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Abstract: The semi-subgroups of finite abelian groups are characterized and
comparisons are made between semi-homomorphisms of rings and near-rings.
This study leads to an alternative proof of a result by Zassenhaus in 1936, viz.
that the automorphism group of the smallest Dickson non-field is isomorphic

to the symmetric group of degree 3.

1. Introduction

Projectivity in classical projective geometry led to a study of semi-
automorphisms of rings (see [1] and [3]). In [2] and [8] it was proven that
every semi-automorphism of a division ring is either an automorphism
or an anti-automorphism, and similarly for a matrix ring over a division
ring.
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Huq [9] presented a general study of semi-homomorphisms of
rings, following the mentioned papers and, amongst others, Herstein’s
study of semi-homomorphisms of groups in [7]. In [4] the authors intro-
duced semi-subgroups of groups and provided counterexamples to some
of the assertions in [9]. The purpose of this paper is, on the one hand,
to continue the investigation of the structure of semi-subgroups.

In Section 2 we characterize the semi-subgroups of finite abelian
groups and the semi-subrings of Z,, the ring of integers modulo n,
which shows that the notions semi-subgroup and semi-subring are not
equivalent in Z,, unlike the case of subgroups and subrings of Z,.

In Section 3 we initiate a study of semi-homomorphisms of near-
rings, although th first part applies to groups in general. Herstein [7]
calls a mapping ¢ : G — H between groups (written additively) a
semi-homomorphism if

(1) p(a+b+a)=yp(a) +¢(b) +¢(a)
for all a,b € G. By taking b = —a, it follows that

(2) p(—a) = —p(a)

for every a € G; in particular we have 2p(0) = 0, where 0 denotes the
neutral elements of G and H. Herstein showed that if the centralizer
of o(G) in H is 0, then (2) can be generalized to

(3) ¢(na) = np(a)

for every integer n and every a € G. We prove that the condition that
the subset {¢(2a) — 2¢(a) : a € G} of H contains no elements of order
2, is also sufficient for (3). This result strengthens [4, Corollary 3.4] in
which G and H are assumed to be abelian.

We use Huq’s definition of a semi-homomorphism of rings as the

definition of a semi-homomorphism of near-rings, i.e. a  mapping
¢ : R — S between near-rings satisfying (1) and the condition
(4 p(aba) = p(a)p(B)p(a)

for all a,b € R. The left hand mapping convention is used for near-
rings, since we shall be dealing with right near-rings. For details about
near-rings we refer the reader to the books by Meldrum [11] or Pilz [12].
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The image T of a semi-homomorphism ¢ of groups (rings, near-
rings) is easily seen to be a semi-subgroup (semi-subring, semi-subnear-
ring) of the codomain of ¢, i.e.

(5) a+b+aeT (and aba € T)

for all a,b € T. Note that a semi-subnear-ring in general does not
concern a semi-near-ring (see e.g. Weinert [15]). |

As far as semi-homomorphisms of near-rings in particular are con-
cerned, we show that there are many similarities to the ring case when
the near-rings under consideration happen to be abelian (e.g. in the
case of near-fields), but that there are in general also some striking dif-
ferences. (Recall that abelian near-rings can still be very much “non-
ring-like”.) During the investigation of the problem whether every
semi-automorphism of a near-field is an automorphism, we obtained
a surprising result, viz. that every automorphism ¢ of (GF(3%),+)
satisfying (1) = 1 is an automorphism of (GF(3%),+,0), the smallest
Dickson near-field which is not a field. Hence every semi-automorphism
of (GF(3%),+,0) is an automorphism, and so the automorphism group
of (GF(3%),+,0) comprises 6 elements (and is isomorphic to S3, the
symmetric group of degree 3). This provides an alternative proof of a
special case of [16, Theorem 18]. ‘

Throughout the paper the symbol C denotes strict inclusion and
all near-rings are associative.

2. A characterization of the semi-subgroups of fini-
te abelian groups

Let (G,+) be a (not necessarily abelian of finite) group. Every
subgroup of G is obviously a semi-subgroup, but the converse need not
be true. The term non-subgroup will be used for a semi-subgroup which
is not a subgroup. Our purpose in this section is to give a characteri-
zation of the semi-subgroups of finite abelian groups.

We denote the semi-subgroup of G generated by a subset
{a1,a2,...,a,}, n 2 1, of G by (ai1,as,...,a,)s and we stick to the
usual notation (ay,ag,...,a,) for the subgroup of G generated by
{ai,aa,...,an}. The order of an element a of G will be denoted by
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o(a), and | X| will stand for the number of elements of a subset X of G.
The first two results describe the semi-subgroup of a group gen-
erated by a singleton.
Proposition 2.1. If o(a), a € G, is even or infinite, then (a)s is a
non-subgroup of G.
Proof. Firstly, let o(a) = 2k for some k£ > 0. We assert that |(a)s| =
= k; to be more precise, (a), comprises the following different elements:
a,3a,5a,...,(2(k — 1) + 1)a. For if (2: + 1)a = (2j + 1)a for some :
and j,0<4,7 <k—1,then 2(: —j)a=0. But 2(: —j) <2k -2 < k,
which contradicts the assumption that o(a) = 2k. It is easily verified
that these elements compose a semi-subgroup of G which is contained
in (a)s, and so our assertion is valid. Furthermore, 0 ¢ (a),, otherwise
the assumption that o(a) = 2k is contradicted again. Hence (a); is not
a subgroup of G. The case where o(a) is infinite, is dealt with similar-
ly. ¢
Proposition 2.2. If o(a), a € G, i3 odd, then (a)s; = (a).
Proof. Let o(a) = 2]+ 1 for some [ > 0. (If | = 0, then a = 0, and the
result is trivial.) Consider the subset T :={a,3a,>3a,...,
2(1 = 1) + Da, (21 + L)a, (2(1 + 1) + a,...,(2(2]) + 1)a} of (a)s.
Clearly T = {a,3a,5a,...,(2l — 1)a,0,2a, 4a,...,2la} = (a), and so
(a)s = a(a). ¢
Henceforth in this section G will be a finite abelian group.
Theorem 2.3. If |G| i3 odd, then G has no non-subgroups.
Proof. By Proposition 2.2 it clearly suffices to show that (a, b), = (a,b)
for all a,b € @G, since the order of every element of G is odd. Let
o(a) = 2k+1 and o(b) = 2{+1 for some k,! > 0. Since (2m+1)a+nb =
=(k+m+1)a+nb+ (k+ m+ 1)a and 2ma + nb = ma + nb + ma
for every m,n > 0, it follows from Proposition 2.2 that (a,b) C (a, b)s,
and so (a,b)s = (a,b). ¢
As a result of Theorem 2.3 and the Fundamental Theorem on
finite abelian groups, we study now the semi-subgroups of Z,:, ¢ > 1.
The greatest common divisor of m,n € Z will be denoted by ged(m,n).
Proposition 2.4. If0# a € Zyi, 1t > 1, then (a)s = {g,39,59,...,
(2i/g — 1)g}, where g = ged(a, 2.
Proof. Since a # 0 and o(a) divides 2¢, it follows that o(a) is even, and
so by Proposition 2.1 (a)s; = {a,3a,5a,...,(2(27! — 1) + 1)a}, where
o(a) = 27 for some j, 1 < j <i. But o(a) = 2¢/g, and so g = 277,
Therefore 2/=1 = 2¢/2g, which implies that the 2!/2¢g elements of (a),
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are all the odd multiples of g(mod 2), because a is an odd multiple of
g. Hence (a)s = {g,3¢,59,...,(2(2"/29 — 1)+ 1)g}. ©

Theorem 2.5. The semi-subgroups in Proposition 2.4 are precisely the
non-subgroups of Zyi, 1 > 1.

Proof. We show that, for a,b € Zyi, either (a,b)s = (a)s = (b)s or
(a,b)s = (g), where g:= min(ged(a, 2Y), ged(8,2')).  Firstly, if
ged(a, 2) = ged(b,2°), then either a = 0 =b, in which case (a,b), =

= (0) = (a)s = (b)s, or a % 0 and b # 0, in which case by Proposition
2.4 we have (a)s = (b)s = {g,39,59,.. .,(2'/g — 1)g}, and so (a,b), =
=(a), = (b)s. Secondly, let ged(a,2") < ged(b, 2{)=:h. Then h=2% for
some k > 1, since ¢ and h are powers of 2. It follows from Proposition
2.4 that (a), comprises all the odd multiples of g, and (b), comprises
all the odd multiples of A (mod 2°). Hence (a,b), contains (a), as well
as at least one even multiple of g. It can now be readily seen that
(a,b)s = (g), since z +y + z € (a,b), for all z € (a)s, y € (b)s. ¢

As in the case of subgroups, it is easy to see that if K is a semi-
subgroup of the direct sum of two (not necessarliy abelian of finite)
groups G and Gy, then m; K is semi-subgroup of G, 1 = 1,2, where 7;
denotes the i-th coordinate projection.

The foregoing results lead to a characterization of the semi-sub-
groups and non-subgroups of a finite abelian group:

Theorem 2.6. (a) If H : By, ® Zn, ® -+ ® Zpn,, 15 a finite abelian
group, with my an odd prime for k =1,2,...,n,n > 1, then H has no
non-subgroups.

B)IfG:=%,, ©®Z20; @ - DL, dH is a finite abelian group,
with ng o power of 2 for k=1,2,...,s, s> 1, and where H =0 or H
i3 as in (a), then:

() ¥Gj,,9=12,...,r,1 <r<s,isa non-subgroup of Zy;_,
where j, € {1,2,...,s}, Gt is a subgroup of Zy, for t € {1,2,...,8}\
\{j1,42,--+,Jr}, and K is a subgroup of H, then the direct sum of these
Gj,’s, Gi's and K 1s a non-subgroup of G.

(ii) If A is a semi-subgroup of G, then 7;A is a semi-subgroup of
Iy; for j =1,2,...,s, and 7,414 is a subgroup of H; furthermore, if
A is a non-subgroup of G, then m;A is a non-subgroup of Z,, for some
t,1<t<s.

We have seen that 0 € S, S a semi-subgroup of a finite abelian
group H, if and only if S is a subgroup of H. Also, every semi-subgroup
of Z,, is “cyclic” in the sense that it is generated by a single element
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of Z,. The picture might be much more different in general, even in
finitely generated abelian groups; e.g. {2k:k >0} and (2,5), =
={2,5,6,9,10} U {m : m > 12} are non-subgroups of Z.

Although every subgroup of Z,, n > 1, is a subring of Z, (and
vice versa), the same is not for semi-subgroups and semi-subrings, e.g.
it follows from Proposition 2.4 that {2,6} is a semi-subgroup of Zs,
but is not a semi-subring of Zs, since 2° = 0 ¢ {2,6}. However, Z,
may contain semi-subrings which are not subrings, and which we call
non-subrings. We make this scheme of affairs precise in the last part of
this section, in which we show that the results about the semi-subring
of Z, generated by an element a of Z,, denoted by (a),,, are surpris-
ingly different form those about the semi-subgroups as far as o(a) is
‘concerned, in the sense that if o(a) is even, then it does not necessarily
follow that (a)sr is a non-subring of Z,.
Lemma 2.7. If n is odd and n > 1, then Z,, has no non-subrings.
Proof. Let S be a semi-subring of Z,. Then (5, +) is a semi-subgroup
of (Z,,+), and so the result follows from Theorem 2.3.

For the rest of this section n will be even.
Proposition 2.8. If a is odd and a < n, then (a)sr = (a)s, @ non-
subring of 7.
Proof. First note that o(a) is even, because o(a) = n/g and g is odd,
where g := gcd(a, n). Hence by Proposition 2.1 (a), comprises the odd
multiples of a (mod n). Furthermore, (2: + 1)a(2j + 1)a(2: + 1)a is an
odd multiple of a for all 7 and j, because a is odd, and so (a)r = (a)s,
a non-subring of Z,, since it follows from Proposition 2.1 that (a); is a
non-subgroup of Z,. <
Proposition 2.9. Let b be even, b < n. If

(i) o(b) is odd, then (b)s, = (b)s, a subring (subgroup) of Z.,.

(i1) o(b) is even, then (b)sr is a subring (subgroup) of Z.,,

and (b)s C (b)sr.
Proof. (i) By Proposition 2.2.
(ii) Since (b)s C (b)sr, it follows from Proposition 2.1 that (b),, contains
the odd multiples of b(mod n). But b3 is a multiple of b and b is even,
and so it can be seen, as in the last part of the proof of Theorem 2.5,
that (b)s, contains all the even multiples of 5(mod n) as well. Hence
() C (Bor = (1) ¢

The foregoing results lead to
Theorem 2.10. The semi-subrings in Proposition 2.8 are precisely the
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non-subrings of Z,,.
Proof. Very much similar to that of Theorem 2.5. $

3. Semi-homomorphisms of near-rings

Recall form Section 2 that we deal with right near-rings, i.e. the
left distributive law is not required.

Proposition 2.4 provides a host of non-subnear-rings of near-rings,

‘i.e. semi-subnear-rings which are not subnear-rings, viz. for any non-
subgroup T of Z,i, ¢ > 1, as in Proposition 2.4, {f € M(Z,:): f(T) C
C T'} is a non-subnear-ring of the full near-ring M(Z,:) of mappings on
Zyi .

The following two results, which explore properties of semi-homo-
morphisms of restricted classes of near-rings, can be proved exactly as
in the ring case (see [4, Lemma 3.3] and [9, Proposition 8] respectively):
Lemma 3.1. 4 semi-homomorphism ¢ : R — S of abelian near-rings
18 a homomorphism of the underlying additive groups if and only if the
semi-subgroup {p(a+b) — ¢(b) —¢(a):a,be R} of (S,+) contains no
elements of order 2.

Lemma 3.2. Let p: F — F' be a semi- homomorphzsm of near-fields.
If (a) # 0 for some 0 # a € F, then p(a™!) = (¢(a))™!.

 Herstein [7] showed that if the centralizer of ¢(G) in H is 0, where
v : G — H is a semi-homomorphism of groups, then (3) holds. ‘The
authors [4] showed that if G and H are abelian and the semi-subgroup
{#(2a) — 2p(a) : a € G} of H contains no element of order 2, then (3)
also holds. However, G and H need not be abelian, as will be shown
shortly. We first need
Lemma 3.3. Let ¢ : R — S be a semi-homomorphism of near-rings.
Then p(a + b) — w(a) — ¢(b) = p(a) + ¢(b) — ¢(b+ a) for all a,b € R.
Proof. For a,b € R we have by (1) and (2):

pla+b)=pla+b+(—(b+a))+b+a)
= p(a) + p(b+ (—(b + a)) + b) + ¢(a)
= p(a) + ¢(b) + ¢(—(b + a)) + (D) + ¥(a)
= p(a) + ¢(b) — (b + a) + ¢ (b) + ¢(a),

from which the result follows. <
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Proposition 3.4. If p : R — S is semi-homomorphism of near-rings
such that the set {©(2a)—2p(a) : a € R} contains no elements of order
2, then p(na) = ny(a) for every integer n and every a € R.

Proof. Firstly, since 2¢(0) = 0, it follows that ¢(0) € {¢(2a)—2¢(a) :

: @ € R}, and so the result holds for n = 0. The case n = 1 is trivial.
Next, let a = b in Lemma 3.3. Then ¢(2a) — 2¢(a) = 2¢p(a) — ¢(2a),
and so 2(¢(2a) — 2¢(a)) = 0, and so the result holds for n = 2. Using
induction on n and assuming that n > 2, we get p(na) = ¢(a + (n—

~2)a+a) = p(a)+n(n —2)¢(a) + ¢(a) = ny(a), which establishes the
résult for every n > 0. Finally, by (2) and since (—n)a = n(—a), the
result also holds for n < 0. ¢

Note that the above two results hold merely in the presence of a
semi-homomorphism of groups, since the multiplicative structure of the
near-rings has not been invoked at all.

The multiplicative version of 2¢(0) = 0 is, of course, (p(1))? =1,
where 1 denotes the identities of the domain and codomain of ¢. Huq
[9] proved that if » : R — S is a semi-homomorphism of rings with
identities such that 1 € ¢(R) and S is a non-trivial ring without non-
zero divisors of zero, then (1) = 1 of —1. We shall show in Example
3.7 that this result does not extend to near-rings in general, not even if
 is also a homomorphism of the underlying additive groups. However,
we still have
Proposition 3.5. If o : R — S is a semi-homomorphism of near-
rings with identities such that p(R) 1s a near-field and 1 € p(R), then
(p(1))> =1 and p(1) =1 or —1.

Proof. That (¢(1))? = 1, follows as in [9, Proposition 6]. A non-trivial
near-ring-theoretic result states that if 72 = 1 in a near-field, then
r =1or —1 (see e.g. [12, Proposition 8.10]). ¢

The following example shows that it is possible that p(1) = —1
under the conditions of Proposition 3.5. The reason for exhibiting this
example must be seen against the background of the conjecture before
Example 3.10.

Example 3.6. Let (F,+,0) be the (infinite) Dickson near-field arising
from Q(z), the field of rational functions over the rationals, by defining
multiplication as follows:

_J0,if p(z)/q(z) =0
g(z)/h(z) o p(z)/q(z) = { (9(z i d))/;f(m +d)) - (p(z)/qz)), otherwise,
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where d := deg(p(z)) — deg(g(z)) and - is the familiar multiplication
in Q(z). (See [11, Example 8.29] for more details.) Then F is not
a division ring, since the left distributive law does not hold. Define
¢ : F — F by p(g9(z)/h(z)) = —g(z)/h(z). It can be verified that ¢
is a semi-homomorphism of near-fields (and an endomorphism of the
underlying additive group). Furthermore, ¢(1) = —

As in Heatherly and Olivier [5,6] we define a near integral domain
as a (right) zerosymmetric near-ring having no non-zero divisors of zero
and having at least one nonzero element which is not a right identity.
(Note that some near-ringers call these nontrivial near integral domains
“integral near-rings”). McQuarrie [10] originally devised the following
(infinite) near integral domain which was later used by Heatherly and
Olivier [6] to show that the additive group of a near integral domain
may not be nilpotent. It is not only a near integral domain, but it is
also a distributively generated (dg) near-ring with identity.

Let G3 be the free (additive) group on two generators z and y, and
define for every integer n the mapping I'y, : G2 — G2 by Iy (h(z,y)) =
= h(nz,ny), where h(z,y) is an arbitrary word in G5. Every Iy, is an
element of the full near-ring M(G2) of mappings on Gg; in fact, the
I'y’s are distributive elements of M(G3). Let R be the subnear-ring
of M(G,) generated by {I'y, : n € Z}, 1.e. (R,{I'y, : n € Z}) is a dg
near-ring. Then by [11, Lemma 9.11] (R, +) is generated as a group by
{T'»:n €Z}.

We use the above near integral domain in the following example,
in which we show that Huq’s result, which was mentioned just before
Proposition 3.5, does not extend to near-rings.

Example 3.7. Define p: R — R by

k k
‘P(Z Enyy 1—‘n.') = Z €n;L—ni,
i=1 =1

where €,;, = £1 and n; € Z for ¢+ = 1,2,...,k. We show that ¢ is
well-defined. First note that I'y(h(—z,—y)) = h(n(—z),n(-y)) =

= h((—n)z,(—n)y) = F_n(h(z,y)) for every n € Z and every word

h(z,y) in Go. Suppose now that Z En;'n; Z €m;'m;. Then
i=1 j=1

EnyLny + -+ en oy —emTm — - —€m I'my, =0,
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and so
(EnyTny + -+ en, Ty —€mTmy — -+ — €my Dy J(B(—2z, —y)) = 0.
Hence, by the above remark

(EnIP_nl +-e Enkr—nk - Emlr—ml -t 5m1r—mx )(h(x’ y)) = 0’

k l
ie. Y enTon, =3 emTom;.
i=1 j=1
It is now obvious that ¢ is an endomorphism of (R, +). Also, since

SD(FnFan) = (P(ann) = I nmn = TI_xI'-mly =
= ¢(Tn)p(Tm)e(Ty) for all n,m € Z, it follows easily that ¢ is a semi-
homomorphism of near-rings.

The identity of Ris I'y, and ¢(I';) =T'—;. Furthermore, I'_; #
# I, because T y(z+y)=—z+ (—y) #(—y) +(~z) = —(z+y) =
= —Ti(z +y). Hence ¢(T1) # —TI'1, and (T) # I';.

It is well known that if F' is a near-field, then either F & M,(Z,),
the near-field of constant functions on Z,, or F is zero-symmetric (see
e.g. [11, Proposition 8.1]). So if we exclude this “silly” near-field
M_.(Z;) (see Example 3.9), then the proof of [9, Proposition 9] serves
to a great extent as the proof of the following proposition.

Let Z(R) denote the center of a near-ring R.

Proposition 3.8. If o : F — F' is a semi-homomorphism of near-
fields, then (1) € Z((F)).

Proof. If ¢ is the zero map, then by the above remark ¢(1)=0¢
€ Z(p(F)), since F' is zero-symmetric. If o(F) # 0, then (1) # 0,
otherwise p(a) = ¢(lal) = ¢(1)p(a)p(l) = 0 for all @ € F. Since
¢(a) = ¢(1)p(a)p(1), the result follows from Lemma 3.3. ¢
Example 3.9. Let ¢ : M:(Z3) — M.(Z:) be the identity map. Then ¢
is an isomorphism of “near-fields” (in the sense of the remark preceding
Proposition 3.8), but ¢(1) € Z(M(Z;)), the empty set.

Hua [8] proved that every semi-automorphism of a division ring
R, i.e. an automorphism ¢ of (R, +) satisfying (1) = 1 and

(6) p(aba) = p(a)p(b)p(a)

for all a,b € R, is an automorphism of an anti-automorphism.
We have been unable to determine whether Hua’s result can be
“extended” to near-fields, i.e. whether every semi-automorphism of a
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near-field (where semi-automorphism is defined as above) is an auto-
morphism. Notice that the lack of one distributive law should pre-
vent a semi-automorphism from being an anti-automorphism, as is
shown in [13] for finite simple near-rings with associated idempotents
€1,€2,...,¢et, where t > 2. (The case t = 1 produces the near-fields.)

After examining numerous examples, including the exceptional
finite near-fields, i.e. the seven finite near-fields which are not Dickson
near-fields (see e.g. [14, Chapter 4], where the structure of theses seven
near-fields, which was originally determined by Zassenhaus [16], is made
clear), we arrived at the following:

Conjecture. Every semi-automorphism of a near-field is an automor-
phism.

The examination of this problem yields a surprising result, the
significance of which the authors do not understand fully at present
and which perhaps has independent interest. It is well known that
there are only two automorphisms of the Galois field (GF(3%),+,),
viz. the (identity-preserving) automorphisms of Zs[i] mapping ¢ onto
: and 2: respectively, where ¢ is a root of the irreducible polynomial
z? + 1 in Z3[z]. The term non-field is widely used in near-ring circles
for a near-field which is not a field. The smallest (Dickson) non-field is
given by (GF(3?),+,0), where o is defined by

Toy = {:c -y, if y is a square in the Galois field (GF(3%),+,-)

z3 -y, otherwise.

(See e.g. [12] for more details.) We show in the following example
that every automorphism ¢ of (GF(3?%),+) satisfying ¢(1) = 1 is an
automorphism of (GF(3%),+,0), and so every semi-automorphism of
(GF(3%),+,0) is an automorphism. Hence there are precisely 6 auto-
morphisms of (GF(3%),+,0) and the automorphism group of (GF(3?),
+, o) is isomorphic to S3. This provides an alternative proof of a special
case of [16, Theorem 18].

