1a| = 1 (T) + 77 (T).

This completes the proof of Lemma 3. { '
Lemma 4. If d = 4n — 2, then v,(T) + v5(T) < 2p(T)/n.
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Proof. Suppose that d = 4n — 2. Then, using the notation introduced
in the first two paragraphs of the proof of Lemma 3, it follows that
¢ = 2n — 1. Furthermore, since p(T}) < 2n — 1, we therefore have
T/ = Pypy (1<i<2)and so {up—1} ({tan_1})is a P ,-dominating
set of T (T, respectively). We observe, however, that us,_; is at
distance n from both u,—1 and uz,_;. Consequently, if r = 2, then
’)’n(T)“Fﬁ’f,(T) = '{un—I)UZn—l’USn—l}I+|{un—17u2n—27u2n7u3n—1}| =
=7<2(4n —1)/n = 2p(T)/n.
If r>3,thenlet I ={3,...,r} = L UL UI3U I, where

I ={j eI|p(Tj) <n-2},

I ={j €I|p(Tj) =n—1},

L={jeln<pTh<2n-2),

Iy ={j € I| p(T}) = 2n — 1},

If j € Iy, then every vertex of TJf is within distance n — 1 from the
vertices Ugn_g, Usn—1 and ug,. If j € I, then ug,_; is within distance
n — 1 from every vertex of T]. If j € I3, then T} contains a vertex z;
such that {2;} is a P<,-dominating set of T} and d(zj,ugn—1) <n—1.
If j € I, then rad T; <n—1. Let z; be a central vertex of T}. We now
consider two possibilities.
Case 1: Suppose that |I] > 1. Then it follows that v,(T) <
< {un-1,u2n-1,u3n-1} + | U {z;}| +| U {z,}| = 3+ || + | L] and
J€EI3 JEL,
Yr(T) < {tn—1,u2n—2, usn—1,%2m, usn-1}|+| U {z;}|+| U {w;,2;}];
J€EIs JEIs
50 Tn(T) + v4(T) < 8 + 2|I3| + 3|I4|. However, p(T)>4n -1+ (n—
— D] + n|I3| + (2n — 1)|L4] > 5n — 2 + n|I3]| + (2n — 1)|L;]. Hence
2p(T)/n 2 10-2/n+2|I3|+(4—2/n) > 8+2|I3]+3|1s| > vo(T)+~4(T).
Case 2: Suppose that I] = 0. Then, if |I3| > 1, it follows that
Yn(T) < [{tin-1,usn—1}| + Ings{Zj}l + ]J.éJI4{93j}| = 2+ |I3] + |L4| and

7, (T) < '{un—lau2n—-27u2n—17u2n7u3n—1}|+lI3l+2|I4| < 54|13 |+2] Iyf;
50 Yn(T) + 72 (T) < 7+ 2|I3| + 3|14|. However, p(T) > 4n — 1+ n|I3] +
+ (2n — 1)|14]. Hence 2p(T)/n > 8 — 2/n + 2|L| + (4 — 2/n)|L] > 7 +
+2[I3] + 3[Ls] = ya(T) + 7,(T).

If [I3] = 0, then it follows that v,(T) < |{un_1,u2n_1,u3n_1}l +
+|jg1_4{1'j}| = 3+|I4| and v5(T) < |{un—1au2n—2,u2n7u3n~1}|+2lI4| =

=4+ 2|Ly; 50 Yo (T) + 4 (T) < 7 + 3|I4|. However, p(T) > 4n —1 +
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+(2n — 1)|I4|. Hence 2p(T)/n > 8 —2/n+ (4 — 2/n)|I4| > T+ 3|14 >
2 1n(T) + 7a(T).

This completes the proof of Lemma 4 and thus of Th. 1. ¢

That the bound in Th. 1 is best possible may be seen as follows:
Let G be obtained from a connected graph H by attaching a path of
length n — 1 to each vertex of H. (The graph G is shown in Flg 1.)
Then 7n(G) + 71(G) = 2p(H) = 2p(G)/n.

Fig. 1.

The fact that every maximal independent set of vertices in a graph
is also a dominating set motivated Cockayne and Hedetmiemi [3] in
1974 to initiate the study of another domination parameter. A domi-
nating set of vertices in a graph that is also an independent set is called
an independent dominating set. The minimum cardinality among all
independent dominating sets of a graph G is called the independent
domination number of G and is denoted by i(G).

The independent domination number of a graph and the dis-
tance domination parameters introduced earlier suggest yet another
distance domination parameter. A set I of vertices in a graph G is
Pcy-independent in G if every two vertices of I are at distance at least

'n apart in G. A Pcp-independent set of vertices in a graph that is also
a P<n-dominating set is called a P<y-independent dominating set. The
minimum cardinality among all P<,-independent dominating sets of a
graph G is called the P<,-independent domination number of G and is
denoted by i,(G). Hence i3(G) = i(G).

Before investigating relationships between the distance domina-
tion parameter i, and the distance domination parameters v, and v}
we need some additional concepts. A set of vertices X C V(G) has
property m,(n > 2) if and only if every nontrivial path of length £ <
< n-—11n G contains at least £ vertices of X. A set of vertices with
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property m, is called a P<y-cover of G. So a P<j-cover of G is sim-
ply a cover of G. The minimum cardinality among all P<,-covers of
G is called the P<,-covering number of G and is denoted by a,(G).
The maximum cardinality among all P, -independent sets is called the
Pgp-independence number of G and is denoted by f8,(G). Hence as(G)
is simply the covering number a(G) and f2(G) is the independence
number §(G). The next Gallai-type result generalizes a well-known re-
lationship between the covering number and independence number of a
graph [4].

Theorem 2. If G is a connected graph of order p > n, then

| an(G) + BalG) = p
Proof. We note that X is a P<,-cover if and only if V(G) — X is a

P<y-independent set of vertices. So if X is a P<p-cover of cardinality
an(G), then an(G) = |X| and [V(G) — X| = p — an(G) < Bu(G).
Similarly if Y is a P<p-independent set of vertices of cardinality B,(G),
P = Ba(G) = [V(G) = Y| 2 an(G). Thus an(G) + Ba(G) = p. 0

Allan, Laskar and Hedetniemi [1] showed that if G is a graph of
order p that has no isolated vertices, then v(G) + i(G) < p. We now
present a generalization of this result.
Theorem 3. If G s a connected graph of order p > n > 2, then

in(G) + (n — )1a(G) < p.

Proof. Let X be a P<,-cover such that (X) contains as few compo-
nents as possible of order less than n — 1. We show that (X) has no
components of order less than n — 1. Suppose (X) has a component
G, of order p; < n— 2. Since G is connected, and p > n, there is a
vertex s € S = V(@) — X that is adjacent with a vertex y in Gy and a
vertex z in V(G) — V(Gy). Since S is P<,-independent, z must belong
to some component Gy # G; of (X). Note that s is the only vertex of
S which is adjacent to a vertex (or vertices) in Gy, for if ¢ is any other
vertex of S that is adjacent to a vertex of G 4(¢,s) < n — 1, which is
not possible since S is P<,-independent.

Now if p(G1) = 1, let §' = (S — {s}) U {y}. Otherwise if p(G;) >
> 2, let z % y be a vertex of G; which is not a cut-vertex of G; and set
S§'=(8—{s})U{z}. Then S’ is a P<,-independent set of cardinality
|[V(G) — X|. Since X is a P<p-cover of cardinality a,(G), it follows
from Th. 2, that [V(G) — X| = p — an(G) = B,(G), i.e., |S'| = Bn(G).
However, then X' = V(G)— 5" is a P<,-cover of G of cardinality an(G)
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such that (X') contains fewer components of order less than n — 1 than
(X). This contradicts our choice of X. Hence (X) has no components
of order less than n — 1.

Since G is connected, every vertex in V(G) — X is adjacent with
a vertex in X and, consequently

Yn(G) £ Y1 ((X)).

Since (X) has no component of order smaller than n—1, it follows from

Th. A that
< p({X)) _ X[ _ aa(G)

() n—1 n—1 n-1"
The fact that 8,(G) = |V(G) — X| 2 1,(G) and Th. 2 now imply that
in(G) +(n = 1)1n(G) < an(G) + Bn(G) = p. O

The bound given in Th. 3 is best possible as we now see. Let
G be the graph shown in Fig. 1. Then i,(G) = v (G) = p(H) and
in(G) + (n — 1)7.(G) = np(H) = p(G). It is shown in [6] that if T is a
tree of order p > 2n — 1, then i,(T) + (n — 1)v5(T) < p.

References

[1]] ALLAN, R. B., LASKAR, R. and HEDETNIEMI, S. T.: A note on total
domination, Discrete Math. 49 (1984), 7-13.

[2] CHARTRAND, G. and LESNIAK, L.: Graphs and Diagraphs, Wadsworth and
Brooks/Cole, Monterey CA, 1986.

[3] COCKAYNE, E. J. and HEDETNIEMI, S. T.: Indpendence graphs, in: Pro-
ceedings of 5th Southeastern Conference on Combinatorics, Graph Theory and
Computing. Ulilitas Mathematicae, Winnipeg (1974), 471-491.

[4] GALLAI T.: Uber extreme Punkt- und Kantenmengen, Ann. Univ. Sci. Bu-
dapest. Edtvos Sect. Math. 2 (1959), 133-138.

[5] HENNING, M. A., OELLERMANN, O. R. and SWART, H. C.: Bounds on
distance domination parameters, J. Combin. Inf. Syst. Sci. 16 (1991), 11-18.

[6] HENNING, M. A., OELLERMANN, O. R. and SWART, H. C.: Relating
pairs of distance domination parameters, J. Comb. Math. Comb. Comp. (to
appear).




Mathematica Pannonica
5/1 (1994), 79 — 89

w-JORDAN NEAR-RINGS II

A. Benini

Facoltd di Ingegneria, Universita, Via Branze 38, 25128 Brescia,
Ttalia

S. Pellegrini

Facolta di Ingegneria, Universitd, Via Branze 88, 25128 Brescia,
Italia

Received June 1993
AMS Subject Classification: 16°'Y 30
Keywords: Near-rings, nilpotent near-rings, invariant series.

Abstract: In previous papers [3, 4] we have studied near-rings with invari-
ant series of ideals. In the present paper we study near-rings with invariant
series whose factors are without proper subnear-rings and we characterize
those whose zero-symmetric part is an ideal. Moreover we continue the study
of near-rings with invariant series whose factors are of prime order and we
provide a complete characterisation for those of length 2.

Introduction

In previous papers we have studied near-rings with invariant se-
ries of ideals. In [3] we observed that numerous results, particularly
concerning closure problems, do not depend on the near-ring structure
and therefore are valid in a more general ambit, that is for universal al-
gebras or, at least, for Q-groups. In [4] we considered several classes of
near-rings: simple (S ), simple and strongly monogenic (S;), No-simple
(S3), without proper subnear-rings (Ss), of prime order (Ss), and we
studied near-rings with an invariant series whose factors belong to Sy,
(w € {0,1,2,3,4}), called w-Jordan near-rings. While in [4] we turned
our attention to the zero-symmetric case, here we present the results
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of the study of finite 3-Jordan near-rings, completely characterizing
those whose zero-symmetric part is an ideal. Moreover, we continue
the study of the 4-Jordan near-rings, begun in [4], and we provide a
complete characterization for those of length 2.

Hereafter N will indicate a left near-ring and we refer to [10] with-
out mentioning this explicitely. In particular, we shall use the term
“mized” to describe a near-ring N, with Ny # {0} and N, # {0}. In
general Ny is a right ideal of N and N, is an invariant subnear-ring.
Furthermore, a zero-symmetric near-ring without proper N-subgroups
H such that HN = {0} is called A-simple. A near-ring is N-simple
if it is without proper N-subgroups, that is if the additive group N +
does not contain proper subgroups which are proper right ideals of the
multiplicative semigroup N'. N is Ny-simple if it is without proper Ny-
subgroups. In [7] a near-ring N is called p-singular if the order of N is
divisible by a prime number p but the order of every proper subnear-ring
of N is not divisible by p. A,(N) = {z € N/zA = {0}}, (Az(NV) =
= {z € N/Az = {0}) denote the left (right) annihilator of N and
A(N) = A,(N)N Ay(N), the annihilator of N; r(n) = {z € N/nz = 0}
denotes the annihilator of n € N; r(n) is always a right ideal. If N =
=N; D N2 D ... D N, = {0} is an invariant series of N, we will indi-
cate N;/Nit1, Ni/Nita,. .., Ni/Niyx respectively with N/, N/',... N}

and with fI, f',... f¥ the corresponding canonical epimorphisms.

1. 3J-near-rings

Definition 1. Let N be a finite near-ring. An a-series is an invariant
series N = Ny D N2 D ... D N, = {0} whose factors belong to S3
and such that, for every zero-symmetric N; and constant N ]' with ¢ <
< J, |N}| does not divide |N{|. The term a-near-ring describes a finite
near-ring with an a-series. ' '

Lemma 1. A mized a-near-ring N with an a-series

(a) N=NyDN;D...D>N, = {0}

such that Ny is zero-symmetric and N] is constant for everyi € {2,...,

n — 1} 18 isomorphic to No @ N.. Moreover there ezists in N another

series N = My D My D ... D M, = {0} such that M,_; ~ Ny, hence

zero-symmetric, and M]_, ~ N/, therefore constant, for every: € {2,3,
.,n—1}
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Proof. Since N] is zero-symmetric, Ny 2 N,.. Hence N, = (N3), + Ne.
Because the following factors are constant, for every : € {3,4,...,n},
N; 2 (Nz),. Because N, = {0}, we even get (N;), = {0}. Thus
N, is an ideal and Ny is without proper subnear-rings, in fact it is
isomorphic to N]. In [7] it was shown that a finite near-ring is without
proper subnear-rings iff it is a simple p-singular near-ring and, in this
case, its order is divisible by at most a prime number. Hence |Ny| = p®
(p prime) and by Def. 1, |N/| # p for every i € {2,... ,n — 1}.

Now we prove that |N * /No+ | is prime with p and consequently
Np is an ideal of N. In fact, if |N+/N;-| = kp, then |Nj| = kp and,
because |N3/N3| # p, we have |[N3| = kip. In this way we get |N,| =
= kp—2 p = 0 and thisis absurd. Thus |NJr /N(;F | is relatively prime to p,
|No| = pb and N:, which is normal, is the unique Sylow p-subgroup of
NY. Since the homomorphic image of a Sylow p-subgroup is contained
in a Sylow p-subgroup, N, ;_ is fully invariant in N . Therefore, since the
left translations are endomorphisms of N +, nlNg C Ny for every n € N
and N is an ideal of N. From this we can conclude that N ~ Ny @ N..

Finally, if we denote M; = N,;y1 + Ny, we have M,_; = Ny and
the series N = My D My D ... D Mp—1 D M, = {0} is the series
required. {

The following theorem gives a complete characterization of all a-
near-rings.
Theorem 1. A finite near-ring with an invariant series whose factors
belong to Ss is an a-near-ring iff its zero-symmetric part is an ideal.
Proof. Suppose N a finite nearring with an invariant series whose
factors belong to S3, and Ny « N. This series is a refinement of N O
D Ny D {0}. Therefore in such a series there are no zero-symmetric
factors that precede the constant ones. Thus this series is an a-series.

