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5. Extending a family of merotopies in a proximity
space

A. WITHOUT SEPARATION AXIOMS

5.1 A family of merotopies in a proximity space always has an exten-
sion; we are going to construct the coarsest one. In general, there is
no finest extension, not even for I = 0; this could be deduced from the
well-known fact that there may fail to exist a finest compatible uni-
formity in an Efremovich proximity space (see e.g. [5] Ch. I, Ex. 12.),
but we shall give a simpler example in 5.3.
Definition. A cover c in a proximity space (X, §) is a §-cover if A6B
implies the existence ofa C € c with ANC #0#ABNC. ¢

In other words, c is a §-cover iff for any A C X, A8St(4,c)".
Evidently, any cover refined by some §-cover is a §-cover.
Lemma. For a merotopy M on X, §(M) is coarser than é iff every
¢ € M is a §-cover iff M has a base consisting of §-covers.
Proof. 0.4 (1). ¢

5.2 Notation. For a C exp X, Let pa denote the partition of X
generated by a; this means that S € pa if S = [ f(A), where, for

Aca

each A4 € a, either f(A) = Aor f(A)=A". O
Lemma. If c and f are §-covers, and f is finite then c(N)f is a §-cover
as well.
Proof. By Axiom P5, we may assume when checking the condition in
Definition 5.1 that there are A', B' ¢ pf with A C A', B C B'. Asf
is a 6-cover, there is a D € f such that AUB Cc A'UB' C D. cis
also a §-cover, so we can pick a C € ¢ with ANC # 0 # BN C. Now
CnDecn)f,and AN(CND)#0#BN(CND).S

It is not superfluous to assume that f is finite:
Example. Let X =N, P = {2n : n € N}, @ = P". For disjoint
A,B C X, let AéB iff both A and B are infinite. Now

c:{{p,q}:pEP, qEQ’ P<q}U{P7Q}

and d defined analogously, with p > ¢ substituted for p < ¢, are é-
covers, but ¢(N)d is not a §-cover. &

5.3 Definition. For a family of merotopies in a proximity space, let
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M° be the merotopy for which the following covers form a Subspace B:

& ={C? = C; UXT:C; € ¢;} (i € I,c; € M)
CAB—{A" Br} (A5B) <>

Recall the covers ¢! were already introduced in §3. We shall write
M®(8,M;) = M° (s, {M :1 € I'}) when necessary, e.g. when it has to be
distinguished from M°(c, M;). M°(8) = M°(4,0).

Lemma. Let (X,6) be a prozimity space.
a) For A8B, €4,B 18 a 6-cover.

b) M°(6) is the coarsest merotopy compatzble with §.

c) For Xy C X, M° (5)|X =M° (6] Xo)-

d) A filter on X is M°(6)- Cauchy iff it is §-compressed.

Proof. a) If § # E C A then St(E,cq,8)" = B and E§B; the case 0)
# E C B is analogous; finally, if E ¢ A, E ¢ B then St(E,ca,B) =
Thus c4, p satisfies the condition mentioned after Definition 5.1.

b) By Lemmas 5.2 and 5.1, §(M°(§)) is coarser than 6. Conversely,
if ASB then St(4,ca5)NB =0, thus A§(M°(6))B. Hence M° (6) is
compatible.

If M is compatible and "ASB then there is a ¢ € M such that
5t(4,c) N B = 0. Now c refines c4 5, so ca,5 € M and M°(§) c M.

c) Clearly

c4,8|Xo = canx,,BnXo

with the rlght hand side understood in the fundamental set X,, and
ASB implies AN Xy86,B N Xo, while if AbyB then ASB (where &, =
= §|X,). |

d) Recall that a filter is Cauchy iff it intersects each elements of
a given subbase.

There is, in general, no finest compatible merotopy:
Example. Take (X, §), ¢ and d from Example 5.2. By Lemmas 5.1, 5.2
and 5.3 b), M°(6) U {c} and M°(§) U {d} are subbases for compat1ble
merotopies. A finest compatlble merotopy would have to contain c(N)d,
which is not a §-cover.

The induced closure is discrete in this example, thus any merotopy
compatible with § is Lodato. Consequently, there does not exist a finest
compatible Lodato (or Riesz) merotopy. -

5.4 Theorem. A family of merotopies in a prozimity space can always
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be extended; M° is the coarsest eztension.
Proof. 1° §(M°) is finer than §. This follows from M°(8) C M® and
Lemma 5.3 b)

2° §(M°) is coarser than §. It is enough to show that if § # F C I
is finite and ¢; € M; (i € F) then ¢ = ([ )c? is a §-cover, since cy4 p is

icF

a §-cover by Lemma 5.3 a), so Lemma 5.2 yields that the elements of
M? are §-covers, and then Lemma 5.1 can be applied.

Let A6B; a C € c with ANC # 0 #£ BNC is needed. By Axiom
P5, we may assume that there are A', B' € p{X; : i € F} such that
A C A', B C B'. Let us decompose the index set F' into four parts as
follows:

AUBCX; (iehR);
ACX;, BCX] (i€ F);
ACXI, BCcX; (i€ F)

AUBCXI (i€ Fy).

By the accordance, M;|4 U B is the same merotopy compatible with
§|A U B for each i € Fy, and ( [) )(c;|]AU B) belongs to it, so we can

choose C; € ¢; (i € Fy) such that
(1) AN N Ci#0#Bn () Ci.
i€F, i€Fo

Fix now points z and y from the left hand side, respectively the right
hand side of (1); in case Fy = @, assume only that ¢ € 4, y € B. For
i € Fy, pick C; € c; with z € C;; similarly, for i € Fp, let y € C; € ¢;.
For i € F;, take an arbitrary set C; € ¢;. With C = () C? € c we have

icF

cc ANC,ye BNnC. €

3° M0|X,' is finer than M;, since for any ¢; € M;, ¢?|X; = ¢;, and
cde MP.

4° M°|X; is coarser than M;. By Lemma 5.3 c), c4,B|X; € M°(&;),
so Lemma 5.3 b) implies that it belongs to M;. ¢}|X; € M; follows from
the accordance: Taking a ¢; € M; with ¢;|Xi; = ¢;|Xij, c; will refine

|XJ, since if C; € ¢; then C; N X;; = C; N X,J = C’° N X;; for some

C € ¢j, and C; C (CF N Xy;) U (X:i\Xy5) = O] N X,

5° M? is the coarsest extension. Let M be another extension.
ca,B € M by Lemma 5. 3 b). For ¢; € M;, take a ¢ € M with ¢; = c|Xj;
now c refines c}, thus ¢} € M, too. Hence M C M. ¢
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5.5 Theorem. A family of merotopies in a prozimity space has a
finest ezension iff c(N)c' is a §-cover whenever ¢ and ¢' are §-covers
with traces belonging to M; (i € I). If so then these covers make up the
finest ezxtension M.

Proof. Any cover belonginng to an extension is a §-cover with traces
in M;, so if the system of these covers is closed for the operation (N)
then they constitute a merotopy finer than each extension, and this
merotopy is an extension by Lemma 5.1 and Theorem 5.4.

Conversely, assume that there exists a finest extension M!. If
c € M! then c is a §-cover by Lemma 5.1; ¢|X; € M; is evident. If d
is a 6-cover and d|X; € M; (i € I) then M’ U {d} is a subbase for an
extension M. M|X; = M; is clear; M is compatible, as M° ¢ M and the
elements of M are §-covers; the last statement can be proved using the
argument from 2° of the proof of Theorem 5.4, with the changement
that d|4 U B has to be added to the covers ¢;]A U B (i € Fp), thus

d € M. Hence M? consists of the §-covers with traces in M;. O

5.8 For a non-empty family of merotopies in a proximity space, we
have

(1) M® = sup M°(6, {M;}) = sup{M°(6),sup M*°[i]},
iel el

where M°°[i] is the coarsest merotopy M on X for which M|X; = M;,
ie. {c]:¢; € M;}is a base for M*°[i]. (1) follows from 2.2 a), but can
also be easily seen from Definition 5.3. (Recall that for merotopies M[i]
(i€ I#0)on X, |J M[i] is a subbase for sup M[i].)
i€l iel

5.7 A part of Theorem 3.1 can be deduced in two steps from Theo-
rems 1.2 and 5.4: given a family of merotopies in a symmetric closure
space, extend first the induced proximities, and then take the mero-
topy M(8°, M;); this merotopy is the coarsest extension in (X,c): if M
_is another extension then §(M) is an extension of the proximities §(M;),
thus it is finer then §°; now

MO(8°, M;) € MP(6(M),M;) C M

(the first inclusion can be seen from Definition 5.3, the second one

follows from Theorem 5.4, since M is an extension in the proximity
space (X, 6§(M)). Therefore:
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(1) M®(c, M;) = M°(6%(c, 6(M5)), M;).