Example 3.10. Let (GF(3%),+,0) be the smallest Dickson non-field
as defined above, and let a + bi, a,b € Z3, be the elements of GF(3?),
with i2 = —1 = 2. If ¢ is an automorphism of (Z3[i], +) and (1) = 1,
then @(a+bi) = a+bp(i), and so () € {3,2:,1+14,142i,24+14,2+ 21}
Since k3 = k and 3k = k and 3k = 0 for every k € Z3, we have, for all
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" a+bi and ¢+ di, the following;

(7) o((a+bi)o(c+di)) = e((a+bi)-(c+ di))
= p(ac+ 2bd + (ad + be)i)
=ac+ 2bd + (ad + be)p(z)

“if ¢ + di is a square in (Z3[z], +,-), and

(8)  wl(@+b)o(ctd) =p((a+h) - (c+di))
= p(ac+ 2b) - (¢ + di))
= p(ac + bd + (ad + 2bc)z)
= ac + bd + (ad + 2bc)p(z)

if ¢ + di is not a square in (Z3[z],+,). Also,

(9) ¢p(a+bi) o p(c+ di) = (a + bp(i)) o (c + dip(1))

= ac + bd(p(i))? + (ad + be)p(3)
if ¢ + dip(7) is a square in (Z3[i],+,-), and
(10) (a+bi) o p(c+ di) = (a + bp(3))® - (¢ + dep(2))

= (a+b((9))?) - (c + de(2))
= ac 4 bd(p(3))* + adip(i) + be(p(3))?

if ¢ + dip(7) is not a square in (Z3[i], +, -).
It can be verified that ¢ + di is a square in (Z3[i], +,-) if and only if
cd = 0, and so we consider the following cases:

(I) ¢+ di is a square in (Z3[i], +,-)and d = 0:
We have ¢ + di = ¢, and so it follows from (7) and (9) that
w((a+b) o (c+di)) = p(a+ i) o p(c+ di).
(IT) ¢ + di is a square in (Zs[i], +,-)and d # 0:

In this case ¢ = 0, but ¢ + dy(i) may be or may not be a square in
(Zs[i],+, ). The conditions on ¢ imply that ¢(k) = k for every k € Z3,
and so p(z) € {0,1,2}. Therefore (i) = k+ i for some k,1 € Z;, [ # 0.
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If k = 0, then ¢+ dp(z) = dli, which is a square in (Z3[¢],+, ), and so
by (7) and (9) we have

w((a+ b)) o(c+ di)) = p(a+ bi) o p(c+ di),

because (¢(i))? = (1) = 21> = 2. Suppose now that k # 0. Then
c+dp(z) = d(k + 1) = dk + dli, which is not a square in (Z3[z], +,-). A
direct calculation shows that (k + l:)* = 2 in (Z3[d], +, -)if kI $ 0, and
so the desired equality now follows from (7) and (10).

(ITI) ¢+ di is not a square in (Z3[i], +, ), and @(z) = Iz for
some | € Z3, [ # 0:

Since ed # 0, it follows that ¢ + dp(i) is not a square in (Z3[z], +,-).
Furthermore, in this case (¢(7))? = 2 and (p(i))* = 1 in (Z3[], +,-),
and so by (8) and (10) we have

o((a + bi) o (c+di)) = p(a+ bi) o p(c+ di).

(IV) ¢+ di is not a square in (Z3[i], +,), and ¢(z) = k + Iz for
some k,l € Zs, with kl # 0:

Now ¢ + dp(i) = ¢+ dk + dli, which may be or may not be a square
in (Zs[t],+,+). Firstly, suppose it is a square, i.e. ¢+ dk = 0. Then
d+cp(i) = d+c(k+1i) = d+ck+cli, and d(p(i))? = d(k* - 124+ 2kl) =
= 2dkli, since k2 =12 =1. But c¢=2dk and d+ck=dk®>+ck=
= (c+ dk)k =0, and so d + cp(z) = d(p(:))?. Hence by (8) and (9) we

have

o((a+ i) o (c + di)) = ac + adg (i) + besp(i) + bd(i(i))?

= p(a+ bi) o p(c + di),
Secondly, suppose ¢+dy() is not a square in (Z3[i], +, ), i.e. c+dk # 0.
Then ¢ = dk, since ¢dk# 0 andc,d,k € Z;. Therefore 2cp(i) =

= 2ck + 2cli = d+ ck + 2¢li = d + c(k + 2Ii) = d + ¢(¢(2))®. Also,
(¢(i))* =2, and so by (8) and (10) we have

o((a+ bi)o(c+di)) = ac+ bd + adyp(i) + b(2cp(7))
= ac + bd + adp(i) + b(d + c(p(i))®)
= ac + 2bd + adip(i) + be(p(7))’
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= ac + bd(p(1))* + adip(i) + be(p(2))?
= ¢(a + bi) o p(c + di).

This proves the assertion that every automorphism ¢ of (GF(3%),+)
satisfying (1) = 1 is an automorphism of the smallest Dickson non-
field (GF(32%),+,0).

Unfortunately(?) the above result does not hold for the Dickson
non-field (GF(5?), +, o), where o is defined by

zoy = { z-y, if yis asquare in the Galois field (GF(5%), +, )

z° .y, otherwise,

as can be verified easily. However, as mentioned before, every semi-
automorphism of this near-field and of all others investigated by us, is
an automorphism.
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Abstract: Given k unit balls in Euclidean d-space E¢, what is the minimal
volume of their convex hull? In E? hexagonal circle-packings, possibly de-
generate, are best possible ([6], [8]). In E%, d > 5 the linear arrangement of
the k balls is conjectured to be optimal. L. Fejes Téth’s sausage conjecture
[3], and several partial results (cf. [1],[4]) support this conjecture. In E? and
E* no such general results can be expected, because the situation is more
complicated. We consider d = 3 : In the sausage-catastrophe (cf [9]) it is
conjectured that for all k£ < 56 the linear arrangement is optimal, whereas for
all but finitely many k > 56 clusters of spheres are best possible. Although
this is supported by computer-aided calcﬁlation, a proof seems to be very
hard. However, we can prove: For no k > 56 but 57,58,63 and 64 the sausage

is optimal.

1. Introduction

Dense packings of finitely many spheres are good models for atom
clusters. So in recent years there were several investigations about
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various aspects on finite circle- or sphere-packings (cf. e.g. [1], [3] - [6],
[8], [9]). In this paper we define the density of finite sphere-packings via
the minimal volume of the convex hull of the spheres. For simplicity
we only consider unit spheres, i.e. B® = {z € E*®| ||z|| < 1}. Further £
denotes the lattice of the densest lattice packing of unit spheres. Given
k unit spheres B} = B3 +¢;, 7 = 1,...,k in E® with mutual disjoint
interiors, the volume of their convex hull is given by the Steiner formula

(cf. e.g. [7])
V(Ci+ B%) = V(Ch) + F(Ci) + M(Ci) + 5,

where Cx = conv(cy,...,cx) and V, F, M denote the volume, surface
area and integral of mean curvature.

The problem is to minimize V(C) + B?) for a given fixed k and
all possible Cy i.e. with mutual distance > 2 of any of the c;.

The “icefern”-theorem ([1], Th. 2) says that if one restricts oneself
to planar Cy, then the linear arrangement, i.e. Cy = Sk, where Si is a
segment of length 2(k — 1), is minimal, i.e.

V(Sk + B®) < V(Cy + BY).

In other words, the sausage is better than any other planar arrangement
of k unit balls. It is conjectured that for all £ < 56 this inequality even
holds for arbitrary Ck. Although computer-aided calculations support
this conjecture, called sausage-catastrophe, an exact proof is still open
for all k¥ > 4. On the other hand simple considerations show that for
all sufficiently large k there are lattice points ¢; € £, =1,...,k such
that for the lattice-polyhedron Cy = conv(cy,...,ct) holds

(*) V(Cy + B®) < V(Si + B®).

Obviously for sufficiently large k there are also Cj with (%), which are
no lattice-polyhedra. For k not too large, say k < 100, the difference
in (*) is so small that no general proof for (*) and all possible &k can be
expected. However, the following result solves the problem for all but
four k& > 56.

Theorem. For each k > 56, k # 57,58,63,64 there is a Cy with ().
Remarks. 1) For £ = 61,67,71,77,81, 83 the Cj with (%) are no lattice
polyhedra. It remains open if for these k there are lattice polyhedra Cyg
with (*).
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2) We conjecture that for k = 57,58,63 and 64 the sausage is
optimal. For the proof we need 11 lemmas. The theorem follows from
Lemmas 5,6,7,8,9 and 11.

2. Definitions. The lattice polyhedra

Definition 1. Let T7* be the basic regular tetrahedron of £ with edge-
length 2, i.e. the convex hull of 4 lattice-points of £L. For n € IN let
Tn = nT1 .
Definition 2. Let P; ;; be the lattice parallelohedron of £ with edges
of length 2 parallel to those of T, i.e. the convex hull of 8 lattice-points
of L. For 0 <a <b<e¢ a,bceNU{0} let P, denote the lattice
parallelohedron with edge-lengths 2a < 2b < 2¢, generated from Pj 1 1.
Remark. Fora =b=0,c=k—1weget Pygr_1 =St and Pyor—1+
+B3 is the sausage with k balls. Besides this case we will only consider
2<a<b<ec

The T;, and P, 3 . are the basic lattice polyhedra and we obtain
our general lattice polyhedra C} for the theorem by omitting suitable
- lattice-points, or, in other words, by suitable truncations of the T}, and
Py p.. We will have two types of truncations: 1) by regular simplices,
2) by nonregular simplices. We start with the easier case:

1) From a vertex of T, we cut off a copy of T, p < n. After
compactifying the truncated or snub tetrahedron again we denote it by
TP. If we do so with each vertex of T, we obtain

THm 0 <p<qg<r<s,

where 0 means no truncation; in particular T0:%0:0 = T,,. Further we
only consider n, p, ¢, r, s such that TP%™* % (. We can do the same
truncation with Pg p .t

Each P, 3 . with a > 1 has exactly 2 acute vertices of the same
type as T,. So from these 2 vertices we cut off a copy of T}, and T, with
0 < p < q < a After compactifying we obtain the truncated lattice

gyt . 0,0
parallelohedron Py .- For Py c we write Pq’b’ o

2) The second type of truncation we describe via T21 0.0.% which
has 3 vertices ¢y, ¢z, c3 of the same type as a regular tetrahedron and
3 vertices vy, vg, vz of same type, which we call obtuse vertices. So
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T, %% = conv(cs, v1,v,v3) with ||c;—vi]| = 2 (6 = 1,2,3), ||vi—v;|| =
=2and ||lei —¢j|| =4 (¢ # J). Now let T = conv(ey, 2, ¢3,v1,V2,v3)
and T* = conv(cy, g, ¢3,v2,v3). Then TUT* = T;’O’O’O and TNT* =
= conv(cy,v2,vs) = T'. Simple considerations show ||c; — v2|| = ||e1 —

—v3|| = 2v/3. So T' is a triangle with two edges of length 24/3 and one
edge length 2. Further T is a tetrahedron with two edges of length 21/3
and four edges of length 2.

The truncations of second type will be truncations of congruent
copies of T. For this we consider Pf,’,;’, L withae >2and 0 < p <
< ¢ < a. Then easy considerations show that Pf:g’ . has at least two
obtuse vertices as the vertices vy, vg, vz of T21 0,09 " At one or both
of these vertices we cut off one or two copies of T and compactify.
The new truncated polyhedron we denote by PP/ with ¢ € {1,2} and
0<p<g<a. "

If we write P? ,’f,’co = Pf”,f” .» We obtain the general truncated paral-
lelohedron :

4 Pp,q,togpsqgagbgc, t€40,1,2},
a,b,c

which will solve (*) for all but 14 values of k in the theorem.
This second type of truncation is only needed once for T2:%:¢¢ (namely

for k = 84), so we do not introduce an extra notation for this special
case.

3. Basic lemmas on lattice polyhedra

In this section we calculate V, F and M for the simplest polyhedra
in our proof.
Lemma 1. k(Pupc) = (a+ 1)+ D)(c+ 1), V(Pape) = 4V 2abe,"
F(Pyp,c) = 44/3(ab + ac + be), M(Pyp,.c) =2n(a+b+c).
Proof. Elementary calculation shows
V(Pi1,1) =4v2, F(Pr1,1) =4V3(1+1+1), M(P11,1) =2m(14+1+1).
From this one obtains the general case if one observes that P, j . can be
dissected into abc copies of Pj 1,1. The calculation of k(P, 3 ) is simp-
le. &
Lemma 2. k(T,)= ("F%), V(T.)=32%v2n, F(T,)=4v3n?,
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M(T,) = 11,4638...n k(T.) = ("3?), F(T}) = 2v/3n?, M(T},) = 3nn,
where T} 18 a facet of Tp,.

Proof. For k(T},,) see [7], for M(T}) and hence for M(T},) see [2] or [7].
The other results are simple.

In the following lemma we calculate V, F' and M for the non-
regular tetrahedron T' (described in Sect. 2) and for its largest facet

T

Lemma 3. V(T) = V(T1) = 2v2, F(T) = 33+ V11, M(T) =
=14,3441..., F(T") = 2/11, M(T') = 14,0244....

Proof. For the calculation of M(T') we introduce coordinates (only in
this lemma). Again T = conv(vy, vs,vs, C3).

Let v; = v/2(1,0,0), va = v/2(0,1,0), v3 = v/2(0,0,1), ¢z =
=v2(=1,-1,1). Then |jvi—vs|| = [[v1~vs]| = [[va—vs|| = |[va—cs]| =
=2 and ||v; — e3]| = ||ve — e3]| = 2V/3 as required.

Elementary calculation shows V(T) = V(T1) = 22, F(T) =
= 3v3++/11 and F(T") = 2v/11. (The surface area of T' is twice its 2-
dimensional volume). Further M(T") is the sum of the length of its three
edges multiplied with 7, hence M(T") = Z(2 + 2v/3) = 14,0244. ...

It remains to calculate M(T). For this we determine the affine
hulls of the 4 facets of T

Ey = aff(vy,vq,v3) = {(z,y,2)|lz +y + 2 = 2}

E, = aff(vy,vs,¢3) = {(z,9,2)|z —y + z = v/2}

E; = aff(vy,v3,¢3) = {(z,y,2)| —z +y + 2 = v/2}

Ey = aff(v1,v2,¢3) = {(2,y,2)] =@ —y — 32 = 2},
From this one gets the angles of the outer normals of the E;:

cos(En, E3) = cos(Ey, Es) = % = cosa
cos(Eq, E3) = —1 = cos f
cos(Eq, Ey) = —5/4/33 = cos

cos(Eq, E4) = cos(F3, Ey) = —3/v/33 =cosé

and hence (normalized to 27):a = 0,5148...,f = 1,0213...,y =
= 1,9106..., 6§ = 1,2310.... Now for M holds M(T) = ), a;l; (cf.
e.g. [7]), where the sum is taken over the 6 edges of T’; I; is the length
of the i-th edge and «; is the measure of the corresponding outer nor-
mals, normalized to 7 such that a3 = a; = %a, azg = B, ag = 7,
as = ag = 56. Then with lj534 = 2, Is = lg = 21/3 one obtains
M(T) =20+ f+7+2/36 =14,3441.... ¢
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4. The general case. Parallelohedra

Lemma 4. k (P2{!) = (a+ 1)+ 1)(c +1) — ("4%) — (4?) —t.

a,b,c
Proof. From the construction of PP ! and the additivity of the lattice
point number follows with the Lemmas 1 and 2:

E(P2E) = (a+ D0+ Det+1) = (F) + (7)) - (7F) + (32 —
=(a+ 1B+ 1)(c+1) - (37 + (11?) - .
Lemma 5. Let k = (a+1)(b+1)(c+1)— (7¥2) - (*3?) (p,q € {0,1,2})

and

(a)a>2,6>3,¢c>8 or
(b)a>2,b>4,c>5 or
(c)a>3,b>3,c>4.

Then (*) holds with Cy = PP}

a,b,c’
Proof. Let k be given as above. Then by Lemma 4 we can choose
Cy = sz,,bq,c'

Further V(S + B®) = 2n(k — 1457 =2n((a + 1)(b + 1)(c + 1) — 1)—

-2 ((p-:{;—Z) + (q-:-l))-2)) +%r. From Lemmasl and 2 we have
V(Ci+BY) = {V(Pasd) — V() — VT)} + {F(Pas)— F(T)+
FF(T) — F(T) + F(T)} + M(Pasc) - M(Ty) + M(T)) — M(T,)+

+M(T))} + 57 = {4v/2abc — 2v/2(p* + ¢*)} + {4V3(ab + ac + bc)—
—2v3(p* +¢%)} +{2n(a+b+¢)—(11,4638... - 37)(p+ 1)} + 2. Sowe
get V(Cy + B*) — V(Sk + B3) = abe(4v/2 — 21) + (ab + ac + be)(4y/3—
—2m)— 12V —m)(p* + ) — (33— 18 + )+ 6(p+q) = abe(a=+
+07 e =)+ {5B7(0° +¢%) - 3A(P* + %) +6(p+q)} = A+ B, where
B =2(2v3—m)=0,64502..., v = (7 —2v/2) : (2v/3 — 1) = 0,9710....

and § = 37 + %W—11,4638... =0,0553....
We show that A+ B < 0. In all cases (a), (b), (c) we have

a—1+b‘1+c“1§§<7,

hence A < 0. To show B <0 it suffices to consider only p: B, =
= %ﬂ’yp?’ — %ﬂpz + ép. Now By = 0, By = %ﬂ(%')f -1)+4+46 <0,
By =B(37—-2)+256<0. SoB<0,ie. A+ B <0and V(Ci+ B?) —
-V(S: + B%) <0.
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Lemma 6. Let k = 16(c + 1) — (°1?) - (q'?) —t, and
(a) ¢>4, t=0,p,q€{0,1,2,3} or
(b) ¢>5, t=1,p,g€{1,2} or
(c) c>6, t=1,pe{1,2},¢=3 or
(d) e>17, t=2,q9€{2,3}.
Then () holds with Cy = P{3..
Proof. Let k be given as above. Then by Lemma 4 we can choose
Cy = P?f"’;,,q,’ct. As in the proof of Lemma 5 we get (now with a = b = 3)
and with Lemma 3 for (x):
V(Cr +B¥) —V(Sk+B*)=A+B—t{V(T)+ F(T) - F(T'")+
+M(T)—M(T")—27} = A+B—#(3v/2+3v3—V1140,3197...—27) =

(4.1) = A+ B — Ct = A,where
A=98c(2+c ' —v)=3B(2c+3 —3cy)
B=gBy(p*+ &) — 58(0* + %)+ 6(p+q) = By + By,
C=314....

It remains to prove A < 0 in all cases. From the proof of Lemma 5 we
have BQ = 0, Bl = —0,162 .y B2 = —0734:4 “ ey B3 = %ﬂ(7—1)+36 =
=0,082..., hence B; < By < By = 0 < B;. To prove A < 0 it suffices
to prove (*) for the worst cases in (a), (b), (c), (d):
(a) e=4,t=0,p=q=3.

Then A =35(11 — 12y)+2B3 < 0.
(b)e=5,t=1,p=¢q=1

Then A = 36(13 — 15v) +2B; + C < 0.
(c)e=6,t=1,p=1,¢g=3.

Then A = 3ﬁ(15 — 18")’) +B1 +B3 + C <.
()e=T7,t=2,p=1,¢=3.

Then A = 3,3(17 — 21’7) + B1 -+ Bg + 2C < 0.
These inequalities prove Lemma 6. ¢
Lemma 7. The k in Lemmas 5 and 6 cover all k of the theorem ezcept
the fifteen cases k € {56,59,61,62,65,67,68,71,73,74,77,81,83,84}.
Proof. We start with Lemma 6 which covers nearly all of these k. We
write k = 16c+ 16 — R, R = (P';?‘) + (q§2) +t and calculate R for (a),
(b), (<), (d):
(a) t =0, p,q €{0,1,2,3} yield R =0,1,2,4,5,8,10,11, 14 and 20.
(b)t=1, p,q € {1,2} yield R = 3,6,9.
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(c)t=1, pe{l,2}, ¢ =3 yield R =12, 15.

(d)t=2,p=1, ¢ {2,3} yield R =7,13.

The special case p = ¢ = 3, i.e. R = 20, is only needed for ¢ = 4 and
yields & = 60.

The other cases in (a),(b),(c),(d) cover all residue classes modulo 16,
and from Lemma 6 follows with ¢ > 7 that all k¥ > 112 are covered.

For ¢ = 6 the only missing k are k = 112 — R, R = 7 and 13, hence
k = 105 and 99.

For ¢ = 5 the only missing k are k = 96 — R, R = 7,12,13, 15, hence
k = 81,83, 84, 89.

For ¢ = 4 the only missing k are k = 80 — R, R = 3,6,7,9,12,13, 15,
hence k = 65,67,68,71,73,74,77.

Three of these k are covered by Lemma 5, namely k = 3-5-7 = 105,
k=4-4.5-1=99,and k=3-5-6—1=89.

This proves Lemma. 7.

5. Truncated tetrahedra

In the preceeding section the theorem was proved for all but 14
k. In this section we prove it for eight of these k; seven in Lemma 8,
one in Lemma 9.

Lemma 8. Let k € {56,59,62,65,68,73,74}. Then there are positive
integers n,p,q,r,s with p < qg<r <s, r+s <n such that (*) holds
with Cy = THD"S,

Proof. From Lemma 2 and r 4+ s < n follows, if one observes that V is
simply additive and that F, M and k are additive:

V(Tpom®) = 3v/2(n® —p* — ¢* —1® — 5%)
F(TP0™) = 2v/3(2n? — p? — ¢ — r? — §?)
M(TP*™%) =11,4638...(n—p—q—r—8)+3m(p+ qg+r + )
(5.1) k(T = ("3°) - (737) = () - (F7) - (37).

Sok = g(n®—p*—¢* —r® —s%)+ 122 —p? — ¢® — 12 —s?) + L (Up—
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—p—¢q—r—3s)+1and
V(Cr+ B*) —V(Sy+ B?) =
= 12VE— )1 — = g 1 — )+ (V)2 — P =P —s?)
—(%ﬂ'—11,4638...)(n—p——q—r—3) =
=—0,10438...(n* —p*—¢® —r3 —5%)40,3225... (2n? —p* —* —r? —s?)
(5.2) —0,055...(n—p—q—r—s)=
We now consider the 7 cases separately by calculating & from (5.1) and

A from (5.2). We omit the easy calculations for A.
(1) k(T?*%3) = 56; A = —0,183... <0

(2) K(T)*%3) =59; A = —0,002... <0
(3) K(T2**°) =62; A = —0,610... <0
(4) R(T3*>*%) = 65; A = —0,428... <0
(5) K(T?**?) = 68; A =—1,036... <0
(6) K(Ty"**) = T4; A = —0,673... <0

(7) K(T?**%) =73; A = —0,356... <0

These seven inequalities prove Lemma 8.

Lemma 9. For k = 84 holds (*).

Proof. From (5.1) we get k(T >>*) = 85.

With Cgs = T71,2,3,4 we get from (5.2) with some calculation V(Css+
-I—BB) —V(Sss + B?)=-3,27...<0.

Now T;*** obviously has at least one (in fact six) obtuse vertex as
defined in Section 2. We cut off the irregular tetrahedron associated
to this vertex as described for Pf:f”ct, t = 1 and obtain a truncated
tetrahedron T71’2’3’4. Obviously k(T;’Q’SA) =84, so we write Cgq =
= T}%%* Asin (4.1) we now get C = 3,14...: V(Csq+ B%)—V(Sss —
—BB) = V(Cg5 + BS) - V(SBS + BB) + C =

=-3,27...43,14... < 0 which proves the lemma. ¢

6. Double tetrahedra

In this section we consider non-lattice packings for the last six
k. If we fit two copies of T, together at one facet, one obtains in an
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obvious way a double-tetrahedron (or bipyramide) D,, endowed with
the sphere-centres ¢; of the two copies of T},. D,, has exactly two acute
vertices of same type as T,,. Hence we can truncate D, by copies of T},
T; (p,g < n) in the same way as we did to obtain PP} and T2:9"™°,
We denote this truncated and compactified D,, by Dﬁ"”.’

Lemma 10. For p < g < n we have

V(DY) = 2v3(n® — p — ¢7)

F(DP) = 2/3(3n7 — 12 — )

M(D24) = (2M(T}) - 3x)n — (M(T}) = 3)(p + 1)

KDL = () + (3 - (F9) - (°22).

Proof. The results follow from Lemma 2, from the definition of DP9,
and from the fact that V is simply additive and that F, M and k are
additive. &

Lemma 11. Let k € {61,67,71,77,81,83}. Then there are positive
integers p < g < n, such that (x) holds with Cy = DP9,

Proof. From Lemma 10 we have

(6.1) kDR = ("7%)+("3%) - (3" - ("37) =
=52 -p* ~ )+ 3B —pP - D)+ Pn—Lp+1)+ L
So we get as in Lemma, 8
V(Ce+B*)-V(Sk+B*) = V(D29 + F(D2?)+ M(D??)—2r(k—1) =

= 32v2 —7)(2n® — p* — ) + (2v3 — m)(3n? — p* — ¢%) + 2M(T})-

=31 — 2m)n — (M(Ty) — 37 — 27)(p + ¢) = —0,104... (2n® — p® — ¢3)+

+0,3225...(3n* —p® —¢*) - 0,11...n — 0,055...(p+¢) = A

We now consider the six cases separately by calculating k from (6.1)
and A from the last equality. We omit the easy calculations for A.
(1) k(D¥*)=61, A=~1,40...<0

(2) k(D¥*)=67, A=-1,72...<0
(3) K(D*)=71, A=-2,95...<0
(4) K(D2*) =77, A=-3,27...<0
(5) kK(DP*)=81, A=-2,70...<0
(6) k(D}*)=83, A=-3,58...<0
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These six inequalities prove Lemma 12. {
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Abstract: In real normed spaces, the notion of skewness was introduced by
Fitzpatrick and Reznick. The radial projection constant had been already
studied several years before and its relations with some projection constants
had been pointed out. Here we introduce and study a modified version of
skewness and we continue the study of the above notions. We compare all
these constants and we establish several relations, some of them depending

on properties of the underlying space.