Conversely, let

(a) N=N,DN;D...D N, ={0}

be an a-series of a finite near-ring. First we show that in N there is
aseries N = My D M; D ... D M, = {0} such that the constant
factors precede the zero-symmetric ones. Let j be the highest index
of the series (@) such that N is zero-symmetric, Nit1se-w , Niyy are
constant and N J’ +k 18 zero-symmetric for every k& > h. Consider now

the subseries of (a) N; D Nj41 D ... D Njyp and its image
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(ﬁ) , vG:ijGj_HD...DGj+hDGj+h+1:{0}

under the homomorphism f;“H, where Gy = f;"H(Nt) for t € {j,
j+1,...,5+ H}. Since G} = G;/Gj4: is isomorphic to N}, G} is
zero-symmetric and G} is constant for every t € {j +1,...,j + h}.
Therefore the series (3) is an a-series of G satisfying the hypotheses of
Lemma 1. So applying Lemma 1, there is in G a series '

(v) G=F;DFjy1D...D Fjyn = {0}

such that Fjij is isomorphic to G’ and is the zero-symmetric part
of G, that is Go, whereas F; is isomorphic to G}, for every t € {j,
j4+1,:..,7+h—1} and therefore constant. Using Lemma 1 again, we
are able to say that Fy is fully invariant in G forevery t € {j,j+1,...,
iRy o

Let now Mt ——_(f]h+1)°(F) that is F, = M¢/Njtht1. We prove
that Mt is an ideal of N for every t € {j,5+1,...,i+k+1}. In fact
M:. j+h is a left ideal of N because every endomorphlsm of N; which fixes
Njtht1, fixes also M ;. Let e: Nj — N; be an endomorphlsm such
that e(N ]+h+1) C N;ih41- This endomorphlsm induces an endomor-
phism e in N]‘/Nj_;_h_;_l., put 6'(71]' +Nj+h+1) = E(?’Lj) +Nj+h+1. Let m
now be an element of M;;;. Obviously m + Njypt1 € Fjip, therefore
g'(m + Njtrt1) = e(m) + Njypy1 € Fjyp because, by Lemma 1 Fjyp,
is fully invariant in G. Hence there is an element m' € Mjy;, and an
element n € Njipt1 such that e(m) = m' 4+ n, thus e(m) € Mjis.
Since every left translation 7y, restricted to N; is an endomorphism of
N, which fixes Njtp41, we have nMj 4y C My, for every n € N. Thus
M]+h is a left ideal of N. Now we prove that M; s = NgNN; and, from
this, that M;4 is-a right ideal. If m € No N Nj, then fh+1(m) € Gy =
= Fjy1, therefore m € Mjyy. On the other hand, M;, is obviously
contained in N; and it is zero-symmetric because one of its ideals and
the respective factors are zero-symmetric. Thus we can conclude that
M4 1s an ideal of N.

Flnally we show that M; = M;in + Nt—l—l for every t € {],
j+1,...,7+ h} and thus, My, as a sum of two ideals, is an ideal.

The series () is obtained using Lemma 1, therefore Fy = Fyy +
—|— Gt+1, Where F]+h = Go Hence Mt/NJ+h+1 = ]+h/NJ+h+1 +
+ Nyt /Nj+h‘+1 and thus M; = Mj_+_h 4+ Neg1. Finally we observe that
M; 1, is exactly the zero-symmetric part of V; and consequently (N;),
is an ideal. ¢
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It should be noted that not all the finite 3J-near-rings are a-
near-rings. For example N = Ma(Zp),(l) p prime is a 3J-near-ring
(N 5 N, D {0} is a series whose factors are in S3) but Ny is not an
ideal.

2. 4J-near-rings of length 2

In this paragraph we study near-rings with an invariant series N D
D I D {0} whose factors are near-rings of prime order. Consequently
they are near-rings of the order pg, where p, ¢ are prime numbers. It
is well known that the additive group of such a near-ring is a direct or
semidirect sum of cyclic groups of prime order or is itself cyclic of the
order p?. We can also establish the following:
Proposition 1. 4 4J-near-ring of length 2 has only one proper ideal
or it i3 isomorphic to the direct sum of two of its ideals.
Proof. Let N DI {0} be the invariant series of a 4J-near-ring N with
N/I and I of prime order: that means I is a maximal ideal. If J is
another ideal of N, I+/J is also an ideal, thus I = Jor I® J = N.

From Th. 1 of [4] we know that a near-ring of prime order is
constant or zero-symmetric. In the latter case, it is either an A-simple
and strongly monogenic near-ring or a zero-ring. Thus, we will denote

by

. the class of constant near-rings;

6 the class of zero-symmetric near-rings;

A the class of A-simple and strongly monogenic near-rings;
(@) the class of zero-rings.

Moreover we will denote by [S,7] the class of near-rings with an in-
variant series N O I O {0} such that N/T € § and I € T, where
S, T € {n,n,A,O}. In this way, 4J-near-rings of length 2 are the
union of [n¢, 70} (19, 7e), [6,m0ls [Me,7e], where mp = AU O. More-
over we observe that the structure of the near-rings of [n,,n.] is that of
groups of order pg and therefore well-known.

Let N = A+ ,B be a semidirect sum of additive groups A and B.
By Clay method, every near-ring on N can be constructed but, gener-
ally, from a multiplicative view-point, isomorphic images of semidirect

(1)Ma(Zp) = Hom(Zp, Lp) + M_.(Zp), where M:(Lp) ={f: Ip — Ip/f is

constant}.
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summands are not even substructures. In [1] we study those functions
introduced by Clay that provide the semidirect summands with a well
defined multiplicative structure. We call ®-sum of near-rings A and
B, a near-ring N obtained by semidirect sum of the additive groups
of A and B with a suitable Clay function preserving the multiplicative
structure on semidirect summands.

CLASS [n;., 5]

The following theorem characterizes the near-rings belonging to
[ne, mol-
Theorem 2. A near-ring N belongs to [n,ny] iff N = A + ¢ B with
f({0,0)) = O4 and f(N) =id, where A € 5}, and B € 7.
Proof. If N € [n.,n;], then Ny is an ideal. Thus N is isomorphic to
No+ ¢ Nc, where f((0,0)) = On, and f(N) = id (see [1], Th. 1, Cor. 1).
Moreover, both Ny and N/Ny ~ N, are of prime order. Conversely,
suppose N = A + ¢ B with f({0,0)) = O4 and f(N) = id, where 4 €
€ ny and B € n.. Then A° is an ideal of N; A° = Ny; °B = N, and
N/A® ~ °B (see [1] Prop. 2). Whence N € [n%,n5]- ¢
By construction described in Th. 2 we obtain each element of
[7,mh]. We observe also that, because me,mg) = LAl U [0, O], an
element of [n.,ng] belongs to n., A] or to [n., O] according to the choice
of A in A or in O respectively.

CLASS [ng,n¢]

. The following theorem characterizes the near-rings belonging to

LIAL |
Theorem 3. A near-ring N belongs to [nf,n.] iff either N = A@ B,
where A € ny and B € n), or N i3 an abstract affine near-ring of order
pZ. v
Proof. Now the order of N is pg, where p, ¢ are prime numbers.

(i) Suppose p # g. In this case N D N, D {0} is an a-series, thus
N = Ny & N,, by Lemma 1.

(ii) Let p ='¢. In this case the order of N is p? and Nt = N: &)
&) N:. If Ny is an ideal of N, we still have N = Ny @ N,.. If N, is not
an ideal of N, we have N, Ny, = N,, because the order of N, is a prime
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number. Moreover r(N.) = {0}, due to r(N.) C Ng. Thus N, is a base
of equality and N is an abstract affine near-ring (see [10], 9.85).
Conversely, if N = A @ B, where A € n; and B € 7, it is clear
that the theorem holds. Let N now be an abstract affine near-ring of
order p2. Obviously both Ny and N, are of the order p and, since N,
is an ideal, N € [n},n.]. O
Corollary 1. A near-ring N belongs to [O,n] if N ~ A® B, where
A€ O and Benl.
Proof. Let N € [O,nl]. If Ny is not an ideal of N, then N Ny =
= N,, thus N, = NNy = (N.No)Ny = N.(Np)? = {0}, because Ny
is now a zero-ring. From this it follows that Ny is an ideal of N, thus
N = Ny @& N, where Ny € O and N, € n.. The converse is trivial. {
Corollary 2. A near-ring N belongs to [A,n.] iff either N ~ A® B,

where A € A and B € nl, or N 1s an abstract affine near-ring of order

p2.

In [2] we have shown a method for constructing abstract affine
near-rings with a given zero-symmetric part and a given constant part
(they are suitable A-sums). By using Th. 3 of [2], an abstract affine
near-ring of order p* can be characterized as a A-sum of a field iso-
morphic to Z, and the constant near-ring on Z,. We can also note
that near-rings belonging to [n},n.] N [, ] are direct sums of their
zero-symmetric and constant parts. Those belonging to [ng, 7.\ [7%, 7]
are abstract affine near-rings of order p?. Those belonging to [, 74] \
\ [76, 7] are ®-sums (not direct sums) of two near-rings of prime order
satisfying the conditions of Th. 2.

CLASS [ng, no]

We now study the subclasses of [ng,ny]. Near-rings belonging to
[0, O] are characterized by the following
Theorem 4. A near-ring N belongs to [0, O] iff |N| = pq and there is
an ideal I of N such that N2 C I C A(N).
Proof. If N € [0, 0], obviously |N| = pq and N has a proper ideal I,
where I is a zero-ring of prime order including N2. Moreover, suppose
now that NI # {0}. We have nl = I for some n € N and, because of
N? C I, I =nI =n%I = {0}, a contradiction, due to I being a proper
ideal. Thus NI = {0} and I C A4(NV). Now let N2 # {0}, that means
nN = I for some n € N. Thus N2 = I and IN = N?N = NN? =
= NI = {0}. From this it follows I C A(N).
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Conversely, let N be a near-ring of order pg with a proper ideal
I such that N2 C I C A(N). Obviously the orders of I and N/I are
prime numbers. Moreover, by N2 C I C A(N), both I and N/I are
zero-rings, thus N € [0, 0]. ¢
Corollary 3. A near-ring N belonging to [O, O] is a zero-near-ring iff
I C A(N), where I is as in Th. 4.
Proof. Let N be in [0, O] and, by Th. 4, suppose the ideal I to be
strictly contained in A(N). Then A(N)/I = N/I implies A(N) = N.
The converse is trivial. {

Between near-rings of [0, O] we can characterize the non-zero
near-rings by the following
Theorem 5. A near-ring N with N? # {0}, belongs to [0, O] iff |N| =
=p? and N3 = {0}.
Proof. Let N € [0, 0] and N? # {0}. From Th. 4 and Cor. 3 it turns
out that I = A(N). Thus N® = NN? C NI = {0}. Moreover, due to
an element n € N so that nN = I. we have imvy, = nN = I = ker+,.
Thus |N| = |[I|*> = p?. The converse is trivial. ¢
Corollary 4. A near-ring N, where N2 # {0} and N isa cyclic
group, belongs to [0, O] iff |[N| = p? and A(N) # {0}.
Proof. If N € [0, O], the corollary holds trivially. Conversely, let N
be a near-ring with N2 # {0}, [N| = p?, A(N) # {0} and suppose
that N* is a cyclic group. It should be noted that N has a proper
ideal A(N), which is a zero-ring of order p. Moreover, due to |[N| = p?,
N/A(N) is also of order p. It remains to show that N/A(N) is a zero-
ring. Because of N? # {0}, we get v, # O, for some n € N. Since

¥n(N) is an additive subgroup of N+, if 7, # On then 4,(N) = N or
Yn(N) = A(N). Now, 7,(N) = N implies kervy, = {0} and the last
condition is absurd, because of A(N) C kervy,. Thus nN = A(N) or
nN = {0}. In each case N2 C A(N). ¢

Theorem 6. A near-ring N belongs to [O, O] iff it arises by defining
a Clay function F': N — End(N) on an additive group N of order
pq, where F(N) C Endy(N)® and F(I) = {On}, I being a normal
subgroup of N.

Proof. Let N € [O,O]; obviously |N| = pg. Let I be an ideal of
N. From Th. 3 we have I C A(N), that is IN = {0}. Thus the
Clay function coupled with the product of N, satisfies the required
conditions. '

(2)  End;(N)={f€End(N)/f(N)CICker f}.
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Conversely, let N be a group of order pq, let I be one of its normal
subgroups and F: N — End(N) a Clay function such that F(N) C
€ End;(N) and F(I) = {Oy}. Obviously I C ker f, Vf € F(N), thus
NI = {0}, that means I is a left ideal of N' and a zero-ring. Analogously
f(N)C I,Vf € F(N), thus N? C I, that means I is a right ideal of N
and N/I is a zero-ring. Whence N € [0, 0]. { :

Near-rings belonging to [A4,A] or to [0, A] are characterized by
the following theorems.

Theorem 7. A near-ring N belongs to [A, Al iff N ~ A® B, where
A,Bc A. "
Proof. Let N € [A,A] and let N D I O {0} be the invariant series
such that N/I and I belong to A. From Th. 6 of [4], we know that
the radical J5(IV) is nilpotent and N/J,(N) is a direct sum of A-simple
and strongly monogenic near-rings. So Jo(N) ¢ {N,I}. If it is also
J2(N) # {0}, then Jo(N) + I is an ideal of N and, recalling that I is
a maximal ideal, Jo(N) @ I = N. Thus N/I ~ J,(N) is nilpotent, and
this is absurd. So J3(N) = {0} and the theorem holds. ¢

Theorem 8. A near-ring N belongs to [0, A] if N ~ A@® B, where
A€ O and B e A.

Proof. 1t is trivial, by Th. 4 of [4]. ¢

It should be noted that [0, A] is included in [4, O]. The following
example shows that the inclusion is strict.

Example 1. As additive group we consider the symmetric group of
degree 3 and we define the following product

* |0abcazzuy
01000000
a|l0aaa00
b0 acbdbyz
c|0abdbcazzuy
z |1 000O0O0O
y1000000O

In this way N is a near-ring, I = {0, z,y} is the only ideal of N, I € @
and N/I € A. Thus N € [4,0], but N ¢ [0, A]. We can note that
the near-ring under definition is isomorphic to a ®-sum I + ¢ A, where
A = {0,a}, and this ®-sum is not a direct sum. In general, proper
®-sums (not direct sums) of [A4, O] are characterized by the following
theorems.
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Theorem 9. Let N be a proper ®-sum, then N belongs to [A, O] iff N ~
~ A+ B, where B € A, A € O and it is the only ideal of N, f((0,0)) =
= Oa, ?((070)) = O, ?a,b = ?O,b Va€ A, Vbe B.

Proof. Let N be a proper ®-sum of [A4,O]. Then N has a left invari-
ant subgroup B and only one proper ideal A belonging to . Thus
we can represent N as A + 3B and the theorem holds by Prop. 4 of
[2]. Conversely, let N = A+ ¢B, where A € O and B € A, and let
7((0,0)) = O, F((0,0)) = Op, Fup = T (Va € 4, Vb € B). From
Prop. 4 of [2] we see that N is zero-symmetric, A° is an ideal of N
isomorphic to A, that means A° € O, and also N/A° ~ °B ~ B ¢ A.
Thus N € [4,0]. ¢

Theorem 10. A near-ring N belonging to [A,O] such that Nt =

= A" ®B" and where |A| and |B| are prime numbers p and q, with
p £ q, can be represented as a ®-sum.
Proof. Let N € [4, 0], with N = A" @B" and let |A| = p, |B| =q,
p # q. Because N has a proper ideal, this one must be equal to A° or
°B. Suppose A° be the ideal of N. That means °B € A. If nb = 0,
Vn € N, Vb € B, then n(a+ b) = na € °A, Va € A, whence N? C A°,
This implies °B ~ N/A° € O, which is a contradiction. Thus, there is
an n € N for which n°B # {0}. Because n°B is a proper subgroup of
N of order ¢ we have n°B = °B. Thus °B is a left invariant subgroup
and, by Th. 1 of [2], N=A+B. ¢

Finally, among ®-sums of [4, 0] such that their additive group
is a direct sum of two groups, we can characterize the non-monogenic
case.

Theorem 11. Let N = A+ ¢ B belonging to [A, O] with Nt =4t @
&) BT, Then N s non-monogenic iff N € [0, A].
Proof. If N € [0, A], then N ~ A ® B, by Th. 8, and, obviously, it is

not monogenic.

