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1. Introduction

In describing the structure of certain types of algebraic systems,
also such “radicals” which are not Kurosh—-Amitsur radicals, may play
an important role, for instance this is the case in the theory of near—
rings, groups and lattice-ordered groups. Thus it seems to be useful to
revisit the connection and interrelationship among the various notions
of (not necessarily Kurosh-Amitsur) radicals.

The purpose of this paper is to analyse the concept of a radical
of an arbitrary universal class A of not necessarily associative rings or
Q—groups, in particular near-rings. For the sake of simplicity we shall
refer to the objects of A as rings. Let us recall that a universal class
A of rings is one which is closed under taking ideals and homomorphic
images. At this point we may mention that our investigation could be
carried out on an even higher level of abstraction by taking arbitrary
universal algebras for rings and congruence relations for ideals — this
basis was selected by Hoehnke for his work in [3].

Our analysis is carried out progressively along the sequence:

preradical — quasi-radical — radical

A Kurosh-Amitsur radical r of Ais afunction A — A4, A — rA<4
which satisfies the following conditions:
(A) for every homomorphism f: A — fA, (A€ A), frA CrfA,;
(B) r(A/rA) =0 forall A € A4;
(C) foral Aec A: (IaAandrl =1)=ICr4;
(D) forallAec A: rrA =rA.
A function r : A — rA a4 A which satisfies (A) is called a preradical
(of A). A preradical r which satisfles (B) is called a quasi-radical (also
a Hoehnke radical due to [3]). A preradical r which satisfies (C) resp.
(D) is said to be complete resp. idempotent. Connections between
preradicals and (hereditary) quasi-radicals were first investigated by
Michler in [8]. (Cf. also [9].) We follow a different line of approach.
The basic technique in our analysis is that of definition through
intersection of ideals with the focus on basic properties of the sets of
ideals to be intersected. For this purpose we employ the notion of an
isolator (cf. our Def. 1, and [1]), and we impose various conditions
on isolators, these conditions (stable, transferring, 0-extending) being
generalizations of well-known properties of the set of semiprime ideals
in an arbitrary associative ring (cf. definitions 2-4). We attempt to
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emphasize isolators as “concrete preradical definers” on the one hand,
and “tangible mediators” between quasi-radicals and their semisimple
classes, on the other. Qur analyses culminate in three sequences of
one-to—one correspondences (cf. corollaries 1-3) of the form:

re— A e—S

where r, A and S represent specific types of quasi-radicals, maximal
stable isolators and subdirectly closed classes respectively.

As an application (section 5) we recover the three well-known nil-
based radicals within our framework by giving new characterizations of
these radicals in terms of natural cardinality conditicns.

2. Quasi—radicals

We start off our analysis of the concept of a radical by defining
our basic instrument.
Definition 1. An isolator A is a function which assigns to every ring
A (in A) a set A(A) of proper ideals of A satisfying the condition:
() if f: A — fA is any homomorphism, then for every K € A(fA)

there exists an I € A(A) such that fI C K.

It easily follows that the following sets of proper ideals in an arbitrary
associative ring A define isolators:

n(A) : the prime ideals;

II(A) : the prime maximal ideals;

p(A) @ the maximal ideals;

o(A) : the semiprime ideals;

k(A) : the quasi-semiprime ideals, (cf. [2]).
Proposition 1. If A is an isolator then the assignment A — rA =
=N(I € A(A)) is a preradical.
Proof. Let f : A — fA be any homomorphism. Then frd = f(N(I €
e A(4)) C N(fI : I € A(A)). Using (a) we get frA C N(K €
€ A(f(A))) =rfA. O

The preradical defined by the assignment A — rA = N(I € A(A))
will be referred to as the-preradical genérated by A. As to a converse
to Prop. 1 we note that every preradical is trivially generated by an
isolator: Let r be a preradical and define the function A by A(A4) :=
:={P<aA:rAC P} ThenrA=n(P € A(A)) forall A. Let f: A —
— fA be any homomorphism, and i € A(fA). Then frA CrfA C K
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and we have that (a) is satisfied with I = rA. Hence A is an isolator
which generates r.

Our first condition on isolators is the one in:
Definition 2. An isolator A may be called stable if it satisfies the
condition: '
(B) if f: A — fAis any homomorphism, then for every I € A(A) with

ker f C I there exists a K € A(fA) such that K C fI.

There exist isolators which are not stable. We construct such an iso-
lator: Let n be a positive integer > 2. Then the assignment 7@ : A —
— 7iA := {a € A : na = 0} is a preradical. Define the function A by
A(A) := {mA:m > n and n|m}. Then A is an isolator, and it gener-
ates m. However, A is not stable. For let us consider f : A — A/mA,
and I =mA =ker f. Now if K € A(fA) and K C fI, we must have
that K = 5(A/fA) = nA for some s > n with n|s. This implies that
{a+7A:a € 35mA} =TA, ie. BA = 3nA, which is in general not true.
Thus we have that A is not stable.

We note here (cf. [1]) that a function A assigning to every ring A
a set A(A) of proper ideals of A, and satisfying:

(x) for all A and every homomorphism f : A — fA, the assignment
P — fP defines a bijection {P € A(A) : ker f C P} — A(fA),
satisfies (o) and (8), and hence it defines a stable isolator. In particular,
if P is any abstract property of rings and the function A is defined by

A(A):={P<aA:A/P has property P}

then A satisfies condition (x), because by the isomorphism A/P =
= fA/fP there is a bijection between {P € A(A) : ker f C P} and
A(fA). (It is easy to construct a stable isolator which does not satisfy
(x)-) It now easily follows that the isolators listed above are stable.
Moreover, every preradical gives rise to a stable isolator. This is:
Proposition 2. If r is a preradical then the assignment A — A(A) =
={I<A:r(A/I) =0} is a stable isolator.
Proof. Let f be a homomorphism, and fK € A(fA). Then r(A/K) =
= r(fA/fK) = 0 shows that K € A(A), and (o) is satisfied. The
validity of (8) follows in a similar way. ¢

Quasi-radicals and stable isolators stand in a very special rela-
tionship with one another. This is:
Theorem 1. Let r be a preradical. Then r is a quasi-radical if and
only if r is generated by a stable isolator.
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Proof. Suppose that r is a quasi-radical. Then r(R/rR) =0 for all R:
This shows that for an arbitrary ring A, N(I <A : r(4/I) = 0) C rA.
On the other hand, if I <« A such that r(A/I) = 0 then the natural
homomorphism A — A/I induces that rA — r(A/I) = 0, so that
rA C I. Thus we have that rA =N(I <A : r(A/I) = 0), and it remains
to show that the function A defined by A(4) = {I<A:r(A/I)=0}is
a stable isolator. This follows by Prop. 2.

Conversely, suppose that r is generated by a stable isolator A. Let
A be an arbitrary ring and consider f : A — A/rA. Now r(A/rA) =
=rfA:=0(K € A(fA)). Using (8) and (o) we get r(4/rA) CN(fI:
I € A(A),rA C I) = N(fI : I € A(4) = nI/n({I €
€A(A):TeA(A)=0. ¢

The preradical r in Prop. 2 and the quasi-radical implied there in

view of Th. 1, say s, are comparable
Proposﬂ:mn 3. rA C sA for all rings A.
Proof. Let I « A such that r(A/I) = 0 and f the natural homo-
morphism A — A/I. Then frA C r(A/I) = 0, and this together
with frA = (rA + I)/I shows that rA C I. Thus we have that
rACNI<A:r(A/I)=0)=3sA. {

Referring back to our list of well-known stable isolators we recall
the fact that N(I € 7(4)) = N(I € o(A)). This implies that a given
quasi-radical may be generated by different stable isolators. In terms
of the partial order on 1solators defined by “A < A’ & A(4) C A'(4)
for all A” we have: :
Proposition 4. If r s a quasi-radical then the function A defined by
A(A) = {I<A:r(A/I) =0} is a stable isolator such that A satisfies
condition (x) and the quasi-radical generated by A is r. Moreover, if A
is any stable isolator generating the same quasi-radical v, then A < A.
Proof. The first claim was already verified in the proof of Th. 1. Let
us therefore consider any stable isolator generating r. Let A be an
arbitrary ring, and I € A(A). Applying (8) to A — A/I we find that
K :=0¢€ A(A/I). Since r(A/I) C X/I for all X/I € A(A/I) we have
that r(A/I) =0,i.e. I € A(A). Hence A <A. ¢

The unique maximal stable isolator A corresponding to the quasi-
radical r will be referred to as the mazimal generating isolator for r, and
denoted by A[r], or just by A where no ambiguity can occur. For any
given quasi-radical r, A[r] has another unique feature, as is exhibited

in the following characterization.
Proposition 5. Let A be a stable isolator. Then A = A[r] for some
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quasi-radical r if and only if A satisfies the condition:

() VA(T C A(4)) = NI €T) € A(4))

Proof. Suppose A = A for a quasi-radical r. Let A be an arbitrary
ring and I' € A(A); and consider K := N(I € T"). Using (B) for A we
get

r(A/K) = N(M/K € A(A/K)) =
=N(M/K:KCMeA(A)CnI/KeT)=0.

Thus we have that N(I € T') = K € A(4) = A(4).

Conversely, let A be a stable isolator satisfying (¢), and r the
quasi-radical generated by A. Then A < A. Let P € A(A). Then
r(A/P)=0. This implies (since A generates r) that N(I/P € A(A/P))=
= 0, and this in its turn implies that N(I : I/P € A(A/P)) = P.
By (a), for each I,/P € A(A/P) there is an M, € A(A) such that
M,/P C I,/P. Set T := {M,}. Then we have N(M, € T') C
cn(I:I/Pe A(A/P)) = P. By (), for each M, € T there is
an L,/P € A(A/P) such that L,/P C M,/P. Hence P =
=N :I/P € A(A/P)) CNL, C N(M €T). Thus we have shown
that P = N(M € I'); and condition (¢) yields P € A(A4). Hence A < A;
and the equality A = Alr| follows. ¢

A quasi-radical is, as mentioned in the introduction, just a
Hoehnke radical. It is known from [3] that there is a one-to-one cor-
respondence between quasi-radicals and subdirectly closed classes: if
r is a quasi-radical then the class S, := {4 € A : r4 = 0}, (which
is usually called the semusimple class of the quasi-radical r), is closed
under taking subdirect sums; and if S is a subclass of A being closed
under subdirect sums, then the assignment r : A — rA defined by
rA=N(I<A: A/I €8) is a quasi-radical with semisimple class S. In
view of this and Th. 1 and Prop. 4 we have:

Corollary 1. There exist one—to—one correspondences r «— A +—— S
between quasi-radicals v, mazimal stable 1solators A, and subdirectly
closed classes S.

An example: f: A — fA = NP € n(A4)) = N(S € o(4))

is a quasi-radical. (f is the well-known prime radical for associative

rings.) Using Prop. 5 together with well-known properties of prime and
semiprime ideals, we see that m # A[f] while o = A[A].
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3. Complete quasi-radicals

In this section we carry our analysis one step further: we consider
those preradicals satisfying conditions (B) and (C) stated in the intro-
duction, i.e. the complete quasi-radicals. For this purpose we shall
need a further condition on isolators:

Definition 3. An isolator A may be called transferring if it satisfies
the condition:

(v) if P € A(A) and I < A with PN T # I then there exists a K <1,

K # I, such that PNI C K and K € A(]).

Of the five examples of isolators listed in section 2, the first four are
transferring. In fact, in the case of any A € {m, 11, p, 0}, well-known
properties of the ideals concerned show that (P € A(A), I<4, PNI # I)
implies that P NI € A(I), and (v) is satisfied with K’ = PN I, The
isolator &, however, is not transferring, e.g. if A is a ring with identity
and having a nilpotent ideal N # 0, the N(P € &(4)) = 0, so that
PN N # N for at least one P € £(A), though x(N) = 0. (Cf. [2].)

A basic relationship between transferring isolators and complete
quasi-radicals is exhibited in:

Theorem 2. The following three conditions on a quasi-radical r are

equivalent:

(1) r is complete;

(2) the mazimal generating isolator A= A [r] of r is transferring;

(3) the semisimple class S, of r is regular, i.c. 0#£IaA€S,)=
= (3 K aI such that 0 # I/K € S;).

Proof. (1) = (2): Assume that A is not transferring. Then there is a

P ¢ A(A) and an I <« A with PN I # I such that AI/(PNI))=0.

The latter implies that r(I/(I N P)) = I/(I N P), and hence we get

r((I + P)/P) = (I + P)/P. From the completeness of r it follows that

(I + P)/P C r(A/P) =0, giving the contradiction I & P. Hence A is

transferring.

(2) = (3): Let A be a ring with r4 = 0, and 0 # I 14 A. From
rA = 0 and the maximality of A it follows that 0 € A(A). Since A
is transferring, there exists a K «I, K # I such that K € A(I), ie.
r(I/K) =0.

(3) < (1): has been proved in Prop. 2.2 of [7]. ¢

In the structure theory of O-symmetric near-rings the most im-
portant quasi-radical assignments are J, : A J,(A),v=0,1,2. It
is known that Jo < J1 < J2, that Jp and J1 are complete but not
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idempotent, (cf. [4]), and J2 is a Kurosh—Amitsur radical. For any
ring A, Jo(A) = J1(A) = J2(A) is the usual Jacobson radical. For
details we refer to [6]. By Th. 2 we have:

Corollary 2. There exist one—to—one correspondences r «—— A «— S
between the complete quasi-radicals r, the mazimal stable transferring
1solators A, and the regular subdirectly closed classes S.

Remark: Applying our Th. 2 and Th. 1.2 of [7] to the property “the
quasi-radical r is complete”, and translating into the language of isola-
tors, we get: If A is an isolator satisfying condition () and generating
the quasi-radical r, then A is transferring if and only if the maximal
stable isolator Afr] is transferring.

4. Idempotent complete quasi—radicals

We now proceed to isolating the (Kurosh—-Amitsur) radicals from
among the preradicals. First we shall briefly look at idempotent pre-
radicals.

Proposition 6. Let A be an isolator generating the preradical r. r
is idempotent if and only if A(rA) = 0 for all A € A. (The proof is
straightforward.)

Proposition 7. Let r be a quasi-radical and A the corresponding
mazimal stable isolator. The following conditions are equivalent:

(1) r is idempotent,

(2) A(rA) =0 for all A € A,

(3) r(rA/M) # 0 for all A € A and all proper ideals M of rA.
Proof. (1) = (2): this follows from Prop. 6.

(2) = (3): If r(rA/M) = 0 for a proper ideal M of A, then
M € A(rA), contradicting (2).

(3) = (1) If r is not idempotent, then rrA # rA for some A €
€ A. Since r is a quasi-radical, for M = rrA we have r(A/M) = 0,
contradicting (3). ¢

Another criterion for the idempotence of a quasi-radical has been
given in Prop. 2.4 of [7].

The quasi-radical r determined by « is (as has already been indi-
cated) not complete. It is, however, idempotent because: for any ring
Aand I<A, rI D INTA (cf. 2], Lemma 4.6), and, setting [ :=rA, we
haverADrrA DrANrA =rA.
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For O0-symmetric near-rings the isolator 7 defines an idempotent
quasi-radical, called the prime radical. As it has been shown in [5], this
prime radical is not a Kurosh-Amitsur radical, so it is not complete,
and 7 is not transferring.

The independence of being complete and being idempotent has
been exhibited also in examples 1 and 2 of [7].

We shall need one more condition on isolators:

Definition 4. An isolator A may be called 0-eztending if it satisfies
the condition:

(6) if T€A(A) and 0€ A(I) then 0€ A(A).

The best—known example of a 0-extending isolator is the isolator o
isolating the semiprime ideals in an arbitrary associative ring. As one
easily sees 7 is not O—extending, though it generates the same preradical
as 0. Also the isolator p is not O—extending.

For the purposes of our next result we shall need a further con-
struction. We consider an arbitrary fixed preradical r and define a
function

UV:A— VU(A):={PaA: (@A and TQ:Q)=>Q§P},

and then a function r' : A — A := N(P € V¥(A)). It is easy to see
that ¥ is an isolator, and hence r' is a preradical. Moreover, if A is
a transferring isolator generating r, then A < V. In this notation we
have:

Theorem 3. The following three conditions on a complete quasi—
radical v are equivalent:

(1) 7 is wdempotent (and hence a Kurosh-Amaitsur radical);

(2) for all A, rrA 4 A; and A = A[r] is O-eztending;

(3) for all A, rrA< A and rA =r'A.

Proof. (1) = (2): Since rrA = rA, rrA < A. Let I € A(A) and
0 € A(I), and assume that 0 ¢ A(A4), i.e. rA # 0. By the completeness
of r it follows that (rA + I)/I C r(A/I) = 0. Hence 0 # rA C I,
contradicting rI = 0. It follows that A is 0—extending.

(2) = (3): Assuming (2) we prove that rA = r'A. From
r((A/rrA)/(rA/rrA)) = r(A/rA) = 0 we see that rd/rrA €
€ A(A/rrA)), and it is clear that 0 € A(rA/rrA). Hence (2) implies
that 0 € A(rA/rrA). This gives the inclusion rA C rrA, and we have
that rrA = rA. This equality shows that rA C T for all T € ¥(A),
so that rA C r'A. On the other hand, if P € A(A) and Q < A with
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rQ = Q, it follows by the completeness of r that QQ CrA CP, so that
P € Y(A). Hence r'A C rA; and now r4 = r' 4 follows.

(3) = (1): Let Q 9 A such that rQ = Q. Since r is complete,
Q@ C rA. Since now Q a4, it follows (again by the completeness of r)
that @ C rrA. Hence it follows that rrA € ¥(A). We now have that
r'A CrrA CrA =r'A, showing that rrA = rA. O

Our final observation in this section comes in view of Th. 3 and
known facts about the semisimple classes of Kurosh—-Amitsur radicals
(cf. [10]). This is:
Corollary 3. There ezist one~to-one correspondences r «—— A «—— S
between Kurosh-Amitsur radicals r, those mazimal stable transferring
0-eztending isolators A for which rara A< A for all A, and those subdi-
rectly closed, reqular, extensionally closed classes S for which rsrs A< A
for all A, where vy and rg represent the quasi-radicals associated with
A and S respectively.

5. An application — the nil radicals

In this final section — by way of an application — we use the

isolator approach to construct a single formula function which yields the
three classical nil radicals — the prime radical 8, the locally nilpotent
radical £ and the nil radical M. We confine our attention here to
associative rings. We shall need the following:
Lemma. A proper ideal S of a ring A is a semiprime ideal iof and only
if every nonzero ideal of A/S has a potent countably generated subring.
Proof. Suppose S is a semiprime ideal of a ring A and let 0 #X/S 4
4A/S. If every countably generated subring of X/S is nilpotent, then
X/S itself is a nilpotent ring. (Suppose X/S is not nilpotent. Then
for every natural number n we may select a sequence rip, rop, ... ,Tnn
in X/S such that 71,79, ...70, # 0. Thus we would have selected a
countable subset of X /S which generates a countable non-nilpotent (i.e.
potent) subring of X/5).** But then X™ C § for some positive integer
m, and this would imply that X C §.

Conversely, suppose that every nonzero ideal of A/S has a potent
countably generated subring. Let X « A such that X2 C S. If X Z S,

**Professor Otto Kegel has on inquiry pointed out this subproof to the first
author in a personal communication in 1981. We are indebted to professor Kegel.
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then (X + 5)/S must have a potent countably generated subring T/S.
But this is impossible since (T//5)? C ((X + §)/5)?2 =0. ¢
We are now in a position to prove the main result of this section.
This is:
Theorem 4. Let A; (1 <4 < 3) be the function defined by
Ai(A) ={P1A,P# A: (P CX<A)= X/P has a potent 8;—-subring}
where the 6; are defined as follows:

01 :  “countably generated”;
62 ;' “finitely generated”;
03 1 “singly generated”.

Then the A; are stable transferring isolators, and they generate respec-
tively the radicals: :

rn=p0: the prime radical;

ro =L : the locally nilpotent radical;

rs =N :  the nil radical.

Proof. Fix any ¢ € {1,2,3}. The stableness of A; is an easy con-
sequence of the remarks following condition (x). To show that A;
is tranferring we verify the stronger condition (P € A;(4), Q < 4,
PNQ#Q)= PNQ e Q) Let 0 # X/(PNQ)1Q/(PNQ).
Then Q/(P N Q) = (Q + P)/P gives us the existence of a nonzero
ideal Y/P = X/(PN Q) in (Q + P)/P. Let Y*/P be the ideal gener-
ated in A/P by Y/P. Then Y*/P has a potent §;—subring, and hence
(Y*/P)® = (v* + P)/P # 0. Hence, since P € A;(A), (Y*/P)?® has
a potent §;—subring. Since by the Andrunakievich lemma (¥*/P)? C
CY/P=X/(PNQ), it follows that PN Q € A(Q).

Having established that A; is stable and transferring we now prove
that the complete quasi-radical r; generated by A; is a radical. We
apply Th. 3. Let once again A be an arbitrary ring. From the lemma
we infer that every P € A;(A) is a semiprime ideal of A. This ensures
that r;r;A 9 A. Suppose that r'A C r; A. Then there exists a T' € V(A)
such that r; A € T. This shows that A;(r;A) 0, i.e., there is a proper
ideal U of r;A such that every nonzero ideal of riA/U has a potent
0;-subring. It follows by the lemma that U is a semiprime ideal of
riA, and we know that r; 4 := N(P € A;(A)) is a semiprime ideal of A.
Hence U is a semiprime ideal of A. Let 0 # X/U<A/U. If r;ANX #£ U
then there is a potent §;—subring in (r;A N X)/U and hence in X/U.
IfriANX =U then (X + r;A)/r; A= X/U. Now X +r;A # r; A and
since r;((X +r;A)/r;A) = 0 there exists a T = r; A € (X +riAd)/r; A,
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so that there is a potent §;-subring in ((X + r;A)/r;A)/(T/r;A), and
consequently there is a potent §;—subring in (X +r;A)/riA. Hence X/U
has a potent §;—subring. It follows that U € A;(4) —a contradiction.

By our construction r; A := N(P € A;(A)) it follows that rnA=A
if and only if A;j(A) = 0. In the case 1 = 1 this means (by the lemma)
that 1A = A if and only if A has no semiprime ideals, i.e. A is a
B-radical ring. In the case i = 2 we note that a locally nilpotent ring A
clearly has Az(A) = 0. On the other hand, let B be aring with Aq(B) =
— (). If B has a potent finitely generated subring (z1,...,Zn), (Wwe may
assume all z; are potent elements), we may, in view of the finiteness,
select a maximal element in the set {C<B : {z1,... ,za} € C}, say M.
But then clearly M must be in Ay(B), contradicting Ay(B) = 0. Thus
we have that ro = £. The same argument applied in the case 1 = 3,
together with the fact that a singly generated subring () of a ring is
nilpotent if and only if z is a nilpotent element, ensures that rs3 = N. 0
Corollary 4. The function I'; defined by

Ti(A) :={I € Ai(A): I 1saprime ideal}

is a stable isolator gemerating the radical v; for i =1,2,3.
Proof. One readily sees that IT'; satisfies condition (x) and therefore
T'; is a stable isolator.

Let B be a prime ring such that r; B = 0. This means exactly that
every nonzero ideal of B has a potent §;—subring. Since r; = f LN
are special radicals, every ring A with r;A = 0 is a subdirect sum of
prime rings Bo with r; B = 0. Thus for a ring A the condition

$; A = ﬂ(P - Fi(A)) =0

is equivalent to r; A = 0. Moreover, by I'; < A it follows that r; X C s;X
for every ring X. Now suppose that r;X # 8;X for aring X. Then we
have

si(siX/[riX) = ri(s; X/riX) =0,

which implies that r; X is an element of the maximal stable isolator gen-
erating the quasi-radical s;. Hence s;X C r; X follows, contradicting
the assumption. ¢

The natural cardinality considerations in Th. 4 seem to explain
the imperturbable monopoly that 3, £ and N have maintained on the
lower end of the chain of useful concrete radicals.
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Abstract: In this paper we describe three methods of constructing the gen-
eral solution of the functional equation f(z)f(~1/Z) = —1 and we discuss a

few examples. The paper ends with a simple uniqueness theorem.