1. Introduction

Let X be a normed space over the real field R. We denote by S
the unit sphere of X : S = {z € X; ||z]| = 1}. Also, we set for z,y in

* While preparing this work, the authors were supported by G.N.A.F.A. of the
C.N.R., and by the national research group (“40%”) of Functional Analysis.
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X:
e eyl ==l . e+ tyl = =)l
m(z,y) = lim, ; = inf :
and so
o) tim M=l o+ tyl = el
t—0- t t<0 t

Now define the multivalued map J : X — X* in the following
way. For £ € X denote by J(z) the nonempty set

J(z) ={f € X*; |Ifll = llzll; f(=)=ll=l*}
(X* denoting the topological dual of X). For any z we have:

lz|| 7(z,y) = sup{f(y); f e J(z)}.

The space X is smooth if and only if J(z) is a singleton for any z € X,
or equivalently, if and only if 7(z,y) = —7(z,—y) for any pair z,y;
in this case 7(z,.) is linear in its second argument. We say that z is
orthogonal to y, and we write z Ly, when ||z + ty|| > ||z]| for all ¢ € R.
Note that the following is true:

(1.1) zlys zl +y & —1(z,—y) <0< 7(z,y).

In particular, if X is smooth, then we have

(1.2) zly & 7(z,y) =0 f(y) =0 for f € J(z).

We shall write 1 M when z1m for all m € M. We denote by [M]
the linear span of M ([y] = linear span of y).

We shall write: X is (H), when the norm of X derives from an
inner product; in this case, 7(z,y) reduces to the inner product when
T,y € S. We recall that when dim(X) > 3, then X is (H) if and only
if orthogonality is symmetric (i.e., z Ly implies y Lz).

The space X is said to be wuniformly nonsquare (abbreviated:
(UNS)) when sup{min(}|z + y||, |l — y||); z,¥ € S} < 2. Recall that
(UNS) spaces are reflexive.

The notion of skewness for a normed space was introduced in [8]
to describe the “asymmetry” of the norm:

(13) s(X) = sup{s(z,y); z,y € S}

where
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(1.4) s(z,y) = 7(z,y) — 7(y, ).
Note that
(1.5) s(z,y) = —s(y,z) = s(—=z,—y) for any pair z,y.

For any space X, 0 < s(X) < 2. Moreover, the extreme values 0 and 2
characterize - respectively — (H) spaces and spaces which are not (UNS)
(see [8]).

We recall the definitions of some other constants that we shall
compare with s(X). The radial map T from X onto its unit ball, is the
radial projection onto the unit ball defined by

if  Jlzf| <1
T(z) = z 1
@={oh 5
The radial constant of X is the number

k(X) =Sup{w; z,y € X; z £y} €[L,2].

Recall (see e.g. [9]) that

1
1.6 E(X)=sup{—; z,y e S; zly,t cR
(1.6) (X) p{lltx+y|[ y y }
or also:
lyll 1
E(X) =su : 0; zly} =sup{—=; zly; z,y€ S
(X) p{”m_yH y # y} p{d(z,[y]) y; ¢,y € S}

where d(z, A) = inf{||z — al|; a € A}.
The extreme values of k(X) (1 and 2) characterize — respectively —
spaces where orthogonality is symmetric, and spaces which are not
(UNS) (see [9] and the references there). For the sake of complete-
ness, we recall that some results related to k(X)) were already given by
Gurarii in two not too known papers (see [13] and [14]).
Remark. Letz,y € S,z Ly, A # 0;then ||y+Az| > |A]-||z||. This shows
that in (1.6), to obtain inf ||y + Az|| it is enough to consider A € [-1,1].
The radial constant is connected with the projection constants
onto subspaces of X (see e.g. [2]). These and other similar relations
will be studied in some detail here.
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The present paper is organized in the following way. In Section 2
we indicate some general properties of the functional 7. In Section 3 we
define new constants of skewness and we compare them with s(X). In
Section 4 we compare the radial constant with the constants of skew-
ness. Section 5 deals with projection constants. Finally, in Section 6,
we give some estimates for these constants in uniformly convex and
uniformly smooth spaces.

Several results in sections 3,4 and 5 rely upon smoothness pro-
perties of X. Our modified measures of skewness are useful to obtain
relations with constants which are related to orthogonal pairs. Rela-
tions among the constants we indicated and projections will be obtained
by using what we shall call, according to [11], “polar” projections.

2. Some properties of the functional .

The following properties of 7 are well known. For z,y € X,u € R
and A > 0 we have:

(2.1)  7(z,pz + Ay) = pl|z|| + At(z,y) (this is true also for A = 0)
(2.2) T(Az,y) = 7(z,y)

(2.3) [7(z, )| < lyll.

We indicate a few more properties, which will be used later: though
very simple, probably they are not so well known.
Lemma 2.1. Let z,y € S. Then 7(z,y) = 1 implies 7(y,z) = 1.

Proof. Let z,y € S,1 = 7(z,y) = infi>o M—%’m Therefore for
allt >0:1< 5"—:& = 1, which implies ||z + ty|| = 1 4+ ¢. Thus,
for t > 0,|ly + tz|| = ¢|¥ + z|| = 1 + ¢, which implies 7(y,z) =
= lim,_,q+ ly+ezli-llyll _ 4 o

— N .

Lemma 2.2. A space X is smooth if and only if the following condition
holds:

(2.4) zly iof and only if 7(z,y) = 0.

If in addition orthogonality is symmetric, then smoothness is also equi-
valent to:
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(2.5) if z,y € S,then zly implies 7(z,y) = 7(y, T).

Proof. Of course, if X is smooth, then z 1y implies 7(z,y) = 0, and
moreover, 7(z,y) = T(y,z) = 0 if orthogonality is symmetric, so we
have to prove the converse statements (“if” parts).

(2.4) = X smooth: we prove the contrapositive. If X is not
smooth, then there is a pair z,y with z,y € S and —7(z,—y) = A <
< 7(z,y); then —7(z,—y+ Az) =0, so z Ly — Az. But we have 7(z,y —
—Az) > 0, so (2.4) does not hold.

(2.5) = X smooth (when orthogonality is symmetric): we prove
the contrapositive. If dim(X) > 3, then X must be (H) so we have noth-
ing to prove; thus we assume dim(X) = 2. Let us assume that X is not
smooth; therefore (see (2.4)) thereis a pair z, y € S,z Ly (so yLz) such
that f,(y) = A # 0 for some f, € J(z); we can also assume A < 0 (even-
tually, we change y into —y). Also, there exist f € J(z) and g € J(y)
such that f(y) = g(z) =0 (so f # g). Let f; = af+fg,thusa =1 and
B = A. Take z = Az — y so fz(z) = 0. Then also zLz, so we have: 1=
= |ly|| < |ly=Az|| £ |ly— Az +Az|| = 1. Therefore the value of the con-
vex function of ¢ : FI(t) = ||y + tz] is 1 for 0 <t < —A, and so (set a =
=1/t) ||lz+ay|| = afor a > —1/A. By taking Ag > —1/\ we obtain also,
fort € R: ||z + Aoyl = Aollyll < Aoy + 2 +tz|, so z + AgyLz and then
zlz + Aoy. Now we have: 7(z + Aoy, z) = lim; o+ ”$+’\°y':tz“_)‘° =
= lim; o+ (1+t)”z+('\°£(l+t))y”_)‘°; since Ao /(1 4+t) > —1/A for ¢ small
enough, we obtain 7(z + Agy,z) = lim; .o+ (1+t)()‘°/§1+t))—)‘° = 0.
But then, since % € S and -%_Lm, (2.5) would imply also
m(z, —zt);"y) = T(%,m) = 0, against f(___z-l:\toy) = /\LO > 0; this con-
tradiction proves that (2.5) cannot hold when X is not smooth, which
concludes the proof. <&

For a result similar to the second part of Lemma 2.2, see Lemma

2 in [15].

3. Types of skewness

We introduce the following new constant:

(3.1) s1(X) = sup{s(z,y); =,y € S; zLly}.




36 M. Baronti and P.L. Papini

We give first some indications about the range of s1(X).
Proposition 3.1. We always have 0 < 51(X) < s(X) < 2, and these
estimates are sharp.
Proof. The estimates s1(X) < s(X) < 2 are trivial. Now take a pair
o, Yo € S5 such that zo.lye and yo Lz (this is always possible: see [3]).
But of course for any pair z,y we have either 7(z,y) — 7(y,z) > 0 or
T(y,z) — 7(z,y) > 0, so s1(X) > max{s(zoyo),s(y0,z0)} > 0. If X
is (H) then clearly s;(X) = 0. If X = R? with the norm given by:
[(z,y)ll = max{|z|,|y|}, then it is easy to prove that s;(X) = 2. In
fact, it is enough to consider the following elements: z = (1,1) and
y = (~1,a), with 0 < a < 1, to prove that: z,y € S,zLly,7(z,y) =
= a,7(y,z) = —1 and s0 51 (X) > 1 + a; thus we have 5;(X) = 2. $
Now consider R? with the norm given by

_ [max{lel,lgl} i oy 20
I = {fleb v w26

The unit ball of X is a hexagon. Now take y = (1,0) and z = (a,1)
with 0 < a < 1. We have zly and ylz (in fact orthogonality is
symmetric in this space). Moreover, 7(y,z) = a and 7(z,y) = 0, so
51(X) > s(y,z) = a : this shows that s;(X) > 1. Moreover, symmetry
of orthogonality implies 7(y,z) > 0, so s(z,y) < 1 for any pair z,y on
S with z1y; thus s;(X) = 1 for this space.

Remark 3.2. Note that Lemma 2.1 says that we have s(z,y) < 2 for
every pair z,y € 5. This implies that s(X) must be smaller than 2
when the norm has some property implying the continuity of the map
J and the unit sphere has some kind of compactness. So, if X is smooth
and z,y € S, then 7(y,z) = s(y,z) < 1 for zly; thus s;(X) < 1 in
these spaces, under some assumptions of that type.

Lemma 3.3. If s;(X) = 0, then orthogonality is symmetric.

Proof. Assume s1(X) = 0. Let z,y € S and z Ly, thus 0 > 7(z,y) —
~7(y,z). Also, from zl — vy, 7(z,~y) — 7(—y,z) < 0. But also,
7(z,y) > 0 and 7(z,—y) > 0, and so 7(y,z) > 0,0 < 7(—y,z) =
= 7(y,—z). This implies y1z, which concludes the proof. ¢
Proposition 3.4. Let dim(X) > 3; then 51(X) = 0 if and only if X
is (H). If dim(X) = 2, then s1(X) = 0 if and only if orthogonality is
symmetric and X 13 smooth.

Proof. “If” part: The first statement is trivial; the second one is a
consequence of Lemma 2.2.
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“Only if” part: For dim(X) > 3, the result follows from the above
lemma. If dim(X) = 2 and s;(X) = 0, then orthogonality is symmetric
(see Lemma 3.3); moreover for z,y in S,z Ly, we have s(z,y) < 0 and

s(y,z) <0, s0 7(z,y) — 7(y,z) = 0 and then smoothness of X follows
from Lemma 2.2.

We can also define the following constant.

(3.2) s2(X) =sup{s(y,z); z,y € S; zly} =

= —inf{s(z,y); z,y € S; zly}.

We have he following estimates.

Proposition 3.5. For any space X we have 0 < s2(X) <1 and these
estimates are sharp.
Proof. We obtain 0 < s,(X) by considering a biorthogonal pair z,y in
S. The inequality s3(X) < 1 follows from the definition since s(y, z) <
< 1(y,z) when zly. Moreover, we have s3(X) = 0 if X is (H) and
52(X) = 1 in the example of the hexagon (see after Proposition 3.1). $
Proposition 3.6. We have s1(X) = s2(X) (thus s1(X) < 1) in the
following cases:

(i) X 13 smooth;

(ii) orthogomnality is symmetric.
Proof. Let X be smooth, then s(z,y) = —s(—z,y) = s(y, —z). Since
zly is equivalent to —z Ly, we easily obtain from this s;(X) = s2(X).
When orthogonality is symmetric, equality follows immediately from
the definitions of s;(X) and s3(X). ¢
Remark 3.7. As we recalled in the introduction, the extreme values of
s(X), 0 and 2, characterize two important classes of spaces. Our Prop.
3.4 indicates the situations for which we have s;(X) = 0. It is possible
to have X smooth, thus s1(X) < 1 (see Propositions 3.5 and 3.6) and
X not (UNS); compare this result with Cor. 4.2.

We could raise the following questions:

Questions 3.8. For what spaces we have s1(X) = 1 ? Note that
the condition X (UNS) does not imply s1(X) < 1 or s2(X) < 1 (see
again the hexagon; see also Cor. 6.2). Moreover, X (UNS) implies
s1(X) < s(X) < 2. We do not know if X (UNS) implies s;(X) < 1.
Note that, for Propositions 3.4 and 3.6, when s;(X) = 0 then also
52(X) = 0. Is the converse true? Or for what spaces we have s3(X) =
=0 ? Also: is the inequality s3(X) < s1(X) always true?
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We do not know if 55(X) < 1 implies X (UNS), but we can prove
a partial result in this direction. :
Lemma 3.9. Let there ezist in S a pair z,y such that =zly and
|z £yll =2. Then so(X) =1.
Proof. Let be z,y as in the assumptions. Consider the convex func-
tionsof t eR : g(t) = ||z +y + t(z —y)|| and f(t) = ||z —y + t(z + y)||.
We have g(—1) = g(0) = g(1) = 2 = (1) = £(0) = f(—1), 50 g(t) > 3
and f(t) > 2 for all ¢ € R; moreover f(t) = g(t) =2 for -1 <t < 1.
Now take any a € (0,1) and set u = _ag_y-l—;(_z+y), v = —-——E We have
9(0)/2 =|jv|| =1 = |ju|| = f(a)/2. Let 0 <t < 1,50 35 < 1. We ob-
tain 2{jv+tu| = [la-+y-+i(a—y-+ala-+y))|| = [(1+ta)(a—ty)+(o—y)]| =
= (1+ta)llz+y+ (e —y)| = (1 +ta) -9(i352) = 2(1 + ta). There-
fore 7(v,u) = lim;_,o+ ————|'”+t"t”_||v|| = limy_o+ =1 = a. Also, ulv:
in fact, for all £ > 0 and small enough (¢ < a +¢ < 1) we have
2llu + tv]| = f(a +t) = 2 = 2||u||, which implies 7(u,v) = 0. Thus
52(X) > t(v,u) — 7(u,v) = a, and this implies the thesis. ¢

From the above lemma we obtain the following result.
Proposition 3.10. If dim(X) < oo and s3(X) < 1, then X is (UNS).
Proof. Assume X not (UNS). Then we have (see [2, Th. 6]) sup{]|z +
+y|| + ||z — y|l; =,y € S;zLly} = 4. Now, by using the compactness
of S and the fact that orthogonality is preserved when passing to the
limit, we see that there exists in S a pair z,y with z 1y and such that
lz + y|| + Hm —y|| = 4. An application of Lemma 3.9 implies the
thesis.

We indicate another simple fact concerning s;(X).
Lemma 3.11. Let X be smooth. Then

(3.3) s1(X) < sup{||z +y|; =,y € S; zLy} —1.

Proof. Let X be smooth, so z_Ly is equivalent to 7(z,y) = 0. More-
over, by using Prop. 3.6, for any t > 0 we have s;(X) = s;(X) =
= sup{r(y,z); z,y € S,zly} < sup{lEI=L. 5 4 ¢ 5 21y} By
setting ¢ = 1 we obtain the thesis. ¢

We conclude this section with the following lemma.
Lemma 3. 12. For any space X and any A € R we have
(8.4) As(X) +2 < sup{[lz + Myl + ly — Mall; 7,y € S,
(3.5) As1(X)+2 < sup{|lz + Ay|| + ||y — Az|; z,y € S,z Ly},
(3.6) Asa(X)+ 2 < sup{|lz + My|| + |ly — Az||; =,y € S; yLlz}.
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Proof. Since all these constants are non negative and z_Ly implies
zl —y, it is enough to reason for A > 0. For A = 0 there is nothing
to prove. Now fix A > 0; if z,y € S, then we have ||z + Ay|| + ||y —
=Az|| = (2,2 4+ Ay) + 7(y,y — Az) = 1+ Ar(z,y) + 1 + Ar(y, —z) >
> 2+ Mr7(z,y) — 7(y,z)). This implies (3.4). A similar reasoning,
applied to orthogonal pairs, implies (3.5) or (3.6). ¢

Remark 3.13. By the above lemma we reobtain easily that if X is
(UNS), then s51(X) < s(X) < 2.

4. Radial constant and skewness

We recalled in the introduction the definition of the radial con-
stant £(X) and its main properties. Now we shall indicate some rela-
tions between this constant and those dealing with skewness.
Proposition 4.1. For any space X we have:

(4.1) K(X) <1+ s1(X).

Proof. Let s; = 5;(X); let z,y € S,z Ly, thus 7(z,y) > 0 and then we
have 7(y,z) > 7(z,y) — s1 > —s;. But also —z Ly so T(y, —z) > —s1.
Let a = |ly + Az||, so @ > 7(y,y + Az). If A > 0, then a > 1 +
+A7T(y,2) > 1 — As1. Also, if A <0, then @ > 1+ (=\)r(y, —z) > 1 +
+(=A)(=s1) = 1+ As;. Therefore a > 1 — [A|sy; but also (from z Ly)
a > |A|. This implies o > max{|A|,1 — |Als; }. Since minyegr(max{|A|,
1—-|As1}) = 'l_-l_}Tl’ we obtain o > 1—_:3 Therefore, by (1.6), we have
E(X)= sup{m; T,y €85; vly; A€R} <14 s,s0 (4.1). ¢
Proposition 4.1 has the following consequences, which contain
Lemma 3.3:
Corollary 4.2. If s;(X) = 0, then orthogonality is symmetric. Also:
if s1(X) < 1, then X 1s (UNS).
Proof. From s;(X) = 0 we obtain k(X) = 1, so the first state-
ment. Concerning the second statement, the contrapositive follows im-
mediately: in fact, if X is not (UNS), then k(X) = 2, so (by (4.1))
51(X)>1. ¢
Recall that, for any space X, we have

(4.2) k(X) = k(X*)




40 . M. Baronti and P.L. Papini

and .
(43) s(X) = s(X*).

Prop. 3.4 shows that in general s;(X) # s1(X*), and also (see Prop.
3.6) s2(X) # s2(X™). But this cannot happen in “good” spaces. In
fact we have the following result.

Proposition 4.3. If both X and X* are smooth, then

(44) Sl(X) = Sl(X )

Proof. If X is smooth but not reflexive, then it is not (UNS), so (by
Cor. 4.2) s1(X) > 1; therefore, by Prop. 3.6, s;(X) = 1. For the same
reasons, s1(X*) =1, so (4.4) is proved in this case.

Now assume X reflexive, so our assumptions imply that it is also
smooth and strictly convex. Under these assumptions J is a one-to-one
isometry between X and X*; moreover, zly if and only if J(y)LJ(z).
Therefore, by setting J(z) = f; and J(y) = fy, we obtain (£, § denot-
ing the point functionals in X**) s1(X) = sup{r(z,y) — 7(y,z); =,y €
€ S; zly} = sup{fe(y) — fy(z); =,y € S; zLly} = sup{f§(fe) —
_"%(fy); fa, fy € ‘S*§ fyLfe} = sup{7(fy, fe) — 7(fz, fy); furfy €
€ S* fylf:} = s1(X™*), which concludes the proof of Proposition
4.3. ¢ . ‘

The above proposition, together with Prop. 3.6, shows that in
those spaces s2(X) = s2(X™). We can still ask whether, in any space
X, we have s3(X) < s3(X*), or s2(X) > s2(X*). '

~ We prove a result which will be used in the next section.

Lemma 4.4. Let X be smooth; letz,y € S,z Ly. If we set —7(y,z) =
and ||z + By|| = a, then a <1+ s2(X).
Proof. Our assumptions imply 7(z,y) = 0; —s(z,y) = 7(y,z), thus
B = s(z,y). Also 7(y, #ﬁ) 0, ||5-'—"—1|] = 1, so T(M,y) =
= s(—z—%ﬁ—y,y). So we obtain: a = 7(z + fy,z + By) = 7(z + Py, z) +
+87(z + By,y) < 1+ Bs(ZEEL ) < 1+ |s(z,y)| - |s(2EEL,y)|. Since
oL by,y L £ 2 and o] = |lyll = | 222 = 1, we have max{|s(z, ),
|s(£‘—'ﬂ,y)|} < 51(X), so the thesis. ¢
Remark 4.5. In Prop. 4.1, in general we do not have equahty (consider
again the exagon); also, we do not known if Lemma 4.4 is true without
smoothness. For a related result see (5.17).

We want to recall that in [4], Desbiens introduced the following
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constant:

B(X) =sup{f €R; = + Byly; =z,y€S}.

In fact, as the same author noticed later in [5] (and as it is not difficult
to see by using (1.6)), B(X) = k(X) for any X. Some properties of
B(X) = k(X) were indicated in [4]; we shall indicate them in the last
section. '

5. Projections

Let M be a linear subspace of X. Recall that M is said to be
proziminal if for every z € X the set

Mm(z) = {zo € M; |lzo — z|| < |lm — z|| for every m € M} =
o = {zo € M; z — zo LM}
is non-empty. Given a proximinal subspace M of X, set
(5.1) I w |l = sup{liyll; v € Mar(z); ]| = 1}.
Also, set:
(5.2) MPB (X) = sup{||| IIn]||; M is a proximinal subspace of X}
and
(5.3) MPB(X) = sup{|||TInm|||; M is a proximinal hyperplane of X}.

If M = f~1(0) for some norm-one functional f € X*, then f assumes
its norm on S if and only if M i$ proximinal. Moreover, f(y) = 1 for
y € S is equivalent to y L M. Also, there is exactly one y € S with that
property if X is strictly convez.

A linear, continuous, idempotent operator P : X — M is called a
projection. In case there exists some projection from X onto M, we set

(54) MM, X)=inf{||P||; P isa projection onto M}.
Moreover, we set

(5.5) F(X) =sup{\(M,X); M is a hyperplane of X}.
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For any space X we have (see [2])

(5.6) k(X)= MPB(X)
and (see [10])
(5.7) F(X) < MPB(X).

Moreover, if dim(X) > 3, then (see [1]) F(X) = 1 if and only if X is
But we can also prove the following result:
Proposition 5.1. For any space X

(5.8) MPB(X) = MPB(X) = k(X).

Proof. Given € > 0, there exist z,y € X,y # 0, such that z1ly and
ﬂ_% > k(X) — e. Take a functional f; € J(z) such that f.(y) = 0;
let M be the kernel of f,. Note that M is a proximinal hyperplane and

that zL M, therefore —y € p(z — y). Thus MPB(X) > |||lIum||| =
> b > k(X)—e, which shows that (use (5.6)): MPB(X) > k(X) =
= MPB(X) > MPB(X), and then all these are equalities. ¢

Recall that given a hyperplane M = f~1(0), a projection P : X —

— M has a specified form, namely:

(5.9) P(z) = Py p(z) =z — f(z)y, where f(y) = 1.

If in (5.9) y is chosen so that ||y|]| = 1, then we say that Py is a
polar projection over M. In this case || — Py p|| = 1 (since y L M) and
z — f(z)y € Up(z). If in addition there is a unique y as above, then
we set

(5.10) Py = Py u, ie, Py(z)=z— f(z)y (f(y)=1).
In this case, if X is also reflexive, then Iy (z) = {z — f(z)y}, thus
NIar]|| = || P4l Polar projections have been used in [11], where it

was shown that in some classical Banach spaces they coincide with the
projections of minimal norm.

We can state the following result, which slightly improves Lemma
8 in [11].
Proposition 5.2. For any space X

(5.11) k(X)=sup{||Py,m|l; M is a proziminal hyperplane of X; y L M}.
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Moreover, if X 1is reflezive and strictly convez, then
(5.12) k(X) = sup{||Pyll; M is a hyperplane of X}.

Proof. By using Proposition 5.1 we have (see the discussion above):
k(X) = MPB(X) = sup{|||lx|||; M is a proximinal hyperplane of
X} = sup{||Py,m|l; M is a proximinal hyperplane of X;y LM}, so
(5.11). Moreover, if X is reflexive and strictly convex, then every hy-
perplane is proximinal, so we can write P, pr = P}, and then we obtain
(5.12). ¢

Now let X be smooth. If M = f~1(0),]|f|| = 1, and yL M, then
7(y,z) = f(z) for every z € X and we can write:

(5.13) NPyl = sup{llz — r(y, 2)yll; |l=]l = 1}.

Also, by smoothness we have |-z —7(y, —z)y|| = ||$—7'(y,m)y|| while
7(y, —.7:) —7(y,z) > 0 if 7(y,z) < 0; thus

| Py, |l = sup{llz — 7(y, z)yll; ||z|| = 1,7(y,z) > 0} =
= sup{|lz — 7(y, z)yl;; =)l =1,7(y,z) <0}.