Conversely, let N be a non-monogenic near-ring with N * :A+63

GBB+, where N = A + B belongs to [0, A]. To show that N = A @
@ B, it is sufficient to prove that °B is a right ideal of N. Firstly, we
prove that f,3 = O4, Va € A, Vb € B. Suppose > = 0. We have
({a,8))*(a,0) = (fa,5(a), b*){a,0) = (0,0), but also {a,b)({a,b){a,0)) =
= (a,b){fap(a),0) = (f2,(a),0). Thus f?,(a) = 0 and f,5 is not an
automorphism. Whence f,, = O4. Suppose now b% # 0. Then b°B =
= °B and f,3 # O4 imply f,3(A) = A°. Thus (a,b)N = N, but
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N is not monogenic, whence f,, = O4. For this reason ({a,b) +
+(0,8)){a’, ') —(a,b)(a’,”) = {a,b+b)(a',b')—(a,b)(a’, ') = (f, ;,5(a"),
(b+B)) — (fas(a'), b8') = (0, (b+ B)Y' — b} € °B. Then °B is a right
ideal. O
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Abstract: In part I of this paper the four parameter motions of flag space,
which move some of the points on spherical trajectories, were described. Part
II. will now treat with three parameter motions. A complete classification
of these motions is given. The two and one parameter cases turn out to be
Bricard motions or motions, which can be imbedded into more parameter

cases. This is why the posed problem is entirely solved for the case of flag
space.

In J. Lang [1] wurde ein Weg beschrieben, der es erlaubt, Bewe-
gungsvorgange des Flaggenraumes, welche sphérische Bahnen besitzen,
systematisch zu untersuchen. Im ersten Teil [2] dieser Arbeit! wur-
den die vierparametrigen Bewegungsvorgange mit dieser Eigenschaft
beschrieben, indem unter Verwendung eines Ubertragungsprinzipes die
Geraden eines sechsdimensionalen projektiven Raumes beziiglich einer
Gruppe (10) klassifiziert wurden. Die fiinfparametrigen Bewegungsvor-
gange, welche Punkte mit sphérischen Bahnen besitzen, sind nicht von

1Die Verweise auf die Formeln (1) bis (74) beziehen sich auf diesen ersten Teil
der Arbeit.
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Interesse, da ihnen Punkte (0-dimensionale Unterrdume) des Raumes
P(V) entsprechen. Sie sind entweder trivial oder fiihren nur die Punkte
einer vollisotropen Geraden des Gangraumes auf Sphéaren (siehe J. Lang
[1], Satz 2).

Die Klassifikation der Ebenen des ,,Bedingungsraumes P(V)” im
Abschnitt 2 von [2] liefert die dreiparametrigen Bewegungsvorgange
des Flaggenraumes mit sphéirischen Bahnen dreidimensionale Teilrau-
me von P(V') (Abschnitt 3) ergeben zweiparametrige Bewegungsvor-
gange mit spharischen Bahnen. In beiden Abschnitten werden wir auch
auf Bricard-Bewegungsvorgange stofien, welche (unter Voraussetzung 4-
maliger stetiger Differenzierbarkeit) schon von O. Réschel [3] betrachtet
wurden.

Wie wir in Abschnitt 4 zeigen kénnen, ergeben sich bei Betrach-
tung der vier- und héherdimensionalen Unterrdume des Raumes P(V)
Teilzwanglaufe mehrparametriger Bewegungsvorgéange, die schon in den
vorangehenden Abschnitten beschrieben worden sind (siehe auch Fuf}-
note 5). Somit ist die betrachtete Fragestellung mit den hier behandel-
ten drei- und zweiparametrigen Bewegungsvorgangen vollstandig gelost
(siehe dazu FuBinote 6).

2. Klassifikation der zweidimensionalen Bedin-
‘ gungsraume

Wir wollen zunachst alle jene Bewegungsvorgénge untersuchen,
welche den Ebenen des Bedingungsraumes entsprechen. Sei T eine
Ebene im Bedingungsraum P(V). Der Raum Wy ist definiert durch
W = wg = 0.

2.1. Der Schnitt von T mit dem Raum Wy4 ist ein Punkt

Wir setzen also
Fall 1: TNWye =: K. Die Ebene T sei die Verbmdungsebene dreier

Punkte T = [GK H|, wobei wir neben K € Wys noch G € Hy \ Wy
und H € Hg \ Wy wahlen. Wir setzen an?:

2Wir haben zu beriicksichtigen, dafi der Punkt K ein ausgezeichneter Punkt
der Ebene T' ist, wohingegen die Punkte G € Hp und H € Hg willkiirlich in der
entsprechenden Spur T'N Hy bzw. T N Hg gewahlt wurden. Da wir aber Aussagen
erwarten, die bezliglich der Gruppe (10) invariant sind, haben wir diese Punkte bei
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G...(0:v14+0Kk1:v2 + 0Ke:y3 + 0Kz Ya + OKat vs + oK1 1)
(78)  K...(0:k1: Kot K3t Ka: k5:0)
H...(l:x1+7r1:x2 + Th2: X3 + TK3s: X4 + TR X5 + TKs:0).
Man beachte, dal die Bedingung x3 # 0 oder auch x4 # 0 beziiglich
(10) invariant ist. Wir konnen also unterscheiden:
Fall 1a: k3k4 # 0. Wir setzen k3 = 1 und erhalten3:

G...(0:0:42:0:0:0:1)
(76) K...(0:0:0:1: ky: 65: 0)

H ... (L:x1:x2:0: x40 x5: 0).
Je nachdem*, ob

L. X4 7é 07
2. xa =0, x2#0, oder

3. x2=x4=0, xs#0
ist, 16st man das aus den Bedingungen G, K, H
G...72Ys + Y5 =0
(77) K... Y5+ Yy + &5Y5
H.. Yo+ x1V1+x2Ya + xaYa + xsYs =0
und der Bedingung (13) bestehende System geeignet auf und

erhélt (78), (79) bzw. (80) also Normalformen der entsprechenden
dreiparametrigen Bewegungsvorgange:

r=zx+ tl
2
(78) J =y -+t + X1K4t1+X2K4fX2:‘X5H4t3+K4t1 — Ksts Y4 ?é 0.
2
5= g X1t1+x;:2+xﬂam +i3y + X1‘Y4t1+X2‘Y4t;:'X5‘I4t3+‘r4t1 — ot

der Suche nach Normalformen zu spezialisieren: Fir die im folgenden verwendeten
Parameter o, 7 sind geeignete Werte zu wahlen.
3Mit Hilfe von (10) erhalten wir bei

_ —7Y3Kk4 + K374 + K2

—Y3K4Ks — YaKks + 2K4Y5 + K2Ks
ty = y tp = —kK1, o=

2 2/&‘,4 ’
—Y3K4 + va — K2 —Y3K4 — Y4 + K2
tg = —m + Kiys, te = ‘ y 0= , T= —X3
2K4 2Kk3K4

die angegebene Normalform (76).

*Der Wert x4 andert sich beim Ubergang auf die Normalform (76) nicht mehr;
ebenso dndert sich im Fall x4 = 0 der Wert x5 beim ﬂ'bergang zur Normalform
nicht. Die entsprechenden Fallunterscheidungen sind also, nachdem + = —x3 gesetzt
wurde, einfach zu treffen.
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T=2z+1t

(19)  gemy- MATXEINL gk, xa #0.
7=zt ten +tpy + XN
T=z+1

(80) g=y+t2x+wﬁ—/{4t3 xs # 0.

X5
zZ=2z+1lzx — (,%tl + t%) Yy — Yol — 1als

Bei x2 = x4 = x5 = 0 erhidlt man einen Bewegungsvorgang, der ein
Teilzwanglauf eines vierparametrigen Bewegungsvorganges (siehe Ab-

schnitt 1) ist®.
In jedem dieser unter Fall 1a zusammengefafiten Typen betrachten

wir den Schnitt der Ebene T = [GK H] € P(V) mit der Kegelfliche ©.

Aus der Parameterdarstellung der Ebene T
(81) (wo:...:wg) =
= (pa2: X12: Y20 + X2f2t fh1: Kapiy + Xafio: K51 + Xs/h2: fho)

und (8) erhalten wir die Gleichung

(82)  TNO...7aup + Xopopa = Kap] — Xapaps = 0
des Schnittes T'N ©. Genau bel o
(83) Y2 =4 =x2=x4=0

ist ' C ©. Eine Parameterdarstellung jener Punktmenge des Gang-
raumes, deren Elemente bei einem Bewegungsvorgang des betrachteten
Falles Spharen durchlaufen, La.nn fur _]eden der angefuhrten Unterfalle
von Fall 1a durch

H1K4 +#2X4

. Ks + X
(84) :1:0(/1‘0’.[1'17/1'2) = _T’ yO(IuOHU'lnu'Z) = M_

Ho
angegeben werden, wobei (82) zu berticksichtigen ist. (84) ist genau
dann die Darstellung einer isotropen Ebene, wenn

SImmer dann, wenn-die Schnittkurve zwischen dem Raum T und der Hy-
perflache © zerfallt, ist der zugehorige Bewegungsvorgang Teil eines vierparamet-
rigen Bewegunsgsvorganges,-dér schon in Abschnitt 1 behandelt wurde.  Die Un-
tersuchung- solcher Bewegungen ist nur dann interessant, wenn die Menge jener
Punkte, die auf spharischen Bahnen laufen, sich von jener des vierparametrigen
Bewegungsvorganges unterscheidet. Dies ist hier nicht der Fall.
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(85) KaX5 — Xaks =0

ist. Die Punktmenge ist also im allgemeinen eine vollisotrope Zylin-
derfliche 2. Ordnung®. Bei (85) degeneriert die Punktmenge (84) in
eine isotrope oder vollisotrope Ebene und es ergibt sich ein Bewe-
gungsvorgang, den wir hier nicht gesondert betrachten miissen (siehe
Fufinote 5).

Ist (85) nicht erfiillt, so zerfallt die vollisotrope Zylinderflache 2.
Ordnung, deren Punkte sphérische Bahnen durchlaufen, genau dann,
wenn die Schnittkurve T'N © im Bedingungsraum selbst singulér ist,
also bei '

(86) ’i4X§ — 72xi = (.

Die Typen (78), (79) umfassen auch Fille singulirer Punktmengen;
diese bilden jeweils ein Paar isotroper oder vollisotroper Ebenen, die
im Sonderfall auch in die absolute Ebene fallen kénnen. Beim Typ (80)
ist die Punktmenge stets singular.

Die Bahnsphéren sind aus (9) zu erhalten und besitzen die
Darstellung

popzz? 4 (Hopak + popiaX1 — 21 p2ks — 2ulxe)z+
+pomy + pgz + E = 0.
Ihr Radius ist gegeben durch

(87)

(88) Rpo, i, ) = =
Der Fernscheitel der Bahnsphare hat die Koordinaten
(89) U...(0:0: —po: p1).

Wir haben damit den

Satz 1. Im Fall la ergeben sich Normalformen der Gestalt (78),
(79), (80). Die Punkte mit sphirischen Bahnen erfillen eine woll-
1sotrope Zylinderfliche zweiter Ordnung, welche durch (82) und (84)
gegeben ist. Die zugehorigen Bahnsphdren — thre Radien und ihre
Fernscheitel sind durch (88) und (89) gegeben - sind durch die Glei-
chung (87) beschrieben. Ist (83) erfillt, so handelt es sich um einen

®Die Flachen zweiter Ordnung des Flaggenraumes wurder systematisch klas-
sifiziert in [4]. Die hier auftretenden Zylinderflichen gehoren im allgemeinen zum
Typ 32 der dort angegebenen Klassifikation, in speziellen Fallen zum Typ 33, 43
oder 55.
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Bricard- Bewegungsvorgang. Alle Punkte des Gangraumes werden auf .
Spharen gefihrt. Der Bewegungsvorgang gehb'rt dann zu Typ (80).
Zwei Zwangliufe, die ‘dieselben Invarianten” 72,/{4,&5,)(2,)(4,)(5 be-
sitzen, sind konjugiért beziglich der Gruppe G( ' »
Der Bncard Bewegungsvorgang aus (80) ﬁndet sich auch in O.
Roschel [16]. - '
Man beachte, dafl auch x3 in (75) eine Invariante sowohl beziiglich
der Gruppe (10)" als auch bezughch des Ansatzes (75) ist. Wir unter-
scheiden also: - : '
Fall 1b: k3 =0, k4 # 0. Sei vorerst xs # 0. Mit (75) und Ky =1
erhalten wir® '
G...(0:0:92:0:0:0:1)
(90) , K...(0:k1: £2:0:1:0:0)
(1X10X30X50)

Daraus' gewinnen wir die Normalform

rT=z+1
oo S 2
(91) § =y +tpz — XeEXhEn X3 # 0.
z =z — (K1t1 + Kala)z + t3y — 7Yaly

Die Punkte, welchen spharische Bahnen zugewiesen sind, ergeben sich
aus :

(92) 1"0(#07:“17/“'2) = &7 yO(,UO,,Ul,‘u,Z) = ,U,_2X5
Ho ‘ Ho

und der Gleichung _

(93) pavz + popi ke — papaxs = 0.

Dieser vollisotrope Zylinder zweiter Ordnung zerfallt genau dann, wenn
entweder x5 = 0 ist (eine isotrope Ebene) oder wenn

(94’) ' ' ) o . me=0

gilt. Bei (94) zerfillt die Menge 'é,‘ller’ ‘sphia',riksdri gefiihrten Punkte in
eine vollisotrope Ebene v...u; = 0 und eine isotrope Ebene, welche

"Eine geometrische Deutung der aiiftretenden Invarianten wire eirie reizvolle
Aufgabe, welche aber vom Umfang den Rahmen dieser Arbeit sprengen wiirde.

BMit ty = vxz:).(iszx__‘%., ty = ks, to = 2JsXatrsxa— ';z;ﬂsm 'Y4N5X3 t; =
— EKi1sox4-— 'Y1X3+N1'Y4X3 R1X2—Y8KEXS 4 — _,),3 o = X2TK2X4—7 Y4X3 o= _yy
7 - ) 3. N ; i

erhalten wir aus (75) mit Hilfe von (10) die Gestalt (90)



Bewegungsvorginge des Flaggenraumes mit sphdrischen Bahnen IT 97

durch po: o = x3: k2 und (92) gegeben ist. Die Bahnsphéren werden
durch

(95) papoz” + (Hop1 sy + popax1 — 2u1p2)e + popaxsy + upz +E =0,
ihre Radien durch (88) und ihre Fernscheitel durch

(96) U...(0:0: —po: p2xs)

festgelegt.

Ist hingegen x3 = 0, so ergibt sich in Fall 1b ein Bewegungsvor-
gang, der schon in einem vierparametrigen Bewegungsvorgang (siehe
FuBinote 5) enthalten und deshalb hier nicht von Interesse ist.

Fall 1c: k4 = 0,k3 # 0. Sei etwa k3 = 1. Wir erhalten nur bei

x4 7 0 ein interessantes Resultat: Die Normalform des Unterraumes T
wird aufgespannt von den Punkten®

G...(0:0:792:0:0:0:1)
(97) K...(0:0:k9:1:0: 65:0)
H .. . (1:x1:0:0: x4: x5:0).

und wir errechnen daraus die Normalform des Bewegungsvorganges zu

r=z+ tl
(98) g =Y + tz.’E - /‘622‘52 - I‘C5t3 X4 :,é 0.
2
5=y — taxs+tix1+1; z + t3y — 1ata

Xa
Die Punkte mit sphéarischen Bahnen sind gegeben durch

ks +
(99) -'130(/.110,#1,,&2): X4/l27 yO(“O?Ml;ﬂQ) = M
Ko Ho
und die Gleichung
(100) —Xalt1 2 + 721“’% + Kolgy = 0.

Das ist die Darstellung einer vollisotropen Zylinderflache zweiter Ord-
nung, welche genau fiir

(101) Y2y = 0

in ein Ebenenpaar (v, = 0) oder eine Doppelebene (k5 = 0) zerfallt.
Der Fall k5 = 0 ist also nicht von Interesse (siehe Fuflnote 5). Die
Bahntragersphéaren sind von der Gestalt

SWir setzen in (75) und (10) to = =i, tp = —&K1, tc = —v3ks + 5 +

K5X2—KaksX — _ _ K2X3—X2 _ —Y3xatXx2—kK2X3 —
+ X2x4 Lty =r1y3 — M, te = 2R 0 = s , T = —X3.
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(102)  popox® + (popax1 — HaX4)T + popry + popzxaz + E =0,

ihre Radien sind durch (88), ihre Fernscheitel durch (89) gegeben.
Fall 1d: k3 = k4 = 0. Dieser Fall ist nur fir kaxsxsxs # 0
interessant!?. Wir setzen also k, = 1. Fall 1d liefert!!