If we only want to prove the ezistence of an extension of a family
of merotopies in a closure space then §! can also be used instead on §°,
but M°(6*,M;) is in general different from M*(c, M;). Tt is, however,
true that M'(¢, M;) is the finest extension of the merotopies in (X, §*)
(because it is an extension in (X, ¢) finer than M°(6%, M;), so it induces
a proximitiy &' finer that §'; &' is an extension of the proximities §( M;),
so it is also coarser than §?; thus M'(c,M;) is indeed an extension in
(X,8%), and it is the finest one in a larger class of merotopies, namely
the extensions in (X, ¢)). Therefore:

(2) M (c, My) = M (8 (c, 6(M5)), My).

But there arises a difficulty if we try to deduce the part of Theorem 3.1
concerning finest extensions: it has to be shown somehow that Theorem
5.5 applies to 6.

5.8 Conversely, it is also possible to base the proof of Theorems 1.1
and 1.2 on Theorem 3.1 and Lemma 5.3:

Let a family of proximities be given in a symmetric closure space.
By Lemma 5.3 b) and c), {M°(&;) : i € I} is a family of merotopies
in (X,c); Theorem 3.1 furnishes the coarsest, respectively the finest
extension M® and M?' of this family. Now §(M°) and §(M") are clearly
extensions of the family of proximities. If é is an extension of the same
proximities then M®(6) is an extension of the merotopies M°(§;) (again
by Lemma 5.3 c)), thus M° ¢ M°(§) c M!, implying &§M°)D 6D
D 6(M?). So §(M?®) and §(M?) are coarsest, respectively finest. There-
fore we have:

(1) 8% (c, 8;) = 6(M*(c,M°(6;)))  (k=0,1).
(Compare these formulas with 4.1 (1).)

B. RIESZ MEROTOPIES IN A PROXIMITY SPACE

5.9 Theorem. A family of merolopies in a prozimity space has a Riesz
eztension iff the prozimily is Riesz and the trace filters are Cauchy; if
s0 then M® is the coarsest Riesz extension.

Proof. The conditions are clearly necessary. Conversely, if they are
satisfied then M® is Riesz (so it is the coarsest Riesz extension by The-
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orem 5.4):

Let z € X and c € B (see Definition 5.3) be fixed; we need a C € ¢
with z € intC. If ¢ = c4,B, ASB then = & ¢(4) or = ¢ ¢(B) (as 6 is
Riesz), thus z € int A", A" € c,orz €int B", B"€c. Hc=¢},i €I,
¢; € M; then there is'a C; € ¢; Ns;(z) (as the trace filters are Cauchy),
thus O € v(z),i.e. z €int C?, C? € c. &

5.10 Theorem. A family of merotopies in a prozimily space has a
finest Riesz extension iff § is Riesz, the trace filters are Cauchy, and
c(N)c' is a §-cover whenever c and ¢' are §-covers with traces belonging
to M; (i € I) such that intc and int ¢' are covers. If so then these covers
make up the finest Riesz eztension M}.
Proof. If M}, exists then M° is Riesz by Theorem 5.9. Now assuming
in the proof of Theorem 5.5 that intd is a cover, the extension M defined
there is Riesz, thus d € M. ¢

If the conditions of Theorem 5.9 are fullfilled and there exists a
finest extension M then so does M}, (take those ¢ € M! for which intc
is a cover), but not conversely, not even for I = 0:
Example. Take X = [~1,1] with the Euclidean proximity §. Let

c = {[_17'0]1 [071]} U {{ps q},: 0< —p < g < 1}7

and d defined analogously, with 0 < ¢ < —p < 1. ¢ and d are §-
covers, but ¢(N)d is not a é-cover, so (as in Example 5.3) there is no
finest compatible merotopy. But there exists a finest compatible Riesz
merotopy, namely the one for which all the open covers form a base. ¢

5.11 It can also occur that M' and M} both exist but differ: let § be
the indiscrete proximity on a three-point set. A better example, with
4 separated: L -

Example. Let X be infinite, z € X , and u a free ultrafilter on X. Take
the topology ¢ on X for which {{z}US:5 ¢ u} is the neighbourhood
filter of z, and the other points are isolated. Now with § = 8(c) =
= 8x(c), we have M'(§) = M*(c), and the cover ¢ consisting of all
the finite subsets of X belongs to M'(§)\M%(8). (c is a §-cover, so
¢ € M'(6) by Theorem 5.5. ¢ & My, because z ¢ Uintc). ¢

5.12 Similarly to 5.7 and 5.8, it is possible to deduce from each other
Theorem 1.5 and the part of Theorem 3.2 concerning coarsest exten-
sions. (Make use of Lemma 5.3 d).) In addition to the formulas given
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in 5.7 and 5.8, we have (for a family of merotopies, repsectively prox-
mities, in a weakly separated closure space with Cauchy, respectively
compressed trace filters):

(1) ML (e, M;) = Mk (8 (e, (M), My);
(2) 8% (c, 8;) = 6(Mp(c, M°(5:))).

C. LODATO MEROTOPIES IN A PROXIMITY SPACE

5.13 If a family of merotopies in a proximity sapce has a Lodato exten-
sion then the proximity and the merotopies are Lodato, the trace filters
are Cauchy, and 3.6 (1) holds, since an extension in (X, §) is necessarily
an extension in (X, c). These conditions are not sufficient, not even for
a single open subset:
Example. Take X,X; and M; from Example 3.8, and let § be the
Euclidean proximity on X. Now M; and § are Lodato, M, is compatible
with 6| X7, the trace filters are Cauchy, 3.6 (1) is evident (cf. Corollary
3.7), both (M) and I'(M;) have Lodato extensions, but M; does not
have one:

Assume indirectly that N is a Lodato extension. Then ¢;(1)° € N,
and so d = intc;(1)° € N; now d|X7] conmsists of singletons, implying
that §|X7 is discrete, a contradiction. ¢

5.14 Definition. For a family of Lodato merotopies in a Lodato prox-
imity space with Cauchy trace filters, let {intc : ¢ € B} be a subbase
for M} (with B from Definition 5.3). &

In other words, {intc : c € M’} is a base for M}. (int c is a cover
by Theorem 5.9.) intc AB = cc( 4),¢(B)» so the following covers form a

subbase By, for M}:
(1) €A,B (AEB, A and B are c-closed);
(2) int c? (i €I, ¢; € M;, ¢; is ¢;-open).

The covers in this subbase are clearly open in c¢. M}, is finer than the
compatible merotopy M®. On the other hand, the c-openess of the
covers implies that ¢(M},) is coarser than c; therefore:

Lemma. Under the assumptions of the deﬁmt:on, ML is a Lodato
merotopy compatzble with c. ¢
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M} is not necessanly compatible with é, see Example 5.13. We
shall also see that M} | X; can be different from M; (see Examples 5.19).

5.15 Lemma. If § is a Lodato prozimity then M®(8) = M2 (6) is the
coarsest Lodato merotopy compatible with 6.

Proof. M® C M‘}J always holds, while the converse follows for I = {)
from By, C B. Now Lemma 5.14 and Theorem 5.4 can be applied. ¢

5.16 Lemma. Under the assumptions of Definition 5.14, MOL 18 the
coarsest one among those Lodato merotopies M compatible with ¢ that
induce a prozimily finer than 8, and for which M|X; is finer than M;
(zeI.

Proof. §(M}) is finer than §, because M9 is finer than MY (5), and the
latter is compatible by Lemma 5.15. M%|X; > M;, because if ci € M;
is c;-open then ¢; = (int ¢f)|X;. M is Lodato and ¢(M%) = ¢ (Lemma
5.14).

Let M be a merotopy satisfying the conditions of the lemma; we
have to show that BL Cc M.