The functional equation

1) f(2)f(=1/z) = -1

occurs in astrophysics (cf. [4]). Here the unknown function f maps the
complex plane punctured at zero C* := C\ {0} into itself and relation
(1) (7 denotes the complex conjugate of z) is assumed to hold for all

z € C*.
Write

(2) h(z) = -1z = —z/|z|*, zeC*.
The function h : C* — C* is an involution
(3) h(h(z)) ==z, z€C*,

without fixed points (of order 1). With the aid of (2) equation (1) can
be written in the form
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(4) f(h(z)) = (f(2)), =zeC".

Relation (4) expresses the permutability of the functions f and h.

In this paper we describe three methods of constructing the gen-
eral solution of equation (1) and we discuss a few examples. The paper
ends with a simple uniqueness theorem.

1. The first method of solving (1) follows the pattern described
in [2; Chapter I] (cf. also [1]). Put
5) Dy:={2€C*|Imz>0}U{z€C*|Rez>0, Imz =0},
Dy := {zEC*IImz<0}U{zE(C*IRez<0, Im z =0}.

We have
(6) DiUD,=C*, D;nNDy;=4,

and the function h maps (in a one-to—one manner) D; onto Dy and
conversely:

(7) WD) =Dy, h(Dy)=D;.

Let F : D; — C* be a quite arbitrary function and define the
function f: C* — C* by the formula

_ F(z)v ZED17
(8) ﬂ”_{hwm@m,zepm

Definition (8) is correct in view of (6) and (7). We are going to show
that function (8) satisfies equation (4) {i.e., equation (1)) on C*. Take
an arbitrary z € C*. According to (6) either z € Dy or z € D,. In the
former case we have by (8) f(z) = F(z) so that h(f(z)) = h(F(z)), and
by (7) h(z) € D,, whence, again by (8),

f(h(2)) = RIF(R(R(2)))] = (F(2)) = h(f(2))
(cf. (3)). Consequently relation (4) holds true.
When z € D,, then h(z) € D1, and we obtain using (8) and (3)
h(f(2)) = h[M(F(R(2)))] = F(k(2)) = f(~(2)) .

Thus (4) holds in this case, too.
It is clear that taking in formula (8) all possible functions F' :
: D, — C* we obtain all solutions f : C* — C* of equation (4). (In
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order to get a given solution f of (4) one takes F' = f|D;.) Thus we
have, since equations (1) and (4) are equivalent.

Proposition 1. With notation (2) and (5), for every function F :
: Dy — C* the function f defined by (8) satisfies functional equation
(1), and all the solutions f : C* — C* of (1) may be obtained in this
manner.

Thus formula (8) yields the general solution f : C* — C* of
equation (1), the function F playing the role of a parameter. We say
(see [2] or [3]) that the general solution of (1) depends on an arbitrary
function.

It is readily seen from (8) that equation (1) has a lot of very
irregular (e.g., discontinuous or nonmeasurable) solutions: to obtain
them it is enough to take in {8) an irregular F. We shall return to the
problem of the regularity of solutions of (1) later in this paper. Here
we observe only that if the function F' : D; — C* is continuous on D4
and, moreover, for real negative zp it fulfils the condition

_lim  F(z) = h(F(-=)),

then the solution f of equation (1) obtained from formula (8) is con-
tinuous on C*. Thus also in the class of the continuous functions
f : € — C* the solution of equation (1) depends on an arbitrary
function.

Remark 1. In this construction instead of sets (5) we could take
arbitrary sets fulfilling conditions (6) and (7) (in the argument we use
only these properties, the particular shape of sets (5) is irrelevant), e.g.
we could take

D, ::{ZE(C|0<|z|<1}U{z€C||z|=1, Imz >0} U {1},
DQV::{zE(Cllzl>1}U{z€C“z]=1,Imz<0}U{—1}.r

The essential thing is that the set D; should contain exactly one point
of every couple {z,h(2)}, z € C* (i.e. of every orbit under A contained
in C*) and D, = C* \ D;. )

2. The second method of constructing the general solution of (1)
is that of the linearization. Its general principles are explained, e.g.,
in [3; p. 5], but the details must be worked out separately in every
particular case.

First we define a function o : C* — C* by the formula
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z, z € Dy,
9 =
© o(2) { 1/z=z/|2|?, z€ Dy,

where the sets D; and D; are given by (5). The direct verification
shows that o satisfies for all z € C* the functional relation (the Schréder
equation; cf. [2], [3])

(10) olh(z)] = —a(z).

Moreover, o is invertible. Indeed, suppose that for some u,v € C* we
have

(11) o(u) = a(v).

By (5) and (9) we have 0(D1) = Dy, o(D2) = D, and (11) implies
according to (6) that the points u and v must both lie in the same set
D;. In other words, either u,v € Dy, or u,v € D;. In the former case,
in view of (9), relation (11) turns into

(12) u=v,

while in the latter case (11) yields 1/u = 1/v which again is equivalent
to (12). Thus for arbitrary u,v € C* relation (11) implies (12), which
means that the function o is invertible, as claimed.

Consequently there exists the function ¢™! : C* — C*, inverse to
o, and by virtue of (10) it satisfies on C* the functional equation

(13) o Y =2) = h(o7(2)).
Let 9 : C* — C* be an arbitrary odd function:

(14) Y(—z) = —(z), zeC",
and define the function f : C* — C* by the formula
(15) fz) =7 P(o(2))], zeC*.

Function (15) satisfies equation (4) (or, equivalently, equation (1)) on
C*. In fact, according to (15), (10), (14) and (13), we have for arbitrary
z€C* '

F(h(2)) = o7 (o (h(2))] = 0 [$(=0(2))] =
=0 [~(a(2))] = hlo T (¥(a(2)))] = h(f(2)).

Conversely, if a function f : C* — C* satisfles equation (4) (i.e., (1))
on C*, then it can be written in form (15), where ¥(z) := o[f(071(2))]
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is an odd function by virtue of (13), (4) and (10). Thus we have the
following .
Proposition 2. With notations (5) and (9), for every odd function
¥ : C* — C*, the function f defined by (15) satisfies the functional
equation (1), and all the solutions f: C* — C* of (1) may be obtained
in this manner.

Remark 2. In this construction function (9) could be replaced by an
arbitrary other particular invertible solution & : C* — C* of equation
(10). There exist many such solutions (the general invertible solution
o : C* — C* of (10) depends on an arbitrary function) and any one
of them can be used here. The argument depends only on (10) and
on the invertibility of o and not on the particular shape of function
(9). However, we have been unable to find a more regular invertible
particular solution of equation (10) on C*.

Formula (15) yields the general solution of equation (1) on C*.
Unavoidably, also this formula contains an arbitrary (odd) function as
a parameter. Formula (15) is more elegant and looks more agreeable
than formula (8) but its disadvantage is that — due to the peculiar
shape of the function ¢ — it is rather difficult to deduce from (15) the
regularity properties of f. From this point of view the third method of
solving (1), which we are now about to explain, seems most promising.

3. The third method of constructing the general solution of equa-
tion (1) is not new either (cf., e.g., [2, p. 148]), but I know of no place
where it would be explained in a more general setting.

Let fo : C* — C* be a particular solution of equation (1) on C*
and let g : C* — C* be an arbitrary function. Put

(16) f(2) = fo(2)9(2)/ 9(h(2)), =eC*.
We have by (2) and (3), since f, satisfies equation (4),
F(1(2)) = fo(R(2))g(h(2))/ 9(2) = h(fo(2))g(h(2))/ 9(2) =

_ () _
= TR0 e = M),

which means that f satisfies equation (4) on C*. Conversely, let f and
fo be arbitrary solutions of equation (4) on C* and let ¢ : D; — C*
(where the sets Dy and D, are given by (5)) be an arbitrary function
tulfilling the condition
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(17) [p(2))* = f(2)/ fo(2), z€C".
We define the function g : C* — C* by the formula
90(2)7 z € D17
18 z) = -
(18) 9(=) {1/(p(h(z)), 2 € D,.

For z € D; we have by (7) h(z) € D3, and according to (18)
and (3)

9(2) = ¢(2), g(h(z)) =1/ 0(2), g(h(2)) =1/(2)
so that g(2)/ g(h(2)) = [#(2)]* and by (17)

(19) 9(2)/ g(h(2)) = f(2)/ fo(2).
For z € D, we have by (7) h(z) € Dy and according to (18)

9(z) =1/ ¢(h(2)), g(M(2)) =¢(h(2)), g(h(2)) = ¢(h(2)),

whence we obtain by virtue of (17), and (2), since both f and fo satisfy
equation (4),

o(2)/ ) = 1/ [(WE)] = U/ TOENE = FolW(=)/ FAG=)) =
= B(R(/ FFED) = @)/ fol#),

i.e. again we get (19). Consequently relation (19), and thus also relation
(16), holds for all z € C* and we have proved the following
Proposition 3. With notation (2), if fo : C* — C* is a particular
solution of equation (1), then for every function g : C* — C* the func-
tion f defined by (16) satisfies the functional equation (1), and all the
solutions f : C* — C* of (1) may be obtained in this manner.

Taking as fy the simplest possible particular solution fy(2) = 2 of
(1), we obtain from (16) the formula

(20) f(z) = 29(2)/ 9(h(2)), =z€C".

Formula (20) yields the general solution of equation (1) on C* and, as
was to be expected, it contains an arbitrary function in the role of a
parameter.

Remark 3. In each method of solving equation (1) we have used sets
(5), but in each instance they played a different role. In the first method
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sets (5) appeared directly in the formula for the solution, in the second
method they were used to construct a particular solution o of equation
(10) and so they appear in formula (15) only indirectly. (The same
function o could also be defined in another way, without appealing to
sets (5)). In the third method sets (5) were used in the proof, but not
in the formulation of Prop. 3.

4. Now we are going to discuss a number of examples.
1. Let fy : C* — C* be an arbitrary solution of equation (1) on
C*. Taking in (16) g(2) = ¢ = const # 0 we obtain

(21) f(z) =nfo(z), zeC,
where n = ¢/ ¢ fulfils the condition
(22) In| =1.

Thus, together with fo also every function f of form (21), where 7 fulfils
(22), is a solution of (1).

2. In (20) take g(z) = cz™, where ¢ # 0 is a constant and n is an
integer. We obtain

(23) fe) =nz""", zeC,

where n = (—1)"¢/ ¢ is a constant fulfilling (22). Functions (23) (with
arbitrary n € Z and 7 fulfilling (22)) yield a family of analytic solutions
of (1) on C* which have a removable singularity or a pole at zero,
depending on whether n > 0 or n < 0. (For the converse cf. Section 4).

3. In (20) we take g(z) = ce?, ¢ # 0. Since eXpz = exp Z, we
have g(h(z)) = ce'/# and

(24) f(z) =nzett, zecCr.

Functions (24) (with arbitrary n fulfilling (22)) yield a family of analytic
solutions of equation (1) on C* which have as essential singularity at

Zero.
4. Let

g(z) = cém°(z —up)™ (2 —up)™r
be a polynomial of degree
(25) n=mo+my+--+my,

with distinct roots ug = 0, uy,...,u, of multiplicity mg > 0, my > 0,
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..., mp > 0 respectively, p > 0. Write
(26) v = h(ul), ey Up = h(up) .
Then
g(h(z)) = (=1)"eai ... uyrz " (z —v1)™ ... (2 —vp)™"

and, according to (20),

azmotn i,y VML (z—u,)™P
(27) f(Z) =1 (z—vl()ml..l.)(z—v,,()mp 2
where
(28)  a=(=L)mFTtme (g gme] T = oL e

and n = (—1)""™°¢/ € is a constant fulfilling (22). For arbitrary distinct
ui,...,up € C*, arbitrary integers mg > 0, m; > 0,...,m, > 0, and
arbitrary n fulfilling (22), function (27), where a, n, and vy, ..., v, are
given by (28), (25) and (26), respectively, is a meromorphic solution of
equation (1) with poles at vy,...,v,. (But if some u; are equal to some
vj with m; > m; for the corresponding indices ¢, j, then function (27)
has removable singularities at these points v;).

As a matter of fact functions (27) are not solutions of equation
(1) on C* in the spirit of the earlier parts of this paper. They do not
map C* into C*: they have zeros and poles on C*. But they satisfy
equation (1) on C*\ {u1,...,up,v1,...,Vp}, and even on the whole C*,
in the sense that the product f(z) f(—1/%) is equal to —1 everywhere
on C* except at the points uy,...,up, v1,...,vp, Where it has removable
singularities.

5. It is easy to check that the functions

(29) fz)=nz*"t, zecC*,

where 7 fulfils (22) and n is an integer, satisfy equation (1) on C*. Func-
tions (29) are continuous, but nowhere differentiable on C*. Similarly
the functions

f(Z) = 7722n+1 " y 2 € C* )
and
f@) =g A e,

(obtained from (16) on taking fo(z) = (—1)™nz?"*!, g(z) = z™ and
fo(z) = (=1)"nz*™*!, g(2) = 2™), where m, n, are integers and 7 is
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a constant fulfilling (22), yield families of continuous nondifferentiable
solutions of equation (1).
6. Let Dy denote the set

Do ={z € C*|Re z,Im z € Q}.

Both sets Dy and C* \ Dy are dense in C* and h(z) € Dy for 2z € Dy,
while for z € C* \ Dy also h(z) € C*\ Dy. Therefore the function
f:C* — C* defined by

fl(z)7 ZED(),
f2(z)) ZEC*\DO,

satisfies equation (4) (and thus also equation (1)) on C* whenever the
functions f; : C* — C* and f, : C* — C* do. Taking in particular

f1(2)=2', f2(2)=_Z7 ZE(C*’
we obtain from (30)

(30) )= {

z, z € Dy,

(31) f(z):{_z 2 €C*\ Dy,

Function (31) is a measurable, discontinuous (at every point of C*)
solution of equation (1) on C*.

Such examples could be multiplied. The functions given in exam-
ples 3-6 are only a few representatives of solutions of equation (1) in
given regularity cases. It is not difficult to show that in each of these
classes the general solution of (1) depends on an arbitrary function.
The same is true also about nonmeasurable solutions f : C* — C* of
equation (1). In order to obtain such solutions it is enough to take a
nonmeasurable F' : D; — C* in formula (8).

Therefore the simple uniqueness theorem which we are going to
prove in the next section, in spite of the fact that the conditions imposed
on f are quite strong, nevertheless seems to be of a considerable interest.

5. As pointed out at the beginning of this paper, the function A
given by (2) has no fixed points of order 1. Therefore the conditions
ensuring the uniqueness of solutions of equation (1) must have a global
character and essential use must be made of the involved structure of
the complex plane.
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Theorem. Let f : C* — C* be a solution of equation (1} on C* and
suppose that f is analytic on C* and has a removable singularity or a
pole at the origin. Then f has form (23), where n is an integer and n
is a constant fulfilling condition (22).

Proof. Suppose that an f : C* — C* fulfils the conditions of the
theorem. Thus there exists an entire function ¢ : C* — C* and an
integer p (positive, negative, or zero) such that

(32) f(z) = 2P¢(2), zeC*,
and
(33) ¢(0) #0.

(f, and hence ¢, cannot be zero on C* because of (1)). The function
|| is continuous at zero, therefore, in view of (33), there exist positive
constants a, € and r such that

(34) O<a—ce<|p(z)<a+te, |z|<r.

Now we insert (32) into (1) to obtain

(35) (—1Pe(2)e(-1/2) = -1, z€C",
that is,
(36) p(z) = (=17 p(-1/7), =zeC*.

For |z| > 1/r we have | — 1/Z| < r so that, by virtue of (34),
a—e<|p(-1/2)| <a+e, |z|>1/r,

and in particular

6D YFTD| =V |e(-1)| < Ya—e), |sl>1r.

Relations (37) and (36) imply that the entire function ¢ is bounded on
C and thus it must be constant:

(38) w(z)=n=const, z€C

Inserting (38) into (35) we obtain |n|*> = (—1)P~!, whieh implies (22)
and, moreover, shows that p — 1 must be an even number:

(39) p—1=2n.
Formula (23) results now from (32), (38) and (39). ¢
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Abstract: In this paper we study some properties of symmetric and quasi-
symmetric S-metric connections in an isotropic manifold (M, g). Let XoM be
the set of the isotropic vector fields on M. A linear connection V is called
a S—metric connection if Vz,g = 0, Zo € AgM. After some preliminaries
we investigate the problem of existence and uniqueness of S—metric connec-
tions in M, and consider connections which have constant curvature K. For
dim M > 3 it is shown that M admits a symmetric S~metric connection with
constant curvature K # 0 iff the metric tensor g is absolutely reducible. The
quasisymmetric S—metric connection with curvature K = 0 is also an isotropic
connection if g is absolutely reducible and semidefinite. Finally, we determine
the components of the symmetric S—metric connections with constant curva-

ture in special coordinate systems. -




30 W. 0. Vogel

1. Einleitung

Es seien M eine n—dimensionale differenzierbare Mannigfaltigkeit
und ¢ ein zweifach kovariantes symmetrisches Tensorfeld auf M, beide
von der Klasse C*®. g heifit eine r—fach singulire Riemannsche Metrik
auf M oder eine Riemannsche Metrik vom Defekt r, wenn rang g =n —r
mit 1 < r < n, r = const, auf M. Wir nennen M™") = (M,g) eine
r—fach isotrope Mannigfaltigkeit oder eine isotrope Mannigfaltigkeit vom
Defekt r. Im folgenden schliefen wir isotrope Mannigfaltigkeiten vom
Defekt n aus. Sie sind als Untermannigfaltigkeiten einer Mannigfaltigkeit
mit reguldrer Metrik von Bedeutung.

Es bezeichne S, C T,M den Nullraum der Bilinearform ¢, = ¢(p)
im Tangentialraum T,M. S : p +— S, ist ecine r—dimensionale Distribution
auf M. Es seien weiter XM die Menge der differenzierbaren Vektorfel-
der auf M und XM = {X € AM | X(p) € Sp, p € M} dic Menge
der differenzierbaren isotropen Vektorfelder, ferner FM die Menge der
differenzierbaren Funktionen auf M.

Fiir die Komponenten g;; von ¢ in einem lokalen Koordinatensy-
stem gilt rang (¢:;) = n — r. g beiBt reduzibel singuldr, wenn jeder Punkt
p € M cine Karte besitzt, so daB!

(1) (gij(xk)) = ( gabgwk) 8 > ; det (gas) # 0.

g ist genau dann reduzibel singuldr, wenn?

(2) [A’Q,YE)] € XOM; Xo, )/o € A’oﬁf.

S ist dann eine involutive Distribution. ¢ heifit absolut reduzibel singuldr,
wenn jeder Punkt p € M eine Karte besitzt, so dafl (1) und gop = gas(z°)
gilt. g ist genau dann absolut reduzibel, wenn die Lie-Ableitung von g
beziiglich jedes isotropen Vektorfeldes Z, verschwindet?:

(Lz,9) (X,Y) = 20 (9(X,Y)) = g ([Z0, X], Y} — 9(X,[Z0, ¥]) = 0;

3
(3) XY e XM, Zoe XM.

1¥jir die verwendeten Indizes soll im folgenden gelten: i,7,k,{,m € {1,...,n};
a,byec,de{l,...,n—r}; AAB,C,De{n—-r+1,...,n}.

2Bortolotti [1], p.543.

3Bortolotti [1], p.545; Dautcourt 3], p.320.



S-metrische Zusammenhdnge in isolropen Mannigfaltigkeilen 31

2. Metrische Zusammenhinge

Ein metrischer oder ein Riemannscher Zusammenhang ist ein li-
nearer Zusammenhang V, fiir den die kovariante Ableitung des Metrik-
tensors g verschwindet: V, ¢ =0, Z € M. Metrische Zusammenhénge
in isotropen Mannigfaltigkeiten sind schon mehrfach untersucht worden,
z. B. Bortolotti [2], Jankiewicz [4], Vogel [6], Oproiu [5]. V ist ein sym-
metrischer Zusammenhang, wenn seine Torsion verschwindet:

(4) T(X,Y)=VxY —VyX—[X,Y]=0; X,Y¢cXM.

Die Existenz eines symmetrischen metrischen Zusammenhangs, d. h. ei-
nes Zusammenhangs von Levi-Civita, in M™") schrankt die Metrik ¢
stark ein. Ein solcher Zusammenhang existiert genau dann, wenn g ab-
solut reduzibel ist?. Er ist, anders als im reguldren Fall rang g = n, durch
g allein nicht eindeutig bestimmt.

In Abschwéchung von (4) nennen wir einen Zusammenhang quasi-
symmetrisch, wenn

(5) T(X,Y) € XM; X,Y € XM.

Quasisymmetrische lineare Zusammenhange in M™") sind von Vogel [7]
untersucht worden. Von den Ergebnissen sei erwihnt, daf8 fiir die Exi-
stenz eines quasisymmetrischen metrischen Zusammenhangs wieder die
absolute Reduzibilitdt von g notwendig und hinreichend ist. Der Zusam-
menhang ist quasieindeutig, d. h. eindeutig bis auf ein isotropes Vektor-

feld. Sind V, % zwel solche Zusammenhinge in M™), so gilt

VxY = VxY+I(X,Y);, I(X,Y)€ XoM.

3. S-metrische Zusammenhinge

Ein linearer Zusammenhang V heit S-metrisch, wenn die kovari-
ante Ableitung des Metriktensors g beziiglich jedes isotropen Vektorfeldes
Zgy verschwindet: Vz,g = 0, ausfihrlich

(Vzog)(X, Y) = ZO (g(X) Y)) - g(vZoXa Y) - g(Xu vZo}/) = O;
XY € XM, Zo€ XoM.

*Vogel [6], p.107.
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Wihrend identisch (Vzg)(Xo, Yo) = 0, sind noch die Zusammenhénge
mit

(7) (Vzg)(XOaY) = —g(VzXo,Y)=0; Y,Ze€ XM, Xo€ XM
von Interesse, die sogenannten isoiropen Zusammenhinge’. Wegen
VZX(] & X()M, VA € XM, Xo € XoM

haben diese Zusammenhange die Eigenschaft, daf§ die kovariante Ab-
leitung jedes isotropen Vektorfeldes wieder ein isotropes Vektorfeld ist.
Wie schon in [7] gezeigt, existiert ein quasisymmetrischer S-metrischer
Zusammenhang (QS-Zusammenhang) in M™") genau dann, wenn g re-
duzibel singulir ist. Das gleiche gilt fiir quasisymmetrische isotrope Zu-
sammenhéange. S—-metrische und isotrope Zusammenhinge verdienen ein
gewisses Interesse, da jede isotrope Mannigfaltigkeit M™) vom Defekt 1
reduzibel singular ist. Fiir n = 3 sind diese Mannigfaltigkeiten als Unter-
mannigfaltigkeiten der Kodimension 1 in einer 4—dimensionalen Raum-
zeit von Bedeutung.

Zur lokalen Darstellung verwenden wir ein Koordinatensystem, in
dem (1) fiir die Komponenten des Metriktensors g gilt, ein sog. o—Koordi-
natensystem. Bezeichnet man die Komponenten des linearen Zusammen-
hangs mit A%, so gilt nach (6) fiir einen S-mctrischen Zusammenhang

(8) 2FbcIC + AaC'bgac + Aachba =0, AaBC =0,

nach (7) fiir einen isotropen Zusammenhang

und nach (5) fiir einen quasisymmetrischen Zusammenhang

(10) ;k - Z] = O

Dabei sind Ty = % (0:9;k + 0;9ik — Okgij) die Christoffelsymbole 1. Art
von gij.

Um zu einer Aussage iiber die Eindeutigkeit der QS-Zusammen-
hinge zu kommen, formen wir (6) mit Hilfe der Lie-Ableitung (3) um,
beachten dabei (5) und erhbalten

1) (Lag)X,Y) - 9(VxZo,Y) - g(X, Vy Zo) = 0.

5[7], p.16.
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Alle 3 Terme sind jetzt FM-linear in Z, X,Y, im Gegensatz zu den
3 Termen in (6).

Definition. V heifit ein spezieller QS-Zusammenhang, wenn

9(VxZ0,Y) = HLzg)(X,Y), T(X,Y)E XoM;

(12)
X,Y € XM, Zy € %M.