G...(0:0:0:0:0:0:1)
(103) K...(0:9:1:0:0: k5:0)
‘ H .. .(1:x1:0:x3:x4:0:0).

Wir erhalten die Normalform des Bewégungsvorganges als

T = "Cl? + tl A ‘
(104) § =y — (t1k1 + taks)z + ta . xa #0.
F=g o ettty gy oot

X4
Die Punkte mit sphérischen Bahnen sind gegeben durch
ks M1

(105) zo(Ho, pas p2) = 2 yo(puo, pa, p2) = :
.o - ,LL() . /1‘0

wobei die Werte po: pi1: g2 der Gleichung
(106) ' Kaflopts — X3XaHs =0

geniligen missen. Das ist die Darstellung einer vollisotropen Zylin-
derfliche zweiter Ordnung, welche genau fir

(107) KoksX3Xxse = 0

in eine isotrope Ebene degeneriert. Die Bahntragersphéaren sind von der
Gestalt

(108) papoz® + (popzks — pofaX1 —265X4)T + pHopaXay +paz +E = 0,

ihre Radien sind durch (88), ihre Fernscheitel durch (96) gegeben
Wir fassen zusammen:

10Man beachte, daBl die Werte kg, k5, X3, Xa Wegen K3 = K4 = Kg = Xf; =
= 0 invariant sowohl beziiglich (10) als auch beziiglich des Ansatzes (75) sind; diese
Fallunterscheidung ist also auch vor dem Ubergang zu einer Normalform sinnvoll.

1'Wir wihlen hier fg = s, t = Ja_mxsixw_'u_x;—_wm te = Y3vaks —
—V1X4—K17Y83Y4Xe+K1Y2Xa— 73K5X4 Y3X5—Y3V4K5X3—TV3K5X2 t
e =

- Yok + 5, tg =

=" —v3, 0 = Y374 — 72, T = YaX4 + YaX3 — X2 und erhalten aus (75) die Gestalt
(103).




Bewegungsvorgange des Flaggenraumes mit sphdrischen Bahnen IT 99

Satz 2. In den Fallen 1b, lc, 1d ergeben sich Bewegungsvorginge mié
Normalformen (91), (98), (104). Die Menge der sphdrisch gefihrten
Punkte 1st jeweils durch (92) und (93), (99) wnd (100), (105) und (106)
gegeben. Sie i3t im allgemeinen eine vollisotrope Zylinderfliche zweiter
Ordnung, in speziellen Fillen auch ein Paar vollisotroper Ebenen oder
eine einzige vollisotrope Ebene. (91) wird bei v = k2 = x3 = 0 # xs
zu einem Bricard-Bewegungsvorgang. Unter (98) treten keine solchen
Spezialfille auf. Bei (104) werden genau dann alle Punkte des Gang-
raumes auf spharischen Bahnen gefihrt, wenn neben kg = x3 = 0 noch
K5, Xa 7 0 erfillt ist. Die in (91), (98), (104) angegebenen Koeffizienten
Yis ki, Xi (1 € {1,...,5}) sind Invarianten.

2.2. Der Unterraum T schneidet Wyg nach einer Geraden k.

Fall 2: TNWye = k. Sei also T' = [Gk] mit G ¢ Wys. Wir schreiben
die Gerade k als Verbindungsgerade zweier Punkte k = [K L] an, wobei
wir K...(0:K1: 691 k31 k41 65:0) und L...(0: Ag: Ag: Azt Mgz A5: 0) anset-
zen. Die Unterraume Wyge...wy = wy = wg = 0 und Wy ... wp =
= wy = wg = 0 sind invariant gegeniiber (10). Wir nehmen vorerst an,
daB die Gerade & jeden dieser beiden Teilraume in genau einem Punkt
trifft und daf} diese beiden Punkte verschieden sind.

Fall 2a: kNWyse = K # L =kN Wy, T ¢ Hg. Wir setzen

an'?:

G...(vm +ok1+7Aiy2 +oka + TA2iy3 + oK3 + TA3: Y4+
(109) + 0k +TAYs + 0Ks + TAs: 1)

K.. . (0:k1:K2:0:1: £5:0)

L...(0:A1: A2:1:0: A5: 0).

Wir erhalten mit Hilfe von (10) aus diesem Ansatz bei geeigneter Wahi
von tg4,ty,te, tq,te, 0, 7 die Gestalt

12Die Punkt K, L sind in diesem Fall ausgezeichnete Punkte der Ebene T'. Der
Punkt G ¢ Wys hingegen wird willkirlich in T\ Wys angenommen. Wie im Fall 1
haben wir bei der Suche nach Normalformen zu spezialisieren: Fiir die verwendeten
Parameter o, 7 sind geeignete Werte zu wahlen.
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G...(7:0:92:0:0:0: 1)
(110) K...(0:£1:0:0:1:0: 0)
L . (0: A1:0:1:0: A5: 0).

Die zugehorige Normalform des Bewegungsvorganges ist:

IT=cx + tl
(111) J=y+taz —t1A1 —t3)5
zZ=z—rih1z+ tsy — 72t2 — 70t%
Die Punkte :
A
(112) = zo(po, pa, p2) = % o(o, ir, piz) = 2322
0 .

fir die die Bedingung
(1) Yoo — papz =0

erfiillt ist, werden auf spharischen Bahnen gefiihrt. Diese vollisotropen
Zylmderﬂache zwelter Ordnung ist genau bei

singulér Sie degeneriert bei A5 = 0 in eine isotrope Ebene bei v, =0
in ein Paar isotroper Ebenen, von denen die eine vollisotrop ist. D1e
Bahntrigersphiren sind von der Gestalt

(118) - . povoz? 4 (11— pads — 2u170)7 + p2y + poz + E = 0,

ihre Radien sind gegeben durch R = —ﬁ, ihre Fernscheitel durch U ...

.+(0:0: —po: 2). Man beachte, dal in diesem Fall auch Bewegungs-
vorgange inkludiert sind, bei denen alle angegebenen Punkte speziell
auf ebenen Bahnen gefiihrt werden (v = 0).

Foll 2b3vk C Woge, k ¢ Woas, T ¢ Hg. Man zeigt durch Rech-
nung, dafl dieser Fall im Sinne von Fufinote 5 nicht von Interesse ist.
Dasselbe gilt fiir:

Fall 2¢: k C W046, k ¢ Wogs, T ¢ Hﬁ.

Fall 2d: k trifft den Schnittraum Wyses = Wiz N Wyse in genau
einem Punkt K. T ¢ Hg. Wir setzen vorerst
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(Y0171 + oK1 + TA11 72 + 0Ky + TAg: 73 + oKz + TAa:
tvat ok +TALYs +oks +TAs: 1)

K...(0:K1:k2:0:0: x5:0)

L...(0: A1 4 pr1: Ag + pra: 1 Agt As + prs: 0).

(116)

Bei ky # 0 ergibt sich (wir setzen k; = 1) nach geeigneter Wahl von
ta,tb,tc,td,d, T’ﬁ

G...(7:0:0:0:0:0: 1)
(117) K...(0:£1:1:0:0: 65: 0)

L...(0:0:0:1: Ay # 0: A5:0).
Auch hier ist (bei 4 = 0) der Fall, daf§ alle betrachteten Punkte ebene
Bahnen besitzen, miteingeschlossen ( Darboux-Bewegungsvorginge).

Nur im Fall ks 5 0 ist ein (im Sinn von Fufnote 5) interessantes Re-
sultat zu erwarten. Die Normalform lautet dann:

r=1z-+ tl
(118) —y_ =1 + tz.’l! -+ M#:;KMZ — /\4t3 )\4/45 75 0.
zZ=2z + t3(1} — —Kltlz;nztz Y — ’)’ot%

Die Punkte jenes vollisotrbpen Zylinders ® zweiter Ordnung, der durch

. K + A
(119) zo(po, 1, p2) = M%, Yoo, 1, p2) = ‘E‘/ﬂm_ﬂ,

und
(120) popa — Aaps = 0.

bestimmt ist, durchlaufen spharische Bahnen. & ist unter den obi-
gen Voraussetzungen jedenfalls reguldr. Die Bahnsphéren sind gegeben
durch

(121) toY¥oz® + (p1k1 — 2paXav0)T + pay + poz + E = 0,
ihre Radien werden angegeben durch R = — —2—1%, ihre Fernscheitel durch
U... ... (0:0: —po: po) festgelegt.

Ist kg = 0, so ergibt sich fir k1 Ay + k5 # 0 ein Fall, der sich als
nicht interessant erweist.

Ist ko = 0 und ist kK1 Ay + k5 = 0, so konnen wir k1 = 1 setzen.
Nach geeigneter Wahl von t,, 3, t.,tq,0, T, p erhalten wir aus (116) die
Normalgestalt
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G...(70:0:42:0:0:0:1)

122) K...(0:£1:0:0:0: —k1A4: 0)
L...(0:0:0:1: Ay # 0: A5: 0).

Die Normalform des Bewegungsvorganges lautet dann:

IT=z+4+1t
(i23) =y +taz— T — Aty A #£0.
zZ=z+13T+ ﬁtly — Yoty — Yot2
Die Punkte

—K1Ag i1 + Aspig
Mo,

(124) fﬂo(ﬂo-,#l,ﬂz)# )\4‘%, yo(ﬂo,ﬂl,,uz)_ =

mit -der Eigenschiaft
(125) Napd —yapZ = 0

erfiillen ein Paar vollisotroper Ebenen des Gangraumes, die fiir y4\y >
> 0 reell und verschieden sind. Sie werden auf Spharen, bei vy = 0 in
Ebenen, gefiihrt, welche in der Gestalt (115) gegeben sind.

 Fall 2e: T C Hg. Nach J. Lang [1], Satz 2 (b), kann man, wenn
man triviale Falle auer acht 1aft, die Punkte G, K, L hier durch

G ..(.'yozi"yl:l:O:O:O:O)
(126) K...(0:%£1:1:0:0:0: 0)
..(0:1:0:0: 0:0: 0).

ansetzen. Eine einfache Rechnung zeigt, daff alle durch solche Un-
terraume 7. = [GKL] bestimmten Bewegungsvorginge das Biindel
vollisotroper Geraden elementweise festlassen. Die Punktbahnen sind .
durchwegs vollisotrope Geraden; dieser Fall ist trivial.

Satz 3. Hat der Raum T mit dem Unterraum Woe eine Gerade k
gemeinsam;, so ergeben sich, wenn T ¢ Hg gilt, folgende nichittrivialen
Falle:

. Liegt die Schnittgerade k zu den Tczlmumen Wose und Woyue all-
gemein, so ergibt sich die Normalform (111), welche die Punkte einer
vollisotropen Zylinderfliche ® zweiter Ordnung auf Sphdren, im Spezial-
fall ‘auch .auf Ebenen fihrt. ® kann auch in ein Paar isotroper Ebenen
zerfallen, von denen eine vollisotrop ist.
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Trifft k die Riume Wosg und Wyse in einem gemeinsamen Punkt
K ...(0:k1:K2:0:0: 55:0), so ergibt sich bei kg # 0 ein Bewegungsvor-
gang mit der Normalform (118). Unter den obigen Voraussetzungen
ergibt sich eine regulire vollisotrope Zylinderlfiche zweiter Ordnung,
bestehend aus spharisch gefihrten Punkten. Im Fall ky = 0 ergibt sich
nur fir k1 Ag+ks = 0 (siehe (116)) ein nichitrivialer Bewegungsvorgang
(123). Er fihrt die Punkte zweier vollisotroper Ebene auf sphirischen
Bahnen.

Ist jedoch T C Hg, so ergibt sich nur ein trivialer Fall eines
dreiparametrigen Bewegungsvorganges, bei dem alle Punktbahnen wvol-
lisotrope Geraden sind.

2.3. Der Unterraum T liegt in Wye.

Dieser Fall liefert, wie man nach kurzer Rechnung erkennt, nur
triviale Bewegungsvorginge.

3. Die hoherdimensionalen TeilrAume von P(V).

Ist dim T = 3, so haben wir zweiparametrige Bewegungsvorginge
zu erwarten. Geméf J. Lang [1] liefert die Projektion (wp:...:ws) —
— (w4 ws:we) € Woras als Bild von TN O 1. eine Gerade, 2. eine
Kurve zweiter Ordnung oder 3. die gesamte Bildebene Wyo3.

Im ersten und im zweiten Fall wahlen wir drei Bildpunkte all-
gemeiner Lage und bestimmen zugehorige Urbildpunkte. Durch diese
drei Punkte von T'N © legen wir eine Ebene Ty, C T. Ihr Schnitt mit ©
liefert genau dieselbe Bildmenge wie T' N O selbst.

Im dritten Fall schlieflen wir so: Existiert eine Ebene T, C
C T, welche ganz in O liegt, so ist der zugehodrige dreiparametrige
Bewegungsvorgang eine Bricard-Bewegung, die wir schon in Ab-
schnitt 2 betrachtet haben; der zu T gehdrige Bewegungsvorgang
ist ein Teilzwanglauf davon. Gibt es eine solche Ebene T, C
C © N T nicht, so erhalten wir einen Fall eines zweiparametrigen
Bricard-Bewegungsvorganges. FEr ist im Sinne von FuBnote 5 nicht
Teilzwanglauf eines schon behandelten Typs. Solche zweiparametrige
Bricard-Bewegungsvorgénge wurden von O. Réschel [3] als Typ III (13)
gefunden.

Eine Klassifikation der vierdimensionalen Unterraume von P(V)
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wirde eine Klassifikation der einparametrigen Bewegungsvorgénge mit
spharischen Bahnen und deren Invarianten liefern. Wir haben aber
vorausgesetzt, zwel Bewegungsvorginge ¢ und ¢', bei denen &' ein
Teilzwanglauf von £ ist, nur dann gesondert zu betrachten, wenn sich
die Menge der sphérisch gefithrten Punkte bei beiden Bewegungsvor-
gangen unterscheidet. Wie in Abschnitt 3 erkennt man: Ergibt sich
gemaf J. Lang [1] bei der Projektion (24) als Bild von T'N © eine
Kurve zweiter Ordnung, so kann man dasselbe Bild auch durch Pro-
jektion eines geeigneten ebemen Schnittes von © erhalten, wobei die
Schnittebene Teilmenge des 4-Raumes T ist. Der zu T gehérige Bewe-
gungsvorgang ware dann ein Teilzwanglauf eines Typs, wie er schon in
Abschnitt 2 behandelt worden ist. Ist die Bildmenge von T'N © jedoch
die gesamte Bildebene W33, so ist der Schnitt 7N © selbst entweder
ein dreidimensionaler Teilraum von © oder eine Hyperflache zweiter
Ordnung in T, zu der aber die Gerade Z NT =: z gehort. Im ersten
Fall liefert jede nichtprojizierende Ebene ¢ ¢ T'N © dasselbe Bild. Im
zweiten Fall findet man einen dreidimensionalen Teilraum T3 C T, der
mit z nur einen Punkt Z; gemeinsam hat und T nach einer Fliche
zweiter Ordnung schneidet. Die Projektion von T N © liefert ebenfalls
die gesamte Ebene Wyiq3 als Bild. Der zu T3 gehorige zweiparametrige
Bewegungsvorgang ist aber schon behandelt worden: Der zu T' gehorige
Zwanglauf ist ein Teilzwanglauf eines Bricard-Bewegungsvorganges, wie
er schon in Abschnitt 3 gefunden wurde.
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Abstract: The finest topology on R™ (n > 2) which induces the Euclidean
topology on each line is not regular and have big character and extent. The

same holds for the finest topology which induces the Euclidean topology on
each line parallel to a coordinate axis; this latter topology is symmetrizable.

0. Introduction

Investigating Minkowski space M (the “real” 4-dimensional space-
time continuum) Zeeman suggested some alternative topologies for M,
[12, 13]. The fine topology on M induces the 3-dimensional Euclidean
topology on every space-axis and the 1-dimensional Euclidean topology
on every time-axis, and it is the finest topology satisfying this property,
[13]. The reader could consult also [1], [4], [3], [7, 8, 9, 10] for a more
detailed view of this topic. In this paper we investigate some of the
properties of the finest topology on R™ which induces the Euclidean
topology on each line in R™ (resp. each line parallel to a coordinate
axis).