Now we recall the following result from [11, Lemma 7):
Lemma 5.3. If M = f71(0) for some f € X*,||f|| =1, then

(5.14) |1 Py,pell = sup{|| P(z)||, z € S,z Ly}.
Proposition 5.4. Let X be smooth. Then we have
(5.15) k(X) <14 s3(X).

Proof. If X is smooth but not reflexive, so not (UNS), then we have
(see Corollary 4.2).s1(X) = 1, thus (5.15) is trivial. If X is smooth and
reflexive, then every hyperplane is proximinal; moreover, (5.14), (5.13)
and Lemma 4.4 together imply (y € S):

1Py, p]l = sup{|| P(z)l, = € S,z Ly} = sup{||lz — 7(y,z)yll,
z € S,zly} <14 s3(X).

An application of (5. 11) implies the thesis.
Remark 5.5. By using (5.7), (5.8) and (5 15), we also have (in any
smooth space X)

(5.17) - F(X) <14 84(X).

(5.16)
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A direct proof of (5.17) can be achieved in this way. If M = f71(0)
is proximinal (f € X™*; ||f|| = 1) and there exists y € S such that
f(y) = 1, then we have (see (5.16))

(5.18) MM, X) < ||Pym|l €1+ s3(X).

Moreover, it is not difficult to see that a constant k¥ € R exists such
that if My = f71(0), M2 = ¢~1(0) and ||f — gl < e (f,9 € X*; ||f]| =
= |lg]l = 1), then |A(M1,X) — AM(M2,X)| < ke. By combining this fact
with the Bishop-Phelps theorem, we see that, in a smooth space, (5.18)
is true for every M, so we obtain again (5.17).

6. Uniformly convex and uniformly smooth spaces

Recall that X is said to be uniformly convez when the function of
e €[0,2],8() = inf{l - =t 5y € 8; ||z — y|| > €} is positive for
all e > 0.

By using the function §-called the modulus of convezity of X -
we can give some rough estimates concerning some of the constants
considered in the paper.

Proposition 6.1. We always have

(6.1) 51(X) £2-26(1)
Moreover, if X 13 smooth, then |
(6.2) s1(X) <1 -26(1).

Proof. Let z,y € §; zLly, so ||z —y|| > 1. This implies ||z + y|| <
< 2 —26(1). By using (3.5) with A = 1, we obtain: s;(X)+2 <
<2-26(1)+2, so we have (6.1). If X is smooth, then we obtain (6.2)
in a similar way, by using (3.3). ¢

We have immediately the following
Corollary 6.2. The condition §(1) > 0 implies s1(X) < 2, and also
s51(X) < 1 if X is smooth.

Of course, if we assume X* to be uniformly convex, then Prop.
4.3 can be used again to obtain estimates for s1(X); note that in this
case X is smooth. But we can also indicate some direct estimates for
uniformly smooth spaces. Recall that the modulus of smoothness is
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defined, for A € R, in this way:

{Ilw +Aull 4l = Ayl
2

p(A) = sup 1; z,y € S}.
The space is uniformly smooth if lim,_q B(%l = (; this happens if and
only if X* is uniformly convex. Also, if we denote by p* and é* respec-

tively the moduli of smoothness and rotundity of X ¥, then we have (see
[6,pp.63 — 64]):

(6.3) 2p*(1) = sup{e — 26(e); 0< e <2}
and
(6.4) 2p(1) = sup{e — 26*(e); 0 < e < 2}.

We can also define (see [7,p.129])

z + Ayl + :z—/\yv
) — supg e 2+ iz =il _

L; z,y € S,z Ly}.

2
Proposition 6.3. For any space X
(6.5) s(X) < 2p(1); s1(X) < 2p1(1).

Proof. Formulas (6.5) are trivial (see (3.4) and (3.5)). Moreover,
s(X) = s(X*) < 2p*(1) = sup{e — 26(e); 0 <e <2}. &
Concerning the radial constant, (6.5) and (4.1) together imply

(6.6) E(X) <1+ 2p:(1).

By using the modulus of convexity, we have
Proposition 6.4. Let X be (UNS). Then

(6.7) E(X) +6(k(X)) < 2.
Also:

6(eo)
2

Proof. Our assumptions imply k(X) € [1,2). If k(X) = 1 there is
nothing to prove. Now let k(X) € (1,2); set, for ¢ € (0, E(X)—-1),ke =
= k(X) — e. By using (1.6), we can find z,y € S,zLly and ¢, € R,
so that ||t.z — y|| < kl_,; from |ke| — |kete] < ||key — ketez|| < 1 we

(6.8) E(X)<2- , where €9 = sup{e > 0; € + §(¢) < 2}.




46 M. Baronti and P.L. Papini

obtain 2(k. — 1) < 2k.|t| = ||2kctez|| < ||ketez 4 ketez — key||. Now
we observe that ||kctez| < ||key — ketez|| < 1 by construction, while
|ketex — (ketex — key)|| = ke; this implies, by definition of 8, |{ketez +
tketez — keyl| < 2(1 — 6(k.)), thus 2(ke — 1) < 2(1 — 6(ke)), and then
E(X) + 6(k(X)) < 2.

For the second part of the thesis, recall that the following para-
meter was used in [12]: .

z|| + [ty
l= +2yll

It was proved there that u(X) < 3—6(g0) (g0 defined above). Then it
was proved in [2] that, in any space:

u(x) = sup{ LIy e Ry,

(6.9) 2h(X) — 1 < u(X) < k(X) + 1.

This implies k(X) < #Q <2- 6(%1. O

Better (but more complicated) relations similar to (6.9) were given
in [5], where also the estimate (6.7) was proved, in the form k(X) < &o.
By using those results, the second part of Proposition 6.4 could be
slightly improved.
Remark 6.5. The function § is non decreasing and continuous for
¢ < 2; therefore we have g9 < 2 when X is (UNS) (and also the converse
is true). Moreover, for any space X (see e.g. [6, p.60]) 6(¢) <1—(1—
—“’4—2)%, 50 k(X) +6(k(X)) S k(X)+1—4/1- k(i()z; therefore, g9 > 2.
Thus, the estvimate given by (6.7), at most, can say that k(X) < « for
some a > 2. Concerning the estimate (6.8), note that we always have

2 — 6(;") > g Also, note that the second part of (6.9), together with
(4.1), implies p(X) < 2+ s1(X). Again, slightly better estimates can
be given by using the results of [5].
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Abstract: Let A be a real function algebra on (X,o). A cover R of X by
closed sets localizes A if from f € C(X,0) and f|g € A|gr for each R € R,

it follows f € A. Examples of such covers and some relations between them
are given.

For a compact Hausdorff space X and a homeomorphism ¢ : X —
— X, coc =id,C(X,0) is a real space of all complex continuous
functions on X fulfilling f(oz) = f(z) ([5]).

Let A be a real function algebra on (X, ), i.e. a subalgebra of
C(X, o) which is uniformly closed, separates points of X and contains
real constants ([5]).

The well known Bishop theorem states that every uniform alge-
bra A can be obtained by “gluing together” a family of antisymmetric
algebras. In a sense, the class of antisymmetric algebras determines
(forms a basis for) the class of uniform algebras. This idea of form-
ing an algebra from more elementary “bricks” was precised by Arenson
[1]. Following him we will define analogous notions for real function
algebras.

Let A denote the class of all real function algebras (over all pairs
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(X,0)). For A € A, say A C C(X,0),R a closed subset of X, let
Alr ={g|r: g€ A} and A|r := the uniform closure of A|r.
Definition 1. Let R be a cover of X by closed sets, A € A,A C
C C(X,0). We say that R localizes A if the conditions:

f€C(X,0) and f|r € Alr for each R € R, imply f € A.

Definition 2. A subclass B C A is called basic if for every A € A, say
A C C(X,0), there exists a cover R of X such that

(i) R localizes A;

(ii) for R € R,A|r € B.

More picturesquely, every A € A can be obtained from algebras
belonging to B by “gluing” them together in a specified way.

The Bishop theorem states then that the family of all maximal
antisymmetric sets localizes A. Following (1], we will denote this family
Ri. .
We will remind the definitions for real function algebras.
Definition 3. [6] Let A be a real function algebra on (X,0). A
nonempty subset R of X is called a set of antisymmetry if:

(i) f € A and f|g is real implies f|g is constant, and

(ii) f € A and f|r is purely imaginary implies f|gr is constant.
Definition 4. [2] Let A be a real function algebra on (X,0). A
nonempty subset R of X is called a set of r-antisymmetry if:

(i) f € A and f|g is real implies f|g is constant, and

(ii) R is o-invariant, i.e. ¢(R) = R.

Note that if a set is o-invariant then a function with nonzero
imaginary part cannot be constant on it. It follows for example, that
if A = C(X,0) then the only sets which are both antisymmetric and
r-antisymmetric are the singleton fixpoints. So in general the notions
of antisymmetric and r-antisymmetric sets are different.

In [2], Cor. 2.5. it was proved that if A|g is an algebra of real
type (see [3]) then R is r-antisymmetric iff R is a set of antisymmetry
for the complex algebra A + iA. From this fact and from [6], Lemma
2.12 and Th. 2.15 it follows that:

If A|lg 1s an algebra of real type and o(R) = R, then R is anti-
symmetric iff R i3 r-antisymmetric.

In general, if R is antisymmetric set for A, then RU o(R) is r-
antisymmetric. We will soon use this fact.
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From the analogue of Bishop theorem for real function algebras
(see [6], Cor. 3.4. and Th. 3.6.), the cover R; of X by maximal
antisymmetric sets localizes A. The problem is, which other covers
localize A, or, equivalently, which subclasses B C A are basic.

It is not difficult to prove that the cover Ry by maximal r-antisym-

metric sets localizes A. To this end let us show first:
Proposition 5. Let A be a real function algebra on (X,0) and let R be
a mazimal r-antisymmetric set for A. Then A|r is closed in C(R,c|R).
Proof. Consider two cases. First, if A is of complex type then R is max-
imal antisymmetric for a complex algebra A’, where A’ means A with
the multiplication extended to complex scalars. Second, if A is of real
type then R is maximal antisymmetric for a complexification B = A +
+2A. In both cases the restriction algebras A'|g and B|g are closed in
C(R). Taking into account suitable inclusions it is easy to see that A|g
is closed in C(R, o |g). ¢

Now, Th. 3.3 from [6] (Machado theorem for real function alge-
bras) states that for any f € C(X,0) its distance from A is realized
on some closed antisymmetric subset Y of X. Hence this distance is
realized also on a r-antisymmetric set Y Uo(Y') and repeating the proof
of Cor. 3.4 in [6] we can show that the cover R/ localizes A.

Let us consider other natural covers.

Definition 6. A closed set F' C X is a peak set for real function algebra
A C C(X,0) if there exists f € A with f = 1 on F and |f] < 1 off
of F. A closed set E C X is a weak peak set (p - set) for A if E
is an intersection of peak sets. If a function f equals 1 on a set (not
necessarily closed) F and |f| < 1 off of F' then we will say that f peaks
on F.

Note that for any peak set, F' = o(F) and that the countable
intersection of peak sets is a peak set.

Definition 7. A real function algebra A on (X, o) is called an analytic
(a weakly analytic) algebra if from the fact that f € A and f is constant
(f peaks) on an open subset of X it follows that f is constant on X.

It is clear that if A is analytic then it is weakly analytic.

We will call a closed set R C X (weakly) analytic if the uniform
closure A|g of the algebra A|g is (weakly) analytic. This means that
any subset of R which is also a peak set (in weakly analytic case), or a
set of constancy (in analytic case) for some f € A|g is nowhere dense
in R or coincides with R.
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This definition is the same as for uniform algebras (see [1]). In
the case of uniform algebras it is known that these types of algebras:
antisymmetric, analytic and weakly analytic are all different. In [1] it
is also proved that R, = the family of all weakly analytic sets, localizes
A, while the family of all analytic sets does not.

- Lemma 8. If a set F' C X 1is weakly analytic, then it is antisymmetric.
Proof. Let f € A be such a function that f|p is real. Suppose that
f|F is not constant. Then the set P(f) defined as the closure of the
set of all polynomials of f|r contains a function g (defined on F') such
that ||g]| = 1,9 # 1 and ¢™(1) contains a set which is open in F. This
is impossible because F' is weakly analytic. ¢

An easy consequence of this lemma is
Theorem 9. If A is an analytic (weakly analytic) algebra, then it is
also antisymmetric.

From the lemma above, Ry C R;. We are going to show that R,
localizes A. First we define two smaller then R, families of sets.

Given a probability measure v on X we will consider A as a sub-
space in L?(v),1 < p < oo and denote its closure as H?(v). Also we
define H*(v) = H'(v) N L>(v).

Definition 10. A probability measure v is called an antisymmetric
measure if every function in H*°(v) that is real valued a.e. is constant
a.e.

Let R3 denote the family of supports of antisymmetric measures.

Lemma 11. The support of any antisymmetric measure 18 weakly an-
alytic set.
Proof. Let F' be the support of any antisymmetric measure v, let
f € (AlF),|Ifll = 1. Then f € H>®(v). If G C f~!(1) is open in
F, then v(G) > 0 (because F' = supp v). It is easy to show that the
sequence ((1 + f)/2)™ converges a.e. to the characteristic function x g
for some H O G. Since the measure is antisymmetric g must be
constant.

It follows that Rz C Ra.

Before defining the next cover we will remind some known facts.

Let M(X, o) be the set of all Radon self — conjugate measures on
X, l.e.:

M(X,0)={peMX):p=poo},

where M(X) is the set of all Radon (= regular Borel) measures on X.
We have:
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Theorem 12. (Riesz type, [2]). The mapping L defined by

(Lu)f) = [ fautor p € M(X,0), f € O(X, ),

i8 a linear isometry from M(X, o) onto C(X,0)*.

Definition 13. ([2]) Let E be a subspace of C(X,0). A measure
p € M(X,0) is said to annthilate (be orthogonal to) the subspace E (in
symbols pLE) if the functional F, represented by this measure fulfills
the condition F,,(f) = 0 for every f € E. The annihilator of E,Et is
defined as the set of all measures orthogonal to E.

Definition 14. A Radon self-conjugate measure p is an ezireme an-
nihilating measure for E if p is an extreme point of the unit ball of
E+ u € extB(EL).

It is easy to prove ([2]) that if 4 is an extreme annihilating measure
then supp p 1s an antisymmetric set.

Let R4 be the family of all supports of extreme annihilating mea-
sures along with all singleton subscts of X. The family R4 localizes A.
(Let f € C(X,0) be such that f|r belongs to (A|g) for any R € Ry.
From the Krein — Milman theorem, any p € B(A1) annihilates f. Sup-
pose that f ¢ A. Then from the Hahn - Banach theorem there exists
i € B(AY), u(f) = 1, a contradiction.)

We are going to show that R4 C R3. Let p € extB(AL). It
suffices to show that |jz| is antisymmetric. Let f € H*(|u]) be a real
valued function. If € > 0 is sufficiently small then h = (1/2)+¢f fulfills
0 < I < 1 and obviously hu € A+. We have

hu

(1=h)p
= |lhp + [[(1 = h)p

(1= Ryl

But u € extB(A1), hence hu = ||hp|lg. It follows that h = ||lzp|| a.e.,
so f is constant.

Since R4 € R3 € Ry, € R; and R4 localizes A, hence each of
Ri, 1 =1,2,3,4 does so.

We are now going to investigate the problcm whether the natural
cover of X consisting of supports of real part representing measures
localizes A.

Lemma 15. Let u be a probability measure. Then p 1s antisymmetric
iff for every Borel set F such that xp € H(p), p(F) =0 or u(F) = 1.
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Proof. The necessity is obvious. To prove sufficiency, let f € H>®(u)
be a real function, a = ess inf f(z),b = ess supf(z). We are going to
show that a = b. Take (P, ), a sequence of polynomials with real coeffi-
cients which is point convergent on [a,b] to the characteristic function
of [a,(a + b)/2], and such that max;c[q ) |Pn(t)] < 1. Then P,(f) is
a sequence of functions from H*®(u),||Pn(f)|| < 1,lim P,(f) =1 on a
set F' := f~([a,(a + b)/2]). This sequence has a subsequence which
is w*-convergent to some ¢ € H*®(y). But ¢ = 1 on a set F' and
llg]| < 1, so it is easy to see that ((1 + ¢g)/2)" converges a.e. to xp.
Hence xp € H*(u) and from the assumption p(F) = 1. It follows
(a+b)/2=b,s0a=0b. {

Recall (see [5]) that a probability measure u is called a real part
representing measure for ¢ € ®4 (P4 denotes the carrier space of an
algebra A) if:

- for all f € A, [ Re fdu =Red(f), and

- for every Borel set E, u(E) = p(cE).
Remark 16. Note that the measure y is multiplicative on Re AN A,
since for f € ReaNA, [ f du = [Re f du =Re ¢(f) = ¢(f). The last
equality follows from the general fact that if an algebra B is of strictly
real type, R4, then for every ¢ € ®p,¢(f) € R for f € B - see [3] for
details. It is obvious that Re AN A is of Ry type.
Lemma 17. If p 1s a real part representing measure for a homomor-
phism ¢ € ® 4 then it is antisymmetric.
Proof. Take any real function f € H*(u). We have to show that f
is constant. By Remark 16 p is multiplicative on the L'(u) — closure
of Re AN A; we will denote this closure H!(u)". Now take a Borel set
F such that xp € H®(g). Then xr € H'(p)", so p(F)? = p(xr)? =
= u(x%) = p(xs) = p(F). Hence u(F) = 0 or u(F) = 1. From the
preceding lemma, p is antisymmetric. ¢

Let S’ denote the cover of X by supports of real part representing

measures. From the above lemma, &' C R3. If R4 had been a subfamily
of §',we would have known that S’ localizes X. But S’ cannot contain
R4 because S’ consists of o- invariant sets only. In order to have a
localizing family we will add to &’ some other sets.
Definition 18. Let Y be any subset of X. If a set Y, fulfills Y, U
Uo(Y,) =Y, wewill call Y, a o - generating subset for Y. If moreover,
Y, does not contain any Z, with Z, Uo(Z,) =Y, we will say that Y,
is @ minimal o -generating subset for Y.
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Of course Y is o-generating for itself.

Let now § = {Y, : Y € §'}. We will prove that the family S
localizes A if A is large enough.

Recall that there are various methods of defining a Shilov bound-
ary of a real function algebra A. We will use the following. If A is
a real function algebra on (X,¢) then S C X is called a boundary if
S = o(95) and if Re f assumes its maximum on S for all f € A. The
Shilov boundary S(A) of A is defined as the smallest closed boundary
of A.

It can be shown ([4]), Cor. 3.8) that the Shilov boundary of A
coincides with the Shilov boundary of its complexification, S(A) =
= S(A+:iA).

A complex function algebra B is said to be relatively mazimal

([7]) if for any subalgebra B' of C(®p) containing B and such that
S(B) = S(B') it follows B = B'. Following this definition we will
call a real function algebra A relatively mazimal if its complexification
B = A + 1A is relatively maximal.
Remark 19. Let us call a real function algebra A weakly relatively
mazimal if for any subalgebra A' of C(® 4) containing A and such that
S(A) = S(A") it follows A = A'. It is casy to see that if A is relatively
maximal then it is weakly relatively maximal. (For the proof take any
A" D A, A" a subalgebra of C(®4),S(A) = S(A4"). Then B' = A" + 1A’
is a complex function algebra, B’ O B = A +iA and from [4] Cor.3.8
S(B') = S(A") = S(A) = S(B), so it follows B = B’ hence A = A'.) It
is not clear whether the converse holds true.

Corollary 2 in [7] states that if a complex function algebra B is
relatively maximal and X = S(B) then the cover of X by supports of
representing measures localizes A.

Theorem 20. If a real function algchbra A is rclatively mazimal and
X = S(A) then S localizes A.

Proof. Let B = A+:iA. B is relativcly maximal and S(4) = S(B) =X
(by assumption and [4] Cor. 3.8). Hence by [7] Cor. 2 the family

U = {suppp : p is representing for B}

localizes B. Let u, be a measure on X defined by u,(E) = p(oF) for
all Borel subset of X and m = (4 po)/2. m is a real part representing
measure for A ([4], Cor. 3.4) and suppp is a o - generating subset for
Y = suppm. It follows & C S so S localizes B. Let f € C(X,0), fls €
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€ Als for S € 8. Then f+if € C(X),(f +if)ls € (A+14)|s, so
f+4if € B. Hence f € A. ¢
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7. Extending a family of merotopies in a semi-
uniform space

A. WITHOUT SEPARATION AXIOMS

7.1. A family of merotopies in a semi-uniform space has a coarsest and
a finest extension; we are going to construct both.
Notation. For an entourage U, let

C(U)={C:C* U}, cl(U)z{{x,y}:ny,yU:c}.

Recall from 0.4 that U(c) = |JC? for a cover c; this notation will be
Céec
used for arbitrary collections ¢ C expX. ¢

Lemma.

a) c®(U) and c}(U) are covers. U(c) is an entourage iff c is a cover.

b) H(UNV) =k U)NHKV) (k=1,2).

c) U(KU) =UnU' (k=1,2).

d) For a cover ¢, c*(U(c)) refines ¢, and ¢ C *(U(c)).

e) If ¢ is a topology on X, and U is symmetric and open then

U(int.c®(U)) =U.

Proof. e) U(int.c’(U)) c U(c®(U)) = U. Conversely, if zUy  then
VxW CU for some c-open neighbourhoods V of z and W of .
We may assume V2 C U, W? C U, since zUz, yUy; W x V C U by
the symmetry. Thus C = VUW € ®(U), and, C being c-open,
C € int.c®(U), (z,y) € C? C U(int(c*(T)). ¢
Remark. Saying that c is finer than d instead of ¢ refines d (which is,
of course, in conflict with established terminology), the content of this
trivial lemma can be interpreted as follows: any symmetric entourage
U can be induced by coverings; c®(U) is the coarsest and ¢! (U) the
finest one (more precisely, one of the coarsest, respectively finest ones);
if U is open then intc?(U) is the coarsest open cover inducing U.

7.2 Recall the following notations:
¢ ={Cl:Cica} (1€l cieMy),
CP=CiUX], X]=X\X;

sU denotes the collection of the symmetric elements of /.
Definition. For a family of merotopies in a semi-uniform space,
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a) Let M° be the merotopy for which ? (¢ €I, ;€ M;) and
c®(U) (U € U) form a subbase B°.
b) Let M! consist of those covers ¢ of X for which

(1) clX; eM; (i€l
(2) U(c) e U.

The more precise notations ng/l, M;) = M*(U,{M; : 1 € IT}) will
be used when necessary; M*(U) = M*(U,0) (k=0,1). &

The elements of BY are covers, so it is indeed a subbase for a
merotopy. It does not change B? if U is replaced by s in the definition
(since c°(U) depends only on U N U™'). Replacing U/ and each M; by
subbases, we still obtain a subbase for M’ (Lemma 7.1 b) and c?(N)d? =
= (ci(N)d;)°). If I = 0 then B® = {°(U) : U € si4} is a base, not just
a subbase (Lemma 7.1 b)). M! is clearly a merotopy. The next Lemma
gives an alternative description of M'; in particular, if I = ( then
B' = {c}(U) : U € sU} is a base for M.

Lemma The covers of the form
(3) Cl(U)UUCi (UESU,C,‘EM,’ (iEI))

1€l
make up o base B! for M!,
Proof. If c is as in (3) then c|X; D ¢;, thus (1) holds; U(c) D
D U(c!(U)) = U, thus (2) holds, too. This means that B! ¢ M.
Conversely, any ¢ € M' is refined by (3) taken with ¢; = ¢|M; and
U=U(c). ¢
Theorem. Any family of merotopies in a semi-uniform space has ez-
tensions; M® is the coarsest and M the finest one.
Proof. 1° M° is coarser than M*. It is enough to show that B® ¢ M!,
i.e. that (1) and (2) hold for the covers ¢ and ¢®(U). It follows from the
accordance that ¢? satisfies (1) (this fact was already used in the proof
of Theorem 3.1). (2) is satisfied, too, since the compatibility implies
that U(c;) = U|X; with some U € U, and from

Cf* = CFU (Ci x XT)U(X] x C))UX]?

we obtain U(c?) = U|X; U (X% \ X?), so that U C U(CY?). ®(U)|X; =
= c®(U|X;) is clear from the definition, thus (1) holds for c®(U) (since,
assuming U € sU, UlX; = U(c;) for some ¢; € M;, which refines
c®(U|X;) by Lemma 7.1 d)); (2) follows from Lemma 7.1 c).
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2° M° and M! are compatible. According to 1°, it is enough to check
that (M') C U C U(M®). The first inclusion is evident from (2). If
U € sU then ®(U) € M°, so U(c®(U)) € U(M®); hence U € M° by
Lemma 7.1 c).