In einem o—Koordinatensystem gilt fiir die Komponenten eines spe-

ziellen @S-Zusammenhangs nach (8), (10), (12)
(13) AL =A%, Ajg =A% = —Tujog™, Apo=~Acp =0

Dabeci sind g°® die Elemente der inversen Matrix zu (gas). Aj. und die
nicht genannten Komponenten A;‘,\ konnen beliebig gewdhlt werden.
Aus (12) ergibt sich, daB VxZj, die kovariante Ableitung eines
isotropen Vektorfeldes, bis auf ein isotropes Vektorfeld eindeutig be-
stimmt ist. Um den Zusammenhang V genauer zu fixieren, hat man
noch gewisse Freiheiten. Wir betrachten z. B. eine zur involutiven Dis-
tribution S komplementire Distribution H : p — H,, die nicht invo-
lutiv sein muB. Eine solche Distribution H existiert immer und kann
z. B. definiert werden als das orthogonale Komplement zu S beziiglich
einer beliebigen auf M erklirten positiv definiten (reguldren) Riemann-
schen Metrik. Es sei X; M die Menge der horizontalen Vektorfelder, d. h.
XM = {X € XM|X(p) € H,, p € M}. Fiir den speziellen QS-Zusam-

menhang (12) fordern wir noch
(14) Vi, Y1 € 1M,

(158) (Vaz9) (X1, Y1) = Z1 (9(X1, Y1) =9(V 2, X1, Y1) —9(X1, V7, Y1) = 0;
X1, Y1, 24, € /1M,

d. h. die Einschrankung von V aufl H sei ein quasisymmetrischer me-
trischer Zusammenhang. Aus (15) und der Quasisymmetrie ergibt sich
nach bekannten Regeln die Formel von Koszul

9(Vx11,2,) = %(X1 (9(Y1, Z1)) + Y11 (9(X1,21)) — Z1 (g( X1, Y1)
+9(Z1, X0, ) —9(X1, M, Z1)) =9 (Y2, [ X, zl])).

Umgekehrt folgt aus (14) und (16), daff V x,Y1 eindeutig bestimmt ist
und die Eigenschaften eines auf H quasisymmetrischen metrischen Zu-
sammenhangs besitzt.

(16)
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Ein Zusammenhang, der (12), (14), (15) geniigt, heiBe ein spezieller
QSH-Zusammenhang. Aus (5), (14) und

T(Xl,yl) = Vxlyl - VY1X1 - [Xl,Y1]

folgt [X1,Y:] € XiM, wennT'(X1,Y1) = 0, und umgekehrt. Das heifit,
ein spezieller QQSH- Zusamrnenhang ist auf H genau dann symmetrlsch,
wenn H eine involutive Distribution ist.

4. Existenz und Eindeutigkeit

Zum Nachweis der Existenz konstruieren wir zunichst in einer Um-
gebung jedes Punktes von M einen Zusammenhang, der (12), (14), (15)
erfillt. Dazu verwenden wir fiir den betrachteten Punkt py ein o—Koor-
dinatensystem (U, ¢o) und wéhlen fiir die Komponenten A, aufler (13)
noch

(17) Mo =408 =0, Aje=A4855=0.

Sind X, = £8;, Y1 = 1i0;, Z; = (i0; die Darstellungen der Vektorfelder
X1, Y1, %y in Uy, so lautet (14)

(]8) (6{ aj 771 +Azk£1 Uf) 3,- e XUy
und (16) . |
(19) , AjiGac gt i = Ciep & Uiet

Wir zeigen, dal simtliche Komponenten A%y, in Up durch (13), (17),
(18), (19) cindeutig bestimmt sind. Die Unterrdume S,, p € Uy, wer-
den bei Verwendung eines c—Koordinatensystems von den Basisvektoren
On—r41, - - -, On aufgespannt, und dic Unterrdume H,, p € Uy, mégen von
den Vektoren ey, ..., en-, aufgespannt werden. Dabei lassen sich die e,
wegen der Komplementaritat von S,, i, durch die Basisvektoren d; von
T,M in der Form darstellen

€q = 0, + /\faA

Fir die Komponenten ff eincs Vektors X; = ﬂ("){ € AUy ist dann
£ = AAE2 zu setzen. Aus (18), (19) ergeben sich, unter Verwendung von
(13), (17), die noch fehlenden Komponenten Af,, Afl zu

Az, =A% = Toag™ + Toep A7 g%,

(20) AL = (Toqa + Togpr? - deu))\f —Legp AP ) Al g
—OAA — MBap)A.
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Ist H nicht involutiv, so ist nach einer fritheren Bemerkung Aj, # A%,
Wie gezeigt, gibt es eine offene Uberdeckung (Ua),c, von M™")

derart, daf auf jeder Umgebung U, ein spezieller QSH-Zusammenhang

%’ erklirt ist. Einen Zusammenhang in M™") erhilt man mittels Zerle-

gung der Eins (¢a),cas Tr 0o C Us. Man definiert zunichst fiir jedes a

dic Abbildung V: XM x XM — XM durch
%X}’ip = va(p) %'XYIP fir p € U,, %X Y,=0 firp¢U,.

Man sieht leicht, dal V : XM x AM — XM mit VxY}, = Yo %X Y, cin
linearer Zusammenhang ist, der (12), (14), (15) erfillt, d. h. V ist ein
spezieller QSH-Zusammenhang.

Zur Frage nach der Eindeutigkeit betrachten wir zwei Zusammen-

hénge V, %, die (12), (14), (15) geniigen. Setzt man
VxY =VxY + I(X,Y),

so ist I(X,Y) ein in beiden Argumenten FM-lineares isotropes Vektor-
feld

(21) I(X,Y)e XM; XY € XM,
fiir das noch

gilt. Ist umgekehrt {)7 cin spezieller )SH-Zusammenhang und I(X,Y")
ein FM-lineares Vektorfeld mit (21), (22), so ist auch V ein spezieller
@SH-Zusammenhang.

Dieser Zusammenhang kann mit Hilfe von r linear unabhingigen
1isotropen Vektorfeldern Z,_;41),..., Z(n), dic gegeben sind, sogar ein-
deutig gemacht werden. Wie man leicht zcigt, gibt cs genau eincn spe-
ziellen QSH-Zusammenhang V, fir den T'(Xo,Y;) = 0, Xo € XM,
Y, € X1 M und

V};Z(A) e WM; X e AM.

V ist genau dann ein symmetrischer Zusammenhang, wenn  eine invo-
lutive Distribution ist und

[Z(A), Z(B)] € Xi1M.




36 W. 0. Vogel

5. S—metrische Zusammenhinge mit konstanter
Kriimmung K # 0

Fiir einen symmetrischen S-metrischen Zusammenhang (55-Zu-
sammenhang) beweisen wir
Satz 1. Sein—r > loderr > 1. Ist V ein SS-Zusammenhang mit kon-
stanter Krimmung K # 0, so ist V auch ein isotroper Zusammenhang
und g absolut reduzibel.
Beweis. Es sei R(X,Y,7) = VxVyZ - VyVxZ — VixyjZ die Kriim-
mung des Zusammenhangs V und R(X,Y, Z,w) = w(R(X,Y,Z)) der
dreifach kovariante, einfach kontravariante Kriimmungstensor. Ist V
symmetrisch, so besteht die Bianchi-Identitat
03 (VuR)(X,Y, Z,w) + (VxR)Y,U, Z,w) + (V¥ R)(U, X, Z,w) = 0;
(23) U XY, Ze XM, weiX™M,

X*M die Menge der differenzierbaren Kovektorfelder auf M. Wir setzen
jetzt voraus, dafl V von konstanter Kriimmung K sei:

(24) R(X,Y,Z,w) = K - (w(X)g(Y, Z) —w(Y)g(X, Z)).
Nach einer kleinen Rechnung crhilt man aus (23), (24)
K - {w(X)(Vug)(V, 2) - (Vrg)(U, 2))
(25) +UJ(Y)((V}(Q)(U, Z) - (VUg)(Xv Z))
+ () (Vr9)(X,2) = (Vxg)(V,2))} = 0.
Mit K #0und X = Xg € AOM, Y =Y, € AxM wird

w(Xo) (Vug)(Yo, 2) — (Viug)(U, 2))
+w(Yo) (Vxo9)(U, 2) = (Vug)(Xo, 7))
+w(lU) (Vrg)(Xo, Z2) = (Vx9) (Yo, Z)) = 0.

Fir S-metrische Zusammenhéange ist Vx,g = Vy,g = 0 und cs bleibt
w(Xo)(Vug)(Yo, Z) — w(¥o)(Vug)(Xo, Z) = 0
und nach einer kleinen Umformung

—w(Xo)g9(VuYo, Z) + w(Yo)9(VuXo, Z) = 0.
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Durch Verjiingung iiber w, Y erhalt man hieraus (~14r)g(Vy Xo, Z) = 0,
fir r > 1 also

(26) 9(VuXo,2) = 0.
Setzt man in (25) K #0, U = Uy € XM, Vy,g = 0, so wird

~w(X)(Vyg)(Us, Z) + w(Y)(Vxg)(Uo, Z)
+w(Uo) (Vyg)(X,2) - (Vxg)(Y,Z)) = 0,

und nach einer kleinen Umformung

w(X)g(Vy o, Z) — w(Y)g(VxUo, Z)
+w(lo) (Vye)(X,2) — (Vxg)(Y,Z)) = 0.

Nun sei w = wp € XJM ein isotropes Kovektorfeld, d. h. wo(Up) = 0.
Dann geht (27) iber in

(27)

wo(X)g(VyUs, Z) — wo(Y)g(VxUo, Z) = 0.

Hieraus erhélt man (1 — (n —r)) g(VxUo, Z) = 0 , wenn man iiber w,Y
verjiingt, und fiir n — r > 1 wieder (26). V ist nach (7) ein isotroper
Zusammenhang. Besitzt M™") einen quasisymmetrischen S—metrischen
isotropen Zusammenhang, so ist nach (11) Lz,g = 0 und nach (3) ¢
absolut reduzibel singular. ¢

In einem Koordinatensystem lautet (24)
(28) ;u = ajA;cl - akA;'I + A;mAZ - A;cmA;'TlL =K (5;'91c1 - 529;'1) ’
wo R}k, die Komponenten des Kriimmungstensors R sind. Ist n —r > 1
oder r > 1, so ist g nach Satz 1 absolut reduzibel. Fiir die Komponenten
eines SS-Zusammenhangs mit konstanter Krimmung K # 0 zeigt man
dann in einem geeigneten o ~-Koordinatensystem

(29) Azc = I{gbciﬂi , A;C = AIC’_; = 0,
wobel die Komponenten des Metriktensors den Bedingungen
(30) i =0, Oagbc =0, Ougsc — OGac + (JadGbc — Gbdgac) Kz¢ =0

geniigen. Von den in (30) stehenden Differentialgleichungen lassen sich
leicht simtliche isothermen Lésungen gy, = F'~' (z*) 8. angeben. Ist der
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Zusammenhang V sogar metrisch, so kommt noch A, = T49%* hinzu.

Setzt man dies in (29.1) ein, so ergibt sich eine zusitzliche Bedingung

fir gi., namlich '

(31) I{gbcga.d:l:cl = Fbcld'

Mit (31) sind die Differentialgleichungen in (30) von selbst erfiillt.
Firn—r=1,r=1,d. h. n = 2, M*"), muB ¢ nicht absolut redu-

zibel scin. Es lassen sich leicht simtliche Komponenten A;k, gij angeben.

Ist g absolut reduzibel, so ist V auch ein isotroper Zusammenhang, und
umgekehrt. In diesem Fall gelten (29), (30.1), (30.2) fiir r = 1, n = 2.
Die Diflerentialgleichung (30.3) ist identisch erfiillt.

6. S—metrische Zusammenhinge mit verschwinden-
der Kriimmung K

Ist V ein spezieller QQ5~Zusammenhang und ¢ absolut reduzibel, so
ist nach (3), (12) V auch ein isotroper Zusammenhang. Wir beweisen
Satz 2. Sei V ein QS-Zusammenhang mit verschwindender Krimmung
K, und sei g absolut reduzibel und semidefinil. Dann ist V auch ein

isotroper Zusammenhang.
Beweis. T'iir V gelten nach (6) Vz,g = 0, nach (5) T'(X,Y) € XA M und
fiir g nach (3) Lz,g = 0. Nach cinigen Umformungen erhilt man hieraus

(32)  9(VxZ0,Y)+g(X,ViZ)=0; X,Y € XM, Zo € XoM

und speziell fir X =Y
(33) 9(VxZe, X)=0.

Durch Ableiten nach 7, entsteht
(Va9 (VxZo, X) + 9(V2,VxZo, X) + 9(Vx 2o, V2,X) =0,
und mit Vz,g =0 wird
(34) 9 (V2. VxZ0, X) + g(VxZo, Vz, X) = 0.
Da die Krimmung verschwindet, ist

VZOVXZO - VXVZOZO - V[ZO,X]ZO = 0
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Damit geht (34) iiber in
(35) 9(VxV2Zo,X)+ 9 (Viz,x120,X) + 9 (Vx Zo, V2, X) = 0.
Setzt man in (32) [Zy, X] an Stelle von X, so erhilt man

9 (Vizx1Z0,Y) + 9 (120, X, Vv Zo) =0
und speziell fir X =Y
(36) g (V[Z')’X]ZQ,X) + 9 ([Z0, X],VxZo) = 0.
Nach (35), (36) wird

9(VxV 2,20, X) + g (Vx Z0, V2, X — [Zo, X]) = 0.
Es ist V2, X — VxZo ~ [Zo, X] = T(Z, X) € XoM, so daB
(37) 9(VxV 2,20, X) + g (Vx Zo, Vx Zo) = 0.
Aus (32) folgt fiir Y = Z,, daB Vp := Vz 2, € XyM. Nach (33) ist
9 (VxVp, X) = 0, also
 9(VxV 220, X) = 0,

und von (37) bleibt noch

g(VXZO, VXZO) = 0.

Wegen der Semidefinitheit von g ist VxZy € AM und damit V ein
isotroper Zusammenhang. <

Im folgenden sein—r > 1,7 > 1 und V ein S$S-Zusammenhang mit
verschwindender Kriimmung K. In einem Koordinatensystem gilt (28)
mit K = 0. Leider gibt es im allgemeinen kein o-Koordinatensystem,
in dem sémtliche Komponenten des Zusammenhangs verschwinden. Wie
man leicht sieht, gibt es ein o-Koordinatensystem (U, ), 0 € o(U), in
dem aufler g;p = 0 noch

(38) =0, A;lk =

a
bC[IA =0

ist. Durch eine Koordinatentransformation % o =1 der Gestalt z° =
P*(zb, B), T4 = pA(zP), wo ¥°, ¥ einem Differentialgleichungssystem
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2. Ordnung geniigen, 1aBt sich erreichen, dafi im neuen Koordinatensy-
stem (U, %) nun K;-k = 0 gilt. Dabei konnen die Anfangsbedingungen

0% 0 =

(39) F(0) =0, ~(0) =5

gewihlt werden. Im allgemeinen gilt nicht g;5 = 0, d. h. (U, ) ist kein
o-Koordinatensystem.

Ausgehend von K;k = () berechnen sich die Komponenten A;k im
Koordinatensystem (U, ) bekanntlich nach

H 62—51 ami
40) * = 5aidet o7

Wegen den Bedingungen (8.2), (38) fiir A%y in (U, ) und mit (39) ist
@ o ¢~ von der Gestalt

¢ = ‘,Ea_*_ a :Eb .’EB
(41) E—A _ wA‘ (PB( )

Die A’ in (40) werden damit zu
Pl 0 . b O
dztdze 9zt ¢ 9zt oz’

In (U, ) gelten fiir gij, A%, die Beziehungen (1), (8.1), (10), (28)
mit K = 0, und (38). Daraus folgt nach einer kleinen Rechnung, da8 die
Komponenten gq; des Metriktensors g von der Form sind

(43) gas (2%,2%) = G aBab(29)T2 28 + G aas(2°)z? + Gap(z®).
Setzt man nun (40), (41), (43) in (8.1) ein, so erhdlt man

(42) gc = A%C’ = 0, Afk = 0.

. 99 004
Gassy = Gad 90 T Gha 50’

G = Lo 0p5 Oy | 005 0vh )
¢ 2\ Oz Oz Oz Oz

(44)

Umgekehrt sind A%, nach (41), (42) die Komponenten eines SS—Zu-
sammenhangs mit K = 0 in (U, ), wenn die Komponenten g;; des Me-
triktensors den Gleichungen (1), (43), (44) geniigen.




S-metrische Zusammenhdnge in isolropen Mannigfalligkeilen 41

Wir wollen noch zwei Folgerungen ziehen. Ist V auch ein isotroper

d
Zusammenhang, so ist nach (9) Af; = 0, nach (41), (42) %%}q = 0 und
i = 0. Alle Komponenten A}, verschwinden in (U, ). Nach (43), (44)
st gap = Gap, d. h. g ist absolut reduzibel.

Aus (44) folgt speziell

_ o~ 0pG 0v%
(45) GAAaa = ch B:c“ 61:“ .
a c
Ist ¢ absolut reduzibel und semidefinit, so ist G444 = 0, Bif = 0, nach

(42) A; = 0 und nach (9) V ein isotroper Zusammenhang. Damit ist
Satz 2 fiir SS-Zusammenhénge nochmals bestatigt.
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Abstract: H -integral near-rings are intended to fill the wide gap between
the disparate types of integral near-rings on one hand and near- rings with
large annihilator ideals (zero- near-rings at the extreme end) on the other
hand. If H is a subset of a near- ring N, N is said to be H - integralif H has no
divisors of zero and N2 C H. After preliminary results and some motivating
examples are presented, we show that such a near-ring N “consists” of an
ideal K with K? =0 and an integral near-ring; if the latter is finite, N is a
semidirect sum of these two parts. This gives rise to a construction method to
obtain a large class of H - integral near- rings in an easy way. The last section
considers distributively generated H -integral near- rings. In this case and if
K has finite index, N/ is a finite field.

1. Basic facts

In this paper, we consider left near - rings (N, +, .), hence (N, +)
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is a group (not necessarily abelian), (IV,.) a semigroup and ni(nz +
+n3) = nying +nyng for all ny,ng,nz € N. See [4] or [5] for the general
theory- of near-rings. For n € N and S € N we use the notations
nS := {ns|s € S} and S? := {s152]$1,52 € S} throughout the paper.
A subset S of N is called integral, if S has no non - zero divisors of zero.
Ny, N, denote the zero- symmetric (constant) parts of IV, respectively.
Definition 1.1. If H is an integral subset of a near-ring N with
N? C H then N is called H -integral.

If N is H -integral with H = {0} then N has zero multiplication
and may be considered as “known” from the near - ring point of view. If,
on the other extreme, H = N then N is an integral near-ring. Again,
this case is well - studied (cf. e.g. [5], section 9b2). Hence in the sequel
we mainly restrict ourselves to the study of H - integral near - rings with
{0} # H # N. Note that 0 € H for each H -integral near- ring, as well
as H? C H; however, H need not be closed under addition, even if
(N,.) is commutative (cf. [5],-29 and 30 on p. 411 for such cases with
(N,+) = Ss, the symmetric group of order 6).

A near-ring N may be H -integral for more than one H. If N?

is integral, for instance, then N is H - integral for each H between N 2
and N. More precisely we have
Proposition 1.2. Let H be the set of all subsets H of N such that
N is H - monogenic. Then NH and this is the smallest element of H,
while UH 138 the biggest one.
Proof. H is clearly closed w.r.t. intersections, hence N is the smallest
element in H. But H is also closed under unions: If by € H; € H,
h, € Hy € H, hih, =0 implies (hlhl)hz = hl(hlhz) =h0=0. Since
hih, € N? C H,, we get either hy = 0 or h1h; = 0 (but then h; = 0).
So UH is the greatest element in H. ¢

We now give two examples of H -integral near - rings.

Example 1.3. Let N; be an arbitrary, N, an integral near-ring. De-
fine, in N := Ny x Ny, (z,y) - (¢,y") := (0,yy'), + component - wise.
Then N is H := {0} x Np-integral.

In other cases, however, N is not so simply composed of an integral

and an arbitrary part, even if NV is commutative:
Example 1.4. Let (G,+) be a non- abelian group and K < G such
that G/ is cyclic of prime or infinite order. Let z + K be a generator
of G/x. I g1,92 € G, there are integers ny,ny such that g; € niz + K
(i = 1,2). Define g1*¢g2 := (ninz)z. By [2], Th. 2.1, (G,+,") is



H -iniegral near- rings 45

a commutative near-ring. It is straightforward to see that G is H -
integral with H = (z). Note that if z is of composite order, G would
not be (z) - integral.

Not all non- trivial distributive near-rings are H -integral, since
some are nilpotent, a property which no H -integral near-ring with
H # {0} can have.

For a subset S of a near-ring N, we denote its annihilator {a €
€ N|Sa =0} by (0: S), while [0 : S] denotes the two - sided annihilator
{a € (0 : S)|aS = 0}. Also, let S* := S\ {0}. We now list a num-
ber of properties of H -integral near-rings, some being technical (but
necessary ), some seem to be of independent interest.

Theorem 1.5. Let N be H -integral and Ny its zero - symmetric part.
Suppose NZ # {0}.
(1) For each h € H*, (0: h) = (0: Ny); hence K := (0 : h) is the

same for each non-zero h € H, and K 1is an ideal in N.

(2) HNK =(hAN)NK = {0} for all h € H*.

(3) K C Ny.

(4) For each n € N, n € K <= n is nilpotent «= n? = 0. Each
nilpotent element is therefore zero - symmetric.

(5) For each n,m € N, nm =0<=[(n € K, m € Ny) orm €
€ K]<=>nmekK.

(6) No has the IFP (insertion - of - factors property).

(7) Ift € N\ K, zn = zm(mod K) <= n = m(mod K).

(8) K 13 a prime ideal.

(9) N/K s an integral and prime near - ring which is N - isomorphic

to hN for each h € H*.

(10) If P (N) and N (N) denote the prime and the nil radical of N
then P(N) =N(N) =K.

(11) If N = Ng has the DCC on N - subgroups, too, then K also coin-
cides with all Jacobson - type radicals J,(N) (v=10,1/2,1,2).

(12) If N is not integral, it is never P-, N-, ..., Jy - semisimple.

(13) For each S C N, (0: S) = K or (0 : S) = N. Hence each
annihilator right ideal is in fact an ideal (N 1s “almost small” [5]
9.11).

(14) If N is planar then N is integral.

Proof. (1): We first show that (0: A) C (0: Ng). Take k € (0: k) and

0 # mm' € Ng. Then for each ng € Ny, hkng = 0, whence kny = 0,

since both h and kng are in H. So kNy = 0. Also, (0k)(mm') =

?
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= 0(km)m' = 0m' = 0, and since mm' # 0 we get 0k = 0. So noknek =
= 0k = 0, and Nok = 0 is shown. Conversely, let £ € (0 : Np). Then
for each ng € Ny we get knogkng = 0, so kNg = 0. Hence hkmm' = 0,
from which we deduce that hk = 0.

(2): Since hN C H, we consider k € HN K. If H # {0}, take
h € H*. By (1), we can write K as K = (0 : k), so h? = 0, hence h = 0.

(3): Follows from the proof of (1).

(4): By (3), K C Ny, and each k € K has k* = 0 by (1). Con-
versely, suppose that n” = 0 some r € N. Then n? = 0; hence it
sufficies to show that if some a € N fulfills a> = 0, then ¢ € K. If
nga # 0 for some ng € Ny then ngaan = 0 for all n € Ny, hence
aNy = {0}. As in the proof of (1), we see that Noa = 0, so anyhow
ac K.

(5): If nm = 0, take an arbitrary ny € No. Then nnmnj = 0, so
either n2 = 0 and hence n € K by (4), or n? # 0, then mNy = 0. In
the first case, write m = mg + m. € No + N, 0 = nm = nmpy +nm, =
= nmg + m. Now nmg € HN K = {0}, som; =0 and m € Ny. In
the second case, take ab € N2, ab # 0. Then for each ¢ € N we get
ecmab = 0 and hence Ngm = 0. This shows that m € (0 : N) = K.
Conversely. suppose that (n € K, m € Ny) or m € K. In both cases,
nm € H N K (since K is an ideal), so nm = 0 by (2). Finally, the
second equivalence follows from (2), too.

(6) fnm =0thenn € K,orm € K by (5). Hence nzm = 0 for
all x € Ny.since ntm € H N K.

(1) 2n =zm(modA)= z(n—m)=zn—-azm=0=>n—-mekK
by (5) Conversely, n —m € K = zn — 2m = z(n —m) € K, since K
18 an ideal

(8) Let I, J beidealsof N with I-J C K. ThenI-JCHNK,
so 1 J = {0} SupposeI C K, and takez € I \ K. For each j € J,
29 =0=10. by (7), j € K hence J C K.