1 This work has been supported by Grant No. MM 28/91 from the Bulgarian Ministry
of Sciences and Education.
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1. Preliminaries

Let A7 = {£: £is a line in R"} and A} = { € A: {is parallel to
a coordinate axis}. Let R} (resp. R%) be the set R™ with the following
topology: a set U C R™ is open in R" (resp. R}) if and only if U N ¢
is ‘open with respect to the standard topology on £, for each line £ €
€ AT (resp. £ € AT). The topology of R? is stronger than the standard
topology of R", and the topology of R is stronger than the topology
of R}. For instance, any circle without a point is closed in R? although
it is not closed in the standard topology of R™; any non-parallel to a
coordinate axis line without a point is closed in R} although it is not
closed in R}. The space R} is symmetrizable by the symmetric s(z,y)
defined as follows: ' -

|z —y| i = and y lie on a line that is

s(z,y) = parallel to a coordinate axis;
1 otherwise
([ || stands for the usual norm in R™). We recall that a symmetric s

on a topological space X is a function from X X X into R such that:
a) s(z,y).= s(y,z) > 0 for each z,y € X; b) s(z,y) =0if z =y; ¢) a
set U C X is. open. iff foreachz € U there éxists r > 0 such that the
“ball”: K (:L' r) = (y: s(z,y) <.r}is contained in U ([2], [3], see also
. T

In Section 2 we prove that, for n > 2, both R} and R} are not
regular. The first, for n = 3, answers a question of Prof. Otto.Laback (of
Technical University Graz, Austria). The second, for n = 2, answers a
question of Prof. Stoyan Nedev (Institute of Mathematics, BAN, Sofia,
Bulgaria). In Section 3 we investigate some cardinal functions of R?
and R} (density, weight, character, extent and spread) and the results
once more show that R} and R7} are not regular. Throughout the paper
(Q denotes the set of all rational numbers. The i-th coordinate of an
z € R™ is denoted by Ziy = (z1,... :cn)

2. Non—regularlty of ]R and ]R

Lemma 2.1. Let n > 2 and U is a subset of R™ whzch i3 open with
respect to the standard topolgy of R™. Then there exist a set ' C U
such that:

(a) cl F' =clU, where “cl” denotes the standard closure in R™.
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{b) Each line in R™ passes through at most two points of F (and
hence, F is closed in both R} and R%).
Proof. The lemma is trivial if U = 0, so let U # 0. Let B(z,r)
denotes the ball {y € R: ||z — y|| < r}. Then the family B(U) =
{B( —): z € QM k €N B( ,lc) - U} is countable and we can
write it as B(U) = {B;: 1 € N}. By induction we will pick points
z* € B; and define sets F, = {z7: j < i} such that:

(¥*)  each line in R™ passes through at most two points of Fj.

Finally we will set F' = U{F;: ¢ € N}.

In order to do this let us pick an z' € B; and let F; = {z'}. Let
us suppose that, for some i € N and for each j < i we have picked
points z/ € B; such that the condition () holds. Let A(F;) be the
family of these lines in R™ that passes through exactly two points of
F;. Since A(F;) is finite, the set Biy1 \ (UA(F})) is not empty. We
can pick a point zit?! from it and define Fj.; = {z/: j < i+ 1}. The
condition (%) holds for Fji;, because z'*! ¢ UA(F;). The induction
step is completed.

Now, let F' = U{F;: ¢ € N}. It is clear that (b) holds. In order
to prove (a) let y € clU. For any standard neighbourhood V of v,
UNV # 0. Because Q" is dense in R™, we can pick an z € Q"NUNV.
There is some k € N such that B(:z:, -i—) CUNYV. There is some ¢ € N
for which B(z,+) = B; and hence 2 € UNV. Hence FNV # § and
y€EcF;clUCclF.

Proposition 2.2. For n > 2, the spaces R} and R7. are not regular.
Proof. Because R? (resp. R2+) is a closed subspace of R} (resp. R%}) it
suffices to show that R? and R2 are not regular.

By Lemma 2.1, there is a set FF C R? \ {O} (where O = (0,0)}
such that c] ' = R? and F is closed in both R} and R?. We will show
that the O and F' have no disjoint neighbourhoods in R (and hence,
also in R2). ‘

Let O € U and FF C V where U and V are open subsets of
R3. We will show that U NV # §. There is an ¢ > 0 such that the
horizontal interval J = {z: |z;| < €, zo = 0} is included in U (z;
denotes the i-th coordinate of a given point z). For each z € J and
n € N let U(z,n) is the vertical interval with base z and highness I,
ie. U(z,n) = {(21,6) : 0 < 6§ < L} Foreachn € Nlet 4, = {z €
€ J:U(z,n) CU}. Since J C U and U is open in Ri we have that
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U{An :n € N} = J. Since J is of second category there are an n € N
and a nonempty open interval J' C J such that the standard closure
of A, contains J'. The'set P = {z:z; € J,,0 < z, < 1} is nonempty
and open (in R?) and hence we can pick a pomt y€PNF. Sincey €
€ V there exists 1 > 0 such that the horizontal interval ¥ = {z € RZ:
23 = Yo, |21 — 11| < pu}is contained in V. Let z be a point from A4, N J’
such that |21 —yi| < p. Then U(z,n)NY # 0§ and hence UNV # §. ¢
Corollary 2.3. The fine topology of Minkowski space M is not regular.
Proof. We have that R2 is a closed subspace of M. In fact, R2 ~
~TxR<— TxR® =M, Where T = R is the time, ~ denotes homeomor-
phism, — denotes homeomorphlc embedding, and X denotes product
of sets (not topologlcal product) o :

3 Some cardinal functions of RR] and ]R"

" Let us recall the definitions of the cardinal functions weight, char-

atter and denszty, denoted (for a given topological space X) by w(X),
X(X) and d(X) respectlvely

W(X) mm{]Bl B is a base for the topology of X}; . -
(X)) = sup{x(:c X):z € X}, where
x(a: X) = Imn{|B |: B, isa base for the topology of X at’ x},
i d(X) min{|A]| : Ais dense in X} '

A space X is called sepamble if d(X) = Ro. For a detailed survey on
cardinal furictions see [6]: " Another approach for showing that R} and
R7} are not regular is to use that for a regular space X, w(X) < 2d(X)
In fact, R? and R? are separable but they have Welght and character
strongly greater than ¢ = 2%, ‘ ' ’
Proposition 3.1. For n > 2, x(R?) > ¢ and X(R”) > ¢ :
Proof. We consider the case n = 2. Suppose that = = = (z1,z2)-€ R?
and Y ={Us:a<c}isa family of neighbourhoods of z (either in R?
orin R?{_), we shall show that ¢/ cannot be a base at z. By induction, for
each a < ¢ we shall pick a pomt €U, \ {z} such that the followmg
condition holds:

(Cq) each line in R? contams at most two pomts of the set C,

= p<a)
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Then the set C = {z® : @ < ¢} will be closed in R and R%. The set
V = R"\ C will be a neighbourhood of z (in R} and R% ) that does not

contain any element of U (because V misses each z%, a < ¢).

Let z° € Up \ {z} and Cp = {z°}. Let 1 < a < ¢ and suppose
that for each v < a the points 2 have already been picked so that the
conditions (C,) hold. There is an € > 0 such that the vertical interval
J ={y:y,=x1, |[yg —x2| < €} is contained in U,. Since a < ¢ there is
an h, xo —€ < h < x9+¢, such that the horizontal line i = {y : y2 = h}
‘misses z7, for each v < a. There is a 6 > 0 such that the horizontal
interval H = {y : |y1 — x1] < §, y2 = h} is included in U, N A. Let
A={:1is a line in R? passing through two points of {z7: v < a}}.
Since |A] < @ < c and fi ¢ A, we have that |[H \ UA| = ¢. We can
- pick an z® € H \ UA, z% # z, and deﬁne Co = {aﬂ v < a}. Because
z* ¢ UA, (Cy) holds. ¢

Corollary 3.2. For n > 2, w(R}) = x(R}) > ¢ and w(R}) = x(R ) >
>, :

The author conjectures that w(R?) = x(R?) = W(R ) = x(R%} ) =
= 2° (the assumption ¢t = 2° implies these equations).

. Proposition 3.3. For n > 2, both R} and R} are separable.

Proof. We shall show that the set Q? is dense in R% (and hence in
R2). The cases n > 3 are similar to this one. Let U be a nonempty
open subset of R%. Let us pick an A € R such that the horizontal line
i = {z : x, = h} intersects U. Since UNH is openin /i thereisa p € Q
for which (p,h) e UNH. Let v = {z : x; = p}. Thereisa g € Q for
which the point (p,¢) € UNv and hence Q2 NU # 0. {

Finally, let us recall that the extent e(X) of a space X is defined
as

e(X) = sup{|C| : C is a closed discrete subspace of X},
and the spread s(X) is defined as
s(X) = sup{|C| : C is a discrete subspace of X}.

In the proof of Prop. 3.1, the set C (looked at as a subspace of either
R} or R%) is closed discrete, and |C| = ¢. So, we have proved:

Proposition 3.4. For n > 2, e(R}?) = e(R}) = s(R}) = s(R}) = <.
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Abstract: -1t is shown that for every countable ordinal o there exists a fan

whose depth is o and that depth of uniformly arcwise connected dendroids
(in particular smooth fans) is less than or equal to two.

1. Introduction

~S. D. lliadis has constructed in [4] an uncountabe family of hered-
itarily decomposable and hereditarily unicoherent continua X (o) num-
bered with ordinals o < w; having the property that

(1.1)

for each o < w; the depth of the a-th member of
the family is just a (see also [7], Th. 24, p. 24).

The continua X () are arclike (they are called snake-like in [1] and [4]),
and thus X (1) only, being an arc, is arcwise connected. A question can
be asked if it is possible to construct such a family (having property
(1.1)) composed exclusively of arcwise connected continua. In this pa-
per we construct a family of continua satisfying (1.1) and moreover
such that each member of the family is hereditarily arcwise connected,
hereditarily unicoherent, and has exactly one ramification point. In
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other words the family consists of fans. All the continua X (a) were
planable (as arclike ones, since each arclike continuum is planable, see
[1], Th. 4, p. 654). Our family also keeps this property.

It is shown in the final part of the paper that if we replace the
assumption of arcwise connectedness by a stronger one, uniform arc-
wise connectedness, then no such a family does exist. N amely depth of
uniformly arcwise connected continua is either 1 if they are locally con-
nected, or 2 otherwise. Since smoothness of dendroids implies uniform
arcwise connectedness, depth of a smooth dendroid is at most 2.

2. Preliminaries

A-continuum means a compact connected metric space. A contin-
uum is said to be hereditarily unicoherent provided that the intersection
of any two its subcontinua is connected. A continuum that is heredi-
tarily unicoherent and arcwise connected is called a dendroid. A locally
connected dendroid is called a dendrite. A point p in a dendroid X is
called an end point of X if p is an end point of every arc contained in X.
The set of all end points of a dendroid X is denoted by E(X). A point
p 1n a dendroid X is called a ramification point of X if p is the vertex
of a simple triod contained in X (i.e. if there are three points a, b and ¢
in X such that, any two.of the three arcs pa, pb and pc have the point p
in common only). The set of all ramification points of a dendroid X is
denoted by R(X). A dendroid having exactly one ramification point is
called a fan, and the point is called the vertez of the fan. A fan is said
to be countable provided that the set of all its end points is countable.

A continuum X is said to be hereditarily decomposable provided
that'every subcontinuum of X is the union of two its proper subcon-
tinua. A hereditarily decomposable and hereditarily unicoherent con-
tinuum is called a-A-dendroid. Given a A-dendroid X we denote by
P(X) the family of all subcontinua S of X such that for each finite
cover of X the elements of which are subcontinua of X , the continuum
S is contained in a member of the cover. A (transfinite) well-ordered se-
quence (numbered with ordinals a) of nondegenerate subcontinua X,
of a A-dendroid X is said to be normal provided that the following
conditions are satisfied:

(2.1) - ’ - X=X
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(2.2) Xat1 € P(Xa);
(2.3) Xg=N{Xo:a < B} for each limit ordinal §. .

The depth k(X) of a A-dendroid X is defined as the minimum ordinal
number v such that the order type of each normal sequence of sub-
continua of X is not greater than . The reader is referred to [4], [6]
and [8] for an additional information about this concept. The follow-
ing three important facts concerning the depth will be needed in the
present paper (see [4], Ths. 1, 2 and 3, p. 94 and 95).
Fact 2.4. For every two A- dendrozds X and Y if Y C X then k(Y) <
< k(X). ' ~
Fact 2.5. A A-dendroid X is locally connected (i.e., 1t is a dend'rzte) if
and only if k(X) = 1.
Fact 2.6. If a A-dendroid Y is a continuous image of a A\-dendroid X,
then k(Y) < k(X).

Let a continuum X with a metric d be given, and let A and B
be two its closed subsets The Hausdorff distance dist from A to B is
defined by

dist(A, B) = max{sup{d(a;B): a € A}, sup{d(b,A): b € B}}.
As usual, the symbol N stands for the set of all positive integers.

3. Fans

The main result of the paper is the following theorem.

Theorem 3.1. For every ordinal number oo < wq there ezists a count-
able plane fan Fla} having its depth k(F|a]) equal to a.
Proof. We proceed by transfinite induction. Let & = 1. In the rect-
angular Cartesian coordinate system in the plane let v = (0,0) be the
origin. For each n € N put e(l n) = (1/n,1/n?) and denote by I(1,n)
the straight line segment joining v and e(1,n). Then the union -

(3.2) F[1] = U{I(l,n): n € N}

is a plane fan having the origin v as its.vertex. The set E(F[1]) =
= {e(1,n): n € N} of end points of F[1] is countable, so the constructed
fan is countable by its definition. Furthermore, since: F[1] is locally
connected, we infer from Fact 2.5 that
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(3.3) k(F[1]) = 1.

Let § > 1 be an ordinal number. Assume that countable plane
fans F|a] are defined for all ordinals @ < f in such a way that

(3.4) - . v is the vertex of Fla];
(3.5) F'F[oz] contains the union of a sequence of arcs {I(1,n): n € N};

(3.6) . - KFle)) =

It g —> o + 1, we perform the following constructlon For each n €N
we define an arc I(f3,n) such that :

(37) o vllsanvendp‘omt of I(,B,‘n);
68 | I@mnFal = (b

,3 é) " I(ﬂ,m) N (I(ﬁ, HU...UI(Bm=1) = {v}

- B fQ:I' eachmENand m > 2?

(3.10) " dist(I(B,n), U{I(a,m): m € {1,... ,n}}) < 1/2",
Put

(3.11) Flf] = Fla]UU{I(B,n): n € N}.

Condition. (3 10) 1mpl1es that the arcs I(8,n) better and better ap-
proximate the unions | J{I{a,m): m € {1,...,n}} and therefore it

guarantees that the resultmg space F[f] is compact. Further, it can
be observed by (3.10) and (3.11) that. .

the union U{I(ﬁ,n) n € N} is a dense (and thus F[ ]

3.12
(3.12) is a nowhere dense) subset of F[f].

Connectedness of F[f] follows from (3.8), and thus (3.11) assures that
F[f] is arcwise connected. Further, conditions (3.7)—(3.9) imply hered-
itary unicoherence of F[f], so that F[§] is a' dendroid, and also they
lead to the equality R(F[3]) = R(F[a]) = {v}, so F[A] is a fan having
v as its vertex. . ' ‘ :
Denote by e(8,n) this end point of I(3,n) which is distinct from

v. It can easily be seen from the construction that
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(3.13) E(F[f]) = E(Fla]) U {e(B,n): n € N}.

Since E(F[a]) is countable by assumption, (3.13) implies that E(F[8])
is countable, too, and thus the fan F[f] is countable.