3° M and M! are extensions. By 1° and 2° , we have only to see that
M'|X; € M; C Mg|X;. The first inclusion is clear from (1), the second
one from ¢J|X; = c;.

4° M° is coarsest, M; is finest. Let M be an extension. Any ¢ € M
satisfies (1) and (2) by the definition of an extension, thus M C M.
For c; € M;, there is a ¢ € M with ¢|X; = ¢; ; c refines ¢!, thus ¢ € M.
Given a U € sl , there is a ¢ € M with U = U(c) (see 0.4), and then
c®(U) D ¢ by Lemma 7.1 d), thus ¢®(U) € M, too. Hence B C M,
implying M® ¢ M. &

B. RIESZ MEROTOPIES IN A SEMI-UNIFORM SPACE

7.3 If a family of merotopies in a semi-uniform space has a Riesz
extension then the semi-uniformity is Riesz, and the trace filters are
Cauchy (with respect to the merotopies). The merotopies are also Riesz,
but this is included in the statement that the trace filters are Cauchy.
The above conditions are sufficient, too.

Definition. For a family of merotopies in a semi-uniform space, let

M% = {c € M': intcis a cover of X}. ¢

(Compare with Definition 3.2.)
Theorem. A family of merotopies in a Riesz semi-uniform space has
a Riesz eztension iff the trace filters are Cauchy; if so then M° is the
coarsest and My the finest Riesz extension.
Proof. The necessity is obvious. Assume conversely that the trace
filters are Cauchy. Now M is Riesz, since int c is a cover for each
¢ € BY. Indeed, intc! is a cover by the Cauchy property, while if U € U
then A C int U implies that for any z € X, there is a C € v(z) with
C? C U, and it follows from C € ¢®(U) that int c°(U)is a cover, too.

M? is the coarsest Riesz extension by Theorem 7.2. If M is a Riesz
extension then M C M' (Theorem 7.2), therefore M C M%. In partic-
ular, M ¢ ML ; this and the evident inclusion ML ¢ M! imply that
M3 is an extension (again Theorem 7.2). It follows from the definition
that, being compatible, M} is Riesz.
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Remark. Given a semi-uniformity &/ and a U € sl{, there is in general
no finest one (in the sense of Remark 7.1) among the covers ¢ inducing
U for which int ¢ is cover: take the Euclidean uniformity on R , and

U =R? ; observe that U = U(c(¢)) (¢ > 0) where
c(e) = {lz,z +e[U{y} : 7,y €R}.

So we cannot hope for a characterization of M%z similar to Lemma 7.2.

C. LODATO MEROTOPIES IN A SEMI-UNIFORM SPACE

7.4 If a family of merotopies in a semi-uniform space has a Lodato
extension then the semi-uniformity and the merotopies are Lodato, the
trace filters are Cauchy, and 3.6 (1) holds. These conditions are not
sufficient, see Examples 7.12.
Definition. For a family of Lodato merotopies in a Lodato semi-
uniform space,

a) Let M}, = {c € M! :int c € M*}.

b) If the trace filters are Cauchy then let M} be the merotopy for
which {int ¢ : c € M°} is a base. ¢

The open covers in M' form a base for M}. In b), int c is a cover,
because the trace filters are Cauchy and U is Lodato; these covers form
a base for a merotopy, since int ¢ (N) int d = int (c(N)d). The following
covers make up a subbase B} for MY :

intc! (Gel, c;eMy, ¢ is ¢ci-open);
int co(U) (U € sU,U is open).
Observe that
(1) intc®(U)={C:C*CU, C isopen}.

Remark. There is a simple reason for the similarity with Definitions
3.4, 3.5 and 5.14: If p is a collection of compatible merotopies in a topo-
logical space such that M ¢ M’ € M” and M,M” € u imply M’ € g,
there is a coarsest M° € 1 (a finest M' € p), and there exists a Lodato
merotopy in u then M} (M}) defined as above is the coarsest (finest)
Lodato merotopy in . (The proofis straightforward.) Analogous state-
ments hold for contiguities and semi-uniformities.

Lemma. A family of Lodato merotopies in a Lodato semi-uniform
space has a Lodato extension iff the trace filters are Cauchy and M% C




62 A. Csdszdr and J.Dedk

C ML ; if so then MY is the coarsest and M the finest Lodato extension.
Proof. The above remark applied to the collection of all extensions
(Theorem 7.2) gives that if there are Lodato extensions then MY is the
coarsest and M1 the finest one; therefore M} C M}. Assume conversely
that the trace filters are Cauchy and M} C M}. Then Theorem 7.2 and
the trivial inclusions M® ¢ MY and M} c M! yield that M} and M}
are extensions. Being compatible, they are clearly Lodato.

7.5 Remark. Lemma 7.4 remains valid if M} C M7 is replaced by
M} ¢ M! (or M® € M}). The proof is the same.

7.6 Lemma. A family of merotopies in a semi-uniform space has a
Lodato eztension iff
(i) the semi-uniformity and the merotopies are Lodato;
(i) Ulint ) e (iel,c;eM;);

(iii) (int c?)|Xj eM; (3,5 €l,cieMy);
(iv) (int (O)|X; eM; (U e sU,iel).
Remarks. a) (ii) implies that each int c? is a cover, i.e. that the trace
filters are Cauchy.

b) In comparison with Lemmas 5.17 and 6.8, Condition (iv) is
completely new; we shall later see that it is not superfluous.
Proof. 1° Necessity. (i) is clear. (iii) follows from Theorem 3.6. If
there are Lodato extensions then M(}J is one of them by Lemma 7.4,
int ¢ € M} by definition, thus, M} being compatible, (ii) holds; (iv)
follows from MY |X; = M; and int °(U) € M.

2° Sufficiency. The assumptions of Definition 7.4 are fulfilled, so,
according to Remark 7.5, it is enough to check that M} c M!, i.e.
that BY C M!. This means four conditions, from which three are just
(i), (iii) and (iv), and the fourth, namely U(int °(U)) € U , holds by
Lemma 7.1 €).
Corollary. A single Lodato merotopy Mg in a Lodato semi-uniform
space has a Lodato extension iff U(intcd) € U for each co-open co € My,
and (int c®(U))|Xo € Mg for each open U € sU. &

The first assumption cannot be replaced by the Cauchy property

of the trace filters, and the second one cannot be dropped either, see
Examples 7.12.

7.7 Corollary. Any Lodato semi-uniformityU can be induced by Lodato
merotopies; MY (U) is the coarsest and ML (U) the finest one. &
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BY (con51s’c1ng in this special case of the covers given in 7.4 (1))
is a base for MY ().

It can happen that MY (&) # M®(U) for a Lodato semi-uniformity
U. (In a proximity space, I # @ was needed for an analogous example,
see Lemma 5.15 and Example 5.17.)
Example. On X =R, take the semi-uniformity ¥ for which {U(k) :
k € N} is a base, where

Uk)={(z,y): lz—y| <1/k}UU{Qmn : m,n >k},

Qn =] +—[x] +—
mn =M m—I—n’m m-+n n m—I—n’n m—l—n'

c is the Euclidean topology, thus U(k) is open, and U is Lodato. We
claim that

c =int "(u(1)) € MY (LN\M°(U1).

Indeed, if ¢ belonged to M®(I) then there were a k € N with d =
= c’(U(k)) refining c. This is, however, impossible since A = {n € N :
n >k} € d, but there is no open set G D 4 such that G2 C U(1). ¢
7.8 M7 (U), ML () and My (i) can be different:

Example. Take the Euclidean uniformity & on X =R, and let f(z) =
=z + (1+|z|)"!. Then

(1) d = {lz, f(2)[ U]y, f()]: =,y € X} € ML) \ML ),
{{e,y} s 2,y € X} U {Jz, f(2)[: 2 € X} € MRUO)\MLU). &

7.9 Condition (iii) is not superfluous in Lemma 7.6:
Example. Let U be the Euclidean uniformity on x = R x [0,1[, X =
=R x {0}, X1 = X7, M; = ML(U)|X;. 7.5 (ii) and (iv) are satisfied,
since Mp and M; separately have extensions. But (iii) fails for i = 1,
j=0,

C1 = {DX]O, 1[ De d} € M1
with d from 7.8 (1). ¢

7.10 Corollary. A family of merotopies in o Lodato semi-uniform
space has a Lodato extension iff {M;,M;} has a Lodato eztension for
any t,7 € . $

7.11 Corollary. A family of merotopies in o Lodato semi-uniform
space has a Lodato extension iff it has a Lodato extension in (X,c), and

each M; has a Lodato extension in (X,U).
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Proof. Theorem 3.6 and Lemma 7.6.

7.12 Theorem. A family of Lodato merotopies given on open-closed
subsets in a Lodato semi-uniform space has Lodato extensions.

Proof. By Corollaries 3.8 and 7.11 it is enough to check that each M;
separately has a Lodato extension, i.e. that

(1) U(intc?) €U (c; €M; is c;-open),
(2) (int C(U))|X* e M; (U € sd is open).

X; being closed, we have int ¢{ = ¢%; U(c?) € U , because ¢ € M°,
which is compatible. Thus (1) holds indeed. On the other hand, the
openness of X; implies that

(int co(U))|X; = int; (°(U)|X:)

(see 7.4 (1)). Now c°(U)|X; € M;, since c®(U) belongs to the extension
M. Thus, M; being Lodato, (2) is satisfied, too. ¢

It is not enough to assume that the sets are open and the trace
filters Cauchy, or that the sets are closed. The next examples (with |I| =
= 1) have the additional property that there exists a Lodato extension
in (X, 6(U)).
Examples. a) With X | X, and My from Example 5.20, My is com-
patible with U|X,, where U is the Euclidean uniformity on X. U and
Mg are Lodato, and Xg is open. The trace filters are Cauchy; in fact,
Mo has a Lodato extension in (X, §(U)) (see 5.20 and Corollary 5.17).
The second condition of Corollary 7.6 holds (because Xy is open), but
the first one fails for ¢o(1): no set of the form (] —€,e[x{0})* Nz is
contained by U(int ¢o(1)°).

b) Let X and Y be as in Example 7.7, Xo = N, My = M ()
Uy = U|Xp. Now U and My are Lodato (the latter because ¢q is dis-
crete), and Xy is closed. My has a Lodato extension in (X, §(U/)) (The-
orem 5.22), but it does not have one in (X,U): (int c®(U(1)))|Xo & Mo,

since this cover consists of finite sets, while My is contigual. ¢
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8. Extending a family of semi-uniformities in a
proximity space

A. WITHOUT SEPARATION AXIOMS

8.1 Results are, and proofs could be, analogous to those for merotopies
in a proximity space (§ 5). The folljowing simple observation will save
us from doing all over again: ‘

Lemma. For a family of semi-uniformities in a prozimily space,
{M®(U;) : i € I} is a family of merotopies in the same space. The
trace filters are U;-Cauchy iff they are M°(U;)-Cauchy.

Proof. The accordance follows from C®(U|X;) = °(U)|X;. ¢

8.2 Definition. For a family of merotopies in a proximity space, let:
U° = UM (6, M (U:))). ¢
The following entourages constitute a subbase B for U°:
U =U; U(X\XH) =U(((U)Y (1€ ,U; els);
Usp=A" UB?=U(cap) (ASB).

Theorem. A family of semi-uniformities in a prozimity space can
always be extended; U° is the coarsest extension.
Proof. It follows from Theorem 5.4 and Lemma 8.1 that U° is an
extension. Let U be another extension; then M°(I) is an extension
of the merotopies M®(Z;), thus M® ¢ M°(Uf) (Theorem 5.4), implying
U =UM®) cUM ) =U. &

It follows from Example 5.3 that there is in general no finest com-
patible (Riesz/Lodato) semi-uniformity in a (Riesz/Lodato) proximity
space.

B. RIESZ SEMI-UNIFORMITIES IN A PROXIMITY SPACE

8.3 Theorem. A family of semi-uniformities in a Riesz prozimity
space has a Riesz extension iff the trace filters are Cauchy; if so then
U is the coarsest Riesz extension.

Proof. If the conditions are fulfilled then 2° is Riesz by Lemma 8.1
and Theorem 5.9. $
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C. LODATO SEMI-UNIFORMITIES IN A PROXIMITY SPACE

8.4 Although the results are analogous to those for Lodato merotopies,
we cannot keep on applying the results of § 5, since M°(4;) is in general
not Lodato (Example 7.7), while it can occur that {M} () : i € I} is
not a family of merotopies (it is not accordant):

Example. With X and U from Example 7.7, let § = 6(21), Xo =N,
X1 = X, Ui = U|X;. Now {Up,Ur} is a family of semi-uniformities
having a Lodato extension (namely U), but MY () and MY (1) are
not accordant: if they were then M? 1.(U) would be a Lodato extension
of M} (o), contradicting Example 7.12 b). ¢

Remark. An open filter (in particular, a trace filter) is U;-Cauchy iff
it is M (¢4;)-Cauchy. This observation makes it possible to apply the
results of § 5 C in the special case Il < 1.

8.5 Definition. The entourage U is a §-entourage if A§ B implies that
there-are z € A, y € B with zUy.

U is a 6-entourage iff ASU[A]" (4 C X).
Lemma. A cover ¢ is a §-cover iff U(c) is a é-entourage.

8.6 Lemma. For a semi-uniformity U on X, §(U) is coarser than & iff
every U € U is a é-entourage iff U has a base consisting of 6-entou-
rages.

8.7 Lemma. IfU and V are é-entourages and V = U(f) with a finite
cover f then UNV s a 6-entourage.

Proof. Take a cover c such that UNU~! = U(c), and use Lemmas 5.2
and 8.5. ¢

8.8 Definition. For a family of Lodato semi-uniformities in a Lodato
proximity space with Cauchy trace filters, let {Int U : U € B} be a
subbase for ] (with B from 8.2). ¢

The Cauchy property implies that Int U is indeed an entourage.
Copying the argument from 5.14 to 5.17 and 5. 22, we obtain:
Lemma. A family of semi-uniformities in a prozimity space has a
Lodato eztension iff

(i) the prozimity and the semi-uniformities are Lodato;

(ii) N Int U? is a &-entourage whenever § £ F C I is finite, and
ieF

Uiel; (1€ F),
(i) (Int UD)|X; € U; (3,5 € I,U; € Uy).
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If these conditions are satisfied then U} is the coarsest Lodato

extension.
n

(When showing that (| IntUJN () Ua,,B, is a 6-entourage, apply
iEF k=1

Lemma 8.7 n times.)
Corollary. A single Lodato semi-uniformity Uy in a Lodato prozimity
space has a Lodato eztension iff Int UY is a §-entourage for each
(co X cg-open) U € Uy. &
Theorem. A family of Lodato semi-uniformities given on closed sub-
sets in a Lodato prozimity space has Lodato extensions; U® = U? is the
coarsest one.

8.9 The condition in Corollary 8.8 cannot be replaced by the weaker
assumption that the trace filters are Cauchy:
Examples. a) Let

Xo={(1/k,1/n): k,neN,k <n}, X = XoU{(1/k,0): k € N}.

With the Euclidean proximity é on X, X is open. For z = (z',z"),y =
=(y',y"), z,y € X and € > 0, define

(1) aUs(ely i o' — '] <&, [ — "] <&, (&' £y = 2" £y"),

and let {Up(e) : € > 0} be a base for Uy. Each Up(e) is an open -
-entourage, and U, is clearly finer than the Euclidean semi-uniformity
on Xy, thus Uy is a compatible Lodato semi-uniformity. The trace filters
are Cauchy, but Int Up(1)° is not a é-entourage (let A and B be disjoint
infinite subsets of X]).

b) Let everything be as above, but replace the last condition in
(1) by
(:El — -'I:”, yl # yll = mll < yll), (.’E’ # xll, yl — yll :> yll < 1:”).
Now the sets A = X[ and B = {(1/n,1/n) : n € N} show that
Int Up(1)? is not a é-entourage. ¢
Similarly to 5.18 the condition of Corollary 8.8 can be split into

two parts. The above examples show that neither of these parts is
sufficient in itself.

8.10 Condition (iii) cannot be dropped from Lemma 8.8, see Example
2.10; (ii) cannot be replaced by the weaker assumption that each Int U}
is a §-entourage:
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Example. Taking X, X, X; and § from Example 5.20, let {Ui(e) :
e > 0} be a base for U; on X;, where, with z = (z',z") and y = (v/',y"),

n

U (e)y iff |2’ —y'| <¢, |a" —y"| <¢,
(z",y" <e,a' <0<y = —z' <y'),
("¢ <e,y <0<z’ = —y <1'),
zUo(e)y iff (=2', —z")Ur(e)(—y', —y")
The reasoning from 5.20 can be easily adapted. ¢

9, Extending a family of merotopies in a contiguity
space

A. WITHOUT SEPARATION AXIOMS

9.1 In the problems investigated so far, a family of structures always
had an extension if no separation property was required; this is not the
case for merotopies in a contiguity space. It will be easier to describe
the counterexample after some definitions and lemmas.
Definition. In a contiguity space (X,T'),
‘a) A cover c of X is a I'-cover if any finite cover refined by c

belongs to I'.

b) (See e.g. [4].) A collection n C expX is I'-near if it is finite and
nm={N":Nen}¢gIl. ¢

A finite cover is a I'-cover iff it belongs to I". It follows easily from
the axioms that Co2 could be replaced by

Co?2". if n is I'-near and each N € n is the union of a finite collection
a(N) then there are A(N) € a(N) such that {A(N): N € n} is

I'-near.

(Compare with P5 in 0.2, or rather with its more complicated form
that can be obtained by induction. Observe that A §(T") B iff {4, B} is

I'-near.)

Lemma. A cover ¢ 1s a ['-cover iff cNsecn # @ for each I'-near
collection n.

Proof. c is not a I'-cover iff it refines some finite f ¢ T, i.e. iff there
is a [-near collection n such that each C' € c is the subset of some
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NTen™ $

Compare this lemma with the definition of a é-cover (5.1). By
the observation made before the lemma, any I'-cover is a 6(T')-cover.
Conversely, any §-cover is a I''(§)-cover (indeed, if ¢ is a §-cover then

any finite cover refined by c is a §-cover, too, so it belongs to I''(§) by
definition).

9.2 Lemma. For a merotopy M on X, I'(M) is coarser than I iff each
element of M 18 a T'-cover iff M has a base consisting of I'-covers.

9.3 Lemma. Ifcis a I'-cover and f € T" then C(N)f is a I'-cover.
Proof. Given a I'-near collection n, we need C € ¢ and D € f such
that CN D € secn (Lemma 9.1). By Co”2, it can be assumed that each
element of n is contained by some element of the partition generated by
f. As fis a I'-cover, there is a D € f N sec n, implying Un C D. Taking
now a C € cNsecn, we have CN D €secn. $

For I'-covers ¢ and d, c(N)d is not necessarily a I'-cover: in Ex-
ample 5.2, take I' = T'1(§).

9.4 Definition. For a family of merotopies in a contiguity space, let
M® be the merotopy for which T and the covers c? (i € I,c; € M;) form
a subbase B.

I' could be replaced here by a subbase.

Lemma. A family of merotopies in a contiguity space has an extension

i
(1) () <? is a -cover whenever § # F C I is finite and c¢; € M;
ieF

(z € F); if so then MP is the coarsest eztension.
Remark. Compare (1) with (ii) of Lemma 5.17.
Proof. 1° Necessity. Let M be an extension. Then ¢; € M; = M| X,
thus ¢ € M, and (();cr)c! € M, hence it is a I-cover by Lemma 9.2.
2° Sufficiency. We show that M® is an extension. Each element of
M® is refined by a cover of the form ¢ = ((;cr <) (N) f, where ¢; € M;
and f € T. It follows from (1) and Lemma 9.3 that ¢ is a I'-cover;
hence I'(M?) C T by Lemma 9.2. On the other hand, T' ¢ B ¢ M°
implies I' ¢ T(M®). As M°|X; D M; is evident, we have only to check
that MOIXi C M;, ie. that B|X; C M;. It was already used in other
proofs that, in consequence of the accordance, c?IX,' eM;;iffel
then f|X; e I'; C My,
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3° M? is the coarsest extension. It is clear that any extension has
to contain B. ¢
Theorem. A family of merotopies given on disjoint subsets in a con-
tiguity space can always be extended. M° is the coarsest eztension.
Proof. To prove that (1) holds, it is enough to show (by Lemma 9.1)
that if n is I-near then there are C; € ¢; such that ;. C? € secn.
Take an index k ¢ I, and define Xy = (UzEFX) J = F{U k}. By
Co"2, we may assume that each N € n is the subset of some X; ()
with ](N) € J. For any i € F fixed, take a C; € c; that meets each
N € n lying in X;; this is possible because a subcollection of a I'-near
collection is I'-near, a Inear collection in X; is I';-near, and ¢; is a
I';-cover. Now (;cp C? =X U Uicr Ci meets each N € n. $

There is, in general, no finest compatible merotopy in a contiguity
space: replace § by I''(6) in Example 5.3 (if there existed a finest
merotopy compatible with I''(§) then it would be the finest one among
the merotopies compatible with §).

9.5 Disjointness is essential in Theorem 9.4. In fact, for n = 2,3,...,
there is a family of n merotopies in a contiguity space that has no
extension, although any subfamily of cardinality n — 1 has one:
Example. Let2§n€]N,Y3=]N><{s} (1 < s < 2n),

= {L.n), K ={n+1..2m} X = "V, X =
= Y U U kK Yk Take the prox1m1ty 6on X for which AéB iff either
AN B # { or both A and B are infinite. For i € I, let M%(§;) U {d;} be
a subbase for M; on X;, where

d; = {{(ms,s) :s€{i} UK} :m; €eN,mpq; < mn+i+1}U

U{ Urex Y} U {1},
and, in the definition of d,, ma,1; is identified with Mpt1. d; is a
b;-cover, thus §(M;) = §; by Lemmas 5.2 and 5.1 (because MO(&-) is
compatible with é;, and it has a base consisting of finite covers). If

,J€I, i#j then X;;= Usex Ys € di, thus
Mi| X5 = M°(6:)] X5 = (M°(6)]X:)| X5 = M°(6)] X35 = M°(6]X55)

(Lemma, 5.3 c)). Hence {M; : i € I} is a family of merotopies in (X,9).
Define I'; = I'(M;). Now {T'; : ¢ € I} is clearly a family of contiguities
in (X,6), so we can take the coarsest extension I' = T (Definition
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and Theorem 6.2). {M; : i € I} is a family of merotopies in (X,T).
We claim that y = {Y; : s € T U K} is I'-near but ¢ N secy = @ for
c=(Nice 1)dY ; according to Lemmas 9.1 and 9.4, this implies that the
family of merotopies cannot be extended.

To prove that y is I'-near, it is enough to check that f N secy = §
for each f € T' (because this condition does not hold for f = y"). fis
refined by a cover g(N)(;e;) fi with g € I'°(6) and f; € T; (see the
definition of I'?; it is enough to take only one f; from each I';, because
the operations (N) and ° commute). f; € M;, thus there is a finite
g; € MO(&), ie. ag; € I'°(6;), such that g;(N)d; refines f;. If A6B then
either A or B is finite, thus ¢ A,B contains a cofinite set; hence there is
a cofinite H € g (see the definition of I'%(§)). Similarly, there are sets
H; € g; cofinite in X;. Pick a v € N such that

H™UU; e (XG\H) c {1,...,v} x TUK).
Consider the sets

Di(p) ={(v+ 1L, 1)} U{(p+k,k): ke K} edy (u>v).

Dy(p) C Hy € gy, thus Dy(p) € g;(N)d;. As this cover refines the finite
f1, there are p > v, > p+4n and E; € f; such that D;(u), D1(n) C Es.
For 1 # 1 € I, define

Di={(v+1L9),(n+n+1)}U{(p+kk):n+1#EkeK}.

D; € d;, and also D; C H; € g;, thus D; € g;(N)d; ; hence D; C E;
with some F; € f;. Now

(v+1L,1),...,(v+Ln),(n+n+1Ln+1),(k+n+2,n+2),...,
(1 +2n,2n) € H 0 (Nies E} € g(ﬂ)(niel)f?-

So there is indeed an element of f meeting each Y.

On the other hand, c Nsecy = § is evident: any C € c is of the
form ﬂieI D? with suitable D; € d;; if D; = UkeK Y for some 7 then
CNY; =0;if D; =Y; for some ¢ then CNY};, = B(k € K); otherwise,
CNYr #0 (k € K) would lead to n inequalities that cannot hold at
the same time.