If ASB then A6(M)B, so c4 B € M°(§(M)) C M by Theorem 5.4.
M[X; O M; implies that for any c;-open cover ¢; € M; thereis a c € M
with ¢|X; = ¢;;intc € M (as M i is Lodato, and it is compatible Wlth c);
now int c refines intc?, thus int ¢! € M, too. ¢

It has to be assumed in the lemma that M is compatible with ¢:’
Example. On X = N2, let A§B iff their projections on the first
coordinate are disjoint. Take the discrete merotopy My on X, =Nx
x{1}, and let M be the merotopy for which M°(§') U {3} constitutes
a subbase, where §' is the discrete proximity on X, and ¢y consists
of the singletons in X;. Now M is not compatlble with ¢, but the
other conditions of the theorem are satisfied. M} is not coarser than
M, because M|X{ is contigual, while (int ¢0)| X7 € M} |XJ cannot be
reﬁned by a finite cover. ¢

5.17 Lemma. A family of merotopies in a prozimily space has a
Lodato eztension iff
(i) the prozimity and the merotopies are Lodato;

(i) () )inte] is a 6-cover whenever § # F C I is finite, and
ieF

¢ € M; (i € F);
(i) (int c?)|X; € M (1,5 € I,c; € My).
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If these conditions are satisfied then MY is the coarsest Lodato ezten-
sion.
Remarks. a) It is not necessary to assume that the trace filters are
Cauchy, since this follows from (ii). (Recall that the trace filters are
Cauchy iff each int c{ is a cover.)

b) It is enough to know (ii) and (iii) for elements of bases for M;,
e.g. for open covers.

c) The cover in (ii) can also be written as int ( [ )el.

i€F

Proof. 1° Necessity. It was already mentioned in 5.13 that (i) and (iii)
are necessary. If there is a Lodato extension then M} is an extension
by Lemma 5.16. The covers in (ii) belong to M(},, so Lemma 5.1 implies
that they are -covers.

2° Sufficiency. The assumptions of Definition 5.14 are fullfilled,
see Remark a). §(M%) C 6§ and M}|X; D M; by Lemma 5.16. Con-
versely, 6(M?) D § follows from Lemma 5.1, since the elements of the
base generated by By, are §-covers by (ii) and Lemmas 5.3 a) and 5.2;
MS |X; C M; follows from (jii) and Lemma 5.2 b) and c). Thus M} is
an extension, Lodato by Lemma 5.14. {
Corollary. A single Lodato merotopy Mg in a Lodato prozimily space
has a Lodato eztension iff intc) is a §-cover for each (co-open) ¢ € My;
if so then MUL is the coarsest extension. ¢

It can occur that a single merotopy in a proximity space has a
Lodato extension, but M} # M® (we have seen in Lemma 5.15 that this
is impossible for I = 0):
Example. Let X =R x [0, —[, with the Euclidean proximity §, Xo =
Rx]0,—[, Mg the Euclidean merotopy on Xo. Now My has a Lodato
extension (the Euclidean merotopy on X, which is in fact equal to
M%), but M} # M°, since M®|XT is contigual, while M} |X7 is not
contigual. ¢

5.18 int ¢} clearly satisfies the condition in Definition 5.1 for A,BC
C X, so, in view of Axiom P5, it is enough to assume this condition
in Corollary 5.17 for A C X and for B satisfying B C X, or B C Xj.
Thus the assumption in Corollary 5.17 splits into two parts:

(a) if A,B C Xy, A6B and ¢o € Mo (is open) then there are
C, € ¢y, ¢ € A and y € B such that Cy €'s0(z) N so(¥);

(b)if A C X7, B C Xy, ASB and ¢y € My (is open) then there
are C, € ¢y and z € A such that Cy € so(z) and CoN B # 0.
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Either of these conditions implies that the trace filters are Cauchy.
(For z € ¢(Xo)\Xo, take A = {z} and either B = {z} or B = X,.) The
next examples show that neither is sufficient in itself for the existence
of a Lodato extension.

Examples. a) Modify Example 5.13, replacing each c;(¢) by
{Cl U D1 : 01, D1 € C1(€), 01 N .D1 75 @}

Now (b) holds, but there is no Lodato extension, for the same reason
as in 5.13.

b) Let X =N x [0,—[, Xo = Nx]0,—[. Take the Euclidean
proximity § on X, and let the following covers (n € N) constitute a
base for My on Xj:

{k}Xly,y+ 11k €N,y > 0} U {{k}x]0, mrkis[: k €N},

Now (a) holds, (M) and I'(M,) have Lodato extensions in (X, )
(observe that U(Mo) = U(No) and I'(My) = I'(Ny), where Ng is the
Euclidean merotopy on X, ), but My does not have one, since (b) fails
for A= X§ and B = {(k,1/k) : k e N}. {

5.19 Condition (iii) is not superfluous in Lemma 5.17:

Examples. a) Let X, Xy, X;,Mp,M; be as in Example 3.8, with the
following modification: replace c; () by

di(e) = ca(e) U {({1/m,1/n}x]0,e[) N X1 : m,n €N, m,n > 1/e}.

Let é be the Euclidean proximity on X. 5.17 (i) is clearly staisfied.

int dy (€)° is a §-cover (the modification was needed, because oth-
erwise neither 5.18 (a) nor 5.18 (b) would hold). For ¢y € My, int cJ is
evidently a §-cover, since X is closed. M is contigual, so int c) is finite
for ¢y taken from a base. Hence (ii) holds by Lemma 5.2. The induced
semi-uniformities as well as the induced contiguities have an extension
(similarly to 3.8, the Euclidean uniformity, respectively the Euclidean
contiguity). But My and M; do not have a Lodato extension, not even
in (X, c), since (iii) is not satisfied for i =1, j =0, ¢; = d; (1).

b) There is a much simpler example if we do not insist that the
induced semi-uniformities should have a Lodato extension (essentially
the same as Example 2.10):

Let X, X,,6,M; be as in Example 5.17, X; = X7, I'y the Eu-
clidean contiguity on X;, M; = M*(T;) (cf. 4.1). $
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5.20 Condition (ii) of Lemma 5.17 cannot be replaced by the weaker
assumption that each intc{ is a §-cover:

Example. Let T = {— 1/'n. 1/n:neN)L X =T xR,X, = Tx]«—-,O[,
X; = T'x]0,—[. Let § be the Euclidean proximity on X, and {c;(¢) :
e > 0} a base for M; on X;, where -

cl(e) {(P,P+€[X]q,q+€[) NX;:(p€R,¢g>0)or
(0 &lp,p+ e[, 4 =0)} U {{-1/k, 1/n}x]0,e[: k> n > 1/e},
co(e) = {(]P1P+€[ x]g—e,q)NXo:(p€ER,qg<0)or
(0 ¢lp,p+el,g=0)}U{{-1/k,1/n}x] —€,0[:n >k > 1/e},

(i) and (iii) are fullfilled, the latter because, for i # 7, intc?|X; = {X;}.
The weaker form of (ii) holds, but not (ii) itself, since int cy(1)%(N)
(N)int ¢;(1)° is not a §-cover: consider A = {1/n : n € N} x {0} and
B={-1/n:n N} x {0}. &

5.21 In the extension problems we have discussed up to now, a family
of structures could be extended iff each subfamily of cardinality < 2 had
an extension. We do not know whether this holds for Lodato extensions
of merotopies in a proximity space.

5.22 Theorem. A family of Lodato merotopies given on closed subsets
in o Lodato prozimity space has Lodato eztensions; M° = M} is the
coarsest one.
Proof. M is the coarsest extension by Theorem 5.4. M’ is Lodato,
since c? is refined by (int; ¢;)® € M°, which is an open cover, and c4 p
is refined by the open cover c.(4)¢B) € M?, thus M? has a subbase
consisting of open covers. M® = M is also clear from this reasoning. ¢
If the subsets are not closed then it is possible that there exist
. Lodato extensions, but M}, (by Lemma 5.16, the coarsest one) is ‘strictly
finer than M%:
Example. Take § = {1/n:n € N}, X = §x({0}US), X; = S?. Let §
be the Euclidean proximity on X, and {f;(k) : £ € N} a subbase for M,
on X, with fl(k) from Example 4.5. Now M7 is a Lodato extension,
and 1ntf1(1)° € M \Mo

5.28 Lemma. If a family of merotopies in a prozimily space has a
Lodato eztension, and the open §-covers c for which c|X; € M; (i € I)
form a base for a merotopy M}, then ‘M}J 1s the finest Lodato ezten-
sion. $
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It follows from this lemma and Theorem 5.10 that if a family of
merotopies has a Lodato extension as well as a finest Riesz extension
then it has a finest Lodato extension, too; the converse is not true:
Example. With X, P, Q from Example 5.2, let ¢ denote the topological
sum of the cofinite topologies on P and Q. Define A§B iff either c(4)n
Ne(B) # 0, or AN P and B N Q are infinite, or A N Q and BN P are
infinite. § is a Lodato proximity compatible with ¢. An open cover
c is a é-cover iff there is a C € ¢ with C" finite; if the open covers
¢ and d have this property then so has ¢(N)d, thus the open é-covers
constitute a base for a merotopy, which is, according to the lemma, the
finest compatible Lodato merotopy.