If a covering of F[§] by finitely many subcontinua is considered,
then condition (3.12) implies that F[a] is contained in a member of
the covering. Thus Fla] € P(F[f]), whence we infer that if a normal

sequence X1, X3,... of subcontinua of X = F[f] is considered, then
the second term of it, X5, is F[a], so we conclude from (3.6) that '
(3.14) k(F[a +1)=a+ 1 v '

If 8 is a limit ordinal, we consider a sequence .
(3.15) {on: n € N} with a, < and B =lima,.

For each n € N we take a copy of the fan F [an]. Roughly speaking,
we locate these copies in the plane in such a manner that their union,
F[B], is obtained from F[a,]’s in the same way as F[1] is obtained from
the segments I(1,n). More rigorously, we assume that the considered
copies of the fans F|ay,] satisfy the following conditions:

(3.16) ~ limdiam Fla,] =0,

(3.17) Floa] N Fla] = {0} if n#m,
and we put :
(3.18) | - F[B] = U{Flan]: n € N}.

Condition (3.16) guaranteées compactness, and (3.17) implies connected-
ness (thus arcwise connectedness) and hereditary unicoherence of the
resulting space F[f] which thereby is a coun'table plane fan. Finally
Fact 2.4 implies by (3.6) and (3.18) that on = = k(Flan]) < k(F[B)),
whence by (3 15) we infer that

k(F[B]) = B8

Thus the fan F[o] is defined for each ordinal number o < w1, and it
satisfies the needed equality (3.6). ¢

Remark 3.19. After constructing, for each ordinal a < w1y, an archke
continuum X () with k(X (a)) = a a question is asked in [4], Remark 3,
p. 98, whether there exists 1° a A\-dendroid, or 2° an arclike A- dendr01d
X havmg the depth w;. And it is shown in Section 3 of [6], p. 719,
that an answer to 2° is negative, while an answer for the general case
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(i.e. for 1°) remains unknown. Thus, in connection with Th. 3.1, the
following question seems to be natural.

Question 3.20. Does there exist a fan X such that k(X) = w,?
Remark 3.21. If we consider, instead of arbitrary finite coverings of a
A-dendroid X by its subcontinua, finite coverings having a fixed number
n'> 2 of elements, we get a (similarly defined) concept of the n-depth
(see [8], p. 587). Smce for this concept the results that correspond to
Facts 2.4 and 2.5 are also true (see [9], Theorems 4 and 5), and since
only Facts 2.4 and 2.5 were used in the proof of Th. 3.1 above, one can
repeat all the arguments of that proof replacing the depth k(X ) by the
n-depth k,(X) for any continuum X considered in that proof. In this
way we have the following corollary to Th. 3.1.

Corollary 3.22. Let an ordinal number o < wy be given, and let Fla]
denote the countable plane fan of Th. 3.1. Then for each natural number
n 2 2 the nédepth kn(Flal) of Fla] equals a.

4 Unlformly arcwise connected dendr01ds

The cone F over the Cantor middle-thirds set is called the Can-
tor fan. A continuum X is said to be uniformly pathwise connected
provided that it is a continuous image of the Cantor fan. The original
definition of this concept, given in [5], p. 316, is more complicated, but
it agrees with the above one by Th. 3.5 of [5], p. 322. A space X is
said to be uniformly arcwise connected provided that it is arcwise con-
nected and that for each ¢ > 0 there is a j € N such that every arc in X
contams J pomts that cut it into subarcs of diameters less than ¢. By
Th. 3.5 of [5]; p. 322, each uniformly arcwise connected’ continuum is
umformly pathwise connected (but not conversely) ‘and it is' easy to see
that for uniquely arcwise conhected continua these two notions c01nc1de
(see [5], p. 316). In particular, the coincidence holds for dendroids.
Proposition 4.1. The depth k(F,) of the Cantor fan F, equals 2.
Proof. Denote by v the vertex of Fi.. It can easily be observed that a
subcontinuum S of F, is in P(F,) if and only if it is an arc contained
in the straight line segment vc for some end point ¢ of F.. Thus every
normal sequence in F, has the form {F,, S} for some S € P(F.), and
the conclusmn follows O .

PropOSItlon 4.2. If a dendroid X is uniformly arcwise connected, then

KX)\<2,
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Proof. Since each such a dendroid is a continuous image of the Cantor
fan F. by the definition, the conclusion is an immediate consequence of
Prop. 4.1 and Fact 2.6. {

Remark 4.3. Note that the converse implication to that of Prop. 4.2
is not true. Namely there is a non-uniformly arcwise connected fan Fipy
(see [2], (52), p. 201) for which we have k(Fp;) = 2.

As particular examples of uniformly arcwise connected dendroids
one can consider smooth ones. A dendroid X is said to be smooth
provided that there is a point v € X such that for each point z € X
and for each sequence of points {z, € X: n € N} tending to z we have
ve = Limvz,. It is known that every smooth dendroid is uniformly
arcwise connected (see [3], Cor. 16, p. 318). Thus Prop. 4.2 leads to
the following corollary.

Corollary 4.4. If a dendroid X is smooth, then k(X) < 2.

Remark 4.5. It is evident from the construction of the fans F[a] of
Th. 3.1, especially by condition (3.12), that they are not smooth for
a > 1. And it follows from Cor. 4.3 that it is not possible to construct
any family of smooth dendroids (therefore of smooth fans) X[a] (for
every a < wi) having property (1.1), i.e. such that k(X[a]) = a.
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Abstract: Totally umbilical submanifolds in manifolds which are generali-
. sation of recurrent manifolds are investigated. At the end-of the paper two

examples are given.

1. Introduction

Investigating conformally flat Riemannian manifolds of class one,
i.e. manifolds characterized by the property that at least n —1 principal
normal curvatures are equal to one another, R. N. Sen and M. C. Chaki
/([10]) found that if the remaining one is zero, then the curvature tensor
satisfies
(1) Rnijrrt = 201 Raijr + anRisje + aiRnijr + ¢ Rpite + axRaiji

where the °

‘comma” denotes covariant derivative with respect to the
metric. Hereafter, Riemannian manifolds with condition (1) imposed
on the curvature tensor were examined ([1], [2], [3]). Some further gen-
eralisations of the condition (1) for various tensor fields were considered

by L. Taméssy and T. Q. Binh ([11]). In [3] the present author proved
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Proposition ([3]). If the curvature tensor satisfies

Rhijrrii = Z biy Rigigisis
P
where the sum includes all permutation p of the indices (h,i,7, k, ) and
{5: (51, e ,1])3”)} i3 a set of some vectors, then there ezists a vector
ar such that relation (1) holds. v
" Hence it follows that on a recurrent manifold, i.e. on a manifold
satisfying the condition
Rhijk11Rpgrs — RpijkRpgrsi1 =0,

at each point where Rj;;; does not vanish relation (1) is satisfied. More-
over, it was proved that on a neighbourhood of a generic point the vector
a; is a gradient ([3]).

+In the paper we begin investigation of totally umbilical subman-
ifolds of manifold satisfying the condition (1) for some vector field a;.
Throughout the paper all manifolds under consideration are assumed
to be smooth connected Hausdorff manifolds and their metrics need not

be definite.

2. Preliminaries

... Let.N be-an:n-dimensional Riemannian manifold with not nec-
essarily-definite metric g5, covered by a system of coordinate neigh-
bourhoods {U;z"}. We denote by Fi';, Rhijk, Rpk, R the Christoffel
symbols, the curvature tensor, the Ricci tensor and the scalar curvature
of N respectively. Here and in the sequel the indices A, 1, kI, 8, t,
u run over the range 1,2,...,n. Let M be an m-dimensional manifold
covered by a system of coordinate neighbourhoods {V; y*} immersed
in manifold N and let 2" = z"(y?) be its local expression in N. Then
the local components g,3 of the induced metric tensor of M are related

’ E

‘t'é_t grs by gap = grsB;Bg, Where Bl = Bye In what follows we shall

adopt the convention

i =B.B;, Biii=BBB!, BIy%= BLB;BIB}.
We denote by I' %y, Kapea, Koa, K the Christoffel symbols, the curvature
tensor, the Ricci tensor and the scalar curvature of M with respect to
gab respectively. Here and in the sequel the indices a, b, ¢, d, e, f run
over the range 1,2,...,m (m < n). The van der Waerden-Bertolotts
covariant derwative ([12], [13]) of BT is given by
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(2) alb_Brb—I—F:tB B
where the “comma” and the dot denote covariant derivative with re-
spect to g, and partial derivative.

The vector field H" defined by H™ = gll—g“ng,b is called the mean
curvature vector of M. Using (2) and the equation

Fbac = (B;-c + F;thz) Bsgdagru

c ab?

we obtaln on M

grsH" B, =0.
The Schouten curvature tensor HT, of M is defined by
ab = Bap-
If the tensor H], satisfies the condition
Hab - gabH
then M is said to be a totally umbilical submanifold of N.
Let NI (z,y,z = m+1,...,n) be pairwise orthogonal unit vectors

normal to M. Then
(3)  grsN;N; =eq4, grsN;Ngj:O (x#y), grsN;B,=0

and

(@) o° = Blig™ + Y e ;.

where e, is the indicator of the vector NI. On a totally umbilical
submanifold M of a manifold N the Gauss and Codazzi equations take
the form ([7])

(5) Kaped = RrstuBthcz + H(gbcgad - gbdgac)
and
(6) RrstuBgzzN;L = Aazgac - Abzgac

respectively, where

H“—:grsHTHS, Agz :Hz~a+ZCyLayzHya Hy :HTN;grs ‘
Yy .
and

Lﬂzy = grsN N:Ia .
Moreover, we have ([6], [7])

. 1 . .
(7) Rm‘tuHngzs — T)‘ (.gbcHd - gdec) y Hc - ch,
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(%) Kabedre = RaijegBY5 4 He (ghegaq — gbdGac) +
1
+ '2" [Ha (gbcged - gbdgec) + Hb (gecgad - gedgac) +

+ Hc (gbegad — gbdgae) + Hd (gbcgae - gbegac)} 3

where the semicolon denotes covariant derivative with respect to the
metric of the ambient space,

(9) Hj,=—~HB[+ > e.A..NT.

-~ We shall also use

~ Lemma 1 ([8)). (1) Let (A:), (B;) be two sequences of numbers which
are linearly independent as elements of the space R™. If Ty;, Sij are
numbers satisfying conditions

Tij Ar + TjxAi + TriAj + SijBr + Sje Bi + SyiBj =0,
Tij =Ty, Sij=Su

then there exist numbers D; such that
Tij=-B:D; - B;D;, S;;= A;D; + A;D;.
(II)  Let Ty, Ax be numbers satisfying conditions
TijAr + TjxAi + Trid; =0, Tij =Ty,
Then either each T5; 1s zero or each A; is zero.

Lemma 2 ([4], Lemma 1). Let M be a Riemannian manifold of dimen-
sion n > 3. If Bhrijr s a tensor field on M such that

(10) Bhijk = —Binjk = Bjkni, Bhijk + Bhji + Bprij =0,

Bhrijkiim) =0,
and aj, A; are vectors fields on M satisfying
arR ik = gijAx — gin 4, ,

'éhen
l hijk ( 1) Gij9hk gzkgh] H

where S = Bpgreg?g".
Lemma 3 ([9], Lemma 3). If ¢;, Pj, Bhijr are numbers satisfying (10)
and '
c1Bhijk + prBiijk + piBhijk + pjBhitk + prBriji =0,
then either each b; =c; + 2p; 18 zero or each Bpijk 18 zero.
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3. Main results

Theorem 1. Let M (dim M > 2) be a totally umbilical submanifold
of the manifold N satisfying the condition (1) for some vector feld a;.
Then the relation

(11) (9rsHTH® — arH )Cupea =0

holds on M, where Capca are components of the Weyl conformal curva-
ture tensor of the submanifold M. |

Proof. Transvecting (1) with HhB,’;’C.ZIe and applying (5) and (7) w-
obtain

(12) Ruijir H" Bylg, =

= ae(gbcHd - gdec) -+ V-[{ebcd - VH(gbcged - gbdgec)+

1 1 1 .
+§ab(gecHd - gedHc) + 5ac(gbeHd - gdee) + §ad(gbcHe - gbeHc) I}

where a, = a,B7, V = a,H". On the other hand, differentiating co-
variantly the left hand side of (7), in virtue of (9), (5) and (6), we
get

(13) [RhiijhB;f;ﬂ = RhijklIHhB;{;Zfz — HK pca+

+H?(gbcGed — gvagec) + gocEae — godEce — gceSbd + gaeShe ,

where Eye = 33, ¢;AdzAer = Eeq and Sy = RpjpH'BIHF = S,
Then, substituting (12) into (13) and taking into account relation (7
we find

(14) (H - V)I{ebcd =

7

= H(H - V)(gbcged - gbdgec) + gbcEde - gdece - gcede + gdeSbc+

1
+ae(gocHa — goaH.) — §(gbcHlde — gvaH jce )+

1 .
+5(gecarHa — geaayHe + gheacHa — gyaacHe + geaaH, — greagH,) .
Hereafter, contracting (14) with ¢°? and alternating the resulting equa-

tion in (b, ¢), we obtain
(15) abHc - aCHb .
Therefore, alternating (14) in (e, b) and using (15), we get
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(16) 2(H = V)Kepea =
= 2H(H — V)(gbced — gbagec)+
+gsc(Eae + Sae) — gva(Ece + Sce) + gae(Eve + Soe) — gee(Epa + Spa)+
+9bcteHg — gyaacHe + geqapHe — gecas Hg—

1
~s(9vcH 1ea — gvaH 1ce + geaH 1be — goeH 1ba),
2

whence we obtain

(17) 2(H = V)Kse = 2(m — DH(H = V)gse + (m — 2)(Epe + Spe)+

m— 2

1
+95c(E+ S+ P = 5Q) + (m — 2)as He — Hipe

and
(18) 2(H-V)K =(m—1)2mH(H —-V)+ 2(E+ S)+2P —q)],
where

E:Ebcgbc, S:Sbcgbcy P:a‘bHcgbcy Q:Hlbcgbc'
Finally, using equations (16)~(18), by an immediate calculations, we

check that (11) holds good. ¢
Transvecting (1) with Bf;’csle and making use of (5) and (8) we

find
(19) I{abcdle - zaeﬂ’abcd + aaI(ebcd + abeaecd + ac-[{abed + adI{abce"l‘

+2Z¢(gbcGad — gvagac) + Za(GbeGed — Ghagec)+

+Zb(gecgad - gedgac) + Zc(gbegad - gbdgae) + Zd(gbcgae - gbegac) y
where Z, = %H, e — a.H, whence we obtain

(20) , I(bcle - zaeI{bc + abI{ec + acI{be + Cl'fI\’fbce + afI{fcbe‘*‘
+2mgche + (m - 2)(gech + gbeZc)a

(21) Kie=2a.K +4asK', +2(m - 1)(m +2)Z. .

Suppose, that at a point z € M the relation

(22)  Kapedre = 2beKabea + baKebed + 0o Kaecd + beKaped + baKapee
is satisfied for a certain vector b,. Then we have

(23)  Kiere = 2beKpe + b Kee + b Kye + bp K pe + b7 K o .

Subtracting (23) from (20), permuting cyclically the such obtained
equality in (b,c, e) and adding the resulting equations, we get
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(24) I{bc(ae - be) + I{ce(ab - bb) + I{eb(ac - bc)+

+(m - 1)(gche + gceZb + gech) =0.

If ac — be and Z. are linearly independent, then by Lemma 1 (I) we
have rankg,, < 2. Thus, for m > 2, either Zy = 0 or Z; # 0 and
Ze = f(ae — be), for f € R — {0}. Subtracting (22) from (19), then
substituting Z. = f(ae — be) and applying Lemma 3 we get (a. —
— be)[Kabea + f(gbegad — gvagac)] = 0 at z. Thus, if Z.(z) does not
vanish and dim M > 2, then on a neighbourhood of = we have f,, = 0.
Moreover, we have '

(25) (af - bf)-[{fbce + gche - gbeZc =0
at a point £ € M where Z, does not vanish.

From the above made considerations we are in a position to obtain
Theorem 2 (cf [5], Th. 3.3). Let M be a totally umbilical submanifold
of a manifold N satisfying the condition (1) for some vector field a; and
suppose that a; is not orthogonal to M. If condition (22) is satisfied on
M for some vector field by which does mot vanish on a dense subset of
M and dim M > 2, then Zy = 0 on M. Conversely, if Zy = 0, then
condition (22) holds on M with by = ay.