So we have proved that the merotopies cannot be extended. Any
n—1 have, however, an extension; for reasons of symmetry, it is enough
to show that this holds for My,...,M, 1, i.e. that, with I; denot-
ing {1,...,n = 1},b = (¢, )e? is a T-cover if ¢; € M; (Lemma
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9.4). ¢; is refined by f;(N)d; with some finite f; € M; ; therefore
(nielo)f?(n)(niefo)d? refines b. The covers fi and d{ are I'-covers by
Theorem and Lemma 9.4 (applied to M;). ] being finite, it belongs to
I', so we have only to prove that ([;¢;, )d? is a [-cover as well (Lemma
9.3). :

Let n be I'near; sets D; € d; have to be chosen such that
Nicr, Di € secn (Lemma 9.1). According to Co2! we may assume
that for N € n,N C Y,(n) with some s(N) € TUK . Consider
the set S = {s(N) : N € n} of indices. If SNIL = @ or
SNK =0 then D; = U Y (i € Iy), respectively D; =Y; (i €
€ Ip) will do. So we may assume that S N I # 0 # SN K . Define

" Zy=({Nen:NCY,} (s€b).

We claim that Z, # 0.

Indeed, let j = sif s € I, and j € SN I arbitrary if s € K; d(}
being a I'-cover, there is an E; € d; with E;-’ € secn. Clearly Y; #
# E; # Ureic Yx (as E; has to meet both sets). Hence Ej (so also E?)
meets Y, in a single point, which lies necessarily in Z,. We can deduce
from this that Z, is in fact infinite for s € SN K -

Assume it is finite, and apply Co2"with a(N) = {Zs,N\Z,} for
N C Y, and a(N) = {N} otherwise. A(N) = Z, is impossible, since
= {Z,,27} € T%8) C T, so it is a I' -cover; but Z] N A(N) =
=2' N Zy, = 0,and Z, N AM) = Z, N M=20for M CY;
Men,ie S N I (thereis such an M because S N Iy # 0); hence
c* N sec {A(N) : N € n} = 0, contradicting Lemma 9.1. Therefore
A(N) = N\Z, for N C Y, and the result of the foregoing paragraph,
applied to {A(N) : N € n} instead of n, yields (\{N\Z, : N € n,N C
Y.} # 0, a contradiction. _ '

Pick now points z, = (us,s) for s € SU K such that z, € Z, if
s € S,and p, < pet1 if 2n # s € K. The requires sets D; (i € Ip) can
be defined as follows: D; = gy Yiifi € S5 Di = {zs: s € {i} U K}
ifie S ¢ , '

B. RIESZ MEROTOPIES IN A CONTIGUITY SPACE

9.6 Lemma. A family of merotopies in a contiguity space has a Riesz
extension iff the trace filters are Cauchy, the contiguity is Riesz, and
9.4 (1) holds; if so then M° is the coarsest Riesz extension.
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Proof. The necessity of the conditions is clear. Conversely, if they are
fulfilled then M° is an extension by Lemma 9.4, and it is Riesz, since
int ¢ is a cover whenever ¢ € B (for ¢ € T because I' is Riesz, for ¢!
because the trace filters are Cauchy). &

Theorem. A family of merotopies given on disjoint subset in a Riesz
contiguity space has a Riesz extension iff the trace filters are Cauchy. $

C. LODATO MEROTOPIES IN A CONTIGUITY SPACE

9.7 If a family of merotopies in a contiguity space has a Lodato ex-
tension then the contiguity and the merotopies are Lodato, (ii) and
(iii) from Lemma 5.17 hold, as well as 9.4 (1). We shall see that these
conditions are sufficient if “I'-cover” is substituted for “é-cover” in (ii)
(and then 9.4 (1) is superfluous), but not otherwise.
Definition. For a family of Lodato merotopies in a Lodato contiguity
space with Cauchy trace filters, let {intc: c € B} be a subbase for M},
(with B from Definition 9.4). ¢

Cf. Definition 5.14. {intc : ¢ € M°} is a base for M}, ; the
following covers form a subbase By, for M} : the open elements of T
, and int c? (i € I,c; € My, c; is ¢;-open). M% is a Lodato merotopy
compatible with ¢ (just like in Lemma 5.14).
Lemma. A family of merotopies in a contiguity space has a Lodato
extension iff

(i) the contiguity and the merotopies are Lodato;
(1) (Niep)intc] s a T-cover whenever § # F C I 1s finite and c; €

eM; (ieF)
(i) (int )| X; € M; (4,7 € I,¢; € My).

If these conditions are satisfied then MY is the coarsest Lodato
eztension.
Remark. See Remarks 5.17.
Proof. 1° Necessity. (i) is clear. If M is a Lodato extension then
c? € M and int ¢ € M, implying ¢ = ((;cp)int ¢} € M, thusc is a
I'-cover by Lemma 9.2. (iii) follows from Theorem 3.6.

2° Sufficiency. We are going to show that MY is a Lodato extension
(the conditions in its definition are satisfied, since the Cauchy property
follows from (ii)). M? is an extension by Lemma 9.4 (as 9.4 (1) follows
from (ii)). M° ¢ M} |, so (M%) O T and M}|X; D M;. It follows
from (ii) and Lemma 9.3 that the elements of By are I'-covers; hence
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(M%) C T (Lemma 9.2). BL|X; C M; (for int ¢} by (iii), for the others
by the compatibility), thus M} |X; C M;, too. MY is clearly Lodato; it
is the coarsest one, see Remark 7.4. ¢

The following three weaker conditions together cannot stand in
lieu of (ii): 9.4 (1), 5.7 (ii), and each int ¢} is a I'-cover (Example a)
below). Condition (iii) cannot be dropped either (Example b)).
Examples. a) (A modification of Example 5.20.) Let T = {—1/n,1/n:
n € N}, X = Tx]-1,1[,Xo = Tx] —1,0[, X; = T'x]0,1[, and take
the Euclidean contiguity I' on X, i.e. the one induced by the Euclidean
merotopy (whose definition was given at the end of Example 3.8). De-
noting the Euclidean closure on R? by ¢*, nis I'-near iff [y, c*(NV) # @
(because X is bounded in R?). Let {ci(¢) : 0,6 < 1} be a base for M;

on X;, where
c1(e)={(p,p+e[x]g, g +e)NX1:(p € R, ¢ > 0)or (0¢]p, p+¢[, ¢=0)}U
U{Ci(k,n): k,n €N, k,n > 1/e} U {D1(e',e"): 0 < " <&’ <€},
Ci(k,n) = {-1/k,1/n}x]0,e[,
Dy(e',e") = ((] - €", 0[U]e", e[) x]0, ) N X7,

co(e) = {=C1: C1 € c1(€)}, —=C1 = {(—p,—9) : (p,q) € C1}.

M; is compatible, because if f is a finite cover refined by ci(¢) then
there is an F € f that contains infinitely many of the sets

(l—e/2,e/2[x]1/m,1/m +e[) N X; (m € N),

therefore Q(e) = (] — /2,¢/2[x]0,e[) N X; C E, i.e. the merotopy N;
with the base {c;(¢) U{Q(¢)} : 0 < & < 1} induces the same contiguity
as M; ; one can, however, easily see that N; is the Euclidean merotopy
on X;. ¢1(€) is ¢;-open, thus M; is Lodato. Arnalogously, My is com-
patible and Lodato, too. The merotopies are evidently accordant; (iii)
holds bacause int ¢;(e)°|X1-; = {X1-i}.

To check that ¢ = int c;(¢)? is a I'-cover, take a near collection n;
we need a C € cNsecn. Picka z € (yenc*(V). If z = (0,0) then
C = int D;(&',&")° will do with suitable ¢’ and €" ; the other cases are
trivial. co(€)? (N) c1(€)® is a I'-cover by Lemma and Theorem 9.4. The
sets C1(k,n) and —Ci(n, k) guarantee that int co(€)? (N) int ¢;1(¢)° is a
8-cover. Thus all the three weaker versions of (ii) are fulfilled.
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Nevertheless, (ii) fails for ¢o(1) and ¢;(1): take n = {Ny, N3, N3},
N1 ={(-1/n,0): n € N}, N; = {(1/2n,0) : n € N},
N; ={(1/(2n +1),0) : n € N}.

b) (A modification of Example 5.19.) Let X, Xo, X; and M, be
as in Example 3.8, but replace ¢;(¢) in the definition of M; by

di(e) = c1(e) U {(H x]0,e[) N Xy : H C]0,¢[ is finite }.
(In 5.19, we did the same with |H| = 2.) {My, M;} is a family of Lodato

merotopies in the Euclidean contiguity space on X; the modification
was needed to make M; compatible. (ii) holds, but (iii) fails, just like
in 5.19. (Use Lemma 9.3 instead of Lemma 5.2.) ¢

9.8 Corollary. A single Lodato merotopy My in a Lodato contiguity
space has a Lodato extension iff int cg 18 a I'-cover whenever cg € My. O

It is not enough to assume that the trace filters are Cauchy, not
even when X, is open (take Example 5.18 b) with the Euclidean conti-
guity on X). In fact, the condition that int c§ is a §(T)-cover (i.e. that
there is a Lodato extension in (X, §(T'))) is not sufficient either:
Example. With X, X;,M; from Example 5.19 a), and the Euclidean
contiguity I' on X, int d;(¢)® is a §(T")-cover (6(I") is the same as § in
5.19 a)), but it is not a I'-cover (let n consist of three disjoint infinite
subsets of X7). ¢

9.9 Theorem. A family of Lodato merotopies given on disjoint closed
subsets in a Lodato contiguity space always has Lodato extensions; M® =
= MY is the coarsest one.
Proof. M° is an extension by Theorem 9.4. For any c;-open ¢;, intc? =
= ¢, thus M® = M}; MY} is always Lodato. ¢

Example 9.5 shows that the statement of this theorem is false for
intersecting sets, even for open-closed ones. M® and M} can be different

in general; e.g. with {M;} from Example 9.7 b), int ¢;(1)° & M°.
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Abstract: Not every near-ring can be embedded as an ideal in a near-ring
with an identity. A necessary and sufficient condition on a near-ring N for
such an extension NV to exist is known. The construction of N is not canonical
in the sense that the quotient N/N is not fixed for a given N. We modify
this extension to one (resembling the Dorroh extension of rings) for which the
quotient is always fixed. For radicals with hereditary semisimple classes, the
radical of N and the radical of this extension coincide if and only if the ring
of integers has zero radical.

1. Introduction

Not every near-ring has a unital extension. Betsch [1] gave an ex-
ample of such a near-ring on a non-commutative group and asks whether
such near-rings on commutative groups exist. We provides such exam-
ples in section 1 below. Subsequently Betsch gives a necessary and
sufficient condition on a near-ring N to have a unital extension N. He
also gives an explicit description of this near-ring TV_; In section 1 we
provide an alternative construction of the near-ring N. This construc-
tion, which generalizes the well-known Dorroh extension of a ring, has
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the advantage that it makes it easy to compare the radicals of N and
its unital extension (section 2).

1. Unital extensions of near-rings

All near-rings considered are 0-symmetric and right distributive
near-rings.
Example 1.1. There ezists near-rings with commutative underlying
groups which are never left ideals nor right ideals in a near-ring with
an identity:

Let G be any group which contains an element e # 0 with order
not 2. Let N be the near-ring on G with multiplication defined by:

_fn ifm#0
”m‘{o if m = 0.

Let N be a near-ring with an identity 1 such that N C N. If N is a right
idealin N, then e(e-+1) € N. Thus e(e+1) = (e(e+1))(—e) = e(e—e) =
=0. If N is a left ideal in N, then e(e + 1) —e =e(e +1) —el € N.
Thus e(fe + 1) —e = (e(e + 1) —e)(—e) = e(e —e) —e = —e and
whence e(e + 1) = 0. Hence, if N is either a left or a right ideal
~ of N, then e(e + 1) = 0. Consequently, since e + e # 0, we have
0 =0e = (e(e + 1))e = e(e + €) = e. But this contradicts the choice of
e#0. ¢
In [1], Betsch has given a necessary and sufficient condition on a
near-ring to have a unital extension. This condition on a near-ring N
is:
(BC) There exists a faithful N-group I' (hence N is considered as a
subnear-ring of My(I")) such that:
(i) The mapping z — —14+z+1 of My(T') into itself induces
an automorphism of N (1 is the identity map on T').
(ii) Forall n,m € N and a € Z (Z the integers), n(m+al) € N
(the cyclic subgroup of My(T') generated by 1 is considered
as an Z -module).
The near-ring N is a subnear-ring of My (T) and is given by N = {n+
+al|n € N,a € Z}. This near-ring N is not canonical in the sense
that for a near-ring N satisfying the condition (BC), N/N need not be
fixed. It can be verified that N/N is always either one of the rings Z
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(integers) or Z, (integers mod a) for some a > 1. When comparing the
radicals of N and N, it is useful to know the radical of N/N. Since this
quotient is not fixed, it is not always straightforward to compare the
respective radicals. In order to fix the quotient, we propose a slightly
modified construction, denoted by D(N), such that for any near-ring
N satisfying the condition (BC), D(N)/N & Z. Furthermore, if N is a
ring, the faithful N-group I" can be chosen such that D(N) is the usual
unital extension of N (i.e. the Dorroh extension of N, cf [3]). Although
this may not be the most ecconomical embedding, this construction
enables us to give an easy criterion for comparing the radicals of N and
D(N) (Theorem 2.1 below).

Theorem 1.2. Let N be near-ring which satisfies the condition (BC).
Then there exists a unital extension D(N) of N such that D(N)/N
= Z(Z is the Ting of integers.)

Proof. Let T" be the faithful N-group provided by our assumption BC
on N (hence N — My(T') ). On the cartesian product N x Z define

addition and multiplication by:
(n,a) + (m,b) =(n+al+m—al,a+b)
(n,a)(m,B) = ((n + al)(m + b1) — (ab)1, ab)

At the outset, we must verify that these operations are well de-
fined. Sincen — —1+n+1 is an automorphism of N (1 is the identity
map on I'), it follows that al +m —al € N for all a € Z,m € N. Fur-
thermore, (n + al)(m + b1) — (ab)1 = n(m + b1) + al(m + b1) — (ab)1.
The first term is in NV from the second part of the condition (BC); hence
we only concern ourselves with the last two terms.

Suppose a > 0 (a similar argument takes care of the case a < 0).

Then
al(m +0b1) — (ab)l = (m +bl)+... + (m +bl) — (ab)l = m + (b1+
+m —bl) + (201 + m — 2b1) +. .. + ((ab)l + m — (ab)1) + (ad)1 — (ab)1

which is in N.
It can be verified that 4+ defines a group structure on N x Z

with additive identity (0,0) and the additive inverse of (n,a) given by
(—al —n+ al, —a). Furthermore, the multiplication is associative and
distributive over the addition, hence we have a near-ring which we de-
note by D(N). Clearly N £ {(n,0)|n € N} «D(N),D(N)/N = Z and
(0,1) is the multiplicative identity of D(N). $
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If R is a ring, then R satisfies condition (BC) with I' = D(R)¥,
where D(R) here denotes the usual Dorroh extension of the ring R. In
this case, the addition in the above construction simplifies to (n,a) +
+(m, b) = (n+al+m—al,a+b) = (n+m,a+b) and the multiplication
becomes (n, a)(m,b) = ((n+al)(n+bl)—abl, ab)+ (nm+bn+am, ab).
Hence the above construction coincides with Dorroh extension of the
ring R for this choice of T".

A sufficient “internal” condition on a near-ring N which implies
the condition (BC) is given by:

Proposition 1.3. Let N be a near-ring which contains a left ideal L
with (L : N)y =0 such that:
1. For any N € N,a € Z, there ezists an p € N such that —ak +nk +
ak —pk € L for allk € N.
2. For any n,m € N,a € Z, there ezists an p € N such that n(mk +
ak) —pk € L for allk € N.
Then N satisfies condition‘(BC).
Proof. Since L is a left ideal of N with (L : N)y = 0,I':= N/L is a
faithfull N-group via n(z + L) = nz + L. Embed N in M, (T') by ¢ :
N — My(T') defined by p(n) = ¢, : T — T, pp(z+L) = nz+ L. Let
f: Mo(T') — Mo (T') be the function defined by f(z) = ~1+z+1. By
condition 1 above, f induces an automorphism of N = ©(N). Moreover,
condition 2 above yields the requirement (ii) of (BC). ¢

The converse of the above proposition is not true: Consider any

non-zero ring R with R? = 0.

2. The radical of the unital extension D(R).

Radical classes will be in the sense of Kurosh and Amitsur, cf
[4] or Wiegandt [5]. The semisimple class of a radical R is the class
SR = {N|R(N) = 0}. SR is hereditary if [« N € SR implies I € SR.
As is well known, SR is hereditary if and only if R(I) C R(N) for
all near-rings N and I < N. The variety of 0-symmetric near-rings
contains many examples of radicals with hereditary semisimple classes,
for example, J3, J3 and G (the Brown-McCoy radical class). Many more
examples can be found in [4]. Some useful properties of a radical class
R required here are: ’

(1) R(N/I) =0 implies R(N) C I for I a4 N;
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(2) R(R(N)) = R(N) for all N;
(3) R(N/R(N)) =0 for all N.

Our final result generalizes the corresponding result from the va-
riety of rings (cf De la Rosa and Heyman [2]), albeit with some restric-
tions. This is necessitated by the fact that, contrary to the case for
rings, not every semisimple class of near-rings is necessarily hereditary
and not every near-ring has a unital extension.

Theorem 2.1. Let R be a radical class with a hereditary semisimple
class. Then R(N) = R(D(N)) for all near-rings N  which satisfy
the condition (BC) if and only if R(Z) = 0. '

Proof. If R(Z) = 0 and D(N) exists for the near-ring N, then
R(D(N)/N) = R(Z) = 0; hence R(D(N)) C R(N). But SR heredi-
tary implies R(N) € R(D(N)) which yields R(D(N)) = R(N). Con-
versely, suppose R(D(N)) = R(N) for all near-rings N which satisfy
the condition (BC). In particular, since Z is a ring, so is A := R(Z)
and R(D(A)) = R(A) = R(R(Z)) = R(Z) = A. Since Z = D(A)/A =
= D(A)/R(D(A)), we have R(Z) = R(D(A)/R(D(A))) =0. $
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Abstract.We prove: If f is a real-valued continuously differentiable function
with period 27 and fozw f(z)dz = 0, then

6 2r
— max f(z)? < / f(z)?dz,
0

mo<z<L2T

and, if z1,...,2n(n > 2) are complex numbers with Z::l z = 0, then

n

12n

e B e LD DS
- - k=1

where zp 11 = z1. The constants 6/7 and 12n/(n? — 1) are best possible.

1. Introduction

In 1916 a remarkable result of W. Wirtinger, which compares the
integral of a square of a function with that of the square of its first
derivative, was published in W.Blaschke’s book “Kreis und Kugel” |2,
p. 105
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Theorem A. Let f be a real-valued function with period 2m and
2T f()dz = 0. If f' € L?, then

2m 2m
(1.1) f(z)?dz < i f'(z)*dz

0
with equality holding if and only if
f(z) = Acos(z) + Bsin(z) (A,B €R).

The following discrete analogue of Wirtinger’s inequality was proved
for the first time in 1950 by I.J. Schoenberg [11].

Theorem B. If z;,...,2,(n > 2) are complez numbers with 3y _, zx =
=0, then . .

L g T
(1.2) 4 sin® =~ kz_:l |22 < § |21 — 2k,

where zpy1 = 21. Equality holds in (1.2) if and only if zp = Acos 2—#— +
+Bsin—22—k, (k=1,...,n; A,B €C).
Theorem A and Theorem B have evoked the attention of many mathe-
maticians and in the past years different proofs, intriguing extensions
and refinements as well as many related results were discovered [1 — 13];
see in particular [1], [8, pp. 141 — 154] and the references therein.

The aim of this paper is to present variants of inequalities (1.1)
and (1.2). More precisely we shall answer the questions: What is the
best possible constant « such that

2m
2 12
aog?gwf(x) < i fi(z)*dz

holds for all real-valued functions f € C?! fulfilling the conditions of
Theorem A; and what is the best possible constant 3, such that

n
2 2
< —
B 355, 11" < Dl = 2
- - k=1

is valid for all complex numbers z1,..., 2, satisfying the assumptions
of Theorem B? Furthermore in both inequalities we determine all cases
of equality.
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2. The continuous case

In this section we establish a counterpart of Wirtinger’s inequality
(1.1).
Theorem 1. If f is a real-valued continuously differentiable function
with period 27 and fO% f(z)dz =0, then

6 2w
(2.1) — max f(z)?< f'(z)*de.

m0<<ze<2m 0

Equality holds in (2.1) if and only if

f(z) =c[3(3=L

where ¢ 18 a real constant.

— ¥ —1] (0<z<2n)

Proof. We may assume

2 2
Oéralgaé)gwf(m) flzo)* >0, 0<zo<2m

Then we have the following integral identity:

(2.2) /z:"“"[f'(w) ~ 3 o 7r)]2dz =

f(zo) =2
_ To+2m f’(.’ll) 2 B 6 o427 , B B
- /zo [f(ﬂvo)] d 72 f(zo) /zo fi(z) (z — 20 — m)dz+
9 zo+2w 1 To+27 , 6
), Emmemde= o [T e 2

where the third integral of (2.2) has been calculated by integration by
parts and by using the assumptions f(zo)= f(zo +27) and
fzz0°+2” f(z)dz = 0.

Hence we obtain

2T N2 RARe 6 2
= > — )
A fi(z)*dz /;,,-0 fi(z)*dz > — Oénzz;)%,rf(m)
We discuss the cases of equality. Let f(z) =c¢ [3(%)2 —-1] (0 <
<z < 2m;c € R). Simple calculations reveal that f? attains its maxi-
mum at 0 which implies
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24:02 6 2
T __;;Oégggwf(m).

2w
BOLE

If equality holds in (2.1) then we obtain from the identity above:

() = 3f7(r‘;f°)(m —zg—1) (20 < < 30 +27)
which leads to
() = 3’;(:20)(95 —zo—mP+c (¢ €R).
Setting z = zp we get ¢/ = — f(z¢); thus we have

() = %f(xo)[:—z(:z: —wo—nP =1 (30 <z < o +27)

or
3 f(zo)[3(F=2ET)2 1], 0<z <o

f(z) =

FF(o)B(2=%=") — 1], @ <z < 2m
Since f is differentiable at zo € [0,27) we conclude zo = 0; this yields

r— T

f@) =3/ BETP -1 (0<a<om). o

™

3. The discrete case

Now we provide a variant of Schoenberg’s inequality (1.2), respec-
tively a discrete analogue of (2.1).
Theorem 2. If 2z,...,z, (n > 2) are complez numbers with
Yorey 2k =0, then

12n . . w 0
w1 2 e S 2 e — sl
- = k=1

(3.1)

where zny1 = z1. Equality holds in (3.1) if and only if

{c[1+6(_kTL)M], 1<k<r-—1,
Zp =

n?—1

6[1+M@:ﬂ], r<k<n,

n2—1
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where r € {1,...,n} and c is a complez constant.

Proof. Let maxi<k<n |2k| = |zr| > 0. Using the assumptions zn41 =
= z; and )_;_, z& = 0 we obtain after several elementary (but tedious)
calculations the following identity:

(3.2) Z_:

k=1

2.
k=r

zpg1 —2zr 12(k+n—r)—6(n—1)2

nz, n(n? — 1)

zkt1 — 2k 12(k—r) —6(n — 1)2
n(n? —1)

ZE41 — 2k 2 36

n r—1
= + 2k +n—2r 4+ 1)%+
= nz, [n(n? — 1)]? {;( )

+ " (2k‘—n—2r+1)2} %}2—— { Z(zk'H_

k=r

—zk)(2k+n—2r+ 1)+ l i(zk+1 —zk)(2k —n —2r + 1)} =

12
= n2|z 2 & Z |21 — —1)

~ n(n?

which implies

: 12n
Z |zpe1 — zk)? > max |zx|?.

—11<k<n
It remains to discuss the cases of equality. Let r € {1,...,n},c €

€ C and let

o[t U=nHnn] k<,

Zp =

o[t 420nfn=n] k<

Then we have
max |zx| = |zr| = [¢]

1<k<n
which leads to

12n
2
E |2k41 — 2k]* = |C| —1.2, |2 *.
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Now we assume that equality holds in (3.1). Then we conclude from
(3.2):

12(k+n—r)—6(n—1)
(3 3) Zk+1 — %k — n(nZ-1) , 1<k<r-—1,
. nz, 12(’6;‘(72;_61(;1-—1), r S 3 S .

Let 1 <k < r; because of 2,41 = z; we obtéin from (3.3):

n k-1
6(k—r)k+n—r
2=z =Y (41— 2) + D (241 — 2;) = ( n)2(_1 )zr;
j=r =1

and if r < k < n, then (3.3) yields

k—1
6(k—rik—n—r
Zk_z'r:Z(zj-i-l —Zj): ( n)z(_l )zr-
J=r

This completes the proof of Theorem 2. ¢
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Abstract: In this paper we present an introduction to a theory of pow-
ers and (generalized) cardinal numbers which is based on the infinite-valued
Lukasiewicz logic and refers to so-called HCH-objects, i.e. to objects which
in general cannot be mathematically modelled using the notion of a set. We
focus here our attention on the notion of equipotency for HCH-objects and
the construction of generalized cardinals and their basic properties. Problems
related to order and operations on the generalized cardinals will be discussed
in [24,25].