There is, however, no finest compatible Riesz merotopy, because,
by Theorem 5.10, such a merotopy would contain ¢ and d from Example
5.2; but ¢(N)d is clearly not a é-cover, a contradiction. O
Problem. Assume that there exists a finest Lodato extension; is it
necessarily of the form given in Lemma? (The- answer is yes if each X;
is closed: repeat the reasoning from the second paragraph of the proof
of Theorem 5.5, considering only c-open, respectively c;-open covers; if
¢; is ¢;-open and X; is closed then ¢} is c-open.)

5.24 We need a measurable cardinal in the construction of a,,proximify
space in which the finest compatible Lodato and Riesz merotopies exist
but differ (compare with the very simple examples in 5.11): = -
Example. Let Y be the set of the rationals, Z a set of measurable
cardinality, Y NZ = 0, X = Y U Z, u a free ultrafilter on Z such
that Nv € u whenever v C u is countable (see e.g. [4] 12.2). Let ¢
denote the sum of the Euclidean topology on Y and the discrete one
on Z. Define A§B iff either c(4) N ¢(B) # 0, or ANY is infinite and
BNZ €u,or BNY is infinite and AN Z € u. § is a Lodato proximity
compatible with ¢. Let ¢ and d be é-covers for which int ¢ and int d are
covers. Evidently, int(c(N)d) is also a cover. We are going to show that
¢(N)d is a §-cover; then Theorem 5.10 yields that there exists the finest
compatible Riesz merotopy M%(6), implying the existence of the finest
compatible Lodato merotopy M (§). : o
Given near sets A and B, we need C € c and D € d such that -

(1) ANCND#0#BnCND.

If there is a point z € ¢(4) N ¢(B) then, as int ¢ and int d are covers, C
and D can be chosen such that z € int C' Nint D, and then (1) clearly
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holds. So we may assume without loss of generality that A C Y and
B C Z, A is infinite and B € u.

We shall define by recursion sets 4, C Ay = A, B, C By = B
satisfying A,,6B,,, and points z, € A (n € N). If A, and B, are
defined then consider the sets B,\St(z,c) for ¢ € A,. If all these sets
belonged to u then we would have E = B,\St(4n,c) € u; now A,4E,
contradicting the assumption that c is a é-cover. Hence there is an
2, € A, such that Z N St(zn,c) € u; define now A1 = An\{zn}
and B,y = B, N St(zn,¢); clearly, Apy16Bry1, and the points z,, are
different. Take H = {z,, : n € N} and K = ()| Bj; then HSK, and

neN
(2) St(y,c) D K (y € H).

d being a §-cover, there is a D € d such that DN H # 0 # DN K.
Taking points y € DN H and z € D N K, (2) implies that y,z € C for
some C € c,i.e. (1) holds indeed.

Consider the cover

e={Y}Uu{{y}uZ:yeY}.

inte = {Y, Z} is a cover, and e is a §-cover, thus e € M%(6) by Theorem
5.10. But e ¢ ML (6), since inteisnot a é-cover. Hence ME(8) #
£ M1 (6). ¢

Problem. Is there a similar example in ZFC, or at least in a consistent
model of ZFC? (Perhaps there exists such an example only with I # 0.)

5.25 It follows easily from the definition that under the conditions of
Definition 5.14,

(1) Mz = sup M%,(6,{M:})

holds for I # @. (1) cannot be deduced from 2.2 a) 1° in such generality,
since it holds only for p = ¢ = 1 that MOL is always a pg-overextension
(see the last paragraph in 5.14), but it is not the coarsest one (Exam-
ple 5.16). We can, however, generalize 2.2 a) 1° to meet the present
situation (with p = ¢ = 1; cf. Lemma 5.16): let us require in the defini-
tion of a pg-overextension that d should satisfy a property inherited by
suprema of non-empty collections. (The C-structure on X is allowed
to figure in the property.)

5.28 Statements similar to those in 5.7 and 5.8 hold for Lodato exten-
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sions, too. It should be mentioned that extending a family of merotopies
in a closure space in two steps is now even more problematic (because
Lodato merotopies behave badly in a proximity space), e.g. Corollary
3.8 can be obtained this way only for closed subsets, and not for open
ones.

6. Extending a family of contiguities in a proximity
space -

A. WITHOUT SEPARATION AXIOMS

6.1 A family of contiguities in a proximity space always has extensions;
this will be deduced from the corresponding result for merotopies, using
the method of § 4. We shall utilize the facts mentioned in the second
paragraph of 4.1. Only the coarsest extension can be obtained this
way, although there exists a finest one, too; its existence can be proved
easily: take the supremum I' of all the extensions (i.e. their union is a
subbase for I'); now I' is compatible by the lemma, below, and I'| X; = T;
is evident. This proof is, however, superfluous, since we shall construct
the finest extension. S v
Lemma. For a contiguity T on X, 6(T') is coarser than § iff every
fcT is a §-cover iff T has a subbase consisting of §-covers.

Proof. The statement on subbases follows from Lemma 52.

6.2 Definition. For a family of contiguities in a proximity space,
a) Let I'° be the contiguity for which the following covers form a
subbase: f{ (i € I, f; € T;) and ca,B (A6B). B
b) Let I'' consist of those finite é-covers f for which flX; € T;
(iel).$ o
Clearly, I'® = I'(M°(§, M°(T';))). |
Theorem. A family of contiguities in a prozimily space always has
eztensions. I'’ is the coarsest, and T the finest eztension.
Remark. A direct proof not making use of Theorem 5.4 would be
much simpler than the proof of that theorem, since, the covers béihg

finite, the argument in 5.4 2° can be replaced by applying Lemma 5.2
(or 6.1). :
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Proof. TI° is an extension by Theorem 5.4. If T' is another exten-
sion then MOSI‘) is an extension of the merotopies M°(I';), hence M°(4,
M®(T;)) € M%(T), thus T'° C T. If f € T then it satisfies the conditions
in Part b) of the definition, so f € I'!, and therefore I' C I'!; in par-
ticular, I° C I'!, implying that ¢(I') is finer than c and T; C T''|X;.
Conversely, ¢(I'!) is coarser than ¢ by Lemma 6.1, and rx; cIyis
evident from the definition. Thus I'! is indeed the finest extension. ¢

6.3 I'° and I'* are different in general: let |X| = 3, I = 0 and § the
indiscrete proximity on X. I' and I'! can, in fact, coincide only under
very strong assumptions: I'°(§) = I''(§) iff each §-compressed filter is
the intersection of at most two ultrafilters; this will be proved in [3],
along with the following results: all the §-covers of cardinality < 3 form
a subbase for I'}(§); if proximities 6] ( € I # @) are given on the same
set then

sup I''(6[i]) = I'* (sup 8[1]).
il i€l

6.4 The analogue for contiguities of 5.6 (1) and a similar formula for
I follow easily from 2.2 a).

Statements corresponding to 5.7 and 5.8 are also valid; things are
simplified by the existence of a finest extension. Only one point is worth
going into: the formulas

(1) 8(c,b:) = 8(T*(e,T(8)))  (k=0,1)

remain valid if we substitute T''(§;) for I'°(8;). The formulas make
sense, because the contiguities I'"(§;) are accordant. It follows from
(1) that §(T*(c,T'(6;))) is finer than §(c, §;), so they are the same, as
the latter is the finest extension, and the former is an extension, too.
Concerning the case k = 0, observe that I'(c,I'(6;)) C T (6%(c, 6:)),
since (see Definition 4.1 a)) ¢,,B belongs to any contiguity compatible
with ¢, while if f; is a finite ;-cover then fg is a finite §°(c, 8;)-cover;
hence

§(T° (¢, T2 (65))) D 6%(c, 6;) = 6(T°(e, T°(6:))) D 8(T°(e, T (6:)))-

B. RIESZ CONTIGUITIES IN A PROXIMITY SPACE

6.5 Definition. For a family of contiguities in a proximity space, let
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't ={fe I :intfis a cover of X}. ¢