Theorem 3 (cf. [5], Ths. 3.6 and 3.7). Let M (dim M > 2) be a totally
umbilical submanifold of o manifold N satisfying the condition (1) for
some vector field a; and suppose that a; 1s not orthogonal to M. If Zy
does not vanish on a dense subset of M, then M is a space of constant
curvature.

Theorem 4. Let M (dim M > 2) be a totally umbilical submanifold
of a manifold N satisfying the condition (1) for some vector field a;.
If M is semi-symmetric (i.e. Kapearies) = 0) and Zy does not vanish
on a dense subset of M, then M is a space of constant curvature and
Zb + ni—(—;_—nK—_T)ab =0.

Proof. Follows from (25) and Lemma 2. {

‘Theorem 5 (cf. [5], Th. 4.1). Let M (dim M > 2) be a totally umbilical
submanifold of the manifold N satisfying the condition (1). If the vector
a; is orthogonal to M, then M is a conformally symmetric manifold.
Proof. If a; is orthogonal to M, then a. = a,B! vanishes. Using
the formulas (19)~(21), by an immediate calculations, we check that
Cabedie = 0 holds on M. ¢

Theorem 6. Let M (dim M > 2) be a totally umbilical submanifold of
a manifeld N satisfying the condition (1) for some vector field a; and
suppose that a; is not orthogonal to M. Then the relation
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(26) -R’abcdle = ceKapea
holds on M for some vector field c. which does not vanish on a dense

subset of M, if and only if

(27) | Ze=0

and

(28) aeI{abcd + acI(abde + adI{abec =0
on M. ‘ »

Proof. Suppose that relation (26) holds on M, i.e. at each point there
exists a vector ¢, satisfying (26). Consequently, we have on M
(29) Ce-[{a.bcd + CcI{abde + cd-[{abec =0
and relation of the form (22) is also satisfied ([3], Prop. 1). According
to the Th. 2, the last condition is equivalent to Z, = 0. Hence, we have
(19) with Z, = 0. Substituting (26) and (27) into (19) we obtain
| (“Ce + 2ae)-[{abcd + a'a]’{ebcd + abh’aecd + acI{a.bed + adI(abce = 07
. whence, in virtue of Lemma 3, ¢, = 4a,. Therefore, using (29), we get
(28) on M. Conversely, if Z, = 0 and (28) holds on M, then (19) yields
Kapedre = dacKaped. O ,

Suppose now that Kopeare(z) =0,z € M. If a. and Z, are not
linearly dependent, then (20) and Lemma 1(I) yield rank g, < 2. Thus,
for m > 2, we have either

Ze=0 and a,=0 or
Ze=0 and a.#0 or

Ze#0, ac#0 and Z.=fa., feR-{0}.
Therefore relation (19) and Lemma 3 result in
Theorem 7. Let M (dim M > 2) be a totally umbilical submanifold of
a manifold N satisfying the condition (1) for some vector field a;. If a;
18 orthogonal to M, then Z, = 0 if and only if Kapeqre = 0.
Theorem 8. Let M (dim M > 2) be a totally umbilical submanifold of
a manifold N satisfying the condition (1) for some wector field a; -and
suppose that M is locally symmetric. If ac(r) # 0 and Z, = 0, then
M s flat. If a; 1s not orthogonal to M and Z. does not vanish at any
point of M, then M is a non-flat space of constant curvature.

4. Some examples

Let NV be an open subset of R", (n > 2), endowed with the metric
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§ijdz'de? = (dz')? + p* fapdz®dz?
a,B,%, + = 2,...,n, where fagdz®dzf is a flat metric and p 15 a
function in z! variable satisfying the equation

pplplll + 3(pl)2pll _ 4p(pll)2 — 0 .
For suitable choosen of IV there exist solutions such that the condition

(1) holds on N and N is not recurrent ([3], Th. 6, Props. 5 and 6).

Let V be a flat manifold of dimension m endowed with the metric

hpodzfdz?, P,Q =n+1,...,n + m. On the manifold N x V define

the metric
grsdz’dz® = §ijd:cid:13] + hde:cPde .
Then on (N x V, g), for suitable function p, the condition (1) is fulfilled

while Rhijk/l = cthijk is not satisfied.
Example 1. Let M be an n-dimensional manifold covered by a system
of coordinate neighbourhoods {W;y%}, a,b,--- = 1,...,n, immersed in

N x V and let 2! = Q(y*), z* = y°, ¥ = Cp, Cp = const be its
local expression in N x V. Then B! = Qq, Bg = 52’, BP =0, where
Qe = Q4. The covariant and contravariant components of the induced
metric tensor of M are respectively

gi11 = (Q1)2 y Jla =™ QlQa’ Jap — QaQﬁ + gaﬂ?

7" =(QaQpF* +1)(Q1)7%, ¢ =-Qpd" Q1) , 9% =§*°.

The only components of the Christoffel symbols which may not vanish
are

!
Pl = 2= Fll = Q'la "‘ZL [e38)
11 ‘ v la Ql Q »

s = @ap = Bes)Q0) ™" = 220005(Q0) ™ ~TL@u(Q0) ™

! !
o p o o = o p o
T, = ”Z;(Qﬂ67 +Qy75) + gy, Tip= o @10

where f;lv are Christoffel symbols of fagdxadiﬂ. Then, using (2), we
check that B],, = 0, so the submanifold M is a totally geodesic one.
Consequently, M is a totally umbilical submanifold in N x V and the
vector field Z, = %H 1e — ae H vanishes. Moreover, the components of
the projection of the vector @; of N x V onto the submanifold M are

1

ag = @1Qa. Ifa; = B — £ 3£ 0 ([3]) and Qa # 0, then, according to

P
the Th. 2, condition (22) holds on M with by = aq.
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The components of the curvature tensor and the Ricci tensor of

M are
"
Ifozﬁ*y& == E};‘ [QﬂQvgaﬁ - QﬂQ&gav + QaQ6§ﬂ7 - Qangﬁé] -+

+(pl)2(§ﬂ’y§a5 - gﬁﬁga'y) 3

i " 3 3
1&1,3'75 - ?Ql(gﬁvQé - gﬂéQ‘y)’

P” 2
Ky = ‘p“(Ql) 36+

!

p/
Kig=(n-1)—Q1Qq,

p

1

Kop =0 -1DEQuQs + [% (n— z><p'>2] as

Moreover, the scalar curvature of M is given by
!

K=(n-1) [2‘%’ +(n — 2)(p')2} :

One can check, that M is a conformally flat submanifold in N x V.
Setting in (28) a = a, b= B, c = 7, d = §, e = v we easily obtain
(n—3)(n ~1)Q, = 0. Thus we have

Proposition 1. For each n > 3 and t > n there ezists t-dimensional
manifold satisfying (1) admitiing n-dimensional totally umbilical and
conformally flat submanifold M such that the condition (1) holds on M
whereas (26) is not satisfied.

Example 2. Let M be an (n — 1)-dimensional manifold covered by
a system of coordinate neighbourhoods {W;2%}, o, 8,7 =2,...n, im-
mersed in N x V and let z! = Cy, 2f = Cp, Cp = const, z® =
= X(2%,...,2") be its local expression in N X V. Then we have
Bl = B =, Bf = aa—f;, Jap = gWng, whence Bi,ﬁ = —f—;—gaﬂ,
Bf,ﬁ = 0. Moreover, in virtue of (3) and (4), we get

v =P T ATV ~
e 1505 (i)

z

Setting fop = 6ap, % =22 + -+ + 2™ we get
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. PSR
4y =& B, =0, H'=-E  go_gP_y,
b
g HH —a,H =2 7,=0,
D

Kapys = 2(0')*(p) 7 (9p+9as — 9859ar) -

Hence we obtain
Proposition 2. For each n > 3 and t > n there ezists t-dimensional
manifold satisfying (1) admitting (n — 1)-dimensional totally umbilical
submanifold M such that the recurrence vector is orthogonal to M (cf.
Th. 5).
Proposition 3. For each n > 3 and t > n there exists t-dimensional
manifold satisfying (1) admitting (n — 1)-dimensional totally umbilical
submanifold M such that g, H"H® — a, H" does not vanish identically
on M (cf. Th. 1).
Proposition 4. For each n > 3 and t > n there exists t-dimensional
manifold satisfying (1) admitting (n — 1)-dimensional totally umbilical
locally symmetric submanifold (cf. Th. 7).
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Abstract: In this paper a concept of L-multifunction is introduced and other

related objects are defined. Next their properties are presented.

1. Introduction

The notion of Cartesian product plays an important role in the
usual theory of functions and multifunctions. The Cartesian product
of two fuzzy subsets A € I* and B € IY may be defined as the subset
AXB of X xY characterized by (A x B)(z,y) = min(A(z), B(y)). This
definition has the inconvenience that when A x B is known and A x B #
# 0, it is impossible to retrieve again the subsets A and B. The notion
of fuzzy Cartesian product which is introduced in paper [1] is free from
this inconvenience. The L-multifunctions which are introduced in this
paper are the subsets of a special case of Cartesian product and also
free from this inconvenience. We will introduce and develop basic ideas
of the L-multifunction theory, necessary for our further considerations
on economical systems. ‘
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2. Introduction and general properties of L-multi-
functions

Let X, Y and Z denote arbitrary but for further considerations
fixed reference spaces. Next P(X), P(Y) and P(Z) denote respectively
“the families of all non-void subsets of X, Y and Z.

Definition 2.1. An L-multifunction, F : X — P(Y) say, is a subset
of the Cartesian product X x P(Y) x I x I¥ satisfying the following
conditions:

(i) if (z,B,r, f) € F, then supp f = B,

(ii) if (z,B,r, f) € F, then r = 0 implies B = §) and r = 1 implies

f(y) =1for any y € B,

(iii) if (z,B,r1, f1) € F and (z,B,r2, f2) € F, then r; > ry implies
fi2 fa

Let {z,r} denote a fuzzy singleton in X with support z and value

r. This fuzzy singleton is now transformed by F to a family of the fuzzy
subsets in Y.
Definition 2.2. A converse L-multifunction, F~! say, to an L-multi-
function F': X — P(Y") is a subset of the Cartesian product ¥ x P(X) x
x I x IX satisfying the following condition:
— (y,4,t,h) € F~1 if there exists (z, B,r, f) € F such that z € A,
yE€B, f(y)=t, h(z)=r.
Definition 2.3. A composite, Go F': X — P(Z) say, of two L-multi-
functions F: X — P(Y)and G : Y — P(Z) is an L-multifunction such
that
— (z,C,r,h) € Go F iff there exist (z,B,r, f) € F and (y,C,t,h) €
€ G such that Y € B, f(y) =t.
Let X, Y and Z denote the linear spaces.
Definition 2.4. An L-multifunction, F : X — P(Y) say, is called
conscal iff for any (z,B,r, f) € F and for any a > 0 (az,aB,r,af) €
€ F, where (af)(y) = f(Ly) forany y € Y.
Theorem 2.1. If an L-multifunction is conical, then its converse L-
multifunction i3 conical too.
Proof. As a matter of fact, let F be a conical L-multifunction. Let
(y,A,t,h) € F~l. So, taking into account Def. 2 there exists
(z,B,r,f) € Fsuch that z € A, y € B, f(y) = ¢, h(z) = r. So,
with respect to Def. 4 for any & > 0 we have (az,aB,r,af) € F.




L-multifunctions end their properties 133

Moreover az € ad, ay € aB, af(ay) = f(y) = t, ah(az) = h(z) =
= r. This means that (ay,aA,t,ah) € F7'. So, F~! is a conical
L-multifunction. ¢

Theorem 2.2. If F and G are conical L- m'u,ltzfunctzons then GoF is
a conical L-multifunction too.

Proof. Let (z,C,r,h) € GoF. So, taking into account Def. 3 there exist
(z,B,r, f) € F and (y,C,t,h) € G such that y € B, fly)=t. Fand G
are conical L-multifunctions, so for any a > 0 we have (az, aB,r, af) €
€ F and (ay,aC,t,ah) € G. Because y € B, f(y) =t, so ay € aB,
af(ay) = f(y) = t. This means that (az,aC,r,ah) € Go F. {

Definition 2.5. An L-multifunction, F' : X — P(Y) say, is called
superadditive iff for any (z1, B1,71, f1) € F and (22, Ba, 72, f2) € F, we
have (21 + 22, B1 + Ba,min(ry,r2), fi + f2) € F, where (f; + f2)ly) =

= sup min(f1(y1), fa(y2)) forany y € Y.
y1+y2=y

Theorem 2.3. If an L-multifunction is superadditive then its converse
L-multifunction is superadditive as well.

Proof. In point of fact, let an L-multifunction, F : X — P(Y) say,
satisfy the assumption of the theorem. Let
(y1,A1,t1,h1) € F71 and  (yo,As,tp, hy) € F7L.
Then from the Def. 2 it follows that there exist
(z1,B1,71,f1) € F and (zq,B2,7m9,f2) € F
such that
21 €A1, 1 €B1, z3€A;, y€B,,

hi(zi) =r1, ha(z2)=r2, fily)=t1, folya) =ts.
We can assume that z1, x2, fi and f, are such that

hi(z1) = sup hi(z) =r1, ho(zs) = sup hy(z) = r2
T€EA; TEA

and

(y1) = sup fi(y) =t1, fa(y2) = sup fa(y) =ts.
yebB, yEB;s

Because F is superadditive L-multifunction, so
(z1 4+ z2,B1 + By,min(ry,ry), fi + fa) € F.
Moreover 7 :
T1 + T3 € Ay + Az, (R1 + h2)(z1 + 22) = min(ry,r2)

and




134 M. Matloka

Y1+ y2 € B1+ B, (fi + fo)(y1 + y2) = min(t1,t3).

This means that
(y1 +y2, A1 + Az, min(t1,12), k1 + ho) € F71.

So, F~1 is a superadditive L-multifunction. ¢
Theorem 2.4. If F' and G are superadditive L-multifunctions then
G o F is a superadditive L-multifunction too.
Proof. Let (z1,C1,r1,h1) € Go F and (z3,C2,73,h2) € Go F. Then,
from the Def. 3 it follows that there exist (z1,Bi,r1,f1) € F,
(y1,C1,t1,h1) € G such that y1 € By, fi(y1) = t1 and there exist
(:Eg,Bz,’r‘z,fg) c F, (yg,CZ,tz,hg) € G Such that Y2 € Bz, fg(yz) = tz.
We can assume that

fl(yl) = sup fl(y) =1t; and fz(yz) = Ssup fz(y) =13.
yEB: y€B;

Because F' and G are superadditive L-multifunctions, so

(21 + z2, B1 + By, min(r1,m2), fi + f2) € F
and

(y1 +y2,C1 + Cg,min(tl,tz), hi + hg) €G.
Moreover

y1+y2 € Bi+ By and (f1 + f2)(y1 + y2) = min(t1,%2).
This means that »
(z1+ 22,C1 + Cy,min(r1,r2),h1 + h2) E Go F,
i.e. G o F is superadditive L-multifunction. ¢ '
Definition 2.6. By the graph of L-multifunction, F : X — P(Y") say,
it is understood a set Wy of the elements (z,y,r,t) € X x ¥ x I x I
such that there exist B € P(Y) and f € IY satisfying the following
conditions:
(i) y € B,

(i) t = f(y),
(iii) (z,B,r, f) € F.
Definition 2.7. Let o,8 € I. An a, 8-cut of W, I/I/'Fo"[jT in symbol,
is a set of the elements (z,y) € X X Y such that for r > o and t > 8
(z,y,r,t) € Wp.
Theorem 2.5. If F: X — P(Y) is a conical L-multifunction then for
any a,B € I, the a, B-cut of Wr 45 a cone.
Proof. Let (z,y) € W;’ﬁ. Then for r > a and t > B, (z,y,7,t) €
€ Wp. This means that there exist B € P(Y) and f € IY such that
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y € B,t = f(y) and (z,B,r,f) € F. Because F is a conical L-multi-
function, so for any A > 0, (Az,AB,r,Af) € F. Moreover \y € 2B,
t = Af(Ay) = f(y). This means that (\z,)\y,r,1) € Wy and finally
(Az, \y) e Wah. ¢
Theorem 2.6. If F' is a conical and superadditive L-multifunction then
for any a,B € 1, WFa’ﬂ 18 @ conver set.
Proof. Let (z1,y1), (z2,y2) € WFa’ﬂ. Then for any ry,7p > a and
t1,t2 > B
(z1,91,m1,8) € Wr,  (22,y2,72,t2) € Wr.
This means that there exist By,B; € P(Y) and fi, f» € IY such that
y1 € By, t1 = fi(n1), y2 € Ba, fo(ye) = t2 and (z1,By,m1, f1) € F,
(z2,B2,7m2, f2) € F. Because F is a conical and superadditive L-multi-
function so for any A > 0
(Az1,AB1,ri, A1) € F, (1= A)za(1 — M) By ,re, (1 — Af:)eF,
and
(Az1 + (1= A)zg ,AB; + (1 = A)B;z,min(ry,ry), A\ f1 + (I1-MNf2)eF.
This means that
(/\IEl —+ (1 — )\)332, )\yl + (1 — /\)yz,min(ﬁ,rz),min(tl,tz)) € WF .