(9: fhe H*, ¢ N — hN,n — hn is an N - epimorphism with
kernel (0 : h) = Ak N/g is integral by (5) and prime by (8).

(10): The intersection P(N) of all prime ideals of NV is contained
in K by (8). Conversely, if P is a prime ideal then K C P because of
K-k = {0} C P Hence K = P(N). By (4) and (5), K contains all
nil ideals, and hence also their sum A (N). On the other hand, K itself
is nil and hence K = N(N).

(11): Follows from [5], 5.61, while
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(12): is a consequence of (10) and the fact that P(N) C Jo(N)
always holds.

(13): If n € K then nNg = {0} by (1) and (3). Hence Ny C (0 : n).
Ifn' =ny+n, €(0:n)then 0 = nn' = nny + nn, = 0+ n'. Hence
(0 : n) = Ny. If, on the other hand, n ¢ K then a € (0 : n) implies
na = 0, consequently a € K by (5), so (0: n) C K. But also nK =0
by (5), so (0: n) = K. So all (0: n) are either = K or = N, and the
same applies to all (0: .5).

(14): A planar near-ring N fulfills N? = N by [5], 8.102. Hence
H = N, and N is integral. ¢

Although for all hy,h; € H*, the near-rings h{ N and hyN are
integral and N -isomorphic, they are not necessarily equal ([5], no. 37
on p. 411), nor are they always near -integral domains ([7], no. 74 on
p. 112).

The condition N§ # {0} in Th. 1.5 is indispensable: Define on
N :=7Z x Z (with componentwise addition) (a,b) - (¢, d) := (0, 3bc + d),
where b denotes the remainder € {0,1,2,} of b after division by 3. N
becomes so a near-ring with Ng = Z x {0}, N, = {0} x Z, N? = N..
If we take H := N.U {(1,1)}, N can be checked to be H -integral.
((0,0) : N) = Ny, but ((0,0) : (1,1)) also contains, for instance, the el-
ement (—1,3), since (1,1)(—1,3) = (0,3-1-(—1)+3) = (0,0). Therefore
we adapt for the rest of this paper the
Convention: All near-rings have N¢ # {0}. So all H -integral near-
rings have H # {0}.

2. Decompositions and constructions

In (9) of Th. 1.5 we have seen that an H -integral near-ring N is
an extension of K by hN (h any element of H*). In fact, we often can
get even more:

Theorem 2.1. Let K be H -integral such that N/g is not (group-)
isomorphic to one of its proper subgroups. Then (N,+) is a semidirect
sum of K and hN (h any element in H*).

Proof. All that remains to be shown after Th. 1.5 is that N
= hN+K. By the first isomorphism theorem for groups, (hN+K)/x
& hN/(hnnk) = hN/{0) 2 RN = N/, hence N/x = (hN + K)/x, so
N = hN 4 K as desired. ¢

11l
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Note that the assumption on N/g in Th. 2.1 is trivially fulfilled
if N/ is finite. This theorem has a lot of consequences. For that, call
a near-ring N almost constant if N is constant or 0m = 0, nm = m for
all n # 0. :

Corollaries 2.2. Let N be H -integral and N/ g finite.

(1) For each h € H*, hN i3 (as a near-ring!) isomorphic to N/k.
Hence all h;N (h; € H*) are pairwise isomorphic near-rings.

(ii) N has no non - zero nilpotent elements iff N is integral.

(iii) If AN is not almost constant then (N,+) 1s nilpotent iff (K, +) is
nilpotent.

Proof. (i): Since (N, +) is a semidirect sum of K and AN (for h € H*),

the map ¢ : N — hN, z = k4 hn — hn is a (well- defined) group

epimorphism. For z,2' € Nz = k+ hn, 2’ = k' + hn' (k, k' € K,

n,n' € N) we get zz' = (k+hn)(k'+hn') = (k+hn)k'+ (k+ hn)hn' —

—hnhn' + hnhn' = k" + hnhn' for a suitable k" € K (because K is an

ideal of N). Hence ¢(zz') = ¢(z)¢(z'), Ker ¢ = K; and we are done.

(ii): If N has no non-zero nilpotent elements then K = {0}, so
N =hN C N2 C H, so N is integral. The converse is clear.

(iii): By [5], 9.45 and 9.51 (AN, +) is nilpotent if A € H*. So by
Th. 2.1 (or by [6], p. 382), (V,+) is nilpotent iff (K,+) is. ¢

Let us remark that (iii) cannot be improved: Take any group
(G,+) and define g * ¢’ := ¢' for all ¢g,¢' € G. Then (G,+,*) is H-
integral for H = G, and hG = H =G for all h € H, K = {0}. We also
remark that the proof of (i) in Cor. 2.2 shows that for all a,a’ € AN
and k, k' € K, (k+ a)(k' + d') = ad'(mod K).

Corollary 2.3. Let N be H -integral, h € H*, hH a finite ideal of N.
Then N = K @ hN (the direct sum in the near-ring sense).

Proof. AN is then normal, hence (N, +) = K+hN. Also, if z = k+hn,
z' = k'+hn' are “typical” elements of N, then zz' = (k+hn)(k'+hn') =
= (k+hn)k'+(k+hn)hn' = (k+hn)hn' = (k+hn)hn'—hnhn'+hnhn' =
= hnhn' = kk' + hnhn' (since (k + hn)hn' — hnhn' € K N AN = {0}).
Hence the result. ¢

Now we show that the semidirect decomposition in Th. 2.1 is in
some sense the only decomposition of that kind.

Theorem 2.4. Let N be H -integral, h € H*, A a nilpotent ideal of
N, B an integral N - subgroup of N. If (N,+) is a semidirect sum of
A and B then A =K and (B,+,.) = (hN,+,.).

Proof. By (10) of Th. 1.5, A C K C Ny. Conversely, if ¥k € K
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then k =a+b (a € 4, b € B). Now 0 = ak = a® + ab = ab, hence
baba = b0a = Oa = 0. But ba € BN C H, so ba = 0 as well. Hence
0 = bk = ba + b*, whence b® = 0, hence b = 0 and A = K. As in the
proof of Cor. 2.2 (i), N/kx = B (as near-rings). Since N/x = AN as
well, we have the desired result. ¢

We turn to construction methods for H - integral near - rings. The
first one comes from Th. 2.1 and contains both Examples 1.3 and 1.4
as special cases:
Construction Method 1. Take any near-ring Ny, an integral near-
ring N3, and a semidirect sum (N, +) of (N1, +) (normal) and (N2, +).
Define in N : (n1 +n2)-(n] +n}) := nanb. Then (N, +,.) is H -integral
for each H such that N, C H C {n1 + na|n1 # 0}.

A special case of this construction is.supplied by a method due to
G. Ferrero [1].
Construction Method 2. Let (G, +) be a group which is a semidirect
sum of the normal subgroup K and the finite subgroup 4. Let ® be
a fixed - point - free group of automorphisms of 4, and R a (complete)
system of representatives of the orbits of A* under . If z = k + a,
' = k'+a arein G, define z -y = 0 if a = 0 and z -y = ¢(d’) if
a is in the orbit of r € R and f(r) = a with f € F. Then (G,+,.)
is H-integral with H = {k+alk € K, a € A*} U {0}, K = (0: @),
G/x = A, R =set of all left identities of (4,.).

Note that the Method 2 works because this construction gives an
integral near-ring (A4, +,.) and (k + a)(k' + a') = aa’ as in Method 1.
That R is the set of left identities of (4,.) is straightforward.

3. Distributively generated H -integral near- rings

In this final section, we briefly discuss the special class of d.g.
H -integral near-rings. Let N" be the second commutator subgroup
of (N,+). We will use the following
Lemma 3.1. (“Ité’s Theorem”, [3]) If a group G is the sum of two
abelian subgroups, then G" = {0}.
Theorem 3.2. Let N be a d.g. near-ring such that K # N has finite
indez in N. Then N/ is a finite field. If, moreover, (K,+) is abelian
then N'' = {0}.
Proof. Recall that Th. 2.1 is applicable; N is zero- symmetric because
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itis d.g. Ifd=k+ hn (k € K, h € H*, n € N) is distributive then by
Theorem 1.5 (1), hn is distributive, too.So AN is again d.g., and by [5],
9.48 (d), hN (and the isomorphic copy N / k) are fields. In particular,
(hN,+) is abelian. If (K, +) is abelian too, we can apply It6’s Theorem
3.1. ¢

Surprisingly enough, it possible for (N, +) to be non - nilpotent,
even if N is “almost aring”: the near - ring N on p. 411 of [5], no. 29is a
distributive, commutative and anticommutative H - integral near- ring
with AN = GF(2), K cyclic of order 3 and (N, +) = the non- nilpotent
group Ss.
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Abstract: General common fixed and periodic point theorems are proven
for a class of selfmaps of a quasi-metric space which satisfy the contractive
conditions (1), or (7), or (8), or {(10) below. Presented theorems generalize
and extend Caristi’s Theorem [2]. Two examples are constructed to show
that an introduced class of selfmaps is indeed wider than a class of selfmaps

which satisfy Caristi’s contractive definition (C) below.

1. Introduction. Let X be a non—void set and T : X — X a
selfmap. A point z € X is called a periodic point for T iff there exists a
positive integer k such that T%z = z. If k = 1, then z is called a fixed
point for T'.

J. Caristi [2] proved the following an important contraction fixed
point theorem.
Theorem 1 (Caristi [2]). Suppose T: X — X and ¢ : X — [0, 00),
where X 1s a complete metric space and ¢ is lower semi-continuous. If

for each z in X

*This research was supported by The Science Fund of Serbia, Grant No. 0401D
through Matematicki Institut.
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(o) | d(z,Tz) < $(z) — $(Tz),

then T has a fized point.

Th. 1 is sometimes called a Caristi-Kirk-Browder theorem (see
[5]). Recently A. Bollenbacker and T. Hicks [1] revisited Th. 1. Var-
ious proofs of Th. 1 were presented later in [11, 13, 15]. It is known
that Caristi’s theorem is essentially equivalent to Ekelend’s variational
principle [5]. Up to new many extensions of Caristi’s result have been
obtained [6, 7, 8, 9.

The purpose of this paper is to introduce and investigate a class
of selfmaps which satisfy a contractive condition weaker than (C) and
still have a fixed or periodic point.

2. Main results. We begin with some notation needed in the
sequel. A pair (X, d) of a set X and a mapping d from X X X into the
real numbers is said to be a quasi-metric space iff for all z,y,z € X:

(1) d(z,y) > 0 and d(z,y) =0iff z =y,
(2) d(z,2) < d(z,y) + d(y, z).
Let d; : X — [0, +00) be defined by d.(y) = d(z,y). Let N denotes the

set of all positive integers.

A sequence {z,} in X is said to be a left k-Cauchy sequence
if for each & € N there is one N such that d(z,,zm) < 1/k for all
m > n > Ni. A quasi-metric space is a left k-sequentially complete if
each left k—Cauchy sequence is convergent (compare [12, 14]).

Now we are in position to state the following result.

Theorem 2.1. Let (X,d) be a left k-complete quasi-metric space and
let for each = € X a function d; be lower semi-continuous (ls.c) on
X. Let F be a family of mappings f : X — X. If there ezists Ls.c.
function ¢ : X — [0,00) such that for each z € X:

(1) d(z, fz) < ¢(z) — ¢(fz) for all f € F',

then for each z € X there is a common fized point u of F' such that
d(z,u) < ¢(z) — s, where s = inf{d(z) : z € X}.

Proof. For any z € X denote
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5(z) ={y € X : d(z,y) < ¢(z) — ¢(v)},
a(z) = inf{$(y) : y € S(z)}.
As z € S(z), S(z) is not empty and 0 < a(z) < ¢(x).
Let z € X be arbitrary. Put z; = z. Now we shall choose a
sequence {z,} in X as follows: when z;,z,,...,z, have been chosen,

choose zn11 € S(zn) such that ¢(znq1) < a(zn)+ 1/n. In doing so,
one obtains a sequence {z,} such that

(2) d(xnaxn-i-l) < ¢($n)‘“¢(zn+l)5 a(z,) < $(znt1) < a(:cn)—l—l/n.

Then, as {¢(z,)} is a decreasing sequence of reals, there is some a > 0
such that

(3) a =lim ,¢(z,) = lim pa(z,).

Let now k € N be arbitrary. From (3) there exists some Ny such
that ¢(z,) < a4 1/k for n = Ni. Thus, by monotonocity of {#(z)}
for m > n > Ni we have a < ¢(zr) < é(zn) < a + 1/k and hence

(4) #(zn) — ¢(zm) < 1/kfor allm > n > Ni.
From (ii) and (2) we get

(5) d(xnaxm) < i d($3,$3+1) < ¢($n) - ¢($m) .

Then by (4) we have
d(Tn,zm) < 1/kfor allm >n > Ny.

Therefore, {z,} is a left k~Cauchy sequence and, by completeness of
X, it converges to some u € X.
Since d; and ¢ are Ls.c. functions, by (5) we have

d(zpn,u) <lim p, inf d(zp, 2, ) < lim ,, sup d(zn,Zm) <
< §(@n) + lim . 5up[— (5] = §(zn) — litm e inf () <
< é(zn) — (u).
Thus u € 5(zn) for all n € N and hence a(z,) < ¢(u). So by (3),

a < ¢(u). On the other hand, by Ls.c. of ¢ and (3), we have ¢(u) <
<lim,inf ¢(z,) = a. Therefore, é(u) = a.
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Now we shall show that fu = u for all f € F. Suppose not and
let f € F be such that fu # u. Then (1) implies ¢(fu) < ¢(u) = a.
Hence, by (3), there is a n € N such that

(6) $(fu) < alza).

Since u € S(zy) for all n € N, we have

d(xru fu) S d(.’L‘n, U') + d(ua f’U.) .<_ [(ZS(CEn) - ¢(U')] + [¢(U) - ¢(fu)] =
= ¢(zn) — ¢(fu).

Hence we conclude that fu € S(z,). Hence ¢(fu) > a(zn), which
is a contradiction with (6). Therefore, fu = u for all f € F. Since
u € S(zn) implies

d(zn,u) < §(zn) — $(u) < §(z) —inf{p(y) 1y € X} = ¢(z) —s. O

The following result contains the above theorem.
Theorem 2.2. Let E be a set, (X,d) as in Th. 2.1, g: E — X @
surjective mapping and F = {f} a family of arbitrary mappings f :
: B — X. If there exzists a ls.c. function ¢ : X — [0,00), such that

(7) d(ga, fa) < ¢(ga) — ¢(fa) for all f € F

and each a € E, then g and F has a common coincidence point, that
is, for some v € E gv = fv forall f € F.

Proof. Let £ € X be arbitrary and v € X as in Th. 2.1. Since g is
surjective, for each z € X there is some a = a(z) such that ga = z. Let
f € F be a fixed mapping. Define by f a mapping h = h(f) of X into
itself such that hz = fa, where @ = a(z), that is, ga = z. Let H be a
family of all mappings h = h(f). Then (7) implies

(8) d(z,hz) < ¢(z) — ¢(hz) for allh € H.
Thus, by Th. 2.1, u = hu for all h € H. Hence gv = fv for all f € F,

where v = v(u) is such that gv = u. ¢

The following result is related to periodic points.
Theorem 2.3. Let (X,d) and ¢ be as in Th. 2.1. Let T : X — X be
an arbitrary mapping. If for each z € X there is n(z) in N such that

(9) d(z, T"Pz) < §(z) — J(T")),

then T has a periodic point.
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Proof. Define f : X — X by fz = T™®)z. Then by Th. 2.1 (with F
singleton) fu = u for some u € X. Hence T™®)y = v that is, u is a
periodic point of T. ¢ ' o ‘
Remark 2.1. Example 2 below shows that a periodic point in Th. 2.3
need not be a fixed point. Therefore, one must add some hypothesis in
order to ensure that T possesses a fixed point. © o
Theorem 2.4. Let (X,d) and ¢ be as in Th. 2.1 and let T : X — X
be a mapping. If for each z € X, with Tz + z, there is n(z) € N and
a real number C(z) > 0 such that

(10)  max{d(z, T"*)z),C(z) - d(z, Tz)} < () — $(T™z),

then T has a fized point.

Proof. If we suppose that T"z # z for all n € N, then we can choose
C(z) such that (10) reduces to (9). Then by the proof of Th. 2.3
T™*)y =y for some u € X. Therefore, from (10) we have

max{0, C(u) - d(u,Tu)} < ¢(u) — ¢(u) = 0.

If we suppose that u # Tu, then C(u) > 0 and so we have
C(u)-d(u,Tu) <0, a contradiction. Therefore Tu = u. ¢

Remark 2.2. It is clear that if T' satisfies (C), then T satisfies (10)
with n(z) = 1 and, for instance, C(z) = 1. Therefore, Th. 1is a special
case of Th. 2.1, even if (X, d) in Th. 2.1 is a metric space. Example 1
below shows that Th. 2.1 is a proper generalization of Caristi’s Th. 1.
Remark 2.3. In [14] is given an example of a quasi-metric space (X,d)
with d; continuous for each z that is not metrizable.

3. Examples. 1. Let X = {0} U{xl/n: n=1,2,...} with the
usual metric. Define T': X — X by T(1/n) = —1/(n + 1), T(-1/n) =
=1/(n+1) and T(0) = 0. Define ¢ : X — [0, 400) by ¢(z) = d(z,Tz).
Then for z = +1/n we have
d(z,Tz) =1/n4+1/(n+1): d(z,T%z) = 1/n=1/(n+ 2).
Hence .
d(z,T*z) =1/n—1/(n+2) < 1/n+1/(n +1)—
~[1/(n+2) +1/(n +3)] = ¢(z) - ¢(T?).

Since for each z = +1/n we can choose C(41/n) < 2(n + 1)/(n + 2)?,
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we conclude that T satisfies (10) for each z in X with n(z) = 2 (and
n(0) = 1). As X is a complete metric space and ¢(z) = |z|+|z|/(1+|z])
is continuous on X, we conclude that Th. 2.4 can be applied and z =0
is a fixed point.

To show that Caristi’s theorem is not applicable, we shall show
that there is not a function ¢ : X — [0, 00) such that T' satisfies (C).
We pointed put [4] that such a function exists if and only if the series
Y d(T™z,T™"'z) converges for all z € X. Since in our example for

n=0
any fixed z = £1/mg we have

d(T"z, T" 'z) = 1/(n+mo) +1/(n + 14+ mo) > 2/(n+ 1+ myg),

we conclude that the above series is divergent and hence there is no
function ¢ such that (C) holds for any z = +1/n in X.

2. Let X = [-2,—-1] U [1,2] with the usual metric. Define T :
: X — X by Tz = —z. Then T satisfies (9) with n(z) = 2 for any

(continuous) function ¢ : X — [0, 400).
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&§ - closed) become special cases. Then we introduce the concept of fuzzy i -
homeomorphism, generalizing the concepts of fuzzy homeomorphism, fuzzy 6 -
homeomorphism and fuzzy é- homeomorphism. Finally, we prove that these

concepts are good extensions.

1. Introduction

In order to unify several characterizations and properties of some
fuzzy topological concepts and their weaker and stronger forms, in [8] we
introduced and studied the concept of an operation ¢ on a fuzzy topol-
ogy 7 on a set X. Then we introduced the concepts of ¢ - closure (¢ -
interior) of fuzzy sets and - closed (¢ -open) fuzzy sets. We showed
that the collection of ¢ - open fuzzy sets plays a significant role in the
context of fuzzy topology in a natural way analogous to that of the
- open sets in general topology [5, 9].

In this paper, we introduce the concept of fuzzy @i - continuous
mappings to unify several characterizations and properties of fuzzy con-
tinuity, fuzzy 6 - continuity, fuzzy 6 - continuity, fuzzy weak - continuity,
fuzzy strong @ - continuity, fuzzy almost - continuity, fuzzy almost strong
@ - continuity, fuzzy super continuity and fuzzy weak 0 - continuity.
Then we introduce and study the concepts of fuzzy i - open and fuzzy
o1 - closed mappings. After that we introduce the concept of fuzzy i -
homeomorphism, generalizing the concepts of fuzzy homeomorphism,
fuzzy 6 - homeomorphism and fuzzy 6 - homeomorphism. Several char-
acterizations of these mappings are investigated. Finally, Lowen’s good
extension criterion is used to test all concepts mentioned above.

2. Preliminaries

The class of all fuzzy sets in a universe X will denoted by IX.
Fuzzy sets of X will be denoted by Greek letters as u, v, 1, etc. Crisp
subsets of X will be denoted by capital letters as A, B, C, etc. The
value of a fuzzy set p at the element z of X will be denoted by u(z).
Fuzzy singletons [10] will be denoted by z., y,, z,. The class of all fuzzy
singletons will be denoted by S(X). Hence z. C y means ¢ €]0,1] and
e < p(z). The definitions and results in a fuzzy topological space (fts,
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for short) due to Chang [2] have already been standardized. For two
fuzzy sets p and v, we shall write ugv (resp. pgqv) to mean that y is
quasi - coincident (resp. not quasi- coincident) with v [13]. Let u € IX
and z. € S(X), by Ng(zc), int (), cl(p) and co(y), we mean, the
family of all open ¢ - neighbourhoods of z., the 1nter10r of s the closure
of 4 and the complement of p.
Proposition 2.1 [8]. Let p,v € I* and {u;j:j € J} CIX, then:
(1) pgv = pnv #£0;
(2) pgv <= (Jz. € S(X))(z: C p and z.qv);
(3) (V(z,y) € X*)(V(e,v) € (10,1])*)(z # y = 2. qyu)
(4) z.qu <= z. C co (B);
(8) ugco(p); |
(6) p C v & (Vz. € S(X))(zs - po=> z Cv) & (Vz. €
€ S(X))Nzeqp = zqv).
Definition 2.2 [4]. For u € IX we define- '
(1) po = {z|z € X and p(z) > a} as the wesk « - cut of p, where
a €]0,1];
(2) pw = {z|z € X and u(z) > a} as the strong a- cut of u, where
a € [0,1].
The strong 0- cut of u is called the support of [z and is denoted as
supp (1),
Definition 2.3 [4]. Let (X,T) be an ordmary topologlcal space. The
set of all lower semicontinuous functions from (X, T') into the closed unit
interval equipped with the usual topology constitutes a fuzzy topology
on X that is called the induced fuzzy topology associated with (X, T)
and is denoted as (X, w(T)).
Lemma 2.4 [4]. Let (X,T) be an ordinary topological space, p € IX
and A € 2%, Then we have:
(1) 1 € w(T) = (Ya & [0,1])(n= € T);
(2) pew(T) < (Va€l0,1])(ps € T');
(3) AeT <14 e w(T);
(4) AeT < 14 cw(T);
(8) cl(14) = la(a), where 14 denotes the characteristic mapping of
ACX.
Definition 2.5 [8]. Let (X,7) be a fts. A mapping ¢ : 7 — IX such
that (Vu € 7)(p C p¥), where p¥ denotes the value of ¢ at p, is called
an operation on T. The family of all operations on a fuzzy topology T
on a set X is denoted by O(x,r)-.
Examples 2.6. The mapping ¢ : 7 — IX defined by:
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(1) (Vu € 7)(u? = p), is an operation on 7, the so-called identity
operation 1;

(2) (Vi € 7)(u? = cl(p)), is an operation on 7, the so- called closure
operation cl;

(3) (Vu € 7)(p® = int(cl(g))), is an operation on 7, the so- called
interior - closure operation intocl.

Definition 2.7 [8]. An operation ¢ € O(x,) is said to be:

(1) regular < (Va, € S(X))(¥(v,1) € N3(ze))(3p € No(ae))(o*
C v¥Nn%);

(2) monotone < (Y(v,n) € 72)(v T n = v¥ C n¥).

It follows immediately that every monotone operation is regular,

but the converse may not be true [8].

Definition 2.8 [8]. Let (X, 7) be a fts. The mapping ¢~ : 7' — IX is

called an operation on 7' iff (VA € 7')(A D A\¥" ), where 7' denotes the

family of all closed fuzzy sets of X. The family of all operations on 7'

on a set X is denoted by O(x, ).

Definition 2.9 [8]. The operations ¢ € Ox,r) and ¢~ € O(x,,) are

said to be dual iff (Vv € 7)(co(v¥) = (co(v))*" ). Equivalently, ¢ and

@~ are dual iff (VA € 7/)((co(N))? = co(A?7)).