1. Introduction and notations

The purpose of this paper is to present mathematical base of a
theory of powers and generalized cardinal numbers for hardly charac-
terizable objects, shortly HCH-objects. By HCH-objects we mean here
parts of some infinite universal set & which maybe are vaguely defined
and do not need to be sets themselves, i.e. which in general cannot
be mathematically modelled, without essential distortions, using the
classical notion of a (sub)set (cf. semisets [18]). However, we assume
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that each HCH-object can be described, at least in a subjective way,
by means of a function & — L or using a pair of such the functions (£
denotes a suitable lattice). These functions will be called generalized
characteristic functions or membership functions. This way sets, fuzzy
sets ([27]), intuitionistic fuzzy sets ([16]) and generally £-fuzzy sets ([4];
cf. Heyting algebra valued sets in [9]), twofold fuzzy sets ([3]), rough
sets ([13]), and partial sets ([10]) become special cases of HCH-objects.
HCH-objects which are not sets will be called proper HCH-objects.

So, although the given definition of an HCH-object is rather infor-
mal, it is sufficiently good for our purposes because in a way it makes
possible to bring together those more or less different notions what is
very convenient for the presentation of the theory (see e.g. Section 8).

If A: U — L, then obj(A) denotes the HCH-object ’embedded’
in U and described (characterized) by means of A. Since obj(A) is
not necessarily a set we shall write zeobj(A) instead of z € obj(A);
obviously, obj(A) is a set if A(z) € {0,1} for each z from #. Then
[z € obj(A)] := A(z), where [s] denotes the truth value of a sentence
s (obviously, [s] € £) and the symbol := stands always for ’equals by
definition’. Each value A(z) will be called membership grade of z in

" obj(A). Moreover, we accept the following definitions:

[—s] :=[s] — 0,

[r&s] :=[r] A[s],

[r | s]=[r] VI[s],

[r = s]:=[r] = [s],
res)l=r=s&s=r,

Wz el : s(z)] := /\ [s(:c‘/a)],_

acU
Hz el :s(z)]:= \/ [s(z/a)],
a€U
where
(a) =, &, |, =, & are logical symbols of negation, conjunction, dis-

Junction, implication, and equivalence, respectively;
(b) ¥ and 3 denote general and existential many-valued quantifiers and
s(x/a) is the usual substitution notation (classical quantifiers will be

denoted by V and 3);
(c) A, A (V, V , resp.) denote the operation of the greatest lower
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bound (least upper bound, resp.) for two arguments or their arbitrary
number;

(d) — denotes many-valued implication operator; we additionally as-
sume that it fulfills two properties: b —-c=1 iff 6<c,l1 ->b=5b
for each b, c € L.

Generahzed inclusion obj (A)C obj(B) and equality obj(A4) =
~obj(B) of two HCH-objects are respectlvely defined by the conditions

Vz € U : z € obj(A) = z € obj(B),

and

obj(A4) C obj(B) & obj(B) C obj(A).

Of course, the usual two-valued inclusion and equality one defines by
obj(A) Cobj(B)iff AC Bwith AC Biff V2 € U : A(z) < B(z),
obj(A) = obj(B) iff A= B with A= B iff Vz € U : A(z) = B(=z).

We at once see that

obj(A) C obj(B) iff [obj(A) Cobj(B)] =1
obj(A) = obj(B) iff [obj(A) ~ obj(B)] = 1.

The conditions defining union and intersection of two HCH-objects are
also quite natural, namely

obj(A) Uobj(B) = obj(C) iff C = AU B, where (AU B)(z) :=
:= A(z) V B(z),

obj(A) Nobj(B) = obj(D) iff D = AN B, where (AN B)(z) :=
:= A(z) A B(z).

So, the sentence z € obj(A)Uobj(B) (z € obj{A)Nobj(B), resp.) has the
same truth value as the sentence z € obj(A) | z € obj(B) (z € obj(4) &
& z € obj(B), resp. .

Nowadays (proper) HCH-objects play an important role in many
branches of mathematics, computer and information sciences, social
sciences, engineering, etc. It is quite clear that in many situations
there is a necessity of having (as precise and adequate as possible)
handy quantitative information about an HCH-object. So, it would
be very useful to have for HCH-objects some counterpart of cardinal
numbers. Such a reasonable counterpart will be constructed here and
will be called generalized cardinal numbers (shortly gen’s).
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In this paper we like to present a detailed discussion devoted to
such basic questions as equipotency of HCH-objects, gen’s - their con-
struction and elementary properties, the notion of finiteness for HCH-
objects. Problems of comparing and ordering for gen’s will be presented
in [24], operations on them are studied in [25]. We construct the the-
ory for quite arbitrary HCH-objects and use here the infinite-valued
Lukasiewicz logic; some results for HCH-objects with finite supports are
already placed in [21,22]. So, we put £ := J, where J := [0, 1], whereas
— is the Lukasiewicz implication operator, i.e. b = c:=1A1—b+¢;
of course, A, A and V, \/ denote then usual operations of minimum,
infimum, maximum, and supremum of numbers from the closed unit
interval. It is however possible to construct an analogous intuitionistic
theory of powers and gen’s for HCN-objects using triangular norms and
(p-operators or applying intuitionistic logic with £ := complete Heyting
algebra (see [26]).

As regards the notation and terminology, we decide to use trough-
out this paper the following additional rules:

(a) Sets are denoted by script capitals (e.g. D,.J,U) and some multi-
letter symbols defined in the sequel of the paper; as usual § denotes the
empty set.

(b) Capitals in italic denote the membership functions. The functions
E and U are defined as follows: Vz € U : E(z) =0, U(z) = 1.

(c) The letters i,j,.....,p,q denote both the finite and transfinite numbers.
(d) Small Greek letters with or without subscripts (e.g. a, By,q) will
denote the generalized cardinal numbers related to HCH-objects.
(e)IfA:U — J, then supp(obj(A)) :=supp(4):={z €U : A(z) #
# 0}; so, the so-called support of obj(A) and support of A are identi-
cally defined. Moreover 4; := {z € U : A(z) > t}for t € J, := (0,1];
A; will be called t-level set of A and obj(A).

(f) PS(D) :={0,1}? ,GP(D) := JP, Py(D):={BCD:card B =i}.
(8) 1p denotes the characteristic function of D C U, i.e. 1p(z) =1

if z € D else 1p(z) = 0. So, E = 14.

(h) CN denotes the set of all the cardinals i such that card & > s,
betw(z,j) :={k€ CN :: <k <j}fori,j € CN.

(1) ¢t denotes the succesor of i. Thus i+ = + 1 for finite .

(j) For the simplicity of the presentation, in the examples placed in
Section 8 we will accept the Continuum Hypothesis and use some special
notation for elements P € GP(CN). Namely
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P = (00,01, eerry Up,y (V) || w1, w2)

means that P(i) = v; for ¢ € betw(0,7), P(:) = v for each finite 1 > r,
P(Rg) = wy, P(¢) = wq, P(z) =0 for i >¢. For instance, if P = (1,1,
0.5,(0.3) || 0.3,0.1), then we have P(0) = P(1) = 1, P(2) = 0.5,
P(i) = 0.3 for 7 € betw (3,80), P(¢) =0.1, and P(z) = 0 for i >¢.

2. Towards generalized cardinal numbers

In the earlier many-valued theories of cardinality presented in [1],
[5,6], [11] one assumes at the beginning that the notion of cardinality
is unknown even for sets; gen’s are then constructed via many-valued
bijections,i.e. via direct adaptation of the classical construction of car-
dinals. Unfortunately, such an approach is not successful and appears
not very useful in practice because the obtained theories become essen-
tially dependent on the chosen definitions of such the bijections and,
on the other hand, respective calculations of powers are extremely dif-
ficult even in the case of small finite supports (see also [2], [7 ], [19,20]
for a review of some other early approaches). In the theory proposed
here we use quite different approximative approach in which we try to
make a good use of the already existing ordinary cardinals and apply
some axiomatic method that generates various types of gen’s. So, we
have then the possibility to choose such a type which is most suitable
in a concrete application inside or outside mathematics. Moreover, we
assume that our information about any membership function can be
imprecise or incomplete.

Let us consider the family composed of all the subsets of . We
define classical cardinals in the ordinary way. So, for any A C U we
have card A = ¢ iff 3B € P;(U) : A = B, i.e. the power of A equals ¢
iff A belongs to respective family of equipotent sets. It is quite clear
that for each fixed A the sentence 3B € P;(U) : A = B is true (in
other words: has positive truth value) for exactly one cardinal number i.
However, if we deal with HCH-objects, then in general the many-valued
counterpart IB € P;(U) : obj(A) = obj(1p) attains positive truth
values for different i’s. So, one can say that obj(A) belongs “to a degree”
to many families of equipotent sets. Thus the power of obj(A) cannot be
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represented by one cardinal number but should be expressed by means
of an HCH-object 'embedded’ in CN and having the membership grades
identical with respective truth values of the above given many-valued
sentence. Then it is quite natural to consider as equipotent such HCH-
objects obj(A), obj(B) in U which are related to identical HCH-objects
in CN. Since our information about A can be imprecise or incomplete
we additionally assume that f(A) C A C g(A) , where f and g are
some approximating functions (see Section 3). Therefore we finally use
the condition

dIB € P;(U): obj(f(A)) Cobj(ls) &
& JC € Py(U): obj(le) C obj(g(A))

which in some cases can be rewritten in a simpler from (see Remark 6.5).
In the main, in this paper we focus our attention on such properties of
gen’s which are independent on the choice of (f, g) and on the power of
supp(obj(A)). Simple proofs are given in outline. Although =, & and |
are basically understood as many-valued connectives, in the sentences or
conditions containing exclusively the classical (two-valued) quantifiers,
relations or predicates they will be throughout interpreted as respective
classical connectives. '

3. Approximation of the membership functions

Let A denote a membership function characterizing some HCH-
object in U. As we mentioned in previous section, we suppose that in
general A can be given imprecisely or incompletely. So, we approximate
A by means of two other functions f(A) and ¢g(A), i.e. we approximate
obj(A) by obj(f(A)) and obj(g(A)), where f,¢g : GP(U) — GPU).
However, we assume that either at least one of the functions f,g is a
function to PS(U) C GP(U) (i.e. at least one of the HCH-objects
obj(f(A)) and obj(g(A)) is in a way simpler than obj(A)) or f = g =id
with id denoting the identity function (i.e. our information about A is
assumed to be perfect). Moreover we accept the following additional
axioms about f and g:

(A1) VA e GP(U): f(A) Cc A C g(4),
(A2) VA, B € GP(U)Vz,y € U : A(z) < B(y) = f(A)(z) < f(B)(y)&

& 9(A)(z) < 9(B)y),
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(A3) VA e PS(U) : f(A),g(A) € PS(U).

The family of all the pairs (f,¢) of approximating functions fulfilling
these postulates, but excluding the trivial (E, U), will be denoted by F.
As regards some interpretation of the axioms, (Al) means that f(A)
and g(A) are always the lower and upper approximations of A,(A2) says
that both f(A)(z) and g(A)(z) depend only on A(z). Finally, (A3) is
also quite natural and states that if obj(A) is a set, then both obj(f(4))
and obj(g(A)) are sets too. As consequences of (A1) —(A3) we get some
simple but useful properties which are listed in the following theorem
and corollaries.

Theorem 3.1.For each (f,g) € F and each A, B € GP(U) we have
(A2)" A(z) = B(y) implies f(A)(z) = f(B)(y) and g(A)(=) = g(B)(y);
(A1) f(AUB) = f(A)Uf(B) , g(AYB) = g(4) %4(B) ;
(A5) A C B implies f(A) C f(B) and g(A) C g(B);
(A6) A(z) =0 implies f(A)(z)=0 and g(A)(z) < {0,1},

A(z) =1 implies f(A)(z) € {0,1} and g(A)(z)=1;
(A6) F=E or (f(A)2) = Liff A(s) = 1),g=U or (9(A)(z) =0 iff

A(z) = 0);
(A7) If Ae PS(U), then f(A)=A or f(A) =FE and g(A) = A or
9(A) =U;

(A7) f(E)=E, g(U) =T, f(U),9(E) € {E,U}.

Proof. We get (A2)’ using twice (A2). (A4) is a direct consequence
of (A2), (A2)’ and the definition of U and N. (A5) is implied again by
(A2). (A6) follows from (A1), (A2)’, (A3) and implies (A6)’. Finally,
(AT) follows from (A6), (A6)" and implies (AT)". This completes the
proof.

Corollary 3.2  For each (f,9) € F and A € GP(U) we have

(a) if f:GP(U)— PSU) , then f=E or f(A)=1a,;

(bYif g:GPU)— PSU) , theng=U or g(A)= leuppa)
Proof. Both (a) and (b) are immediate consequences of (A6)". ¢

The corollary given above is very useful when one proves other theorems
because it shows how look the possible pairs (f,g) € F.

Corollary 3.3.  For each (f,g) € F and A€ GP(U) we have
(a) f(A)D1a, or f=E

(b) 9(A) C Lsuppa) or ¢g=U.

Proof. Again, it follows directly from (A6)". &
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4. Equipotent HCH-objects

Now we are ready to introduce the notion of equipotency for HCH-
objects. Let f(A):, g(A): denote the t-level sets of f(A) and g(A),
respectively.
Definition 4.1. We write A ~5, B and say that two HCH-objects
obj(A) and obj(B) in U are equipotent (in other words: are of the same
power) with respect to a pair (f,g) € F iff the conditions

Ad{t:card f(A) <i} = NA{t:card f(B): <3},
\/{t :card g(A) > i} = V{t : card g(B); > ¢}

are fulfilled by each cardinal number z.
If (f,g9) € F is fixed, one can write simply A ~ B. It is quite obvious
but very important that ~¢ , is an equivalence relation for each (f,9) €
€ F. Using very puristic notation we should rather write obj(A) ~ 4
obj(B) but the form A ~; , B does not lead to misunderstanding and is
more convenient in use. Also, it is justified by the fact that operations
or relations for HCH-objects are% often defined by means of respective
operations or relations over membership functions.

As concerns the condition defining the equipotency of HCH-ob-
jects, we at once see that it is a weakened form of the following (both
versions are equivalent for HCH-objects with finite supports):

Vt e (0,1): card f(A): = cara f(B)t& card gl(A)? = card g(B).

But any definition describing thé equipotency via equalities of powers
of some t-level sets is dangerous since it makes the equipotency to much
dependent on a finite number of membership values even if we deal with
HCH-objects with infinite supports. So, we refuse it. By using infima,
suprema and inequalities, the proposed definition reflects instead two
facts: first that f(A) and g(A) are lower and upper approximations of
A, and second that using an approximative approach we should accept
as equipotent not only such HCH-objects whose respective t-level sets

are equipotent but also such ones which for each t € J, have ’the same

amount’ of elements with membefrship values equal to t or lying as near

to t as one likes. }
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5. Relativity of the equipotency for HCH-objects

Let fi(A) := V{t :card f(A): > 2}, gi(A) := \/{t : card g(A); >
> 1} and a; := \/{t : card A; > i} for A € GP(U) and (f,g) € F (in
the same way one defines for instance numbers r; for some R € GP(U)).
One can easily check that f;(A) is nonincreasing with respect to ¢ and
fi(A) = O0fori > card supp(A); of course, analogous properties are
satisfied by g¢i(A) and a;. Also, one can easily prove that for each
A,B € GPU), (f,g9) € F and any cardinal number ¢ we have

ACB= fi(A) < fi(B)&gi(A) < gi(B)

and

fi(A) < a; < gi(A).

So, A C B implies a; < b; for each 7. Moreover the following properties
will be useful: f;(4) = 1fori < card f(A)1, f1(4) = V{f(4)(z) :
z €U}, and g,(A) =1.

5.1. Useful characterizations of the equipotency

We notice that the equipotency condition can be rewritten as
A~go, B it gi(A)=giB) & fi+(A)= fi+(B) for each i € CN.
So,

A~pg B Mt g(A) ~Eia9(B) & f(A)~iquf(B).
Hence
A~iguB iff A~Eg;aB & A~ quB;
we even have
An~igiaB fft A~pgpaB iff A~juB
ie. if (f,g) equals (id,id), (E,id) or (id,U), then A ~¢, B iff a; = b;
for each : € CN. Moreover, the following implications hold:
(a) if f(-) =1(), and g = id, then A ~f, B implies
card A; = card By;
(b) if f=1d and g(-) = lsupp(.), then A ~¢, B implies
card supp(A) = card supp(B) ;
(c) if f = E and g(-) = Leupp(.), then A~y , B iff card supp(A4) =
= card supp(B);
(d) if f(-) =1(y, and g = U, then A ~f; B iff card A; = card B ;
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(e) if f(-) =1, and g(-) = leupp(), then A ~¢ , B iff card 4; =
= card By & card supp(A) = card supp(B) .

So, the spectrum of possible conditions characterizing the equipotency
of HCH-objects is rather wide; of course, these and other characteriza-
tions can be enhanced for HCH-objects with finite supports. The most
interesting postulate is-however that a; = b; for each : € CN since we
like to have the equipotency independent on an order of elements in
HCH-objects . Really, let us notice that if A and B have finite sup-
ports, then this condition means that functions A and B attain the
same values (with regard to their repetitions) but maybe in different
points. This follows from the observation that if supp(D) is finite,
then d; is the i-th value in the sequence of positive membership grades
D(z) (including their repetitions) ordered in a nonincreasing way with
d, :=1 and d; := 0 for ¢ > card supp(D). Finally, let us notice that if
(f,9) = (E,U) were an element of F, then all the HCH-objects in U
are equipotent with respect to such (f, g).

It is possible that obj(A) and obj(B) are equipotent with respect
to some (f,g) € F but simultaneously they are not equipotent with
respect to some other (f*,¢*) # (f,g9) (one can easily give respective
examples for instance for (f, g) = (1(,),, Lsupp(.y) and (f*, ¢*) = (id, id)).
This fact is however not so surprising because we deal here with HCH-
objects whose nature is vague. Using two different pairs of approximat-
ing functions we apply in essence two different criteria to evaluate the
powers of those objects . This is analogous to the situation well-known
in our common life when two persons compare two things which are
vague in a way and they get different results.

5.2. Some criteria of choice for the approximating
functions

Since the family F is rather rich and, on the other hand, the
equipotency or nonequipotency of two HCH-objects depends in general
case on the choice of (f, g) € F , it is essential to ask how to choose (f, g)
in 'proper’ way; there is no problem with A, B € PS(U) because then
either A ~5, B for each (f,g) or the HCH-objects are nonequipotent
with respect to each (f,g) from F. Obviously, total instructions are
not possible. However, we like to present some approaches starting
from different motivations.
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APPROACH 1. We choose (f,g) taking into account how looks the
condition characterizing ~ ¢ ,.

APPROACH 2. If (f,g) # (id,id), then f(A) and g(A4) can be inter-
preted as components of a twofold fuzzy set (see Section 7). So, our
choice of (f, ¢) from among pairs differing from (id,id) depends on that
what elements in ¢/ are considered to be sure and possible elements of
an HCH-object .

APPROACH 3. We choose f = g = id if A is known exactly. Otherwise
we suppose that F' C A C G and that only F and G are given. The
choice of (f,¢) depends then on the form of F' and G. For instance, if
we know only all the points z such that A(z) > 0 and A(z) = 1, we
choose f(-) = 1(.), and g(-) = Leypp(.). If the lower approximation of A
is given only, one can take f =id, ¢ = U (or ¢(-) = Leupp () prov1ded
that we know all the points z such that A(z) > 0).

APPROACH 4. Some properties and the form of generalized cardinal
numbers are dependent on the used pair (f,g). So, one can choose
(f,9) so as to get such gen’s that have the most convenient form and
properties from the viewpoint of a concrete application.

6. The operator GCN and its basic properties

Now we are going to define an operator which will be used in
Section 7 to generate the generalized cardinal numbers. That is why it
is denoted by GCN. More precisely, let
GCN: GP(U) x GP(U)—GP(CN) and let GCN(F, G)(z) be equal to

[AY € Pi(Ud) : obj(F) Cobj(1y)] A[IZ € P;(U) : obj(1£) C obj(G)]
provided that F' C G. So, we have

Theorem 6.1. For cach F,G € GP(U) such that F C G and each
1€ CN

GCN(F,&) )= \/ AGar N 1-F(=

YerP;(U) =zl YeP(U) =&Y
Proof. This equality is obvious because for each i € CN and Y € P;(U)

we get

[obj(F) C obj(1y)] = A F(z) — 1y(z) = )\ 1- F(a)
zel =&Y




102 M. Wygralak

and

[obj(1y) C obi(@)] = A 1y(z) — G(z) = A G(=).
zeU z€Y

Remark 6.2. One can easily notice that using (instead of the Lukasie-
wicz implication operator) a yp-operator induced by a triangular norm
or putting £ := complete Heyting algebra we obtain the formula

GON(F,G) ()= \/ AcG)r \ A Fz) —o

YEP;(U)z€Y YeP;(U) =&Y
We see that 7 > card(U) implies P;({) = 0§ and then GCIN(F, G)(z) =

= 0. This is why we always restrict ourselves to cardinals belonging
to CN. Moreover, it is quite clear that the following simplification is
possible:

GCN(F,G)(i).= V A G(=)A \V N\ 1-F(z).

YEP;(supp (G)) =€¥ {YeP;(U):F1CY} =&Y

Hence GCN(F,G)(:) =0 for each i ¢ betw(cardFi, card supp (G)).
Finally if ¢ > card supp (F), there exists J € P;(U) such that Fy C
C supp (F) C V. But then we get A{1 — F(z):z ¢ Y} = 1. So, for
each ¢ > card supp (F) we obtain

GCN(F,G)(3) = V N G(=).

YeP;(supp (G)) zEy‘

As a next corollary from Theorem 6.1. we have
Theorem 6.3. D C F C G C H implies GCN(F,G) C GCN(D, H).
Proof. D C F C G C H implies P;(supp (G)) C Pi(supp (H)) and
{Ye P(U): F; c Y} c{Y € PU): Dy C Y} Using Th. 6.1 and
the previous corollaries following therefrom, we at once obtain the final
thesis. &
Corollary 6.4. GCN(A4, A) C GCN(f(A),g(A)) for each A € GP(U)
and (f,g) € F.
Proof. It follows directly from (Al) and Th. 6.3. ¢
So, if A € GP(U) is fixed and we consider GCN(f(A), g(A)) with
different pairs (f,g) € F, then the least possible energy measure (see
e.g. [8], [12]) occurs when f = g = id. In other words, the least
deviation of GCIN(f(A),g(A)) from a function of the form 1y; for
some i € CN, i.e. the least deviation from a membership function
related to a classical cardinal number, is attained for f = ¢ = id.
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From now on, we shall always use F' = f(X) and G = g(X) as ar-
guments of the operator GCIN, where f and ¢ are some approximating
functions defined in Section 3 and X € GP(U) .

Remark 6.5. One can show that for each A € GPU) if (f,g9) #
# (id,id), then

GON(f(4), g(A))(5) = [3Y € PiU) : obj(f(4)) C obi(1y) C
Cobjlg(ANl =\ (N s@@ A A\ 1- F(A)=):

Yer;(U) z€y &Y
The same holds if (f,¢) € F is quite arbitrary and supp (A) is finite.
Now we like to express GCIN(f(A), g(A))(¢) in a form more simple
and convenient than that following from Th. 6.1.

Theorem 6.6. For each (f,9) € F, A€ GP(U) and i € CN we have
GCN(f(4),9(4))(2) = gi(4) A1 = fi+(A).

Proof. Let  Lyay,i = Vyep,(supp (s4)) Naey 9(4)(z). We shall
prove that L;4y; = gi(A4). Let us fix ¢ € CN and suppose that
Lyay,i < gi(A). Then there exists t* such that cardg(A)s > 1 and
Lyay,; < t*. But one can choose Y* € P;(supp (g(4))) such that
Y* C g(A)e=. Hence A{g(A)(z): z € Y*} > t* what leads to a contra-
diction.