Because min(ry,r3) > a and min(t;,%,) > 8 so
(Az1 4 (1= N2, Adys + (1 — N)ya) € WP,

. o .
1.e. a set WF’ﬂ is convex. ¢

3. Some topological properties of Z-multifunctions

Now, let us assume that the reference spaces X, Y and Z are finite
dimensional Euclidean spaces.

Definition 3.1. An L-multifunction, F' : X — P(Y) say, is called
closed iff its graph Wp is a closed set.

Corollary. For any closed L-multifunction its converse L-multifunc-
tion 15 closed.

Definition 3.2. An L-multifunction F ;: X — P(Y) say, is sequentially
bounded iff for any bounded sequence S = {z,} and any sequence R =
={ra}, zn € X, r, € (0,1), the set

{ly,t) €Y X I: (zn,y,mn,t) € Wp,zp, € S, € R}

is bounded.
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Theorem 3.1. If F : X — P(Y) and G : Y — P(Z) are closed L-
multifunctions and F is sequentially bounded, then G o F is a closed
L-multifunction.
Proof. Let (zn,2n,7n,Pn) € Wgor and let (zn,2n,Tn,pn) — (0, 20,
ro,Po) as n — oo (the convergence may be taken with respect to each
coordinate separately), z, € X, z, € Z, rn,pn € (0,1). We will prove
that (zo,20,70,p0) € Wgor. In fact, for any n, (zn, 2n,n,pn) belongs
to Wgor iff there exist C,, € Z, h,, € IZ such that (2n,CnyTayhn) €
€ GoF and z, € Cp, hyn(2n) = pn. An element (zn,Cr,7n, hn) € Go F
iff there exist (zn, Bn,7n, fn) € F and (yn,Cn,tn, hs) € G such that
Yn € By, and fn(yn) = tn. From the above conditions it follows that

(xnaynanutn) € WF and (yn,zn7tn,pn) € Wa.
Because F' is a sequentially bounded and closed L-multifunction we
observe that the sequences {y,} and {¢,} are bounded and without
losing generality we may assume that y, — yo and ¢, — t; as n — oo.
Moreover

(z0,Y0,70,t0) € Wr and  (yo, 20,%0,00) € We .
This means that there exist By € P(Y), fo € I¥ such that y, €
€ By, fo(yo) = to, (z0,Bo,70, fo) € F and there exist Cp € P(Z),
ho € IZ such that 2y € CO, ho(ZO) = Do, (yo,CO,to,ho) € G This
means that (zo,Cy,ro,ho) € G o F. Because zg € Cy, ho(z0) = po, s0
(z0,20,70,P0) € Wgor. ¢
Theorem 3.2. If an L-multifunction F' : X — P(Y) is closed and
conical and for any r,t € I, (0,y,r,t) ¢ Wr for y # 0, then F is a
sequentially bounded L-multifunction. .
Proof. According to Def. 3.2 it suffices to show that for any bounded
sequence S = {z,} and any sequence R = {r,}, z, € X, r, € (0,1)
theset T = {(y,t) € Y xI: (zp,y,7n,t) € Wp, 2, € S, 7 € R} is
bounded. Suppose that the set T is unbounded for some S and some
R. Then there exist the sequences {yn}, {tn}, (yn,tn) € T such that
lyn|| — 0o as n — oo. But (zn,Yn,™n,tn) € W and F is a conical L-
multifunction, so (z/||ynll, Yn/l|YnllsTn,tn) € Wr. Hence, there exist
subsequences Z,, Yn,, 'ny, tn, such that

(@ne /NYnells Yri NYnalls i try ) = (0,90,70,t0)
as k — oo, where yg # 0 because limyn, /||yn,|| = 1 = yo. Because

F' is a closed L-multifunction, so (0,yo,70,t0) € Wr for yo # 0, a
contradiction. ¢
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Definition 3.3. A fized point of the L-multifunction F : X — P(X)
is an element T € X such that there exist r,¢ € I such that (Z,Z,r,t) €
€ Wp.

Theorem 3.3 (Fixed point theorem) Let C' be a nonempty, convex
and compact subset of X. If ' : C — P(C) is a closed, conical and
superadditive L-multifunction, then F has a fized point in C.

Proof. Let us consider a point-to-set mapping F' : C — P(C) such
that for any z € C

F(:c):{yGC'HrtEI(:I: y,m,t) € Wr}.
First we will prove that 7 is a fixed point of F'iff 7 is a fixed point of
F. I 7 is a fixed point of F. then 7 € F(F). This means that there
exist r,t € I such that (:c,:c,r,t) € Wr, i.e. T is a fixed point of F.
Now, if T is a fixed point of F then from Def. 3.3 it follows that there
exist r,¢ € I such that (Z,%,r,t) € Wr. This means that T € F(T), i.e.
T is a fixed point for F. ¢

Now, we will show that F satisfies the hypothesis of Kakutani
fixed point theorem, i.e. that F'is a closed mapping and for any z € C
F(z) is a convex set.

Let y1, y2 be elements from ﬁ’(z) From the definition of F' it fol-
lows that there exist elements r1,7ry,%1,t, € I such that (z,y1,m1,t1) €
€ Wr and (z,y2,7r2,t2) € Wr. This means that there exist B{,B; €
€ P(C) and fi, fo € I¢ such that

(‘T,B17r17f1)EF7 (waB27T2’f2)EF
and

yi €B1, y2€By, filyi)=t1, faly)=t,.
Because F' is a conical and superadditive L-multifunction, so for any
a>0
(z,aB; + (1 — a)By ,min(ry, ), af; + (1 — a)f,) e F.

This means that

(z,0y1 4+ (1 — &)y, min(ry,m2),t) € W,
where

t=(afi +(1—a)f2)(ayr + (1 - a)ys),
ie. ay +(1—a)y; € F(z).

Now, let us consider a sequence {z,}, z, € C such that z,, — z

asn — oo. Let y, € F(:cn) and y, — yo as n — oo. We will prove that
Yo € F(:co) Ify, € F(.’En) then for any n there exist r,,t, € I such
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that (zn,Yn,Tn,tn) € Wp. Without losing generality we may assume
that r, — rg; t, — to as n — oco. Because F is a closed L-multifunc-
tion, so (zo,Yo,70,t0) € Wp. This means that yo € F(z), i.e. F is
a closed mapping. So, according to the Kakutani theorem there exists
T € C such that 7 € F(Z). This means that an L-multifunction F has
a fixed point T in C. ¢
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Abstract: We prove that real functions f and g, defined on a real interval
I, satisfy

fltz 4+ (1 - )y) < tg(z) + (1 - t)g(y)
for all «,y € I and t € [0, 1] iff there exists a convex function h : T — R such
that f < h < g. Using this sandwich theorem we characterize solutions of two
functional inequalities connected with convex functions and we obtain also
the classical one-dimensional Hyers-Ulam Theorem on approximately convex

functions.

Introduction

It is the aim of this note to characterize real functions which can be
separated by a convex function. This leads us to functional inequality
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(1) Fltz + (1 —t)y) <tg(z)+ (1 -1)g(y).

Using this characterization we describe also solutions of the inequalities
(2) flz 4+ (T —t)y) <tf(e) + (T —1)f(y)

and

(3) ftz+ (T —t)y+ (1 —T)zo) < tf(z) +(T —t)f(y) + (1~ T)f(20).

Functions fulfilling (2) appear in a connection with the converse of
Minkowski’s inequality in the case where the measure of the space con-
sidered is less than 1 (see [4; pp. 671-672] and [5; Remark 16]).

1. A sandwich theorem

Our main result reads as follows.
Theorem 1. Real functions f and g, defined on a real interval I, satisfy
(1) for all z,y € I and t € [0,1] off there ezists a convez function
h:I-— R such that
(4) f<h<yg.

Proof. We argue as in [1; proof of Th. 2]. Assume that functions f,g :
: I — R satisfy (1) and denote by E the convex hull of the epigraph of
g:
E =conv{(z,y) € I xR:g(z) <y}.

Let (z,y) € E. It follows from the Carathéodory Theorem (see [3; Cor.
17.4.2} or [6; Th. 31E] or [7; the lemma on p. 88]) that (z,y) belongs to
a two-dimensional simplex S with vertices in the epigraph of ¢g. Denote

yo =inf{z € R:(z,2) € S}.
Then y > yo and (z,y0) belongs to the boundary of S. Consequently
(z,y0) = t(z1,y1) + (1 — t)(z2,y2) with some ¢t € [J,1] and (z1,y1),
(z2,y2) € I x R such that g(z;) < y; and g(z2) < y2. Hence, using also
(1), we get

y 2 yo =1ty1 + (1 —t)y2 = tg(z1) + (1 — t)g(z2) 2

> f(tzy + (1 —t)z2) = f(=).
This allows us to define a function A : I — R by the formula

h(z) = inf{y e R:(z,y) € F}
and gives f < h. Moreover, since (z,g(z)) € E for every z € I, we
have also h < g. It remains to show that A is convex. To this end fix
arbitrarily z1,z2 € I and ¢t € [0,1]. Then, for any reals y1, y2 such that
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(21,91),(22,92) € E we have (tz1 + (1 — t)z2,ty1 + (1 — t)y,) € E,
whence h(tz1 + (1 — t)z2) < ty1 + (1 — t)yo. Passing to infimum we
obtain the desired inequality: h(tzy + (1 —t)xz) < th(z1)+(1—1)h(zs).
This ends the proof (of the “only if” part but the “if” part is obvious). ¢

The following example shows that Th. 1 cannot be generalized for
functions defined on a convex subset of the (complex) plane.
Example 1. Let D € C be the open ball centered at zero and with the
radius 2, and let z;, 23, z3 be the (different) third roots of the unity.
Define the functions f and g on D by the formulas

0 le#O 0 ifZG{Zl,zQ,Z;;}
f(=z) = . 9(2) = .
1 fz=0 3 ifze D\ {z,2,23}.

It is easy to check that (1) holds for all z,y € D and ¢ € [0,1]. Suppose
that there exists a convex function k : D — R satisfying (4). Then

1= £(0) = f (%(zl P 23)> <h (%(zl +ot 23)) <

< %(h(h) + h(2z2) + h(z)) < %(9(21) +9(22) + 9(23)) = 0,
a contradiction.

Arguing as in the proof of Th. 1 we can get however the following
results.

Theorem la. Real functions f and g, defined on a convez subset D of
an (n — 1)-dimensional real vector space, satisfy

(5) FUD timi ) <3 tig(zy)
j=1 7=1

for all vectors z1,...,z, € D and reals t,,...,t, € [0,1] summing up
to 1 iff there ezists a convez function h: D — R satisfying (4).
Theorem 1b. Real functions f and g, defined on a convez subset D of a
vector space, satisfy (5) for each positive integer n, vectors zq,...,z, €
€ D and reals t1,...,t, € [0,1] summing up to 1 iff there ezists a
convez function b : D — R satisfying (4). ‘

2. Applications

We start with an application of Th. 1 connected with approxi-
mately convex functions. :




142 K. Baron, J. Matkowski and K. Nikodem

If € is a positive real number and a real function f, defined on a
real interval I, satisfies

flz+ (1 —t)y) <tf(z) + (1 - f(y) +e
forall z,y € I and t € [0,1], then (1) holds with ¢ = f+¢ and it follows
from Th. 1 that there exists a convex function h : I — R such that
flz) <h(z) < f(z)+e for z€l.
Putting ¢(z) = h(z) — €/2 we obtain a convex function ¢ : I — R such
that -
lo(z) — f(z)| <e/2 for zel.
This is the classical one-dimensional Hyers-Ulam Stability Theorem (see

{2; Th. 2}; cf. also [1; Th. 2] and [3; Th. 17.4.2}).

Further applications of our Th. 1 concern solutions of the inequal-
ities (2) and (3). Denote by J either [0,+00) or (0, +00). Given T' > 0
and f : J — R we define the function fr : J — R by the formula
fr(z) =T f(Tx).
Theorem 2. Let T be a positive real number. A function f:J — R
satisfies (2) for all z,y € J and t € [0,T) iff there ezists a convex
function ¢ : J — R such that

(6) er< f<e.

Proof. Assume that f: J — R satisfies (2). Putting T - ¢ in place of ¢
in (2) we have

(7) fr(te + (1 - t)y) <tf(z) + (1 —1)f(y)

for all z,y € J and t € [0,1]. Applying Th. 1 we obtain a convex
function A : J — R such that

(8) fr<h<f.
Define now ¢ : J — R by the formula
(9) o(z) = Th(T'z).

Then ¢ is convex and (6) holds.

Conversely, if (6) holds with a convex function ¢ : J — R then
(9) defines a convex function h : J — R which satisfies (8) whence (7)
follows for all z,y € J and ¢ € [0,1]. But this means that (2) holds for
all z,y € Jand t € [0,T]. ¢
Example 2. If T € (0,1), then taking ¢(z) = 22 for z € [0, +o0) we
get by Th. 2 that every function f : [0, +00) — R satisfying

Tz? < f(z) <z? for z€0,+o0)
is a solution of (2). Similarly, if T € (1, 4+00), then taking ¢(z) = 1/z
for z € (0,400) we see that every function f : (0,4+00) — R such that
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1/(T?*z) < f(z) < 1/z for z € (0,+00)
satisfies (2). ‘ : ' :
Now we pass to inequality (3). Fix a real interval I and a point
zg € I. For T €-(0,1) put "
IT =TI+ (1-T)z. , _
Given a real function ¢ with the domain containing 17, we define @
: I — R by the formula

o(z) = T (T2 + (1 - T)z) — (1 = T)p(20)) -
Theorem 3. Let T € (0,1). A function f: I — R satisfies (3) for all
z,y € I and t € [0,T] iff there ezists o convez function ¢ : I¥ - R
such that - ' N
(10) o7(z) < f(z) for z€l and f(z)<y(z) for z€lf.

Proof. Assume that f satisfies (3). Putting 7' ¢ in place of ¢ in (3) we
have

(11) fr(tz 4+ (1 =t)y) <tf(z) + (1 —1)f(y)
for all z,y € I and ¢ € [0,1]. Applying Th. 1 we obtain a convex
function & : I — R such that
(12) fr<h<f.
Since f7.(z0) = f(20), we have h(z0) = f(20). Define ¢ : I — R by the
formula
(13) p(z) = Th(T™'(z — (1 = T)z0)) + (1 — T)f(z0).
Then ¢ is a convex function, ¢(z0) = f(zo),
PHa) = h(e) < f(z) for el

and
(@) 2 TIH(T (z ~ (1~ T)z0)) + (1 = T)f(20) = f(z) for z€If.

Conversely, if (10) holds with a convex function ¢ : Ir - R
then f(z0) = ¢(2z0) and (13) defines a convex function A : I — R
which satisfies (12). This implies (11) for all z,y € I and ¢t € [0,1].
Consequently f satisfies (3) for all z,y € I and ¢ € [0,T]. {
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