Definition 2.10 [8]. Let (X, ) beafts, ¢ € O(x ) and p € IX. Then:

(1) the - closure of i, denoted by cl,(u), is given by:

ze C cly(p) <= (Vn € No(z))(n*qu);
2) the @ -interior of u, denoted by int ,(u), is given by:
2 U ¥

Zeqint o(p) <= (I € No(z.))(n® C ).

Definition 2.11 [8]. Let (X, 7) be afts, ¢ € O(x ;) and p € IX. Then:
(1) pis called ¢ - closed <= cl,(p) = p;

(2) p is called ¢ - open <= int ,(p) = y;

(3) pis ¢-open iff co(u)is ¢ - closed.

Theorem 2.12 [8]. Let (X,7) be a fts and ¢ € O(x,r). If ¢ is regular,
then the family of all ¢ - open fuzzy sets forms a fuzzy topology on X
and is denoted by T,. Moreover, 7, C 7.

Definition 2.13 [8] Let (X, 7) be a fts, ¢ € O(x,,) and p € IX. Then
p is called an ¢.q- neighbourhood of z. <= (v € Ng(z.))(v? C p).
Theorem 2.14 [8]. (Vu € IX) (u is ¢ - open in (X,7) <= p 1s open
in (X, 7%)).

Definition 2.15 [8] A fts (X, 7) is called:
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(1) @.FTy iff for any z.,y, € S(X) and z # y, (Ju € No(z.))(3n €
€ No(yv))(yy qu® and z. gn®);

(2) @.FTy or F- Hausdorff iff for any z.,y, € S(X) and z # y, (3u €
€ No(z.))(3n € No(yy)) (¥ Nn® = 0);

(3) w.FRy or R-regular iff (Vz. € S(X))(Vu € No(z.))(3n € No(z.))
(n® C p).

Theorem 2.16 [8]. A fts (X,7) is o.FRy iff T = 7.

3. Fuzzy oy — continuous mappings

In the remainder of this paper, by (X, 7,¢) and (¥, A, %) we mean
(X,7) and (Y, A) are fts’s, ¢ and 1 are operations on 7 and A respec-
tively.
Definition 3.1. A mapping f from (X, 7,¢) into (Y, A, ) is called
F.o) - continuous iff (Vz. € S(X))(Vn € Ng(f(z.)))(Tv € No(z.))
(f(v*®) Sn¥).
Examples 3.2.
(1) For v =1 = v, F.py) - continuity coincides with F - continuity [2];
(2) for ¢ = cl =1, F.p1p - continuity coincides with F.0 - continuity [6];
(3) for ¢ = intocl = 1, F.p1p - continuity coincides with F.§ - continui-
 ty [4];
(4) for ¢ = 1 and ¥ = cl, F.p - continuity coincides with F.weak-
continuity [1];
(6) for v = ¢l and ¢ = 1, F.p1)- continuity coincides with F.strong
6 - continuity [7];
(6) for ¢ =1and ¢ = intocl, F.g) - continuity coincides with F.almost
continuity [1, 4];
(7) for ¢ = cl and ¢ = int o cl, F.pt - continuous is called F.almost
strong 6 - continuous; '
(8) for ¢ = intocl, and ¥ = ¢ F.pt)-continuous is called F super-
continuous;
(9) for ¢ = intocl, and ¥ = cl, F.pt)- continuous is called F.weakly
6 - continuous.

The next theorem characterizes fuzzy ¢ - continuous mappings in
terms of the - interior (1 - interior) and ¢ - closed (1 - closed) of fuzzy
sets.

Theorem 3.3. For a mapping f: (X,7,p) — (Y, A, ) the following
are equivalent:
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(1) f s Fupv - continuous;

(2) (Yn € A)(f~(n) € into(f~1(n¥)));

(3) (Vi€ I*)(f(clp(p)) € cly(f(1);

(4) (¥n € I¥)(elo(f71(m)) C fH(cly(n)));

(5) (Vne IV)(f~*(int y(n)) S int (£~ (n))).

Proof. (1) = (2): Let n € A and z.qf (). Then f(z:)qn. By (1),
(3v € Ng(z))(f(v¥) € n¥) and hence v¥ C f~(n¥) which implies
that z.qint ,(f~*(n¥)). Thus by Prop. 2.1 (6), we have f~1(n) C
C int (71 (n¥))-

(2) = (3): Let u € I* and f(ze) € cly(f(p)). Then (In €
€ No(f(ze)))(n”7f(u)) and hence f~'(n*)gu which implies
int ,(f~1(n¥))Gu. From z.qf~*(n) and by (2) we obtain (Ip € Ng(z.))
(p? C f~Y(n¥)). Hence p?gu and so z. € cl,(u) which implies that
f(ze) € f(clp(p)). Thus f(clp(p)) S el y(f(1))-

(3) = (4): Let n € I¥. From ff~'(n) C n, we have
cly(ff7H(m) S cly(n). By (3), we have f(clo (f7'(n))) <
C cly(ff7(n)) C cly(n). Thus we have cl,(f7(n)) € f7*(cly(n)).

(4) = (5): Let 7 € IY and z.qf !(inty(n)). Then z. &
Z co(inty(n)) = fcly(co(n)). By (4), we have z. ¢
Z cly(f7'(co(n))) = co(inty,(f~'(n))) and hence z.qint ,(f~(n)).
Thus, f~*(int 4(n)) C int ,(f~(7)).

(5) =>(1): Let z. € S(X)andn € Ng(z¢). From 17’/’ geo(n¥), we
have f(z.) € cly(co(n¥)) = co(int 4(n¥)) and hence f(z.)gint 4(n¥)
which implies that z.qf~(int 4(n?)). By (5), we have
z.qint ,(f~1(n¥)) and hence (Hu € No(z.))(p® € f~Y(n¥)) and so
f(pe) cn®. 0
Corollary 3.4. Let f: (X, 71,0) — (Y,A,%) be a mapping. If (Vz. €
;57’(&)())(\777 € No(f(2e))(3p € No(ee) N 7o)(f(#) € n¥), then f is

P - continuous.

Corollary 3.5. Let f: (X,7,¢) — (Y,A,9) is an F.pt - continuous
mapping, then the inverse image of each 1 - closed (Y - open) fuzzy set
i8 @ - closed (v - open).

The converse need not be true as can be seen from the following
example.

Example 3.6. Let X = {z,y} and u,n,p € IX defined by:
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Il
o
o

Iz p=0.3
n(z) =0.6 n(y) = 0.7,
where o denotes the constant mapping with value a. Let 7 = {X .0, 1,

m,p} and A = {X,0,7,p}. Then (X,7) and (X,A) are fts’s. Define
w:7— IX and ¢ : A — IX by:

X 0¥ =0
7 n¥ =1
p .9 {

I

€ € €
(1
=

X¥=X (¥=9
Y=n  p¥=04.

I
I

Il
o

Clearly ¢ and v are regular operations. Moreover one easily finds:
T = {X,0,p,n} and Ay = {X,0,n}. Consider the identity mapping
[ (X,7,0) = (X,A,¥). Then the inverse image of each Y- open is
¢-open but f is not F.py-continuous. Indeed, for z.,e = 0.8 and
p € No(f(z.)) there is no v € Ng(z.) such that f(v%®) C p¥.

In the following theorem it is shown that v -regularity of the
codomain space is a sufficient condition to obtain the converse of
Cor. 3.5.

Theorem 3.7. Let f : (X,7,0) — (Y,A,%) be a mapping. If the
inverse image of each v - open is o - open and (Y,A) is .FRy, then f
18 F.pip - continuous.

Proof. Let z. € S(X) and n € Ng(f(z)). From (Y,A) is ¢.FR, and
Th. 2.16, we infer n € Ay. By hypothesis f~1(5) € 7, and zeqf Y (n)
and hence (du € Ng(z.))(u? C f~(n)) which implies that f(p?) C
Cn Cn¥. Thus f is F.p1 - continuous. ¢

Theorem 3.8. A mapping f : (X,7,0) — (Y,A,) 18 F.o9) - contin-
wous iff (Vze € S(X))(VA1 € A and f(ze) € M)(Fha € 7')(ze € A2)
and f()\fN) ) /\;ﬁN, where ™, Y~ are the dual operations of v and 1
respectively.

Proof. Straightforward. ¢

Theorem 3.9. The azioms o.FT; and w.F'Ty are inverse invariant
under a F.p1) - continuous injective mapping.

Proof. As example, we prove the ¢.FT, inverse invariance. Let f
be a F.op - continuous mapping from (X, 7,¢) into (¥,A,), where
(Y,A) is %.FTy. Let z.,y, € S(X) with £ # y. Since f is injec-
tive, we have f(z) # f(y). From (Y,A) is ¢.FT,, we obtain (3n, €
€ No(f(z)))(En2 € No(f(yo))nf N0y’ = 0). By Fipy- continuity
of f, (Ju1 € No(ze))(Fn2 € No(u))(f(uf) € nf and f(uf) € nf).
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Hence f(u¥) N f(ud) = 0 and so pf Ny = 0. Thus (X,7) is ¢.FT;-
fts. O

Theorem 3.10. The aziom ¢.F Ry 1s inverse invartant under a F.p) -
continuous, F - open and injective mapping.

Proof. Let f be a F.p1) - continuous, F'-open and injective mapping
from (X, 7,¢) into (Y, A, 1), where (Y,A) is 9.FR;. Let z. € S(X)
and u € No(z.). From f is F - open, we have f(u) € No(f(z.)). Since
(Y, A) is 1.FRy, we obtain (In € Ng(f(z:)))(n¥ € f(r)). By Fpip-
continuity of f, (3v € Ng(z))(f(v¥) C n¥). Hence, v¥ = f~1f(v¥) C
C f71(n¥) C f71f(p) = p (f being injective). Thus, (X, 7) is ¢.FR;-
fts. O

Theorem 3.11. If f,g : (X, 7 go) (Y,A,v) are F.p1p - continuous
mappings, p 18 regular and (Y, A) is . F'Ty, then the set p = U{z, | T €

€ I* and f(z.) = g(z:)} 18 @-closed in X and if cl, () = X and
(Voo € u)(F(ze) = 9(z0)), then f = g.

Proof. For any z € X, f(z.) = g(zc) iff f(:c) g(z). Hence, if
ze € p, we have f(z) 75 g(z). Since (Y,A) is ¢.FT,, then (39 €
€ No(f(ze)))(3ne € Nq(g(xs)))(nf’ nn? =0). By Foy- continuity
of f and g, (Jvi,va € Ng(z))(f(v¥) C n? and g(v¥) C nf). Then
f)ng(vg) =0.

Now, smce cp is regular then (3p € Ng(z))(p? CvfNuvs). In
the light of 171 N 772 = [, it is easily seen that p¥ Ny = @ and hence
p? Gu which implies that z. € cl,(p). Thus p is ¢-closed. Finally,
since 4 = cl,(p) = X, we have (Vo € X)(3z. C p)(f(z:) = g(z.)) and
consequently (Vz € X)(f(z) = ¢g(z)). Thus f=g¢. O

4. Fuzzy py—open and oy —closed mappings

Definition 4.1. A mapping f: (X, 7,¢) — (Y, A, v) is called:
(1) F.ptp- open iff for every p € IX, f(int ,(p)) C int 4(f(1));

(2) F.pip- closed iff for every p € IX, cly(f(p)) € f(clu(p)).
Examples 4.2.

(1) If ¢ = ¢ and ¢ = 1, then F.py-open (F.p1-closed) mapping
coincides with F -open (F - closed) [2];

(2) when ¢ = cl and ¢ = cl, then F.py -open (F.¢y - closed) map-
ping is called F.0-open (F.6- closed);

(3) if p = intocl and ¥ = intocl, then F.pt-open (F.p - closed)
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mapping is called F.§-open (F.é - closed).

Theorem 4.3. If a mapping f : (X,7,¢) = (Y,A,2) 13 F.p1p - open
(F.otp - closed), then the image of every ¢ - open (i - closed) fuzzy set 1s
1 - open (1 - closed). The converse is true if (X,7) is ¢.FR;.
Proof. Let u € 7p. Then p = int ,(p) and hence f(u) = f(int ()
Since f is F.p-open, we have f(u) C int 4(f(p)) and hence f(u) €
€ Ay. Conversely, if (X,7) is ¢.F Ry, then by Th. 2.16, we have (Vu €
€ I*)(int ,(p) € 7,) and hence f(int,(u)) € Ay which implies that
f(int ,(p)) C int 4(f(n)). Proof of other case can be given in similar
way. O

The next example shows that ¢.F R, is needed in the statement
Th. 4.3.
Example 4.4. Let X = {z,y}, p,v,n,p € IX defined by:

pa)=04  pu(y)=03 n(z)=07  n(y)=06
v(z) =0.6 v(y) =0.7 p=04

Let 7 = {X,0,n,v} and A = {X,0,n,p}. Then (X,7) and (X, A) are
fts’s. Define ¢ : 7 — IX and 9 : A — IX by:

X=X (=90 X=X 0

v =v p? =04

Y =10
n¥=n p’=05.

Clearly ¢ and 1 are regular operations. Moreover one easily finds: 7, =
= {X,0,v} and Ay = {X,0,7} and hence 7,{X,0,4} and A =
— (X0, co(n)}. Define f : (X,7,5) — (X, A, 4) satisfying f(z) = y
and f(y) = z, then every image of ¢ - closed (¢ -open) is v - closed (¢ -
open), but f is not F.ov - closed. Indeed, for v € IX, we have cl ,(v) =
= {(2,0.6), (y,0.9)}. So, f(cly(v)) = {(2,0.9), (y,0.6)}. Since
f(v) = n, we have cly(f(v)) = cly(n) = 0.9. Hence cly(f(v)) €
Z f(dl ().

Theorem 4.5. Let f: (X,7,0) = (Y,A,)) be a mapping.

(1) If (¥ € 7)(f(n) € A and f(n*) = (f(m)¥), then f is Fipsp - open.
(@) IF (VA € P)(F() € A and F0%) = (FON)¥), then 1 is Fpip-

closed. :

Proof. (1) Let x4 € I* and y,qf(int ,(p)). Then (z. C f~1(vy))
(zeqint ,(p)) and hence (I € Ng(z:))(n¥ S u). From hypothe-
sis we obtain that f(n) € No(y,) and (f(n))¥ C f(g) and hence
ypqint 4(f(p)). Thus f(int,(u)) € inty(f(x)). The proof of (2) is

similar. ¢
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Corollary 4.6. Let f: (X,7,¢) — (Y, A, %) be a mapping.

(1) I (Vn € 7)(f(n) € A and f(n?) = (F(n)¥), then the image of
every @ - open fuzzy set is 1 - open.

(2) If (VA € ) (f(X) € A and F(A¥") = (FOO)¥7), then the image
of every ¢ - closed fuzzy set is 1 - closed.
The following example shows that the converse of Cor. 4.6 is not

true in general.

Example 4.7. Let X = {z,y}, u,v,n,p,0 € I* defined by:

u(z) =0.5 w(y) =0.6 v(z) =0.8 v(y)=10.9
n(z) =0.5 n(y) =04  p(z)=04  p(y)=0.6
oc=04.

Let 7 = {X,0,u,m,p,0} and A = {X,0,u,v,p,0}. Then (X,7) and
(X, A) are fts’s. Define ¢ : 7 — IX and ¥ : A — IX by:

'u,"azu ,,79":77 /f‘b:M V¢=1/
pf=p of =o ¥ =p ¥ =0o.

It is easy to see that ¢ and 1 are regular operations and T, = T and

Ay = A. Consider the identity mapping f : (X,7,¢) — (X, A, ). It

is easy to see that the image of every ¢ - open fuzzy set is v - open (and

hence f is F.p1 -open, since (X, 7) is ¢.FRy), but for 4 € 7 we have

f(u) € A and f(u®) # (f(u))¥.

Definition 4.8. A bijective mapping f : (X,7,¢) — (Y, A, %) is called

F.otp- homeomorphism iff both f and f~! are F.o9 - continuous.

Example 4.9.

(1) If ¢ = 2 and ¥ = 1, then F.p3-homeomorphism coincides with
F - homeomorphism [2].

(2) If ¢ = cl and 3 = cl, then F.pt - homeomorphism is called F.6-
homeomorphism.

(3) If o = intocl and ¢ = int o cl, then F.pt - homeomorphism is
called F.6 - homeomorphism.

Theorem 4.10. If f : (X,7,¢) — (Y,A,v) is bijective, then the

following properties of f are equivalent:

(1) f 13 F.pyp - homeomorphism;

(2) f is F.pyp - continuous and F.pi - open;

(3) f is F.p - continuous and F.oip - closed;
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(4) (Y € PVl () = el o(£(1)):
Proof. (1) = (2): Let p € IX. From f~! is F.po1 - continuous, we
have (f~1)"!(int ,(¢)) C int x((f~*)"!(u)) and hence f(int,(p)) C
C int y(f(1).

(2) = (8): Let 4 € I*. From f is F.pot-open and bijective,
we obtain that f(int,(co(y))) € inty(f(co(r))) and hence
co(f(ecly(p))) € co(cly(f(p))) which implies that cly(f(p)) C

C f(cly(p))-
(3) => (4) and (4) = (1) can be easily proved. {

5. Good extensions

Definition 5.1 [13]. A property Py of a fts is said to be a good ez-
tension of the property P in classical topology iff whenever the fts is
topologically generated (induced) say by (X,T), then (X,w(T)) has
property Py iff (X, T) has property P.

Theorem 5.2 [8]. Let (X,T) be a topological space and ¢ be an op-
eration on T. Consider the induced fuzzy topological space (X,w(T))
and the operation ¢, : w(T) — I* defined by: (Vu € w(T))(u? =

= U (aenlyv)), where h(p) = sup p(z). Then:
0<a<h(p) z€X

(1) w(Tp) = (W(T))e s
(2) ey, (1a) =1a,a)
(3) int ‘Pw(lA) = 1int‘p(A);

(4) cl tpw(/“‘) = U (Qﬂ 1C1¢(u3))i Ve e IX;'
0<a<h(p)
(5) inty, (W)= U (eNlin,ug) YueIX.
0<a<h(p)

Proposition 5.3. Let f: X — Y be a mapping, p € I, AC X and
B CY. Then the following relations hold:

(1) FHu=) = (1) s

(2) f(uz) = (F)m.

(3) f71(1B) =1s-1(m)-

(4) f(1a) =1p)-

Theorem 5.4. A mapping f: (X, T1,¢) = (Y,T2,v) is py - continu-
ous iff f:(X,w(T1),¢u) = (T,w(T2), %) 18 F.p,t., - continuous.
Proof. Let pu € (w(12))y, . From Th. 5.2 (1), we have p € w((T2)y).
Then (Va € [0,1])(uw € (T2)y). From f is ¢ - continuous and Prop.
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5.3 (1), we have (Va € [0,1[)((f~* (1)) = € (T1),) and hence f~1(u) €
€ w((Th)e) = (W(T1))e,- Thus f is F.p,i, - continuous. Conversely,
let B € (T2)y. Then by Th. 5.2 (1), 1 € (w(T2))y,. Since f is
F.p,1,, - continuous, we have f~1(1p) = 1;-1(g) € w((T1),) and hence
f~Y(B) € (T1),. Thus is ¢y - continuous. {

Theorem 5.5. A mapping - f : (X,T1,¢) — (Y, T2, ) 13 03 - open iff
(X, 0(Th),pw) = (Y,w(T2), %) is Fpuths - open.

Proof. Let p € I*. Then (Va € [0,1[)(zz C X). From f is @1 - open,
it follows f(int ,(uz)) € int 4(f(p=)). Then we obtain successively:

Tetimt o)) & Linty (P s 2N LpGintp (uz)) € 2N Line y (fa2)) -
U @ lfta,wo) € U (@Nlineygws) -

0<a<h(n) 0<a<h(n)
f( U (an 1intw(#a))) < U (@n ity -
0<a<h(n) 0<a<h(n)

Then f(int ., (¢)) C int 4, (f(x)) and hence f is F.o, 3., - open.
Conversely, let A C X. Then 14 € IX and so f(int, (14)) C
C int 4, (f(14)). Then we have successively:

F(Lint,(a)) € inty, (1ra)) s Liint o (4)) € Lint 4 (£(4)) -

Then f(int ,(A4)) C int 4(f(A4)) and hence f is py -open. ¢
Theorem 5.6. A mapping f : (X, Th,¢) — (Y, T2,v¢) is o - closed iff
fi (X, w(Th),00) = (Y,w(T2), %) 18 Fuputh, - closed.
Proof. It is similar to that of Th. 5.5. ¢

With the results seen above we conclude that:
Theorem 5.7. f: (X, Th,¢) — (Y,T2,%¢) is o9 - homeomorphism iff
f:(X,w(Th),vu) = (Y,w(T2),¥,) i3 Fputp, - homeomorphism.
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Abstract: Results of the following type treated: If ¢ : S® — C(S¥), k > 2,
i1s a Lebesgue measurable function it is shown that there exists a continuous
function f : Bpy1 — SF\ {oo} so that the radial cluster-set function fg of

f equals ¢ almost every where on S™.

In [6] and [7], question of interpolations by radial cluster set func-
tions were addressed for functions of Baire class 1. The results of these
papers can be used to prove Egoroff-type theorems and Lusin-type
theorems for set - valued measurable functions. The present note illus-
trates one such Egoroff-type theorem. The construction found here can
be used to establish other theorems of this type as well as Lusin - type
theorems. Throughout the note, & and n are integers such that & > 2
and n > 1.
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1. Statement of the theorem. We shall begin the statement

of our Egoroff-type theorem. The notation used in its statement will be

explained immediately after the statement and the proof of the theorem

will be given in Sect. 3.

Theorem. Let ¢ : S™ — C(S*) be a Lebesgue measurable function.

Then, there is a continuous function f : Byy1 — S*\ {oo} and there is

an increasing sequence of positive numbers {ry,} converging to 1 such

that

(i) the radial cluster - set function fr of f is equal to ¢ Lebesgue almost
everywhere on S™, and

(ii) for each positive number € there is a Lebesque measurable set E
such that the continuous functions T, : S™ — C(S*), m =1,2,...,
defined by

Pm(z):{f(rz) ‘Tm STSTm+1} z€8S",

converge uniformly to ¢ on E and u(S™\ E) < .

As usual, R"*! is the (n + 1)- dimensional Euclidean space. Its
open unit ball and corresponding boundary are B,4; and S™, respec-
tively. The Lebesgue measure on S™ is denoted by x. The point oo is
the point (0,...,1) on the k-sphere S* of R¥+!. By C(S*) we mean
the collection of all nonempty subcontinua of S¥*. When C (SF) is en-
dowed with the Hausdorff metric D, we have from a theorem of Curtis
and Schori that C(S*) is homeomorphic to the Hilbert cube I “o where
I =[0,1] (see {10) and [11]).

Let us now turn to the radial cluster sets of a continuous function
f defined on B4, into S*. Assign to each point z of the boundary S™
of B,4+1 the set

fr(z) =N{C1({f(rz): §<r<1}):0< b6 <1}

called the radial cluster set of f at z, where Cl denotes the closure
operator in S¥. The set fg(z) is a nonempty subcontinuum of S¥. The
resulting function ‘

fr:S™ — C(5%)

is called the radial cluster- set function of f. It is proved in [6] that fr
is a Baire class 2 function and that there are continuous functions f for
which fr is not of Baire class 1. Of course, when n = 1 and k = 2, the
classical complex analysis case results.
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Finally, the Lebesgue measurability of ¢ : S™ — C(S*) is defined
in the usual way, that is, ¢ "*[F] is Lebesgue measurable for each closed

set F' of C'(Sk).

2. Preliminary Lemmas. The proof of our theorem, which is
given in Section 3, will rely heavily on the existence of certain homo-
topies. This section is devoted to these existence lemmas.

The first lemma is Lemma 5.7 of [6]. The statement of the lemma
will require the use of the stereographic projection 7 in R*+1 of
S*\ {oo} onto R¥. Here, R¥ is identified with the k- dimensional coor-
dinate hyperplane of R¥*! formed by setting the last coordinate equal
to 0. We shall denote the Lipschitz constant of #=! by M.

Lemma 1. Suppose thate > 0. Ifg:S™ — RF and ¢ : S — C(S%)
are continuous, then there ezists a homotopy a : S™ x I — R¥* such
that, for all z in ST,

(i) a(z,0) = a(z,1) = g(z), and

(i) D(n~[a(z, D}, §(2)) < 2dist (r~(g(2)), #(2)) + M.

From [6, Lemma 5.2] we infer the next lemma.