(The same definition was used in a closure space, with a different
meaning of I'!, of course, see 4.2.)
Theorem. A family of contiguities in a prozimity space has a Riesz
eztension iff the prozimity is Riesz and the trace filters are Cauchy; if
so then I'® is the coarsest and '}, the finest Riesz extension.
Proof. In view of Theorem 5.9, it is enough to show that '} is the
finest Riesz extension. If I is a Riesz extension then I' C T'! by Theorem
6.2, so I' C 'y, follows from the definition. In particular, I'° C T};-on
the other hand, I'y; C I'! is evident, thus I'}; is an extension by Theorem
6.2. T'} is clearly Riesz, and we have already seen that it is finer than
any other Riesz extension. {

- .I'%, T% and I can be different:

Example Let 6 be the Euclidean proximity on X = R\{0}. Denote

by Q and D the set of the rationals, respectively dyadic rationals, in
X. Now

f={Q,D",DuQ"} € T*(8)\Tx(8),
f = {] «<,0[,]0,— [} Uf e TL(O\T(8). ¢

6.6 It follows from 2.2 a) 3° and 4° that, under the assumptions of
Theorem 6.5, ’

(1) Tk = inf Th(5,{T+}) = inf {Th(5), inf T[]},

where I''![i] is the finest contiguity (= the finest Riesz contiguity) I' on
X for which I'|X; = T}, i.e. I'*![i] consists of all those finite covers f of
X for which fIX € T';. (I'™[i] is Riesz because int'4 = (A\X;)Vint; (AN
NX;), where int' is to be understood in ¢(I'**[1]).) (1) is in fact obtained
with inf taken in the category of Riesz contiguities, but this coincides
with inf in the category of contiguities, assuming that there exists a
coarsest one among the closures induced by the contiguities considered.
(And observe that §(I'''[i]) C §, implying that ¢(I''![4]) is finer than
¢ = o(T(6)).)

6.7 The finest Riesz extension of a family of contiguities in a closure
space can be obtained in two steps, cf. 5.12 (1) (but now the existence
of a finest extension can in fact be proved in two steps):

O © Th(e,I:) = Th(8k4(c, 6(T)),Ts).
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Conversely, if we have a family of proximities in a weakly separated
closure space such that the trace filters are compressed then it follows
from 5.12 (2) that

(2) 8g(c,6:) = 6(Tx(e, T°(8:)))-

If we try to replace here T'%(§;) by I'h(8:) (cf. 6.4) then the trace
filters are not necessarily Cauchy, thus I'k(c, [,(6;)) is not a Riesz ex-
tension (in fact, not an extension at all, see the example below); all
the same, (2) remains valid even with I'*(§;), since I';(c,['°(4;)) and
I'L(c,T(&;)) induce the same proximity (using Definition 4.2, check
that if f € TL(c,I'}(6;)) and |f| = 2 then f € Tk(c,I'°(4;))); and
Th(e, TH(6) = Th(e, T3 (5)):

Example. Let X =N, X, = {1}", S € v(1) iff 1 € S and 57 is finite,
and let the other points be isolated in ¢. For disjoint 4, B C X, define
AbyB iff A and B are infinite. Take disjoint infinite sets A,B,C C
C X,. Now fy = {Xo\4, Xo\B, Xo\C} € T)(60), so the §g-compressed
filter so(1) is not T'h(8o)-Cauchy, because so(1) N fo = @. Moreover,
T'L(c,T}(80)) is not an extension, since if f belongs to it then 1 € Uintf
implies that f| X, contains a cofinite set, i.e. f|Xo # fo. ¢

C. LODATO CONTIGUITIES IN A PROXIMITY SPACE

6.8 Definition. For a family of contiguities in a proximity space,

a) Let T} = {fe I :intf € T'}.

b) Assuming that the proximity and the contiguities are Lodato
and the trace filters are Cauchy, let '} be the contiguity on X for which
{intf:f €'’} is a base. ¢

Observe that T'Y = T'(MZ(6,M°(T;))). A subbase for '} can be
described similarly to 5.14 (1) — (2). If c is a topology then the c-open
covers in I'! form a base for I'.

Lemma. A family of contiguities in a prozimily space has a Lodato
eztension iff

(i) the prozimity and the contiguities are Lodato;

(1) intfg is a §-cover (i € I,f; € Iy);

(iii) (intf})|X; € T; (4,5 € I,f; € Ty).

If these conditions are satisfied then T'Y is the coarsest and T'i the
finest eztension.
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Proof. It follows from Lemmas 5.2, 5.17 and 5.16 that the conditions
are necessary and sufficient, and I'} is the coarsest extension.

Assume that I' is a Lodato extension, and f € . Then intf € T,
so int f € I'" by Theorem 6.2, therefore f € I}, ie. T C T'i. This
means that if '} is a Lodato extension then it can only be the finest
one. Taking I' =T'%, we have '} C T}, and I'l C T by the definition;
hence I}, is an extension, and, being compatible, it is clearly Lodato. ¢

- Condition (iii) is not superfluous: take the contiguities from Ex-

ample 4.5, with the Euclidean proximity on X. Condition (ii) can be,
similarly to 5.18 (a) and (b), decomposed into two parts, neither of
which is sufficient in itself (although either implies that the trace filters
are Cauchy, see in 5.18):
Examples. a) Taking X, X; from Example 4.5, with the Euclidean
proximity on X, we modify I'; by interchanging the role of the coordi-
nates, and adding one more member to the covers in the subbase: let
{f1(k) : k € N} be a subbase for I';, where

fi(k) = {{(1/m,1/n) : m,n > k,n # p(mod3)} : p = 0,1,2}U
u{{(1/m,1/n):n > k}:m<k}u{{(1/m,1/n): m>k}:n < k}U
u{{(1/m,1/n)} : m,n < kE} U {{(1/m,1/n):n>m > k}}.

Now the last member in the definition of f;(k) guarantees that the
condition analogous to 5.18 (a) is satisfied. But (b) fails: take c¢; =
=f1(1), A= X and B = {(1/n,1/n) : n € N}.

b) Let X = (R\{0}) xR, X, = (R\{0})?, § the Euclidean prox-
imity on X, §; =] «, 0[, S2 =]0, — |,

eo = {Xo\(Su X Sy) ru=1,2, v=1,2},

and I'°(6p) U {eo} a subbase for T'. I'®(6y) is compatible and Lodato
(Lemma 5.15), and e is a co-open 6y-cover, so Ty is a compatible Lodato
contiguity by Lemma 6.1. Now eq, 5y x {0} and S, x {0} show that (a)
is not fullfilled. But (b) holds:

We may assume (by Axiom P5, and for reasons of symmetry) that
A C 53 x{0} and B C (S1US;)xS;. Takef, € I'%(6) such that fo(N)eg
refines the prescribed ¢y € T'y. As I'%(§) is a Lodato extension of (),
(b) holds with f, instead of ¢, thus we can pick Fy € f, and z € A such
that Fy € so(z) and FyNB # 0. Now with Cy = Fon(Xo\S2) € fo(N)ey
we have Cy € so(z) and Co N B # @ (since B C (Xo\Sf)); hence (b)
holds with fy(N)ey, therefore also with ¢q. ¢
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These examples could also have been used in 5.18, had we not
made in § 5C a point of requiring that the induced contiguities and
semi-uniformities should have Lodato extensions whenever possible.
Corollary. A family of contiguities in a Lodato prozimity space has a
Lodato eztension iff {I';,T';} has a Lodato eztension for anyi,j € I. {

Compare this corollary with 5.21.

8.9 Corollary. A family of contiguities in a Lodaio prozimily space
has a Lodato exiension iff it has a Lodato eztension in (X,c) and each
{T';} has a Lodato eztension in (X,§).

Proof. Lemma 6.8 and Theorem 4.3. ¢

6.10 Lemma. Under the assumptions of Definition 6.8 b), a family of
contiguities in a prozimity space has a Lodato eztension iff I C I'}.
Proof. The necessity follows from the last statement in Lemma 6.8.
Conversely, assume that I'Y C I'}. It is clear from the definitions that
I';, C I'Y and T'L C I'!, hence I'} is an extension by Theorem 6.2; T'}
is Lodato, because c is a topology. ¢

6.11 Theorem. A family of Lodato contiguities given on closed subsets
in a Lodato prozimity space has Lodato eztensions; T'° = TI'} is the
coarsest and '} the finest Lodato eztension.
Proof. Theorem 5.22 and Lemma 6.8.