Now, suppose that L;4); > ¢i(A). Then, again, there exists
Y* such that card Y* = ¢ and g¢;(A) < A{g(A)(z) : = € Y*}. Let
t* := gi(A). If card g(A): > 1 for each ¢, then t* = 1 and the previous
inequality cannot be true. So, we can assume that there exists ¢ such
that card g(A4): < ¢. Moreover, card g(A4);, < ¢ for each t. > t*.
But g(A)(z) > t* for each z € Y*. Hence g(A4)(z) > t« > t* for
each z € Y* and some ¢, > t*, ie. V* C g(A):;, what implies that
card Y* < card g(A);, < ¢ and gives this way a contradiction. So,
Lgay,i = 9i(A). The equality V(e p . raycyy Nagy 1 — F(A)(z) =
=1— f;+(A) can be proved in an analogous way. This completes the
proof. &
Remark 6.7. In the proof of Th. 6.6. we obtained two important
equalities which imply that

[3Y € Pi(U) : obj(1y) C obj(g(A))] = \/{t : card g(4), > i}

and

[FY € Pi() : obj(f(A)) C obj(1y)] =1 — A{t: card f(A4); <i}.
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Thus, again, the equipotency condition could be rewritten in another
equivalent form. Using it one can formulate a generalized (i.e. many-
valued) version of the equipotency definition for HCH-objects and intro-
duce this way a notion of HCH-objects equipotent “to a degree a € J".
However, we shall use here only the sharp two-valued Def. 4.1 which
is quite sufficient if one likes to construct an applicable and useful the-
ory. On the other hand, this definition accepts also some vagueness
and subjectivity of the equipotency by the presence of the approximat-
ing functions which after all can be chosen from F quite arbitrary (cf.
Section 5.2).

Applying Cor. 3.2 and Th. 6.6. one can express the membership
values to obj(GCN(f(A),g(A4)) in more explicit way. It suffices to
consider the following variants of pairs (f,g) € F : f = ¢ = id, g is
arbitrary and f = E or f(-) = 1(y,, f is arbitrary and g = U or
9(*) = lupp (-)- We easily notice that

om0 = {1 o

where z4 5= N\{i € CN : gi(A) + fir(4) < 1} .
Theorem 6.8. For each A € GP(U) the following properties are ful-
filled:

(a) GCN(E, g(A))(i) = gi(A) for cach i € CN.
0 if 1 < card Ay,
(b) GCN(14,,9(A)() = { 1 if 1 =card 4,
gi(4) otherwise.
(c) GCN(f(A),U)(7) =1 — fi+(A) for each i € CN.
1— fi+(4) if i < card supp (4),
(d) GCN(f(A), Leupp (a))(1) = 1 if i= czrd supp (4),
0 otherwise.

(e) GCN(A,A)(@) = ai A1 — a;+ for each i € CN with a; defined in
Section 5.
Proof. It is an immediate consequence of Th. 6.6 and definitions of
fi(A),gi(A4) and a;. ¢

Now we are going to present very specific property of the operator
GCN which holds exclusively for f = g = id (cf. Cor. 6.4). One can
check that for each A € GP(U) there exists such i that GCN(4, A)(i) 2
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> 0.5. It follows from Th. 6.8 that this holds for any other pair (f,g)
from F, too. However
Theorem 6.9. For each A € GP(U) there exists at most one cardinal
number 1 such that GCN(A4, A)(z) > 0.5 .
Proof. It suffices to observe that GCN(A, A)(i) > 0.5 onlyif t¢=
= 0.5 is an internal point of {t : card Ay = 7}. Such the cardinal
number is unique if exists. ¢

Using Th. 6.8 we notice that the property described in Th. 6.9
does not hold for pairs (f,g) # (id,id). Finally, we like to formulate
some decomposition theorem which will be useful in proving other facts.

Theorem 6.10.For each (f,g) € F and A € GP(U) we have
GCN(f(A4),9(4)) = GCN(E, g(4)) N GCN(f(4),U).

Proof. This is quite clear since from Th. 6.8 and Th. 6.6 it fol-
lows that for each ¢ € CN we get GCN(f(A),g9(A4))(r) = gi(A) A
A1~ fir(A),GCN(E, g(A)() = gi(4), and GCN(F(4),U)(i) =
=1— fir(4). &
So, we have for instance

Corollary 6.11. GCN(A4,A) = GCN(E,A)N GCN(A4,U),
GCN(14,,4) = GCN(E,A)N GCN(14,,U),GCN(14,, loupp (1)) =
= GCN(E, ]-supp (A)) N GCN(lAI,U) , and GCN(A, 1supp (A)) =
= GCN(E, 1supp (A)) N GCN(A, U)

-

. The generalized cardinal numbers

First of all, we like to formulate a property which is a key-stone
of the presented theory, namely
Theorem 7.1. For each (f,g9) € F and A,B € GP(U) the following

equivalence holds
GCN(f(4),9(A4)) = GCN(f(B),g(B)) uff A~y4 B.

Proof. Let us fix some arbitrary (f, ¢) from F and A, B from GP(U).
It is quite obvious that A ~f, B implies GCN(f(4),9(A4)) = GCN
(/(B),a(B)). So, assume GCN(f(4),¢(4)) = GCN(/(B),g(B)).
If f = E, then from Th. 6.8 we obtain g;(A) = ¢i(B) for each z € CN.
Obviously, f;+(A) = fi+(B) = 0 for all 7 from CN. Thus A ~;, B. If
f(-) = 1y, , then from Th. 6.8 we get again gi(4) = g:(B) for : >
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card A; = card B;. From the definitions of g;(D) and f;(D) it follows
however that g;(A) = gi(B) = 1 for 7+ < card 4;. On the other hand,
fi+(D) = 11if ¢ < card D, else f;+(D) = 0. So, fi+(A) = fi+(B) for
eachi € CN. Hence A ~j 4 B. Our thesis for ¢ = U and g(-) = Laypp (1)
can be proved in quite similar way. Finally, if f = g = id, it suffices
to show that a; = b; for each : € CN what is however again a simple
exercise and therefore omitted. <

Thus the values of the operator GCNN fulfill the axiomatic defi-
nition of cardinal numbers proposed by A.Tarski ([17], see also [14]).
These values will be just called generalized cardinal numbers (gen'’s)
and denoted by small Greek letters equipped with indexing pair f, g
emphasizing which approximating functions have been used. If
GCN(f(A),9(A)) = aj, € GP(CN), then we shall write Geardy,,
(A) = ay,, and say that the power of obj(A) equals ayf, with respect
to (f,g) € F. Obviously, then Geardy (A)(z) = ayq(i) = gi(A) A 1—
—fi+ (4).

Let us observe that the Tarski’s definition gives us in essence
two equivalent possibilities: the first one has been already described,
the second and in fact more proper variant is instead to consider
the HCH-object obj(GCN(f(A4),9(4))) in CN as a gen, ie. as a
tool describing the power of obj(A). Then we should rather write
Gceardy 4(A) = obj(ay,q); moreover, this would be in a way a generali-
zation of the idea of S.Gottwald from [7] who proposed to express the
power of a fuzzy set by means of a set composed of some cardinal num-
bers. However, obj(A) = obj(B) iff A = B. This in fact gives us free
hand to choose any of those two variants. We have chosen the first one
which is more convenient from the practical viewpoint. On the other
hand, operations and relations on HCH-objects resolve themselves any-
way to operations and relations on respective generalized characteristic
functions .

It follows from Th. 7.1 that Geardy 4(A) = Geardy 4 (B) iff A ~;

B. Moreover the following equivalence is quite obvious
afg = fqiff JA,B € GP(U) : Geards 4(A) = a5, &
& Geardyy(B) = ff,4 & A ~y5, B.
So, the equality of gen’s can be defined quite naturally by
afg = B iff afy(i) = By4(2) for each : € CN.
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If the pair (f,g) € F is fixed, we write simply Geard (A) = a. From
Th. 6.10 we get at once

Geardy,4(A) = Geardg,¢(A) N Geard y(A)
Geardy,4(A) = Geardg,ia(g(A)) N Geard;q,u(f(A)).

and

Hence for instance
Geardiq ia(A) = Geardg ;4(4) N Gcardid’U(A),k
Geardy, ,ia(A) = Geardg,ja(A) N Geardia,p(1 4, ),
Geardy ) 1,5 () (4) = Geardg,ia(Tsupp (ay) N Geardig,u(14,),
Gcardid,lsupp (A)(A) = Geardg ig(1supp (4)) N Geardiq,y(A),
Geardp,i,,,, (., (4) = Geardg,ia(1supp (4)) N Geardig v (E).

Obviously, wusing Th. 6.8 one can automatically express
Geardy,g(A4)(2) for the five basic groups of pairs (f,g) € F. Let

GCNy,y := {a € GP(CN) : Geard 4(D) = « for some D € GP(U)}.

Theorem 7.2. (a) For each (f,g) € F all the elements a € GCNy,
are convex, i.e. a(j) > a(i) A a(k) fori < j <k.

(b) If f = E(f(-) = 1(,,, resp. ), then each a € GCNy, 4 i3 antitonic
(is antitonic on its support, resp.).For g = U(g(:) = Laupp ()> Tesp.)
each a € GCNy,; is 1sotonic (is isotonic on its support, resp.) .

(c) If (f,9) # (id,id), then each element a € GCNy , 1s normal, i.e.
there exists i € CN such that a(i) = 1.

Proof. All the results are simple corollaries of Th. 6.8. &

It is quite obvious that a ¢ GCN f,¢ 1s in general case nonmono-
tonic for f = g = id (see however the formula preceding Th. 6.8). Also,
it is not normal in general but, on the other hand, fulfills an interesting
property described by Th. 6.9. Cleary, if « is normal for f = g =1id,
then its support has exactly one element.

If (f,9) # (id,id), then obviously f(D) C 1g(p), for each D ¢
€ GP(U). So, in that case Geardy ,(D) is simultaneously equal to the
power of the twofold fuzzy set Q = (f(D), g(D)) (see [3]). Thus gen’s
constructed by means of pairs (f,g) # (id,id) refer not only to fuzzy
sets but also to twofold fuzzy sets (see Section 8.1).
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8. Examples and comments

8.1. Let n := card supp (A4), m := card A; and Geardy4(A4) = a for
some fixed (f,g) € F. As previously, a; := \/{t : card A; > ¢}. Using
Cor. 3.2 and Th. 6.8 one can present how looks the gen representing
the power of obj(A) with respect to eight main pairs of approximating
functions . Then we obtain the following formulae:

(Pair#1: f =g =1id)
ali) =a; N1 —a;+ =
(Pair#2: f = E, g =1id)

a(¢) = a;, where ap = 1 and a; =0 for ¢ > n.

(Pair#3: f(-) =1(),, g =id)

l—a;+ if 1<24,,4,
a; otherwise

1 if 1 = m,
a(t) =13 a; ifm<i<n,
0 otherwise.

(Pair#4: f = ld, g() - ]-supp ())

l—a;+ im<i<n,
a(i) = 1 if 1 = n,
0 otherwise.

(Pair#5: f=id, g =U)

0 if 1 < m,
a(i) =< 1—a+ ifm<i<n,
1 otherwise.

(Pair#6: f =E, g(-) = Loupp ()

a(i):{l if 1 < n,

0 otherwise.
(Pair#7: f(-) = 1(9,, 9(-) = Leupp (.))

afi) = {1 if 1 € betw (m,n),

0 otherwise.

(Pair#8:  f(-) =1(y,, g =U)
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. 0 ifi<m,
a(z)z{l

otherwise.
From Th. 6.3 we get at once some inclusions, for instance
ap1 Cags C aygr C aye,
a1 C apqg C aps C aps;
ay3 C apr Cogs, pq C agr C ape.

One can easily formulate different simple conditions for having ay; =
= ax;. Let us notice that if the pair (E,U) were an element of F, then
a(i) =1 for each z € CN.

Using Pair#2 we get gen’s defined for fuzzy sets by L.A.Zadeh
([28]; cf.[15] and see also [20] for a review of early approaches). Pair#3
generates instead gen’s of the type introduced by D.Dubois and H.Prade
([2]) also for fuzzy sets. Finally, (f,g) = (id,id) gives gen’s defined for
fuzzy sets by the author in [20]. Pair##7 generates gen’s identical to
the partial cardinal numbers of D.Klaua ([10]) and seems to be suitable
(like Pair#6 and #8) for rough sets (see [13],[23]). So, the presented
theory brings together a lot of early approaches to gen’s although they
have been started from different motivations and have been proposed
for different kinds of HCH-objects such as fuzzy sets, twofold fuzzy sets,
partial sets and rough sets.

8.2. Let B € PS(U), q := card supp (B) and Geardy 4(B) = By, for
(f,9) € F. Then

1 iff;é.Eandg‘#U,
Brg = § liecn:i<q) if f=FE,
liieon:i>q) if g="U.

Hence Geardy  (B) = lpetw(card f(B)i,card g(B),) for each (f,g) € F.
These results suggest some interpretation of the values Geardy  (A)(7)
for A € GP(U), namely: if respectively f = E,g = U,f # E and
g # U, then one can consider Geardy, 4(A)(¢) to be the degree to which
obj(A) has at least, at most, exactly 7 elements, respectively. As a
second corollary we obtain the following formulae (k := card U):

1{0} 1{k}iff7'éEandg$§U,
Geards  (E)=14 140y and Geardy(U)=< lon if f=E,
len Liky ifg="U.
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8.3. Let U =R, ie. CN = {i:i << }. Moreover, let

1—-z f 0<2z<1 B
Alz) = { 0 otherwise, B(z) = 0.8A(z),

0 otherwise,

C(m)={1—1/x if £=2,3,4,...,

. fo=0.1 r012 1f§z37274
0.9 ifz=2 0.3 ifz=6
03 if4<z<5 0.6 ifq;:8
O otherwise, L 0 otherwise.

Further, let Geardy (A) = ay 4, Geardy (B) = B4, Geards  (C) =
= v¢,4 , Geardy (D) = 654 , and Geardsy4(S) = o54. So, we have
a; =1foreachi € CN,b;=1fori=0and b; =0.8if ¢ € betw (1,$),
ci=1ifi1 <Ny and ¢; =0 for: =<¢, and

(1 if 1=0,1,2,3
1 ifi=0,1,2 0.9 . ifi=4
o _)o9 if i =3 06 ifi=>5
Yo if 1 =4 i=30.3 if i =6
0.3 ifi€ betw (5,), 0.2 ifi="7
| l 0 ifie betw (8,¢).

Then using the notational rule () from Section 1 we get

ag1 = ((0) || 0,1), By1 =((0.2) || 0.2,0.8), v41 = ((0) || 1,0),
641 = (0,0,0.1,0.3,0.7, (0.3) || 0.3,0.3),

o1 = (0,0,0,0.1,0.4,0.6,0.3,0.2,(0) || 0,0),

aga = ((1) ]| 1,1), By2 = (1,(0.8) || 0.8,0.8), va2 = ((1) || 1,0),
b2 =(1,1,1,0.9,0.7,(0.3) || 0.3,0.3),

ou2 = (1,1,1,1,0.9,0.6,0.3,0.2, (0) || 0,0),

ags = (0,(1) || 1,1), Bys = (1,(0.8) || 0.8,0.8), vxs = ((1) || 1,0),
645 = (0,0,1,0.9,0.7,(0.3) || 0.3,0.3),

ous = (0,0,0,1,0.9,0.6,0.3,0.2, (0) || 0,0),

ags = ((0) [ 0,1), Bya = ((0.2) | 0.2,1), va4 = ((0) || 1,0),

644 = (0,0,0.1,0.3,(0.7) || 0.7, 1),

o4 = (0,0,0,0.1,0.4,0.7,0.8,1,(0) || 0,0),
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ags = ((0) [| 0,1), Bys = ((0.2) | 0.2,1), vgs = ((0) || 1,1),
§us = (0,0,0.1,0.3,(0.7) || 0.7,1),
ous = (0,0,0,0.1,0.4,0.7,0.8,(1) || 1, 1),

age = ((1) | 1,1), Bas = ((1) | 1,1), y#s = (1) | 1,0),
6#6 = ((1) ” 171)70#6 = (1717171a17131’17(0) ” O’O)a

agr = (0,(1) | 1,1), Byr =((1) | 1,1), vgr = ((1) || 1,0),
6#7 = (070’ (1) || 1, 1)? OH1 = (070707 1,1,1,1,1, (0) ” 030),

ags = (0,(1) | 1,1), Bys =((1) | 1,1), vgs = ((1) | 1,1),
6#8 = (0703(1) ” 1a1)’ 048 = (070’01(1) ” 1v1)')

Worth noticing is that for instance ag; € PS(CN) although A ¢
¢ PS(U). This is because A has continuum of values which lie as
near to 1 as one likes.

9. Further properties of the generalized cardinal
numbers

One of the most fundamental requirements concerning gen’s is the
coincidence with cardinal numbers if we deal with HCH-objects being
sets. This is fulfilled. ,

Theorem 9.1. For cach (f,g) € F there ezists a bijection Uy, :
CN — PS(CN) such that Geardy,¢(1p) = ¥y,,(q) (g := card D), i.e.
respective diagram is commutative.

Proof. It suffices to use Ex. 8.2 and to define

14 if f#£Fandg#U,
‘I’f,y(i) = 1{j€CN: j<i} _ if f=FE,
lijeen: j>i) ifg=U ¢

Corollary 9.2. An immediate consequence of Ex. 8.2 is also that
for each pair (f,g) € Fif B € PS(U) and Geards 4(B) = f;,,, then
Bs,g € PS(CN). It is quite clear that the property Geard; ,(A) = a €
PS(CN) holds for each A € GP(U) iff both f and ¢ are functions to
PSU).
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10. Finite HCH-objects

Sets are divided into two disjoint classes: finite sets and infinite
ones. Some properties of powers and cardinal numbers refer either to
finite or to infinite sets. The others refer instead to all the sets and
those are in fact real properties of powers and cardinals, for instance
the monotonicity A C B = card A < card B. Let us try to extend the
notions of finiteness and infiniteness to HCH-objects.

As we pointed out, the power of an HCH-object depends in general
on the choice of (f,g) € F. However, it seems to be reasonable to accept
the following postulates:

(a ) The finiteness/infiniteness of an HCH-object does not depend on
(f,9) e F.

(b1) An HCH-object of power less than or equal to power of a finite
HCH-object has to be finite, too.

(b2) An HCH-object of power greater than or equal to power of an
infinite HCH-object has to be infinite, too.

On the other hand, if we like to define a relation =< ordering gen’s
and powers of HCH-objects , then < should be monotonic, i.e. Y(f,g) €
F : obj(A) C obj(B) = Geardys 4(A) =% Geardy ¢(B); such a relation is
defined and investigated in [24]. So, HCH-objects with finite supports
must be considered to be finite ones. Really, if obj(A) has a finite
support, then obj(1lsupp (4)) is a finite set and obj(A4) C obj(leupp (4))-
Thus the monotonicity condition and (bl) imply that obj(A) is finite.
Therefore the problem how to define finite HCH-objects resolves itself
to the following question: which HCH-objects besides those with finite
supports (if any) should be considered to be finite. To answer it let us
recall the Dedekind’s definition of an infinite set: A4 is infinite iff A is
equipotent to its proper subset. This definition seems to be suitable for
extending it to HCH-objects because it operates only with the notions
of equipotency and proper containment and does not go into the nature
of the notion of a set. So, let us test the following tentative definition:
obj(A) is infinite iff it is equipotent with respect to any (f,g) € F to an
HCH-object obj(A*) properly contained in obj(A). Now the problem
is how to define the proper containment (denoted here by CC) of two
HCH-objects. Let us consider two variants of definitions:

(v1) obj(A*) CC obj(A) iff A* C A&3z c U : A*(z) < A(x) .
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But then if we put e.g. f = E and g(-) = Lsypp () , even an HCH-object
supported by one element would be infinite. So, we reject this variant.

(v2) obj(4*) CC obj(A) iff f(A*) C f(A)&g(A*) C g(A)&3Iz € U :
F(A")(z) < f(A)(2) | 9(4%)(z) < g(A)(z).

Let us consider then an example with U := {2,3,4,...}, A(¢) := 1/1,
f(-) = 1¢y,, g = id. So, Geardy,,(A)(1) = 1/i for ¢ > 0. obj(A) is not
equipotent to any obj(A*) CC obj(A). Thus obj(A) is finite although
its support is infinite. But putting f = F, ¢(-) = lsupp () we however
get that obj(A) is infinite what contradicts (a).

So, we cannot use simultaneously (a) and the extended Dedekind’s
definition. Moreover, using the last example one can point out that if we
like to consider some HCH-object with infinite support to be finite and
even if we apply another definition of the infiniteness, then that HCH-
object will be always infinite with respect to f = E and ¢g(+) = Lsupp ()
So, either we reject (a) or we consider an HCH-object to be finite iff its
support is finite. We choose the second possibility; clearly, HCH-objects
which are not finite will be called infinite. This definition is convenient
and, moreover, it appears that just the transition from finite to infi-
nite supports causes the same change of properties of gen’s and powers
for HCH-objects as the change of properties of cardinal numbers and
powers of sets caused by a transition from sets nonequipotent to their
proper subsets to sets equipotent to such subsets. The gcn’s related
to finite (infinite, resp.) HCH-objects will be called finite (transfinite,
resp.) gen'’s.

11. Final remarks

In this paper our attention has been focused on the construction
and basic properties of powers and gen’s for HCH-objects. It appears
that a lot of these properties can be enhanced or even quite new prop-
erties can be formulated if we restrict ourselves to finite HCH-objects
(see [25] for details) which seem to be important from the viewpoint of
applications. However the aim of this presentation was to emphasize
some general properties, i.e. properties which are independent on the
powers of supports and on the choice of (f,g) € F.
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Another two basic subjects have to be discussed: order and oper-

ations. Detailed solutions of these problems are given in [24,25]. For
instance, it appears that gen’s form a commutative semiring.
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Abstract: We prove that, for a Banach space, the uniform non-I}, property
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Introduction

In this paper we prove that for a Banach space, the uniform
non—IL property is preserved under the complex interpolation method
introduced by Calderon [2].

Let X a complex Banach space and B(X) its unit ball, that is
B(X) = {z € X : ||z|| £ 1}. We say that X is uniformly non—I}
if there exists some § > 0 such that, for any vectors zy,...,z, in
B(X) there exists a choice of signs €1,.,en(e; = 1 or — 1) such that
IS0, eimill < (1 — 8) (see [4])

We say that X is B-convez if it is uniformly non—I} for some
integer n ([1],[4]). For n = 2, uniformly non—I., spaces are also called
uniform non-square.

By (Xo,X1), we denote an interpolation pair of complex Banach
spaces and by X,,(0 < s < 1), the intermediate spaces obtained by
Calderon’s complex interpolation method. We will indicate, as usually,




118 | E. Casini

by || - llos | < |1, ]| - ||, the norms in Xo, X1, X, respectively. We will use,
also, some notation of Calderon’s paper, in particular we will indicate
by F(X) the set of all functions f:S5 — Xo + X1( with S={z ¢
€ C,0 < Re z < 1}), continuous in S, analytic in intS, with f(j +it) €
€ X, for j = 0,1 and with f(j + it) — 0 as |t| — oo.

Main result

Theorem. If Xy or X; is uniformly non—I} then X, is uniformly
non—IL for every s € (0,1).

Proof. Suppose that Xj is uniformly non—I} and, by absurdity, that
X, is not uniformly non—I1. This means that for every o > 0 there
exist z1,...,z, € B(X,) such that ”;12 >, €izi| > 1—o for every choice
of g; = £1. For a fixed n > 0 there exist functions f; € F(X) satisfying

a) fils) = T4 = ok

1}

b) “-fl” = ma‘xj—_-o,l(suptE]R”fi(j + lt)”]) < 1(7' = 1721 v 777‘)'

For every choice of €; = 1 we define
1 & ,
Eepcp ={t€R: ||~ > eifi@t)lo < 1~ 6}
i=1

(where § is taken from the definition of uniformly non—I}, of Xj).
We will use the following inequality (see [2] p.117):

1 too 1 & ,
gl > el < [ Tels Y esilitlonols, D+
i -0 i=1

+oo 1 n
+/ 18”‘7; ;Eifi(l + at)|[1 p1 (s, t)dt

— 00

where p;(s,t)(j = 0,1) is the Poisson kernel for the strip. In our case
we obtain:

l-0o 1 &
< = L
By S / el ;1 &i fi(it)|lopo(s, t)dt+

Eepen
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n

1
+ / lgll= 3 e fiCit)loso(s, e+

Egcl_, =1

€q

+oo 1 n .
+ / 1g||;;€ifi(1+zt)||1/n(s,t)dt-

—0o0

n

But since for every t € R : |10  eifiG+at)|; <1 (5 = 0,1),

we obtain lgﬁ—% <(1- s)|E€1mEzn lg(1 — é) (where we set |A|=
= 1lTsz po(s,t)dt ) that is i;‘; > (1 — 6)exp{(1 — s)|E., . .,.|} and,
being 7 > 0 arbitrary, we obtain o < 1 — (1 — §)exp{(1 — s)|Ee,....|}.

If we choose 0 =1 — (1 — 6)exp(3:3%) we must have [E,, ., | <
<1/2™*1, This implies that |UEe,..c,| <1/2 that is (UEe,..e, )¢ #
# 0 (where the union is taken over all choices of signs). But this is a
contradiction since X is uniformly non—I1, so our theorem is proved. &
Corollary 1. If X or X; is B-convez, then X, is B-convez for every
5 €(0,1).

We also obtain the following result already proved in [3]:
Corollary 2. If Xo or X is uniformly non-square then X, is uniformly
non-square.
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