Lemma 2. Suppose that € > 0, that E i3 a compact, totally discon-

nected subset of S™ and that hy and hy are continuous mappings of S™
into SF \ {oo}. Let

K = {z€8S": |ho(z) — h1(2)| £ 1}.

Then, there exzists a homotopy B : S™ x I — S¥\ {oo} such that
(i) B(z,0) = ho(z) and B(z,1) = hi(z) for z in S™, and
(i) |diam (B(z,I)) — |ho(2) — h1(2)|] <€ for z in KN E.

3. Proof of the Theorem. Let us begin with the homeomor-
phism H of C(S*) onto I*° given by the theorem of Curtis and Schori.
The p-th coordinate H, of H is a continuous function of C(S*) into
I. Also, a function ¢ from a space X into C(S*) is continuous if and
only if H, o ¢ are continuous for all p. Consequently, we can prove the
following lemma.

Lemma 3. Let ¢ : S® — C(S*) be a Lebesgue measurable function
and £ > 0. Then, there ezists a closed, totally disconnected subset E of
S™ such that the n - dimensional Lebesgue measure u(S™ \ E) does not
exceed € and ¢ resiricted to E, is continuous.

Proof. For each p, the function H, o ¢ is real-valued. By classical
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real function theory, there exists a closed subset E, of S™ such that
u(S™\ E,) < 2=#+V¢ and H, 04 restricted to E, is continuous. Since y
is regular measure and S™ is locally Euclidean, we may further assume
that E, is totally disconnected. The set E = N{E, : p > 1} is the
required set.

Proof of the Theorem. By Lemma 3, there is a sequence {F;} of
closed, totally disconnected subsets of S™ such that ¢|F}, the restriction
of ¢ to F}, is continuous and u(S™ \ F') = 0 where F is the union of
{F;}. Since the members of the collection {F;} are compact, totally
disconnected sets, we may assume also that the collection is disjointed.
By Michael’s Theorem [14, Th. 2], the continuous set - valued function
¢|F; has a continuous selection s; : Fj — S, that is, s j 1s a continuous
function such that sj(z) € ¢|Fj(z) for z € Fj. From [13, pp. 74-80],
we infer for each j the existence of a sequence of continuous functions
sjm + Fj = 8F\ {00}, m = 1,2,..., such that |s;(2) —s,(2)] < 1/(2m)
for all z in Fj.

For each m, let G, = U{F; : j < m}. We have already men-
tioned that the Curtis- Schori Theorem gives us the fact that C(S*) is
homeomorphic to the Hilbert cube. Consequently, the Tietze Extension
Theorem can be applied to get a continuous extension ¢, : S — C(S¥)
of ¢|Grm for each m. Next, for each m, let hm : G— — S\ {oo} be
the continuous function defined by hm(2) = sjm(z) for z in Fj and 1 <
<J < m. As the set G, is compact, by the Tietze Extension Theorem,
hm : Gm — S¥\ {00} also has a continuous extension to S™ which will
be denoted again by h,,. Thus, for each m, there is a pair of continuous

maps ¢, : S — C(S™) and hs, : S® — S* \ {00} with the properties:

¢m(29 = ¢(z) for z in G,
dist (hm(2),4(2)) <1/m for z in Gpm,
|hm(z) — hmt1(2)| <1/m for 2z in Gn.

We apply Lemma 1 to ¢, and g, = 70 by, to get a homotopy ay, :
: 8™ x I — R¥ such that, for all z in S*,

77 0 am(2,0) = 771 0 am(2,1) = hp(2)
and
D(r" 0 am(z, 1), ¢m(2)) < 2dist (hm(2), dm(2)) + M/m.
Next, we apply Lemma 2 to A, and hm41 to get a homotopy B, :



A Egoroff - type theorem for set- valued measurable functions 77

8™ x I — S*\ {co} such that, for all z in S”,
ﬂm(Z,O) = hm(z)7 ﬁm(zal) = hm+1

and

(diam (B (2, 1)) = |hm(2) = hana (2)]] < 1/m.

Now we shall piece together the homotopies 77! o0 ay, and [,

to get the desired function f : Bpyy — S¥\ {oo}. Let {r;} and
{rl,} be increasing sequences of positive numbers converging to 1 with
Tm < Thy < Tm41. On the closed set {z € Bpy1 :rm < |z| < 1l } we
define f by rescaling the homotopy 7! o a, in the obvious manner,
and on the closed set {z € Bpy1 : 7, < |z| € rmy1} we define f by
rescaling the homotopy B, in the obvious manner. This defines f on
the relatively closed set {z € B,41 : 71 < |z| < 1} of Bpyy. The Tietze
Extension Theorem applied to the closed set {z € By : |z| < 71} will
complete the definition of the continuous function f on B,4;.

Let us verify that I'n(2) = {f(rz) : 7 < 7 < Ty}, m =
=1,2,..., converges uniformly to ¢(z) on G; for each j. To this end,
let m > j and z € G;. Since Gj is contained in G, we obtain from
the identity

Tm(2) = 771 0 am(z,I) U Bm(z, I)
and the definition of the Hausdorff metric D the inequality
D(Tm(2), 77" 0 am(z, 1)) < diam (Bn).
Consequently,
D(Tm(2), ¢(2)) < D(Tm(2), 77 0 a2, 1)) + D(n7" 0 atm (2, 1), $(2)) <
< diam (Bm(z, I)) + 2dist (hm(2),d(2)) + M/m <
< Vim(2) = bt ()] + 1/ + 2dist (), 8(2)) +
+M/m<(4+ M)/m.
Thus, we have that I'r,(2) converges to ¢(z) uniformly on G,. Finally,
let us show fr(z) = ¢(z) for each z in F. Each z in F is a member of

G; for some j. Clearly, for p > m > j, we have from the definition of
the Hausdorff metric D that

D(U{Ty(2) : m < ¢ <p}, é(2)) < (4 + M)/m.
Therefore,
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D(CL({f(rz) :rm <7 <1}), 6(2)) < (4 + M)/m,

from which we conclude that fr(z) = ¢(z). Since u(S™\ F) = 0, we
have that fr is equal to ¢ Lebesgue almost everywhere on S™. ¢
Remark. The convergence of I'y, to ¢ in the theorem is closely re-
lated to the concept of uniform convergence defined by Bagemihl and
McMillan in [2]. Further investigations of this type of convergence can
be found in [6] and [7]. The references [3], [4], [5], [8] and [9] contain
discussions on radial limit behavior of continuous functions defined on
an open ball. ‘

Finally, consider the setting of classical complex variables. That
is, R? is identified with the set C of complex numbers and the unit disk
and the unit circle are By and S!, respectively. Moreover, the set of
extended complex numbers ¢ = C U {oo} becomes S2. By employing
the Arakeljan Approximation Theorem [1] in the same manner as in
[7], [8], [9] and [12], we can establish the following corollary. Since its
proof is a straightforward modification of those in the above references,
we shall not prove the corollary.

Corollary. Let ¢ : S! — C’(@) be a Lebesgue measurable function.

Then, there 13 an analytic function f from the unit disk {z € C: |z| <

< 1} into C and there is an increasing sequence of real numbers {r,}

converging to 1 such that

(1) the radial cluster - set function fr of f is equal to ¢ Lebesgue almost
everywhere on S, and

(ii) for each positive number e there is a measurable set E such that the
continuous functions I'y, : ST — C(@), m=1,2,..., defined by

Cr(€) = {f(r€) :rm <r <rmy1}, €£€St,

converge uniformly to ¢ on E and u(S' \ E) <e.
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Abstract: Some classes of quasi- continuous, Darboux like functions are
studied. The maximal additive and multiplicative families for these classes
are characterized. A necessary and suflicient condition for f to be the uni-
form limit of a sequence of quasi- continuous functions having the Darboux

property is given.

1. Introduction. We shall consider the following families of real
functions defined on some interval I:
Const — the class of all constant functions;
C — the class of all continuous functions;
A - the class of all almost continuous functions (in the sense of
Stallings ([20}); f : X — Y 1is said to be almost continuous
if for every open set G C X X Y containing f, there exists a
continuous function g : X — Y lying entirely in G}
Conn — the class of all connectivity functions; f : X — Y is a con-
nectivity function if for every connected subset C of X, f|C
is a connected subset of X x Y;
D — the class of all Darboux functions;
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B, — the family of all functions of the first class of Baire;
Isc(usc) — the class of all lower (upper) semicontinuous functions;

M - the class of Darboux functions f for which if z; is a right
(left) hand sided point of discontinuity of f, then flzo) =0
and there exists a sequence (z,) such that f(z,) = 0 and
Tn \ ZTo (Zn /" zo) ([8] and [14]);

Q — the class of all quasi- continuous functions; a function f:
: X =Y is quasi- continuous at a point zo iff 7o € int f~1v)
for every neighbourhood V' of f(z) ([15]);

Uo(U) — the class of all functions defined on I such that for every
subinterval J C I (and for every set A of the cardinality less
than the continuum) the set f(J) (respectively f(J \ A)) is
dense in the interval [inf f|J, sup f|J] ([4]); it is remarked in
[4] that in these definitions the interval [inf f|J, sup f|J | can
be replaced by the interval [f(a), f(b)], where J = (a,b);

Y — the family of all functions with the Young property, i.e. func-
tions which are bilaterally dense in themselves ([21]); some
authors call functions having this property peripherally con-
tinuous ([2], [9]). (We make no distinction between a func-
tion and its graph.)

The inclusions A C Conn ¢ D are noticed in [1], the inclusions
DCUC U G follow from [4]. The inclusion M C By is remarked
in [14]. Now we shall prove the inclusion M C Q.

Lemma 1. If f € M and zq is a point of right - hand (left- hand) sided
discontinuity of f then there exists a sequence (zn) of points at which f
18 Tight - hand sided or left- hand sided continuous with flzn) =0 and
Tn \ Zo (Zn " z0).

Proof. Let us assume that f is right - hand sided discontinuous at some
point zg, U = (29,29 + €) for some € > 0 and U contains no point of
continuity of f at which f has the value zero. Observe that the set
B = {z € U : f(z) = 0} is nowhere- dense and non-empty. Let (1)
be a sequence of all components of the set U \ B. Notice that f (z) =0
for every z € B. Thus if I, = (a, b), then f(a) = f(b) = 0 and f is
right -hand (left - hand) sided continuous at the point a (respectively,
b). Hence there are points in U N B at which f is right - hand or left -
hand sided continuous. ¢

It follows easily from this lemma that for every point z, at which
a function f € M is discontinuous there exists a sequence (zn) of
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continuity points of f such that nlLIr;o zy, = z¢ and 111520 f(za) = f(=0),
and this condition implies quasi- continuity of f at zo (see e.g. [10]).
Lemma 2. (a) A function f i3 quasi- continuous and satisfies the
Young condition iff for every zo € I there exzist two sequences (Tn)
and (zn) of continuity points of f such that x, / xo, zn \, To and
Tlll{r;of(xn) = J}_{Iéof(zn) = f(zo) (this condition must be interpreted
unilaterally for end - points of I).

(b) Let f be quasi - continuous. Then f € U iff for each x € I the
unilateral cluster sets of f at x are intervals and contain f(z).
Proof. (a) follows immediately from the fact that f : I — R is quasi-
continuous at some point z iff there exists a sequence (z, ) of continuity
points such that lim z, = z¢ and T}eréof(xn) = f(zo), i.e. fIC(f) is

c-dense in f, where we denote by C(f) the set of all continuity points
of f (seee.g. [10], Lemma 2). We can also write the following condition:
f e QYiff f(zo) € C(fIC(f),z0) N CT(fIC(f),z0) for each zo € I.
(By C~(f,z) and C*(f,z) we denote the left - hand and right-hand
sided cluster sets of f at a point z.)

(b) follows from the fact that f|C(f) is c¢-dense in f and the
following characterization of the classes Uy and U, which is proved in
[4], theorems 3.1 and 3.2:

(i) f € Uy iff for each = € I the unilateral cluster sets of f at z are
intervals and contain f(z);
(ii) feU ff f €Uy and f is c-dense in itself. ¢

For the classes of real functions defined on an interval I we can

state
Q

w
Const CCCMCACConn CDCUCU S ).
N
B
In the class B; we have the following equalities:
ABy; = Conn By = DBy =UyBy =UBy = YB;  see [1] and {3].

In the first part of the present paper we remark that in the class
Q the following inclusions hold:

AQ CConnQ CDQ CUQ =UQ T YVQ.
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Let Z be a class of real functions. We define the maximal additive
(multiplicative, latticelike, respectively) class for Z as the class of all
such functions f € Z, for which f+g € Z (fg € Z or max(f,g) € 2
and min(f, g) € Z, respectively) whenever ¢ € Z. The adequate classes
we denote by M, (Z), Mn(Z) and My(Z). Moreover let Mnin(Z) =
={f € Z: if g € Z then min(f,g) € Z} and Mp..(Z) = {f € Z: if
g € Z then max(f, g) € Z}. Note that My(Z) = Mumin(Z)N Mmax(Z).

The following equalities are known:

K~_. | MjK) Mu(K) | Mmax(K) | Mmin(K) [ Mo(K)
D |Const ([19]) |Const ([19]) |Dusc ([7]) |Dlsc ([7]) C

DB, C ([3]) M ([8]) |Dusc ([7]) |Dlsc ([7]) C
A C ([14]) M ([14]) ? ? C ([14])
Conn | C ([14]) M ([14]) ? ? C ([14])

Recently D. Banaszewski and K. Banaszewski proved the following re-
sults:

K~ [Ma(K) [Mn(K) | Muax(K) | Muin(C) [ Me(K)
Y _|C([23)) IM([23]) | C([23]) C (23)) ¢
ODB, | C ([22]) | M ([22]) |ODusc ([22]) | O0Dkse ([22]) | €

In the second part of the present paper we shall add next lines to
this table, namely,

QD Const |Const |QDusc | OQDlsc C
QA C M ? ? C
QConn| C M ? ? C

It is well-known that a uniform limit of Darboux functions can
be a function without the Darboux property. It was proved in [4] that
a function f is a uniform limit of Darboux functions iff f € . Since
the classes By and U are closed with respect to uniform limits and
DB; = UB;, the class DB, is closed with respect to uniform limits too
(see e.g, [3]). The class Q is closed with respect to this operation too,
but the class D@ is not.

In the last part of this paper we shall prove that a function f is a
uniform limit of quasi- continuous functions having Darboux property
iff f € QU. Notice also that a real function defined on R is a pointwise
limit of some sequence of functions from the class QD iff it is pointwise
discontinuous ([12]).
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2. We start with some universal construction of quasi - continuous func-
tions having Darboux property. Let A C R be a set c¢- dense in itself
(where ¢ denotes the cardinality of the continuum) and let B be a sub-
set of R. Let D*(A, B) denote the class of all functions f : A — B
which take on every y € B in every non-empty interval of A (i.e. a set
of the form A N (a,b) for some a,b € R). It is well-known that the
family D*(A4, B) is non-empty (see e.g. [5]).

Let I = [0,1], C C I be the Cantor set and for each n € N let
Jn be the family of all components of the set I\ C of the n-th order
(i.e. such components of I\ C which length is equal to 37"). Let

A=TI\U{J:J € |J Jn}. Notice that this set is c- dense in itself. Let
n=1 ' '

(¢n) be a sequence of all rationals such that for every rational ¢ the set
{n : ¢n = q} is infinite. Then for a given function ¢ € D*(A4,R) the
function f : I — R defined by ‘

p(z) forze A

f(x):{Qn fOI‘&TEU{_j,JEJn},nEN

is quasi- continuous and has the Darboux property.

Now we shall employ this method to construct some example
of a quasi- continuous function with the Darboux property but not
connected. It is easy to find (by transfinite induction) a function
¢ € D*(A,R) such that ¢(z) # —z for each z € A. We define a
function f: I — R in the following way:

p(z) forze A

flz) =14 qn forzeU{J:J€Tpand g, € J},neN
z+1 otherwise.

Then f € @D and rng f = R but fN{(z,z) : z € I} = 0 and therefore
f is not connected.

Notice also that the function f which was constructed by J. Jas-
trzebski in [13] is quasi - continuous and connected but not almost con-
tinuous. Moreover, the function g : I — R defined by g¢(z) = ¢, for
z € U{J : J € Jn} and ¢g(z) = 0 otherwise, belongs to the class
QU but g does not have the Darboux property. Finally, the function
h:I — R, h(z) = sin(1l/z) for z € (0,1] and A(0) = 0 is quasi-
continuous and almost continuous but A is not continuous. Thus all
inclusions C € AQ C ConnQ ¢ DQ C UQ are proper. The equality
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QUy = UQ follows from Lemma 2 (b). Now let (I,), be a sequence
of all components of the complement of the Cantor set such that the
unions J I,y and U L, are dense in C and let f be the charac-

n=1 n=1

teristic function of the set C U (J I,. Then f € YQ \ U Q.
n=1 '

3. Theorem 1. Assume that I = [0,1], X,Y C R are intervals, a, b, c

are reals such thata <b<cand F: X xY - R satisfies the following

conditions: _

(1) . :' Y - R, F.(y) = F(z,y) is continuous and (F,)~1(b) is
countable for each z € X;

(2) F¥ : X — R, F¥(z) = F(z,y) is continuous and (FY)~1(b) is
countable for each y € Y;

(3) card{z e X:VyeY F(z,y) # a} < 2v;

(4) card{z € X : Yy € Y F(z,y) # c} < 2¥.

Then for every non - constant, continuous function f : I — X there

exists a Lebesgue measurable, quasi- continuous function g : I - Y

with the Darbouz property such that F(f,g) does not have the Darbous

property (compare with [24]).

Proof. Notice that the following condition follows from (1):

(1) VzeX Fy(z)eY F(z,y(z)) +#b.

Let f : I — X be a non- constant, continuous function. Let D
be the set of all points z € X for which the set f71(z) has a positive
measure. Then the set D is countable and it follows from (1) that the
set {y € Y: 3z € D F(z,y) = b} is countable too. Thus there exists a,
countable, dense set P C Y such that

(5) VeeD VpeP F(z,p)#b.
Moreover, we have also the following property

(6) Vpe P m({z: F(f(z),p) =b}) =0,

where the symbol m(A) denotes the Lebesgue measure of A. In fact,
{z: F(f(2),p) = b} = U{f~(z) : F(z,p) = b} and it follows from (2)
and (5) that this union has a measure zero.

Let (pn) be a sequence of all points of P such that for any pe P
the set {n : p, = p} is infinite.
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Now we shall modify the construction of quasi- continuous func-
tion having Darboux property from the second part of this paper.
We choose (inductively) a sequence of finite families of open intervals

(Jr)52, such that:
(M) Jo = {0};

(8) if L is a component of the set I\U{J : J € Ji, k < n} then there
exists some I{ € J,4; such that K C L, and

m(L)> > m(K)>m(L)/3;

K€Jnt1,KCL

(9) F(f(z),pn) #bforeach z € U{J: J € Jn};
(10) if J € J, and K is an interval on which f is constant and KNJ #*
# 0, then K C J;
(11) if d,e are the end- points of some interval J € J,, then f(e) #
£ £(d)
Such a choice is possible. Indeed, let us assume that are have

chosen a family J,. Let L € I\ |J |UJk. Thentheset Z = LN{z € I :
k<n

: F(f(2), pnt1) = b} is closed and nowhere- dense. Moreover, it follows

from (6) that Z has a measure zero. Let (L.,) be a finite sequence of

components of L\ Z such that 3" m(Ln,) > 2m(L)/3. By (10), f|L, is

m
constant on no neighbourhood of ends of L,, (for each m). Thus for each
m we can choose a subinterval K, of L, which satisfies (9), (10) and
(11) and with m(Kp) > m(Lm)/2. Finally we put Jp41={Kmn CL:
: L € Jn} and observe that this family satisfies all conditions (8), (9),
(10) and (11).

Now let A = I\ U{K : K € J,, n € N}. Evidently this set is
¢- dense in itself, nowhere - dense and has a measure zero. Additionally,
it follows from (11) that f is not constant on any interval of A. Let
C = A. Then C\ A is countable and f is constant on no interval.of C.
Hence we have the following property:

(12) for each subinterval J of I, if JN A # { then the set f(J N A) has
the cardinality of the continuum.

Indeed, let us suppose that J is a closed subinterval of I such
that J N A # 0 and the set f(J N A) has the cardinality less than the
continuum. Because the set C'\ A is countable, the set f(J-N C) has
the cardinality less than the continuum too. Since f is continuous and
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J N C is a compact set, the set f(J N C) is closed and consequently,
it is countable. Let (y,) be a sequence of all points of f(J N C) and
foreachn e Nlet C, = JNCN f(ys). By (11) the sets C,, are

nowhere-dense in J N C and |J C, = J N C, which contradicts the

n=1

Baire theorem. Therefore (12) holds.
Lemma 3. If a set A isc - dense in itself and f : A — X is a continuous
function which satisfies the condition (12), then there ezists a function
¢ € D*(AY) such that F(f(z),(z)) # b for each z € A, F(f(z1),
©(z1)) = a and F(f(z2), ¢(z2)) = ¢ for some 1,22 € AN J and each
interval J for which AN J # § (compare e.g. with [16]).
Proof (of Lemma 3). Let (I,) be a sequence of all basis sets in 4. We
list all elements of the family (1) x ¥ in the sequence (I X {y}) <z«
and choose (by induction) sequences s.,ty,w, € I, t,,wl, €Y such
that:
(13) sy € Iy \ {sp,tp,wp : f < 7} and F(f(sv),y~) # b,
(14) 62 € L\ ({395,058 <7} U {sr}) amd FUF(Er)t) = a,
(15) wy € L\ ({35, 19, ws : 6 <7} U {sy,1,)) and F(f{12), 0! ) .

Now we define a function ¢ : A — Y by

Yy for z = s,,

t! for z =t,,
plz)=4 7 for o —
wl, or T = w.,

y(z) otherwise,

where v < 2% and y(z) is defined in (1'). It is easy to verify that
the function ¢ has the required properties. The proof of Lemma 3 is
completed.

Now we can finish the proof of Th. 1. We define a function g : I —
—Ybyg(z)=paforzcU{J:J e T}, n= 1,2,...,and g(z) = ¢(z)
for z € A. It is easy to see that the function g is quasi - continuous,
measurable and has the Darboux property. Instead the function F (f,9)
takes the values a,c and does not take the value b, and consequently,
F(f,g) does not have the Darboux property. ¢
Corollary 1. (1) If we put X =Y =R, F(z,y) =z +y, a = —1,
b= 0 and c = 1, then we obtain the following inclusion: M, (QD) N
NC C Const . Since the opposite inclusion is clear, we have the equality
Mo (@D)NC = Const.

(2) We have also the equality M,,(QD)NC = Const. The inclu-
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sion “D7” 1s trivial. The second inclusion follows from Th. 1, if we put
X=Y=R, F(z,y)=2-y,a=0,b=1and c = 2.
(3) Similarly we can conclude that

{f:I-R:feC and f/g€D for each g€ QD, g:I—R,}=Const
and
{f:I-Ry:f€C and g/f €D for each g€ QD}={f: I-R : f €Const}.

Lemma 4. Let us assume that f € QYusc (f € QVlsc) and g € QU.
Then max(f,g) € Q (min(f,g) € Q). (Notice that the assumption
f,9 € Y is necessary; we have Muin(Q) = Mnax(Q) = C ([17])).
Proof. Observe that for quasi-continuous functions f, g the set C(f)N
NC(g) is residual in I and max(f, g) is continuous at every point from
this set. Thus it is enough to prove that for each z € I there exists a
sequence (z) of points of the set C(f) N C(g) such that lim z, = z
and lim max(f,g)(zn) = max(f,g)(z). Let zo € I. We shall consider
three cases.

(a) f(zo) > g(zo) and there exists a sequence (z,) of points of
C(f) N C(g) such that lim z, =z, lim f(z,) = f(zo) and f(z,) >
> g(zn) for each n € N. Then lim max(f,¢)(z,) = lim flzn) =
= f(zo0) = max(f,g)(zo) and therefore max(f,g) is quasi- continuous
at zg.