I'® and I'} can be different if the subsets are not closed: take X,
X; and T'; from Example 4.5, with the Euclidean proximity of X (cf.
Example 5.22). (I'°(8) =)T'%(8) # I'};(6) for & from Example 5.2: if 4,
B, C C X are disjoint infinite sets then f = {A", B", C"} is clearly a
finite open é-cover, so f € I'L(§); but f & T'°(6), since each cover cp g
(P8Q), and so each element of I'°(§), contains at least one cofinite set.
(The result cited in 6.3 could also be used, since c is discrete, and so
I'L(8) = T'(6).) In Example 6.5, f € TL(6)\I'}(6); TL(6) and I''(6)

were different in the same example.
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Abstract: Here we define the sectional genus g(F) of a reflexive sheaf F
over a projective variety V. Here we classify (char 0) all such pairs (V,F)
with dim(V)=3, V smooth, F not locally free but curvilinear, F ample and
spanned, and 2g(F)—2<c3 F; we have ﬁPa, all such F are described ex-
plicitely and the set of such F is parametrized by P3.

We work over an algebraically closed field K with char(K)= 0.
Fix a complete variety V; set n = dim(V); here we need only the case
n = 3. Recall that a coherent sheaf F on V is called reflexive if the
natural map from F to its double dual F** is an isomorphism; this is
the case for instance if F' is locally free, but it happens in several other
interesting cases: see [6] for the background, motivation (i.e. their link
with space curves) and the general theory of reflexive sheaves. We fix
a rank—n(n — 1) reflexive sheaf E on V. We say (as usual) that E
is ample if the tautological line bundle Op(E)(1) on P(E) is ample.
From now on we will assume that E is spanned by its global sections
and that the set S of points of V at which F is not locally free is finite
(if n = 3 the last condition is automatically statisfied ([6], 1.4)). Then
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(since char(K)= 0 and S is finite) a standard form of Bertini theorem
(same proof as for n = 3 ([6]), which in turn is essentially a standard
form of Bertini for spanned vector bundles on V'\S) gives that for a
general s € H(V, E), its zero-locus C := (8)¢ is a pure-dimensional
curve which is smooth outside S (and C must contain S, as shown in
[6], Th. 4.1); if V is smooth around S, C is locally Cohen-Macaulay;
since C is generically reduced by the finiteness of S, C is reduced; set
g := po(C). We will call g the sectional genus of E (see the introduction
of [1] for a discussionn of why (in the locally free case) among many
other competing ones, this is a very natural and useful definition). But
we do not claim or use that if F is ample the general such C is integral
of at least connected; in particular we will consider also the case ”g < 0”
(which often will be easily shown to lead to a contradiction). From now
on in this paper we assume V smooth. In particular Ko(V) & K°(V)
and the Chern classes are defined for all coherent sheaves on V. Set
L := c;(E); L is a line bundle; note also that C = (s)o represents
cn—1(E) (exactly as in the locally free case, to which, when § is finite,
it could be easily reduced). From now on we assume n = 3. The aim of
this paper is the proof of Theorem 0.1 below. To clarify its statement
we need the following "adjunction formula” ([6], th. 4.1) valid for any
section s with C := (8)y of dimension 1 and arithmetic genus g:

(1) 99 — 2 = (Kv + L)C + e3(E)

It is known (see [6], Prop. 2.6) that c3(E) > 0, c3(E) > 0 if and only if
S # 0, and that indeed c3(E) is a very good measure of the "number”
of singularities of E. A reflexive sheaf E on V is called curvilinear if
for each P € S there are formal parameters z,y, z of the completion A
of Oy,p such that the completion of the stalk of E at P is isomorphic
to Coker(j), where j : A — 3A4 is defined by: j(u) = (zu,yu, zy); by
[6], 4.1.1, if there is s € H(E) with as (s)o a smooth curve, then E is
curvilinear; by [3], Prop. 4, if E is curvilinear and spanned, a general
s € H°(E) has (s)o smooth.

Theorem 0.1. Let V be a smooth complete variety with dim(V) = 3,
and E an ample spanned rank — 2 reflezive sheaf on V with sectional
genus g; set ¢; = ci(E). Assume 29 — 2 < c3 and E not locally free.
Then there are ezactly 4 families of (V, E):

() V=P3 L=0(3),9g=0,cs =1 and E is described in the following

way. FixP € P3 and consider homogeneous coordinates z,...,zs, such
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that P = (1;0;0;0). Let E be the cokernel of the map j : Oy — 30v(1)
given by j(c) = (cx1,ce2,czs); then E is a solution; any solution with
these invariants differs from E by the action of an element of Aut(P );
any two solutions are isomorphic if and only if they have the same
singular set, P
(i) Vv = P3, = 04), cg =17, ¢ = 29 —2 = 8; furthermore
R*(E(-1)) 7é 0 and, for general E, a general m € H°(E( —1)) has
as (m)o the complete intersection of 2 quadrics.
(i) V =2 P L = O(4), ca = 6, c = 29 — 2 = 4; furthermore
h*(E(-1)) # 0 and, for general E, a general m € H°(E(-1)), has
as (m)y a rational normal curve.
(iv) V is a smooth quadric in P%, [ = O(3),c; =6,c3 =29g-2=2;
furthermore h®(E(—1)) # 0 and a general m € HD(E( 1)) has as (m)g
a plane conic.

In particular the space of solutions in case (1) is parametrized by
P?. We will give some more informations on the possible sheaves E's
in cases (i), (iii) and (iv) in §2, repsectively in (3) case 5) (8), case
5), and (7); here suffice to say that by the general recipe in [6], Th.
4.1, the datum (m), (plus a suitable divisor on (m),) is sufficient to
reconstruct E. ‘
At the end of the paper we discuss briefly the case E not "curvilinear”.

The proof of 0.1 depends heavily on [1] (which in turn depends on
[11], hence on Mori’s theory and its applications ([8], plus the classifi-
cations of Fano threefolds due to Iskovskih and Mori- Mukm), both [1]
and the present paper we inspired by [11].

The paper is dedicated to the memory of Giorgio Gamberni.

1. Fix a smooth, irreducible, complete variety V and a rank-2 ample
reflexive sheaf E on V; assume that E is spanned by its global sections.
Let § C V be the set of points of V at which E is not locally free.
We will always assume S # 0 (i.e. c3(E) > 0). Set L := = c1(E) and
¢; = ci(E). All these notations will be always assumed, even if not
explicitly stated. We write O and K instead of Oy and Kvy; for a
closed subscheme A of V, I will denote its ideal sheaf. For any sheaf
G on V, we write H*(A) and h*(A) instead of H*(V, A) and h*(V, A).
Fix a general s € H°(E); set C := (s)y. By the assumptions (since
char(K) = 0) C is a reduced pure dimensional curve which is smooth
outside S N C. Furthermore (e.g. [6], proof of Th. 4.1) § C C. The
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choice of s induces an exact sequence:
(2) ' 0-0—-E—>LQIc—0.

C will always denote (s)y with s € H°(E), s general enough; thus s
will give (2) and C will satisfy (2).

Remark 1.1. Let T be a closed subvariety of V and 7 : T' — T
a finite morphism. Then every quotient sheaf of ©*((E|T)) is ample.
Proof. By definition of ampleness and Grothendieck’s definition of P
we. are reduced to the known case in which FE is a line bundle.
Lemma 1.2. Fiz an integral curve T CV and let # : T' — T be its
normalization. Then deg(w*(E/T) > 2 and we have equality if and only
ifT= P, TNS =0 and E/T is the direct sum of two line bundles of
degree 1.

Proof. The ”if” part is obvious. Set F := #*(E|T). Since T' is
smooth, F is the direct sum of a rank-2 locally free sheaf F' and a
torsion sheaf F'', with F" = 0if TNS = (. By 1.1 and the fact that =
is finite, we get that F' is ample. By construction F' is spanned. Thus
if pa(T') > 0, deg(F) > deg(F') > 3. Assume p,(T') = 0. By [11],
3.2.1, deg(F') > 2 and deg(F') = 2 if and only if F' is the direct sum of
two line bundles of degree one. Note that if TN S # 0, we have F" # 0
(hence deg(F) > deg(F') > 2) because a coherent sheaf on a reduced
variety is locally free if its fibers have constant dimension. Thus we
may assume also TN S = @ i.e. E locally free near T. Then the proof
of [11], 3.2.1, gives that T is smooth. ¢

Remark 1.3. Under the assumption of 1.2 and with the notations (2),
assume dim(T N C) = 0; then LT (i.e. deg(w*(L))) is at least 1+
+card(C NT). Furthermore if T is smooth around SNT, LT >1+
+length(C N T). Proof. Look at (2) and note that § C C. Restrict
(2) to T and pull it back by 7*; the first map in the corresponding
sequence (2)’ is again injective because O has no torsion. There is
amap j : ™(Ig,y ® L ® Or) — Op whose image defines the ideal
sheaf of a non-negative divisor a, supp(a) must contain every point of
7~}(C N T). Since by (2)’ and 1.1 #*(L|T)(—a) is ample, we get the
first part of first inequality. The last inequality follows from the fact
that a = T'N C as schemes, 1.2 and (2)’. ¢

Remark 1.4. If T C V is a curve, then LT > 2; indeed if TN S =0,
this is [1], 1.1; if TN S # 0, then TN C # 0 and 1.4 follows from 1.3.
Remark 1.5. By 1.4 (V,L) is its own reduction in the sense of [8],
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0.11.

‘To prove the amplenesss of the last 3 families of sheaves in the
statement of 0.1, we need a lemma.
Lemma 1.6. Assume only that E is spanned. E is ample if and only
if for every integral curve T C V, E/T is ample; the last condition is
equivalent (if w : T' — T is the normalization) to the ampleness of the
locally free part of #*(E/T).
Proof. A similar crieterion is true for every spanned line bundle on
every variety. Since the restriction of the tautological line bundle of
P(E) to every fiber of P(E) — V is ample, we get the first part. To get
second one, note that we may check the ampleness of the tautological
line bundle of P(E|T') after the base-change by m (e.g. see [4], prop.
2.1). &

2. We use the notations introduced in §1; we will use heavily the proofs
in [1]; thus the reader need a copy of [1] nearby. We assume that E is
ample and spanned (unless otherwise stated).

First assume that K + L is semi-ample. Then there is an integer
m > 0 such that m(K + L) is spanned. Since (K + L)C < 0 for every
C as in (2) and we may find such a C through a general point of V
(e.g. count the dimensions and use the spannedness of E and that
c2(E) # 0) we get m(K + L) = O. Thus —K is ample by Kleiman
numerical critertion of ampleness. Thus V is a Fano 3-fold. Therefore
Pic(V) has no torsion; hence L = — K. ’ . :
First we assume b3(V) = 1, i.e. (for Fano 3-folds) Pic(V) & Z.
' Let r be the index of V. By 1.4 and [11], 2.3, we have r > 2. Such V
are classified, and we have to check all the possible V as was done in
(a) (case (1) in [1], §1) Now assume (V,L) = (P3, O(3)). By
1.2 for every line A with AN S = 0, we have E|A & 0,4(2) ® 04(1),
while for every line D with DN S # 0, (E|D)/Tors(E|D) = 20(1) and
Tors(E|D) has length 1. By the proof of 1.2 we have card(S) = 1; set
{P} := S. Fix a two-dimensional linear subspace M with M N S = 0.
By [10] either E|M = TP? or E|M = O(2) ® O(1). In the second case
we get co(E) = 2, i.e. C is a conic; thus by (2) h®(E(-2)) # 0; but
“every section of E(—2) must vanishes identically on every line trough
P, contradiction. Thus we may assume E|M = TP? for every plane M

with P ¢ M. Thus ¢,(E) = 3,1i.e. deg(C) = 3; since C has no trisecant
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line by (2) and 1.3, g < 0; by (1) we have g = 0 and ¢3 = 1. This implies
that E has a very mild singularity at P (it is called ”convenable” or
"suitable”: see [7]); suffice to say that this implies ”curvilinear” and
thus that we may take C' smooth without assuming a priori that E is
curvilinear). Thus C is a rational normal curve in P?. Since all the
possible configurations of such pairs (C, P) are projectively equivalent,
we get the uniqueness of E, up to the action of Aut(P?); the sheaf given
in 0.1 is a solution. For this sheaf we have h°(E) = 11, h*(E(-1)) = 2.
Thus we see that given 5 general points P; € V, thereis s € H°(E) with
{P,Py,...,Ps} C (s)o; since six points of P* in linear general position
are contained in a unique rational normal curves, we see that for E all
C can occur. Thus we see that E is uniquely determined by P*. In
 particular the set of solutions is parametrized by P3.
(8) Now we assume (V, L) = (P3, Oy(4)) (hence cs(E) = 29 — 2);
fix (2). By (1) we have 2g — 2 = ¢s > 0. By 1.3 C has no line D, D
no component of C, with length(D N C) > 4 (hence no quadrisecant in
the sense of [5]; in particular, since g > 1, C spans P*.
First assume C does not contain a line as irreducible component.
We will show that this case not only gives solutions (ii) and (iii) in the
statement of 0.1 but also gives in natural way a few (known) classes
of interesting (from our point of view) reflexive sheaves. By [5], Prop.
2.4, the fact that there is no quadrisecant line implies that [(d — 2)(d—
—3)%(d — 4)/12] = [g(d® — Td + 13 — g)/2]. Since g > 1, we get easily
(e.g. using some bounds for the arithmetic genus of (reducible) curves)
-that (d,g) has one of the following values: (5,2), (6,3), (6,4), (7.5),
(9,10), (9,21); the last case cannot occur since there C' has no plane
component of degre > 4, hence its genus cannot be so large. Note
that if h°(Ig(2)) # 0, we get infinitely many quadrisecant lines, except
maybe if (d,g) = (6,4) or (5,2). If h°(Ic(3)) # 0 and A°(I¢(2)) = 0,
by (2) we have h°(E(-1)) # 0 and h°(E(—2)) = 0; thus there is t€
€ H°(E(-1)) with dim((t)o) = 1. Set B := (t)o; B may be unreduced;
‘we get an exact sequence

(3) 0> O0(1)—-E—>1Ig(3)—0

Thus we see that E is not ample if B has a trisecant line not contained
in B. Note that if h°(I(3)) > 1, we have h°(Ip(2)) # 0, hence B
has a trisecant line (not contained in B!) if deg(B) > 5, except maybe
if B is union of (multiple) lines on a quadric cone (if deg(B) > 6
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this case will be checked in cases 3) and 4)). By [6], 2.2 and 4.1,
deg(B) = ca(E(—1)) = c2(E)—c1(E)+12 = c3(E)—3 = deg(C)—3, and
pa(B) is given (in term of (d,g)). Now we check separately each case.
We assume always C connected, leaving for part (42) the discussion of
what happens in the disconnnected case.

1): (d,9) = (5,2). By Riemann-Roch C is contained in a quadric. By
(2) h°(E(-2)) # 0 and h°(E(—3)) = 0. Thus there is m € H°(E) with
dim((m),) = 1. By [6], Cor. 2.2, we have

(4) 0— O2)>E—-Ip(2)—>0

We want to show that E|D is not ample. By [6], Th. 4.1, (4) cor-
responds to a choice (up to a constant) of h € H(h, Or(2)) ie. to
a degree 2 positive divisor a on T. Two possibilities: a is reduced or
not. Furthermore, up to the action of Aut(P3?), these are the only pos-
sibilities for (D,a) hence for E(—2). Thus we see that there are two
families of reflexive sheaves, such that for any two elements E and E’
of each family, there is g € Aut(P?) with E' = g*(E); furthermore,
since the unreduced divisor is the limit of a flat family of reduced ones,
we see that the second family is a limit of the first one. By (2) every
sheaf E with E(—2) given by (4) is spanned and its restriction E|T
to any curve T' # D is ample (see the proof of case 5) below). We
want to check that E|D is not ample. Assume the contrary. By (4)
‘E|D has a factor Op(2). To obtain a contradiction, it is sufficient (for
degree reason) to check that E|D has a torsion part Tors(E|D) with
length(TorsE|T)) > 2. Indeed this length is exactly 2 and the torsion
is isomorphic to a; however by semicontinuity to obtain the inequality
it is sufficient to check the case "a reduced” and show in that case that
there is some torsion at each of the points in the support of a. This is
obtained tensoring (4) by Op and make a local homological calculation.