(b) f(zo) > g(z0) and f(zn) < g(za) (if n is sufficiently big) for
every sequence (z,) of points of C(f)NC(g) such that lim z, = z¢ and

li_r)n f(zn) = f(zo). Since f € QY, there exists a sequence (z,,) such
’?ha,?a:n € C(f)NC(g), lim z, =9 and lim f(z,) = f(zo). We can
assume that lim g(mn)n;ciogts (finite or irrllfﬂlﬁe). Then lim g¢(z,) >
> lim f(za) = f(vo). Since g € U, C(g,z0) is an interval ([4])
an(iz —glizrefore there exists a sequence (z],) such that z/, € C(f)n
NC(g), nh—»néox," = ¢ and nlinéog(:r;l) = f(z¢). Since f is upper semi-
continuous, lim f(z!) < f(zo). Hence lim max(f,g)(z!) = f(zo)
and there ex?gsooa subsequence (z], ) of (:gjo:uch that klirr.}o max(f,g)

(z5,.) = f(zo) and consequently, max(f, g) is quasi- continuous at the
point zg.
(¢) f(zo) < g(zo). Then there exists a sequence (z,) of points
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such that z, € C(f) N C(g), lim z, = =z, lim g(z,) = g(x9) >

> f(zo) and g(zs) > f(zo) for each n € N. Since f is upper semi-
continuous, lim f(z,) < f(z¢) and consequently, lim max(f,g)(z,)=

= nli_{r;o 9(zn) = g(zo) = max(f, g)(zo). Hence max(f,g) is quasi- con-
tinuous at the point zgy. ¢

Lemma 5. If f € M and g € Q)Y then the product fg is quasi-
continuous.

Proof. Of course it is sufficient to prove that fg is quasi-continuous
at every point zo at which f is not continuous. Then f(z¢) = 0 and,
by Lemma 1, if f is not continuous at z¢ from the left (from the right)
then there exists a sequence (z) of points at which f is unilaterally
continuous such that f(z,) = 0 for each n and z, / z¢ (zn \, o).
For every n € N we choose a unilateral neighbourhood U, of z, such
that |f(z)| < 1/(n - |g(za)]) if g(zn) # 0 and |f(z)] < 1/n whenever
g(zn) =0, for each z € Uy,. Since g € QY, Lemma 2 (a) implies that for
every n € N there exists z, € UnN(zn—1/n,z,+1/n)NC(f)NC(g) for
which [g(2s) — g(zn)| < €n, where e, = 1if g(z,) = 0 and €, = |g(z,)|

otherwise. Then fg is continuous at each z,, lim z, = lim z, = zg
n—o0 n—-+00

and nlirgo(fg)(zn) = 0 = (fg)(zo). This implies the quasi- continuity
of fg at the point zo. ¢
We shall apply also the following two lemmata, which were proved
in [14].
Lemma 6. Let & be some property of functions, let X; be the class
of all functions f: X — R (where X 1s a topological space) possessing
the property ® and let Xy be the class of all functions g: X — R x R
possessing the same property ®. Let the classes X1 and Xo fulfil the
following conditions:
Q) f feA,andgeC (g: R - R), thengo f € Xy;
(i) f feXr andgeC (g: X = R), then h = (f,g) € Xy, where h :
2 (f(z),9(z)) forz € X.
Then C C Mo (X1) N My (X1) N M(Xy).
Lemma 7. Let X be a subfamily of Uy and let the following conditions
hold:
(i) of f: I =R, f € X and J is a subinterval of an interval I, then
flJ e x;
(iv) if h:(a,b) =R, he X, y € Ct(h,a) and z € C~(h,b), then the
functions hy : [a,b) = R, hy : (a,b] — R and hs3 : [a,b] — R belong
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to X, where hy = hU {(a,y)}, ha = hU{(b,2)}, hs = h1 U ho;
(v) if I C R is an interval, a € I and fi(IN(—o0,a]) € X, fI(I N0
Nla,00)) € X, then f € X;
(vi) Const C My(X) and —1 € M, (X).
Then Mg (X) C C, Mmin(X) € Xlsc and Mupax(X) C Xusc
(hence My(X) CC).
: If moreover the class X f'u,lﬁl.s the additional condition
(vii) f f: I — (0,00) and f € X then 1/f € X,
then also M (X) C M.
Let us observe that the family X = QD does not satisfy the
assumptions of Lemma 6 but it satisfies all assumptions of Lemma 7.

Thus
(a) Ma(QD) - C’
(b) Mnin(@D) € QDlsc and Mpyax(QD) € QDusc,
(c) Mn(QD) C M.
Now we can prove the following theorem.
Theorem 2. We have the following equalities:
(1) M,(@D) = Const,
(2) Mn(QD) = Const,
(3) Mmin(QD) = QDlsc and Muyax(QD) = QDusc.
Proof. Evidently, we have Const C M,(QD) N M,(QD). The in-
clusion M,(QD) C Const follows from Lemma 7 and from Cor. 1 (1).
Hence M,(QD) = Const.

Now we shall prove that M,(QD) C Const. It is enough to
prove that M,,(QD) C C and to use Cor. 1(2). Fix f € Mn,(QD) and
suppose that f is not continuous, i.e. I\C(f) # 0. Since f € M, the set
A =TI\ C(f) is nowhere- dense, f(z) = 0 for z € A and f is continuous
on every component of the set I\ A. Since f is not continuous, f is not
constant. Since f € D, rng(f) has the cardinality equals the continuum
and consequently there exists a component J of I\ A such that f|J is
continuous and not constant. We apply Cor. 1(2) and obtain some
quasi - continuous function ¢ : J — R having the Darboux property for
which f - g ¢ D. Thus there exists a function h defined on the interval
I such that h € QD and f-h ¢ D, which contradicts to f € M, (@D).

Now we shall prove (3). By Lemma 7 it follows that we need to
prove the following two inclusions: QDusc € Mpax(QD) and QDlsc C
C Mpuin(@D). To prove that QDusc C Mpnax(2QD) let f € QDusc
and g € 9D. Since Muax(D) = Dusc, max(f,g) € D. By Lemma 4 it
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follows that max(f,g) € Q and therefore max(f, g) € QD. The proof
that QDlsc C Mpin(QD) is similar. ¢

Observe now observe that the family Q@ satisfies all assumptions
of Lemma, 6 (see [18]) and therefore, :

€ & Mo(Q) N Mm(Q) N Mimax(Q) N Mumin(Q) ([11], [17]).
We have also the inclusion
C C Ma(A) N Mp(A) N Mpax(A) N Mumin(A) ([14])
and consequently, \
C C Mo(QA)N M (QA) N Mipax(QA) N Mpin(QA).
Similarly,
C € M4(QConn) N M, (QConn ) N Mumax(QConn ) N Mpin (QConn ).

Moreover, the families QA and QConn satisfy all assumptions of
Lemma 7. Thus we obtain the following theorem.

Theorem 3. Let K = A or K = Conn. Then the following equalities
hold:

Ma(QK)=C, MyQK)=C and Mu(QK) =M.

Proof. The first two equalities follow immediately from lemmata 6
and 7. In the third equality it is sufficient to prove tlie inclusion M C
C Mn(QK). Fix f € M and g € QK. Since M,(K) = M ([14]),
f-g9 € K. By Lemma 5 we obtain that f-g € Q. Hence f-¢ € KQ and
consequently M C M, (QK). ¢

Problem. For K € {A4,Conn} find Muax(QK) and Mpin(QK).

4. In this section we shall prove that the family QU is the uniform
closure of the class of all quasi- continuous functions having the Dar-
boux property. Functions which we shall consider are defined on the
unit interval I = [0, 1].

Lemma 8. Assume that f € QU, (J,)n is a sequence of pairwise
disjoint open intervals and g is a function such that g9(z) = f(z) for z €
€ UJn, 91U Jn is continuous and f(J,) C C*(g|Jn, an)NC~(g|Jn, br),

where Jp, = (an,b,), n € N. Then g € QU.
Proof. Note that the set A = F(|J J,.) is nowhere- dense and therefore

B = C(f)\ A is dense in I and T}|B is dense in f. Additionally ¢ is
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continuous at each point x € B. We shall verify that ¢|B is dense
in g. Let U = U; x U; be a neighbourhood of (z,g(z)) (obviously it
is sufficient to consider only z € A). Then g(z) = f(z) and since f
is quasi- continuous, (t, f(t)) € U for some t € B. If t ¢ |JJ, then

g(t) = f(t) and (t,9(¢)) € U. Otherwise t € J, for some n. Then
an € Uy or b, € Uy. Let eg. a, € Uy. Since f(t) € CH(g|Jn,as),
there exists s € Uy N J, N B such that (s,g(s)) € U. Thus g is quasi-
continuous.

Now we verify that ¢ € /. By Lemma 2(b) it suffices to observe
that for every = € I the sets C~(g,z) and C*(g,z) are intervals and
f(z) € C~(g,2) N C*(g,z). Assume that g is not continuous at z e.g.
from the right. Then g(z) = f(z) and C*(f,z) C C*(g,z). Moreover
for y € C*(g,z) \ C*(f,z) there exists t € C*(f,z) such that [t,y] C
C C*(g,x). Indeed, since y ¢ C*(f,z), there exist sequences (kp)n of
positive integers and (y,)n such that y, € Ji,, nli_{réo Yn = y and the

sequence (g(a, )) converges to some limit ¢ € R. Then t € C*(f, z).
Since f|Jk, is continuous, (f(ak,),yn) C g(Jk,). Therefore [t,y] C
C C*(g,z). This proves that C*(g,z) is an interval and g(z) €
€ C*(g,2). 0

Lemma 9. For each f € QU and positive € there ezists g € QU which
18 constant on no interval and such that ||f —g|| < &. Moreover, if f is
of the Baire class o or measurable, then g may be taken from the same
class.

Proof. Let {J, C I: n € N} be the family of all maximal open intervals
on which f is constant. Let J, = (an,b,) and let f(J,) = {y,} for each
n € N. Since f € U, we obtain f(a,) = f(bn) = yn. For every n we
define a continuous surjection ¢, : J, — [Yn — €,yn + €] such that
gn(an) = gn(bn) = yn and g, is constant on no subinterval of J,,. Then
the function g : I — R defined by g(z) = gn(z) for z € J,, n € N and
g9(z) = f(z) otherwise has the desired properties. Evidently ||f—g|| < e
and ¢ is constant on no subinterval of I. By Lemma 8, ¢ € QU. Finally
it is easy to verify that if f is of the Baire class o or measurable, then
g is from the same class. ¢ ‘

Lemma 10. For every f € QU and ¢ > 0 there exists a function
g € QD such that ||f — g|| < €. Moreover, if f is of the Baire class «
or measurable then g may be taken from the same class.

Proof. By Lemma 9 we can assume that f : I — R is constant on
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no subinterval of I. Fix n € N with 1/n < e. Since f €U, T = f(I)
is an interval. Assume that T' = (—o00,00) (the proof is similar when
T =[a,b], T = [a,00) or T = (—o0,a]). Put ax = k/n, Jx = (ar,ar+1),
Ar = f71(Jx) and By = f~1(az) for each integer k. Since f is quasi-
contlnuous, fIC(f) is bilaterally dense in f and therefore we obtain the
following conditions (for each k):

(1) Ar = Gx UK}y, where Gy, is a non - empty, open set, K} is nowhere-
dense, Gx N K} = § and K C G N (z,00) N Gy N (—o00, ),

(2) Bx is a nowhere-dense subset of (Gr—;UGk)N (z,00) N
ﬂ(Gk 1 U Gk) N (—oo :L')

Fix an integer k. Let (Ix,m)m be a sequence of all components of Gy.

For every m we define a continuous surjection gkm : Lgm — Jr such
that:
(3) the end- points of Ix ., belong to gk_,}n(y) for each y € Ji.

Now we define the function g : I — R by g(z) = gg m(z) for
z € It,m (for each k,m) and g(z) = f(z) otherwise. Evidently ||f—g|| <
< 1/n < e. By Lemma 8, g € QU. To show that g has the Dar-
boux property fix @ < b with g(a) # g(b) (e.g. g(a) < ¢(b)) and
y € (g(a),g(b)). Let J = (a,b). Obviously it is sufficient to con-
sider the case when J is included in no interval Iy m. Because g € U,
[9(a),g(B)] C g(J). Let k be an integer such that y € Jz. Then
(g(a), g(b))NJx # 0 and consequently, JNg~1(J) # §. Since g~ (Jx) C
C f~!(Jk), the condition (1) implies Iy ,, N J # 0 for some m € N. Let
It,m = (c,d). Since J is not a subset of Iy m, ¢ € J or d € J. Let e.g.
¢ € J. Then g(zx) = y for some z € (c, b).

Finally let us assume that f is of the Baire class o and let G C R
be an open set. Then ¢7}(G) = U gk_in(G) U(f~H&)\ U Iy m) is

clearly a Borel set of the additive class a. Hence g is of the Balre class
a. Similarly we can prove that g is measurable if so is f.
Theorem 4. A necessary and sufficient condition for f to belong to
QU 13 that f be the uniform limit of a sequence of quasi- continuous
functions having the Darbouz property. Moreover, if f is of the Baire
class o or measurable then the approzimating functions may be taken
to be Baire class a or measurable.

Proof. Because the families of all quasi - continuous, of the Baire class
a, measurable functions are closed with respect to uniform limits (see [6]
and e.g. [3]) and the uniform limits of sequences of Darboux functions
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belong to the class U [4], we obtain the sufficiency. The necessity is
proved by applying Lemma 10. ¢
Corollary 2. The class QU 13 closed with respect to uniform limits.
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Abstract: Let N be a zero-symmetric near-ring with an invariant series
whose factors are N-simple. We prove that the radical Jy (V) is nilpotent
and the factor N/J; (N) is a direct sum of a finite number of A-simple and
strongly monogenic near-rings. Moreover we characterize nilpotent near-rings

with invariant series whose factors are of prime order.

Introduction and general results

Many authors have studied near-rings containing particular chains
of ideals (see [5,8,10]) and have often shown the existence of links be-
tween these chains of ideals and the structure of the near-rings under
consideration. In this paper we begin a study of near-rings with an
invariant series whose factors belong to certain given classes. In par-
ticular we study here the zero-symmetric case; the general case and
the construction of finite near-rings satisfying these conditions will be
covered in future papers.

For the zero-symmetric near-rings with an invariant series whose
factors are N-simple, we obtain a result analogous to the Artin-Noether
theorem. We prove that a zero-symmetric near-ring IV with an invariant
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series whose factors are N-simple has the radical J2(NV) nilpotent and
the factor N/J,(V) is a direct sum of A-simple and strongly monogenic
near-rings. Moreover we discuss the finite case and characterize the
near-rings with an invariant series whose factors are of prime order.
We prove a necessary and sufficient condition so that N is nilpotent
and we establish a link between the nilpotence index and the length of
the series. In the case in which index and length coincide, we prove
that the order of N is a prime power.

In the following we will often refer to [12] without express recall.

Let N be a left near-ring. A finite system of subnear-rings of N
contained in one another

N=N;DN;D...DN, = {0}

is called a normal series of N if every subnear-ring N, 1 € {1,2,...,
n}, is a proper ideal in N;_1, an invariant series of N if every subnear-
ring Ny, @ € {1,2,...,n}, is a proper ideal of N. The factor-near-rings
N;i/Niy1 are called principal factors of the invariant series. For invariant
series, in the following, we will indicate Ni/Nit1, Ni/Niyq,... s Ni/Nigpg
respectively with N{, NI’ ..., N¥ and with fir fi's ..., fF the correspond-
ing canonical epimorphisms.
Let us consider now the following classes of near-rings:

So: class of simple near-rings ;

S1: class of simple and strongly monogenic near-rings ;

S2: class of Ny -simple near-rings (1);

S3: class of near-rings without proper subnear-rings;

54t class of near-rings of prime order.
Definition 1. A nearting N is a w-Jordan near-ring (wJ-near-
ring) if it has an invariant series whose factors belong to S,(w €
€{0,1,2,3,4}).
We can observe that in near-ring-theory the classes S; (i € {0,1,2,3,
4}) never coincide without further conditions while in ring-theory, for
instance, S; and S5 coincide. ,

In order to establish relationships between the classes Sw, let us

state some results that concern the near-rings belonging to S;. We
recall that: A near-ring N is Ny-simple if it is without proper additive
subgroups .S such that SN, C S.

1) we observe that if N is zero-symmetric, Np-semplicity and N-semplicity coin-
cide.
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Definition 2. A zero-symmetric near-ring N is A-simple if it is with-
out non-zero N-subgroups H such that HN = {0}.

Theorem 1. A near-ring N belongs to Sz iff N is a zero-ring of prime
order, a constant near-ring of prime order or an A-simple and strongly
MONOJenic NEar-ring . A

Proof. Let N be an Ny-simple near-ring. The constant and the zero-
symmetric parts are both Ny-subgroups of N, hence N is constant or
zero-symmetric . By [2] and Ex.3.9 p.78 of [12] a constant near-ring is
No-simple iff it is cyclic of prime order. If N is zero-symmetric either
nIN = {0} for every n € N, and thus N is a zero-ring of prime order,
or N is strongly monogenic and obviously A-simple. Conversely, if N
is a zero-ring of prime order or a constant near-ring of prime order,
then N is Ng-simple. Let N be an A-simple and strongly monogenic
near-ring. Let us suppose that M is a proper Ng-subgroup of N. Since
N 1s an A-simple near-ring, then M N # {0} and since N is a strongly
monogenic near-ring there is an element h € M such that RN = N.
Since M is an Ny-subgroup, AN is contained in M, a contradiction.
Thus N is Ng-simple. ¢

We observe that a zero-symmetric near-ring which is A-simple and
strongly monogenic is Blackett simple ([4]). ‘
Definition 3. A near-ring N is sirongly No-simple if its subnear-rings
belong to S,.

We will call 53 the class of the strongly Nyp-simple near-rings .
Theorem 2. If N is an Ny-simple near-ring and every subnear-ring
M of N satisfies the d.c.c. on the M-subgroups, then N is strongly
Ny-simple.

Proof. By Th.1, if N is a zero-ring of prime order or a constant
near-ring of prime order, then N is strongly Ny-simple. Let N be an
A-simple and strongly monogenic near-ring and let M be a subnear-
ring of N with d.c.c. on the M-subgroups. Our aim is to show that M
does not contain additive subgroups S so proving that SM C S. Let
us suppose S to be a proper M-subgroup of M. Since N is A-simple
then SN # {0}, thus there is an element s € S such that sN = N,
given that IV is strongly monogenic. Firstly we observe that r(s) = {0}
(where r(s) is the right annihilator of the element s). In fact r(s) # {0}
implies r(s)N # {0}, because r(s) is an N-subgroup of N and N is A-
simple; thus r(s)N = N and N = sN = s[r(s)N] = {0}N = {0} and
this is absurd. Moreover, since S is a proper M-subgroup of M, sM
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is strictly contained in M. We set M; = sM and consider sM;. It is
an M-subgroup of M strictly contained in M, in fact if 3M; = My, it
would be ssM = sM, that is s(sM — M) = {0}. Since r(s) = {0}, then
sM = M and this was previously excluded. In this way we obtain a
chain M D sMj D s2M; D ... which becomes stationary, due to d.c.c.
on the M-subgroups. Sirce this is excluded, M is M-simple. ¢
Proposition 1. If N is a w/-near-ring, then N i3 a (w — 1)J-near-
Ting. : :
Proof. We can easily prove that Sy C S3 C S C 51 C Sy and
consequently that a wJ-near-ring is a (w — 1)J-near-ring. ¢
Proposition 2. The classes Sy, (w € {0,1,2,3,4}) are closed under
homomorphisms and the classes Sy, (w € {3,4}) are closed under sub-
structures. . .
Proof. The near-rings belonging to S3 and Sy are without substruc-
tures and simple, so they do not have proper homomorphic images.
Moreover, if N' = ¢(N) is a homomorphic image of N, each proper N}-
subgroup (ideal) of N' derives from some proper No-subgroup (ideal) of
N, thus N € Sz implies N' € S5 (N € S implies N’ € Sp). Moreover,
if N is strongly monogenic and simple, then N' is strongly monogenic
and simple, therefore N € Sy implies N’ € S;. $

Hence, by Prop.6 of [1]: ‘
Proposition 3. The classes of the 3J-near-rings and of the 4J-near-
rings are closed under substructures, homomorphic images and Ng-
subgroups. 4

We should observe that the classes Sy, (w € {0, 1, 2}) are not closed
under substructures. In fact for example @ € S; but Z & Sy. Therefore
we cannot apply Prop.6 of [1] and, in fact, even if we can prove that
S3 is closed under Ny- subgroups, the class of the 2J-near-rings is not
closed under Np-subgroups.

2-Jordan near-rings

The following Th.3, which provides a necessary and sufficient con-
dition so that the class Sy is closed w.r.t. substructures, uses the
Th.1.33 of [11].

Let I be an ideal of a near-ring N and S a subnear-ring of N.
Then INS is an ideal of S, I 1s an ideal of [+S and I4S/1 is isomorphic
to S/INS.
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Theorem 3. A near-ring N has all its subnear-rings as 2J-near-rings
iff it contains an invarient series N = N;y O N, D ... D
D N, = {0} whose principal factors N! belong to S;.
‘Proof. Let N be a near-ring whose subnear-rings are 2J-near-rings.
So N is also a 2J-near-ring. Hence let us consider an invariant series

of N,
(a) N=N13N2'3...3Nn=={0}

whose principal factors belong to S3. In order to show that the principal
factors of () belong to S5, we will show that every subnear-ring M of
N; has the d.c.c. on the M-subgroups. Let M be a subnear-ring of
N{. Since M is a homomorphic image of a subnear-ring of N; and
consequently of N, by Proposition 2, it is a 2J-near-ring. Therefore
M has an invariant series M = My 2D M;... D M, = {0} whose
factors belong to S3. Hence these factors have the d.c.c. on the (M})o-
subgroups. By Th.1 and Ex a) of [1] we can deduce that M also has the
d.c.c. on M-subgroups. Thus N] belong to S; and every subnear-ring
M of N has the d.c.c. M. We apply Th.2 and N} € S3.

Conversely, let N be a near-ring with an invariant series N = N; D
D Nz D ... D N, = {0} whose principal factors N} belong to S5. We
can prove that the subnear-rings of N are 2J-near-rings. Let M be a
subnear-ring of N. We set M; = M N N; and we obtain an invariant
sericsof M : M =M, 2 M, 2...2 M, ={0}.

By the Theorem 1.33 of [11], Niy1 + M;/N;4 is isomorphic to
M;/Niy1NM; that coincides with M;/M;i . Therefore M/ is isomorphic
to Niy1 + M;/Nii1 and the latter is a subnear-ring of N}. Since N!
belongs to S5, M| belongs to Sz and M is a 2J-near-ring. <
Corollary 1. The class of finite 2J-near-rings is closed under sub-
structures.

Proof. It follows from Th.2 and 3, given that, in the finite case, the
d.c.c. hold. ¢ '

In the following NV will be a zero-symmetric near-ring.
Theorem 4. If N i3 a near-ring with an A-simple and stfongly mono-
genic ideal I such that N/I is a zero-ring of prime order, then N = I®J
where J = Jo(N).(®)

() J2(N) is the intersection of right annihilators of Ny-simple N-groups, see [12]
p- 136.
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Proof. Let I be a proper idecal of N, otherwise the thesis is trivi-
al.- Since N is zero-symmetric, I is an N-subgroup of N, therefore
IJ3(N) = {0} and J(N) # N, Jo(N) # I because I is A-simple.
Moreover J3(N) # {0}. In fact: if Jo(N) = {0}, then J2(I) = {0} and
I is 2-semisimple with d.c.c. on the right annihilators. Hence I has a
left identity e (see [2], [4], [12] p.- 146) and by Pierce decomposition
N = r(e) + eN. We observe that r(e) # {0}. In fact r(e) = {0}
implies N = eN C I and this is excluded. Moreover N/I is a zero-ring,
therefore [r(e)]? C I and hence [r(e)]? = {0}. In this way r(e) is a non
trivial nilpotent N-subgroup of N and therefore r(e) C J2(N) = {0}
(see [12] p. 153, [13]), a contradiction. Finally INJ2(N) = {0} because
I is simple and N = I + J3(N) because N/I is of prime order. Hence
N =18 Jy(N). $ '

The following theorem shows that, given a zero-symmetric near-
ring with an invariant series whose factors are in S5, it is possible to
construct another invariant series whose factors are in S; such that the
A-simple and strongly monogenic factors precede the zero-ring factors.

Theorem 5. Let N be a 2J-near-ring and N =Ny D N2 D...DO N, =
= {0} an invariant series whose principal factors are in Sa. If N! is
a zero-ring and N, is an A-simple and strongly monogenic near-ring
then there is an ideal M1 of N such that N; D Mty D Niyz, Ni/Mitq
is 1somorphic to Ni,, and Miy1/Niyo is isomorphic to N|.

Proof. Considering the near-ring N;', we set I = fI' (N;41). Given
that N{'/Nj,, is isomorphic to N} we have N{'/I isomorphic to N].
Therefore N!'/I is a zero-ring of prime order and I is A-simple and
strongly monogenic because it is isomorphic to N{, ;. Hence, by Th.4,
N = I @ J where J ~ N/ and therefore N/, ~ N/'/J. We set
Miys = (fi")° (J), that is Miy1/Nit2 is isomorphic to N!: Obviously
M;y; is an ideal of N; and Nij/Miy1 ~ (Ni/Nig2)/(Mit1/Niy2) =~
o~ N!'/J >~ I~ Niy1/Niys = N{,. Hence M;;; is a maximal ideal of
N;.

Now we can show that M;y; is an ideal of N: the near-ring
Niyq1 is an ideal of N, M;y; is an ideal of N;, hence Nijt1M;41 C
C Niy1 N M;y;. Moreover Nip1 N Mip1 = Nigz. Infact if z € N1 N
NM;y1, then -+ Niyo € N{,;NJ = {0} and this implies that z € N;4».
Thus N;y1 N My, C Ni+;., Obviously Ntz C Nip1 N M4, therefore
Ni+1 ﬂMi_H = 1V{42. We now set (Ni+2 : N,'+1)N = {m € N/N,'_,.lm g
C Niy2} = H which is an ideal of N (see [11]). We obtain M;y; C
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C H N N; and H N N; is strictly enclosed in N;, otherwise it would be
Nit1 N; € Nii2 and hence Niyq Nip1 © Nigo, but N[, is A-simple
and this is excluded. Hence M;+; = HNN;. Thus M1, as intersection
of two ideals of N, is an ideal of N. {
Theorem 6. A non nilpotent 2J-near-ring N, has the radical Jo(N)
nilpotent and the factor N/Jy(N) is @ direct sum of A-simple and
strongly monogenic near-rings. ’
Proof. By Th.5, if N is a zero-symmetric 2J-near-ring, we can con-
struct a new invariant series N = N; D N2 O ... D N, = {0} whose
factors are in Sz, such that, if N/ is A-simple and strongly monogenic
and N} is a zero-ring, then i < j. We set h € I, the smallest in-
dex such that N}, is a zero-ring. Obviously N} is nilpotent. Therefore
Ny C Jo(N). Moreover, if Nj # N, the near-ring N/N} contains an
invariant series whose factors are N-simple and hence 2-semisimple. By
Ex. f) of [1], N/N} is 2-semisimple and therefore J(N) C Nj. Hence
J2(N) = N, and the radical J,(N) is nilpotent. In this way N/J2(IN)
has an invariant series satisfying the hypotheses of Th.4 of [1], thus
N/J5(N) is the direct sum of A-simple and strongly monogenic near-
rings. ¢
The analogous, in ring-theory, brings us to the famous theorem

of Artin-Noether. In fact, rings with an invariant series whose factors
are in S,, are rings with an invariant series whose factors are without
right ideals(®) and hence are either fields or zero-rings. Thusin a ring A
satisfying the hypotheses of Th.6 the Jacobson radical J(A) is nilpotent
and the factor A/J(A) is a direct sum of fields. .
Corollary 2. Let N be a 2J-near-ring. Then P (N) = n(N) =
Proof. It can be easily demonstrated, since N has the d.c.c. on the
N-subgroups and J,(N) is nilpotent (see 5.61 p. 162 of [12]). ¢
If N is a finite near-ring, we obtain:
Corollary 3. Let N be a finite near-ring such that N # Jo(N). Then:
1. If N is a 2J-near-ring and the A-simple factors present in a principal

series are planar, then the additive group (N/J2(N))V is nilpotent;
2. If N is a 3J-near-ring, the-additive group (N/J2(N))T is abelian.
Proof. The group (N/J2(N))* is a direct sum of finite groups sup-

®) A ring having an invariant series whose factors are in S, is right artinian.

() For the definitions of P(N), n(N) and Jo(N) (v € {0,1,2,}) see [9], [11], [12].
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porting planar near-rings. Therefore, as shown in [3], (N/Jy(N))* is
nilpotent.

If N is a 3J-near-ring, the factors of the invariant series are with-
out proper subnear-rings. Therefore, as proved in [6], (see also [7])
they are p-singular(® and therefore their additive group is elementary
abelian, because they are simple. Thus (N/Jz(N))¥, being a direct
sum of elementary abelian groups, is abelian. <

4-Jordan near-rings

In this section we will study the 4J-near-rings with particular
reference to the nilpotent case. We recall that a near-ring N is nilpotent
if there is an index n € N such that N* = {0}. We will call g(N) the
least n € Nsuch that N = {0} and dim(V) the length of an invariant
series whose factors are in Sy,

Theorem 7. A near-ring N with an invariant series N = NiDN; D
D ... D Nn = {0} and whosc factors are in Sy is nilpotent iff N* C N,,
for every s € I,. | '

Proof. Let N be a nilpotent 4J-near-ring. We will show that, for
everyi € I, NN; C Niy1. If NN; € Ny, there is an element a € N
such that aN; € N;;,. Since aN; is a subnear-ring of N; and N;/N;4,
is of prime order, (aN; + Njt1)/Nit;1 is not a proper subnear-ring of
Ni/Niy1. Therefore, either aN; + Ny = Nit1 or aN; + Niyq = N,.
Given that aN; € Nii1, we have:

() alN; + Nit1 = N;

and a"N; = a"*1 N, + ahN,-+1. Let A’ be the smallest integer such that
a"'N; C Niy1. This h' exists and it is 2’ > 1 because otherwise, for
every t € N, it would be a'N; + N;y1 = N; and since N is nilpotent, it
would be N;1; = N; and this is excluded. Therefore, by (), we obtain
(l.h'N,‘ +ah'”‘1N,-+1 = ahl_lN,-, hence a.hl"lN,- C Ni41 in contrast to the
hypothesis stating that &/ is the smallest integer so that a* N; C Niy1.
Thus NN; C N;4; and consequently N* C N, for every s € I,,. The
converse is trivial. ¢

(5) For the definition of p-singular near-ring see [6].
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Corollary 4. If N is a nilpotent 4J-near-ring, g(N) < dim (N).
Proof. It is a consequence of Th.7. ¢

We can characterize the case in which g(N) = dim (V).
Theorem 8. Let N be a nilpotent 4J-near-ring and let N = N; O
DN;D...DN, = {0} a series whose factors are in'Sy. The length of
the chain and the nilpotence indez of N coincide iff N; = (Niyq : N)n
for everyi € I,,_4.
Proof. We set M; = (Niy1 : N)y = {n € N/Nn C N1} Let
g(N) = dim (N) = n. By Th.7, we have NN; C N;;; and hence N; C
C M;. If N; is strictly contained in M;, the series N D M; D N; O {0}
will be refinable (by Jordan-Hélder theorem) in a principal series where
M; = Nj with ;7 < 7. By Th.7, N7 C Wj and hence N7 C M;.
Therefore N7+t! C NM; C Niyi. Hence Nitlt(n—i=1) . yn—(i-j) —
= {0}. Given that g(N) = n, we obtain i-= j, that is M; = N; =N;.

Conversely, let us suppose N; = M; for every i € I,,_; and g(N) =
= h. Then N" = {0}, therefore N*=1 C (0: N)y = N,_1,infact N,,_;
is the right annihilator of N because Np_qy = M,_; = (Nn : N)n.
Analogously N*—2 C (Nn=1 : N)y = N,,_3 and so on. After a finite
number of steps we get N C Np_py1, thus N = Ny—ppiandn=h. &

Finally: .
Theorem 9. If N is a nilpotent 4J-near-ring such that g(N) =
= dim (N), then |[N| = p*, (p prime). ‘
Proof. We can prove this theorem by induction on g(N). If g(N) =
=2, N = N; D Ny = {0} is the principal series required and hence
| V] = p. Let us suppose the theorem proved for dim (N)=n-—1 and
let N =N; DNy D...D N, = {0} be a series of N whose factors are
in 5. Then |N/Ny—1| = p and we can suppose |N,—1| = ¢ (q prime).
By Th.7, N**2 N = N™~! C N,_,, therefore, for every m ¢
€ N2 mN C N,_; and given that N,_; is of prime order, either
mN = {0} or mN = Np_;. If mN = {0}, for every m € N"~2, then
N™~1 = {0} and this is excluded, thus mN = N,_; for some m € N.
Considering now the left translation v, : N — mN, we obtain an en-
domorphism of N+ whose kernel is r(m), the right annihilator of m
and whose image is N,_1. Therefore |im v,,| = | N/ker vp,| that is
q = |N/ker 71| Given that ker v = r(m) 2 r(N) = N,_;, either
|ker ym| = ¢ or |ker ym| = ¢f. Thus: ¢ = ¢p*/q¢? and this impliés
¢® = p® hencep=gq. ¢ '
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Abstract: The variety of implication algebras is a minimal quasivariety.
It is 3-filtral but not 2-filtral. An implication algebra A is tolerance-trivial
M (A4, <) is a lattice, where the partial ordering /<" is defined as follows:
a<b<s dz € Asuchthat b=z -a.

1. Introduction

Implication algebras are groupoids with a simple binary operation,
which yields a partially order. This derived order structure can be
considered as a generalization of Boolean lattices (see Prop.2).
Definition 1 ([1], [9]). A groupoid ( 4,-) is called an implication
algebra if the operation ” - ” satisfies the following axioms:

(a-b)-a=a
(a-b)-b=(b-a)-a
a-(b-¢c)="b-(a-c).
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Example. If (B,V,A,0,1,7) is a Boolean algebra then (B,—) and
(B,/), wherea — b=a"V banda/b=a" A bior all a,b € B, are
both implication algebras.
Remark. If the algebra above is the Boolean algebra of propositional
calculus then ”—" represents ordinary implication. '
Implication algebras are examples of algebraic varieties which are
9-permutable, 3-congruence distributive and J-congruence modular but
are not cither congruence permutable or 2-distributive or 2-modular: [9],

[4].

In this paper we shall prove a new property of implication alge-
bras, namely that they are §-filtral but not 2-filtral (§2) and we shall
characterize those implication algebras on which every compatible tole-
rance is a congruence (§3)

Let us first review a few concepts:

A variety V is congruence permutable (congruence §-permutable) if O 0
00, =0200; (0;00200;,=0,00;0 0,) for any two congruences
0,0, € Con A and forany A € V (where” o” is the relational product
of congruences); 3-congruence modularity and J-congruence distributi-
vity mean that the systems of equations of H.P. Gumm and B. Johnson
respectively for congruence modularity and congruence distributivity
consist of at least 3+1 terms.

For example 3-distributivity means that the following system of
equations (where n,i € N; ¢o,q1,...,qn are 3-variable terms): :

‘10(-"3,3/,3) =, qn(ﬂ:,y,z) =z
(1) q,‘(a:,y,m) =z, 0<Z 1<n

q,'(x,z,y) - Qi-l-l(xax,y)v : even
ai(z,y,y) = ¢i+1(2,v,y), ¢ odd

must contain at least 3+1 terms, i.e.: n = 3.
For implication algebras these terms are:

QO(m,y,Z) =z, q;;(:L‘,y,Z) =2z

(2) q1(rc,y,z)=[y-(z-.r)]-n:, Q2($,y,z) :(m'y)'z

for all z,y,2z € A.
Filtral varicties can be defined using the notion of product con-
gruence:
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Let A be the subdirect product of algebras A; (z € I) and let a;
denote the i-th component of a € A belonging to 4;. A congruence
@ € Con A, is called the product of the congruences w; € ConAj, 1 € I
if ap b exactly when a; p; b; for all 2 € I. We write ¢ = HieI Y-
Definition 2 ([7],{8]). A variety V is called an idcal variety iff for all
A €V cvery compact congruence on A is a product congruence.
Definition 3 ([7],[8]). A variety V is called filtral if it is an ideal
variety and it is semi-simple 1.e. all its subdirect irreducible algebras
are congruence-simple.

We shall denote the class of subdirect irreducible algebras of a va-
riety V by SIV, and the variety of implication algebras by V(I). E.Fried
and E. Kiss [5] gave the following characterization of filtral varieties b
term functions (see also [8]): '
Theorem ([5],[8]).: A varicty V is filtral iff there is ann € N and there
are §-variable terms fo, fi,...,fn (n > 1) such that for any z,y,z in
any algebra of V we have:

(a) fU(mvyaz) =T, Afn(m,yaz) =z,
(b) fi(z,y,a&) ==z, (forall i:0<17<n),

(3) (C) f,-(:z:,:c,z) = f,‘+1(.’13,:l,',2), fOT i cven,
(d) for all A€ SIYV and =z,y,z2€ A, z# y:

fi(mayaz) = fi+1($ayaz)a fOT‘ i odd.

Proceding in the same way as in characterization of congruence
modular and congruence distributive varieties by a system of term equa-
tion, we can use the following concept:

Definition 4. According to the theorem above, if the system (3) of
equations for V needs at least n -1 terms, then V is called n-filtral. Eg.
Vis 3-filtral if n = 3 and fy, f1, fa, f3 satisfy conditions (3).

Let us now list some properties of implication algebras:
Property 1 ([1}). Let be A an implication algebra. We can define an
partially ordering relation ”<” on A as follows:

a<b&edreA:b=2x-aq.

J.C.Abbott has shown [1] that this relation is isotone on the left and
antitone on the right with respect to ”-” (i.e. Ve € A,ifa<b:ca<c'b
and a - ¢ > b - ¢); furthermore (4, <) is a semilattice with identity, i.e.
sup{a,b} = (a-b) - b exists for all a,b € A and there is an element
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1€ Asuchthat z <1forallz € A. ”<” can be defined using 1, since
a<b&a-b=1.

Property 2 ([1]). I (4, <) is the semilattice corresponding to the
implication algebra (A,-), then every principal filter ({z|z > a}, <)
is a Boolean lattice. Vice versa in every semilattice with the above
mentioned property one can define a binary operation ”-” for which
(A,-) is an implication algebra in the following way:

a-b=(aV b

where (a V b); denotes the complement of a V b in the Boolean lattice
(el 2 B}, <), |

Property 3 ([1]). For a pair a,b € A, inf {a,b} exists exactly when
{a,b} has a common lower bound ¢ € A. In that case inf {a,b} =
=[a-(b-c)]-c.

Remark ([1]). (A, <) is a Boolean lattice iff it has a least element,
denoted by 0 (0 < z, for all z € A). '
Definition 5 ([1]). If (4,-) is an implication algebra and if the derived
partially ordered set (4, <) is a lattice (i.e. for all a,b € Ainf {a,b} =
= aAb exists), then (4, <) (and (A4, -, <) as well) is called an smplication
lattice.

2. The variety and congruences of implication
algebras

One of the most notable properties of implication algebras is that
is a one-to-one correspondence between their congruences and their
filters.

A subset F' C A of a partially ordered set (4, <) is called a filter
ifforalla€ Fandz € A,z > a= 2 € Fandifinf {z1,22} = 21 A 22
exists for 1,7, € F, thenzy A 2, € F. E.g. [a] ={z € Alz < a} is a
filter, called the principal filter belonging to a. By Property 1 if a # b
then [a] # [b].

One can easily show that the intersection of a given family { F;}ier,
I 5 § of filters of (A, <) is also a filter; [];c; Fi can be defined as the
intersection of all filters containing the set Uie ; Fi. If 74 denotes the
set of all filters of an implication algebra (4, -), then (Fa, [, N, 4,{1})

is a distributive complete lattice with 1 and 0.
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From now on let Ofa] denote the congruence class of © belonging
toa € A,ie: Ola] ={z € Alz O a}.
Property 4 ([1]). The mapping i : Con A — Fu, i (©) = O[1] i3 an
isomorphism between (Con A, A,V,14,04) and (Fa,),11,4,{1}). For
any F € Fa, 171 (F) = Op, where a Opb < a-b, b-a € F(:7! denotes
the inverse of the mapping ¢).
Proposition 1. The variety of implication algebras i3 ¢ minimal qua-
sivariely.
Proof. We begin by showing that V(I) has only one subdirect irre-
ducible algebra, namely the 2-element one.

Let A € SIV(I), v its monolit, and F, the filter belonging to 7.
Since v < © for all © € Con A(© # 04), therefore F, C (), ¢4 [z] and
so there exists an a € Fy such that Fy = [a] = {1,a} and

(4) a>zforall z € A\ {1}.

Suppose now that there exists an z € A\ {1} such that z # a.
Since ([z], <) is a Boolean lattice (see Prop.2) and « € [z], therc exists
an a_ € [z] such that " Aa=z,and a”V a=1.

Now (4) gives ¢~ < a # 1 - which is a contradiction. Thus 4 =
{1,a}, i.e. A has two elements. .

Two element implication algebras are isomorphic to each other
and so SIV(I) contains only one non-trivial algebra (and this one is
congruence and subalgebra simple at the same time).

A locally finite variety V is a minimal quasivariety exactly when it
has only one SI algebra and this can be embedded into every non-trivial
B eV (see [2], Cor.2).

By [1] the number of elements in any free implication algebra
generated by n elements is at most 22" . Therefore any finitely generated
implication algebra is finite and so V(I) is locally finite.

On the other hand for every nontrivial B € V(I) and z € B, z #
# 1, {1,z} is a two-element subalgebra of B and thus V(I) satisfies all
previous conditions. ¢
Corollary 1. Every implication algebra (A,-) 13 a subdirect power of
two element implication algebra ({1,a},").

Theorem 1. The variety of implication algebras i3 3-filtral but not
2-filtral.

Proof. Assuming that V(I) is 2-filtral means there are three 3-variable
terms fo, f1, f2 sufficient for V(I) in the system (3) of equations. But in
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this case from (3) we get that V(I) is 2-distributive, contradicting [8].
To prove that V(I) is 3-filtral we shall use the terms go,q1, 92,43
from (2)-which were used first for distributivity. Let us check the iden-
tities of (3):
(a) is clear;
(b) qi(z,y,2) ==z, 0<i<2 (by distributivity - (1));
(c) From (1) we have qo(z,7,2,) = qi(z,z,2) and gq(z,z,2) =
= 32,2 2);
(d) Let z,y, 2z be clements of the subdirect irreducible algebra ({0,1}, :)
and let = # y:
If z =0andy =1 then ¢;(0,1,2) =[{1:(2-0)]-0=(2-0)-0=
=sup {2,0} = 2, ¢2(0,1,2) =(0-1) - z = z;
If £ =1and y =0 then ¢;(1,0,2) =[0-(2-1)] -1 =1, ¢2(1,0,2) =
=(1-0)-2=0-z Since0:0=1and 0-1=1, wehave 0- 2z = 1.
To sum up: if z # y then ¢i1(z,y,2) = ¢2(z,y,2) and so all the
identities of (3) are satisfied. ¢
Corollary 2. Every compact © € Con A(A € V(I)) has a complement.
Proof. By [7] (and [8]) if V(I) is filtral then every compact congruence
on V has a complement. ¢
Let Con® A denote the lattice of compact congruences of A ;
Con™ A is the same lattice together with the element "14” and let
B(Con*s A) be the Boolean lattice generated by Con*® A. (This one
always exists, see [6]). Denoting the complement of © € Con 4 by 07,
let us define the opecration ” *” on Con A as follows: @ xp =0~ V o.
(This way we obtain from B(Con* A) an implication algebra in which,
by [1], (4,-) can be dually embedded). Let ©, denote the congruence
belonging to the principal filter [a] (a € A), (and at the same time to
the element a € A as well).
Proposition 2. Let (4,-) be an implication algebra and (A, <) the
derived partially ordered set. The following statcments are equivalent:
(1) (4,<) is a Boolean lattice;
(i1) (A, <) and (Con™ A, <) are dually order-isomorphic;
(iii) (4,-) and (B(Con* A),*) are dually isomorphic implication alge-
bras.
Proof. (i) = (ii) by [11]. (For a more general construction see [6]).
(ii) = (i) and (iii) = (ii): Since Con®® A and B(Con* A) both
have a greatest element, (4, <) has a least element and therefore by [1]
it is a Boolean algebra.
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(i) = (ii): If © € Con™ A, then © can be written as a finite
union of principal filters [a],...,[a,] (a1,...,a, € A, n € N). Since
(4,<) is a lattice, [a1] II... I [a,] = [a1 A ... A an] and therefore O[1]
is a principal filter, i.e. there is an ae € A such that [ag] = O[1].

If @ denotes the complement of a and O the corresponding con-
gruence then [a] N [@] = {z|r > a and z > @} = {z|z > 1} = {1}, so
O, ANOz =04 and [a]U[E =[aAE =[0] = A, ie: O,V Oz =14.
Hence O, and ©F are complements of each other; furthermore since for
all © € Con® A there is an a € A such that O, = 0, 6 € Con® A4 holds
as well (for all ©® € Con®A). However, this means that Con™ A =
= B(Con™ A) and by (i)& (ii) (4, <) and (B(Con** 4), <) are dually
order isomorphic Boolean algebras. But in that case, by [1] again, they
are dually isomorphic as implication algebras. ¢

3. Reflexive, compatible relations on implication
algebras

A compatible relation p < A x A on (4,-) is called a compatible
tolcrance if p is reflexive and symmetric ([3]).
Definition 6 ([3]). An algebra A € V is called tolcrance-trivial ('T-
trivial) if every compatible tolerance on A is a congruence (i.e. transi-
tive as well).
Theorem 2. Let (A,-) be an umplication algcbra. Then the following
statements are equivalent:
(1) Every reflezive compatible relation on (A,-) 18 a congruence;
(1) (A4,-) s tolerance-trivial;
(i) (A4, <) 18 an mplication lattice.
Proof. (i) = (ii) is clear. -

(i1) = (iii): Let us define a relation p as follows: apb < there
is a k € A such that @ > k and b > k. By definition p is reflexive
and symmetric. Let us show that p is compatible as well. Consider
cpd(c,d € A). This means that there is an [ € A such that ¢ > [
and d > I. Then ca > a > k and db > b > k, while ac > ¢ > [ and
bd > d > I, thus capdb and acpbd, ie.: p is compatible. By (ii) pis a
congruence and 1pa for any a € A. Therefore p = 14. However, this
means that for any a,b € A, {a, b} has a lower bound m € A. By Prop.3
of [1] inf {a, b} exists for all a,b € A and hence (4, <) is an implication
lattice. :
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(iii) = (i):. Let us now assume that (A,-) is an implication
lattice. Using the idea of [4] (Th.8) first we show that if (4,<) is a
Boolean lattice then it satisfies (1). Indeed in that case thereisa 0 € A
such that 0 < z for all z € A and by [1] again the complement of a,
denoted by @, can be obtained as @ = a-0. Since aVb = (a-b)-b,aAb =
=[a-(b-0)] -0, every compatible relation on (4, -) is also a compatible
relation on (A, A, V,1,0,7). But since this algebra belongs to a Mal’cev
variety all its reflexive compatible relations are congruences [3].

Now let (A4, -) be an implication lattice and p a compatible reflexive
relation on A. Let apb,bpc (for a,b,c € A). Then (a Ab)Ac = d exists
and it is the greatest lower bound of {a,b,c}. The restriction of ” -7
to the principal filter [d] is a Boolean algebra (with ”0” element d) and
a,b,c € [d].

On the other hand the restriction of p to [d] is also compatible
and reflexive and thus it is also a congruence on ([d],-). But this means
that apb=>bpaand apb,bpc = apc. In conclusion p is a congruence
on (4,-) as well. ¢
Corollary 3. Lct (A,-) be an implication algebra. If the derived struc-
ture (A, <) 1s an implication lattice, then the congruences of (A,-) per-
mutc.

Proof. In this case (A,-) is tolerance-trivial by Th.2. According to
[10] every tolerance-trivial algebra has permutable congruences. ¢
Corollary 4. For a finite implication algebra (A,-) the following state-
ments are cquivalent:

(i) The derived partially ordered set (4, <) is a Boolean lattice;

(ii) (A,-) is tolerance-trivial;

(ii1) (A,-) end (Con A, ) arc dually isomorphic;

(iv) (A, <) and (Con A, <) are dually order isomorphic.

Proof. The proof is bascd on the fact that if A is finite then all
its congruences are compact and so Con A = ConA = Con*“ A =

= B(Con™® A). Applying Prop.2 we get Cor.4.
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