2): (d,g) = (6,4). C must be a canonical curve, complete intersection
of a cubic and a quadric; thus we have again (4) with, now, deg(D) = 2.
Thus D has (many) secant lines (even if it is not reduced) and each of
them is an obstruction (by (4)) to the ampleness of E.

3): (d,g) = (9,10). By Riemann-Roch h°(Iz(3)) > 2; thus we have
(3) with h°(Ig(2)) # 0, deg(B) = 6. We claim that B has infinitely
many trisecant lines, and in particular a trisecant line not in B, hence
an obstruction to the ampleness of E. The claim is obvious except if
the quadric A containing B is a quadric cone and B is a union (may
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be unreduced) of lines. But in this case, looking at the minimal desin-
gularization F; — A of A, we see that B is the intersection of A with
a cubic surface (hence all the lines of A are trisecant to B). If E is
"convenable” in the sense of [7] (sometime translated as "suitable”),
i.e. card(S) = c3), there is another proof for this case.

4): (d,g) = (7,8). Since h'(0c(2)) < 1, we would have h?(Iz(2)) # 0.
Look at the proof of case 3); if now B is a union of lines in a quadric
cone A, B contains the complete intersection of A with a cubic surface;
hence there is no such E.

5): (d,g) = (7,5). By Riemann-Roch we have h?(Ic(3)) > 3 thus there
is (3) with A°(Ip(2)) > 2; if there is E, B has no plane component of
degree > 3; since p,(B) =1 by (1) (i-e. [6], 2.2 and 4.1), we get that B
must be the complete intersection of 2 quadrics. Vieceversa, starting
with such B and m € H%(wp(2)) = H°(Op(2)), m vanishing only at
finitely many points, by [6], Th. 4.1, we get a reflexive sheaf E(—1)
with E given by (3). We get an irreducible family of such bundles and
the choice of B and (3) give that any such F is spanned. We check
that they are ample, at least for general B,m; we assume that B is
irreducible. Fix an integral curve T' # B. Fix a general quadric with
B C A, with T not in A. Note that T'N B (as scheme) is contained in
the scheme T N 4 which is a Cartier divisor on T with degree 2deg(T);
by (3) and 1.6, E|T is ample. We have to check the ampleness of E|B.
Given B, we get E, hence C with h%(Ic(3)) > 3; hence given E we
may find B’ instead of B giving the same E; since we know that E|B'
is ample, we know that E|B is ample, too.

6): (d,g) = (6,3). Exactly the same proof as in case (5) shows how
to get the family claimed by 0.1. To get the sheaf for simplicity start
from an irreducible B, i.e. from a rational normal curve. We note
" only that, for C smooth, a necessary and sufficient condition for the
spannedness of the corresponding F is that h%(Io(2) = 0; this is known
to be equivalent to the fact that C is not hyperelliptic.

(82) Now we assume that C is not connected; if C' contains no
line, the quotation of [5] works again and can reduce very much the
possible cases. But it is easier to consider all the case simultaneously.
If h®(V, Ic,v(2)) # 0 and d = 5, again we have (3) and conclude. Thus,
since g > 1, we may assume d > 5. Again we do not have quadrisecant
lines (hence the plane components have low degrees). The trick is to fix
‘one or more components which together have a 1-dimensional family
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of trisecant lines (one can take 3 disjoint lines or two disjoint conics or
an irreducible curve of degree d' and genus ¢' with (d',¢') # (3,0) and
(4,1), or ...). Then look at the intersection of the other components
with the surface union of these trisecant lines. This work (details left to
the reader) unless there are exactly two irreducible components both
with (degree, genus)=(3,0) or (4,1). But by (1) this implies ¢5 < 0,
contradiction.

(7) (case (2) in [1], §2). Assume that V is a smooth quadric
@ C P* and L = O(3) (hence cs(E) = 2g — 2 by (1)). By (2) E is not
ample if C has a trisecant line. Note that every trisecant line to C in P*
is contained in V. First assume that C is contained in a hyperplane.
By (2) this means h°(E(—2)) # 0; the morphism O(2) — E is an
obstruction to the ampleness of E (much easier that case 1) in (8)).
Thus we will assume that C spans P*.

Assume C connected. The smoothness of C, g > 1, and all page
533 in [2] give that either g = 2, deg(C) = 6, or g = 5, deg(C) = 8
(and C is the complete intersection of 3 quadrics in P* in the latter
case). In both cases C is projectively normal and R (Iov(2)) > 2,
h°(Ig,v(1)) = 0; thus by (2) we get h°(E(—1)) > 2 and h°(E(-2)) = 0;
fix t € H°(E(-1)) with dim((t)g) = 1. Set B := (t)o; by [6], 2.2,
deg(B) =deg(C) — 4. We get the following exact sequence:

(5) 0— O(1) - E — Ip(2) — 0.

By [6], Th. 4.1 (i.e. by (1)) if d = 6 we have p,(B) = 0, while if d = 8
we have p,(B) = 1. In both cases any sheaf F fitting in (5) is spanned.
Since h°(E(-1)) > 1, h°(Ig(1)) # 0; we get that if d = 8 there are
lines D C V with length(B N D) > 2; by (5) the line D prevents the
ampleness of E for d = 8. Now we assume d = 6, hence R (Ic,v(2)) =3
and h%(Ip(1)) = 2. Thus B is the intersection of V with a plane II. As
in (B), case 5), we get from (5) the ampleness of E. By [6], Th. 4.1, E
is uniquely determined when we fix B and a degree 2 positive divisor a-
on B with support §. A dimensional count shows that the orthogonal
group Aut(V') acts transitively on the pairs (B, a) with B smooth conic
and a reduced positive divisor of degree 2 on B, and on the pairs (B, a)
with B smooth conic and a double point on it. Thus we get exactly two
irreducible families of solutions (since [6], Th. 4.1, gives an equivalence
between (E,s) and (B,a)), the second one being a specialization of
the first one. Furthermore two sheaves in the same family differ by




34 E. Ballico

an element of the orthogonal group Aut(V). Since R°(E(-1)) > 1
a dimensional count shows also that for each F there is a subgroup
G CAut(V) with dim(G) = 1 and such that g*(E) = E for every
g € G. The two irreducible families are distinguished exactly by the
condition: "card(S§) = 2” or "card(S) = 1”. In the case "card(S) = 2”
(i.e. card(S) = cs3), we get a priori only convenable sheaves in the
sense of [7] (hence curvilinear sheaves, without making a priori this
assumption).
To handle the other cases and get further we need a lemma.

Lemma 2.1. With the usual notations, V is not covered by a flat
family of smooth rational curves {T'} with LT = 2.
Proof. Fix P € S. Assume by contradiction there is T' = P! with
P € T and fix a general C. If length(C N T) > 2, the contradiction
comes from 1.3. Assume length(C N T) = 1 (and in particular C has
embedding dimension at most 2 at PP). A local calculation shows that
the torsion part of I¢ ® Or has length 1. From the restriction of (2)
to T we get (T, E|T)-4, contradicting 1.2. ¢

By 2.1 we get at once all the cases in [1], §3 (i.e. the cases with
b2(V) > 2) and cases (3), (4), (5) (since the case left was done in the
"safe” §3), and (8) of [1], §2. Now we will check how 2.1 gives cases
(6) and (7) of [1], §2; in these cases V is respectively the intersection
of 2 quadrics in P® and a cubic hypersurface in P* and L = O(2);
by 12.1, since § # @, it is sufficient to check that every point of V is
contained in a line contained in V'; a general hyperplane section contains
a line (by the explicit theory of Del Pezzo surfaces); thus V contains a
two-dimensional family of lines; they cover all the points of V' by the
properness of the Hilbert scheme (here of the Grassmannians). :

Now look at case (10) of [1], §2; again we find h(C) a line; now
there is no contradiction to the spannedness of E, but, as in the remark
just after that case we get ¢ = 1 by the Riemann-Hurwitz formula,
contradicting (1). The proof of 0.1 is over.

Now we want to spend a few lines for the case ” E not curvilinear”.
The reduction (as in [1]) to the very few cases considered in §2 does
not use the curvilinear assumption. To handle the single cases, however
more care than I have is needed. At some point (in particular in (a))
we stressed that we never used the curvilinear assumption. Care for
case (9) of [1], §2; but this is not a big problem. Care with the search
for the quadrisecant line in (3); however [5] works for singular reducible



On reflezive sheaves with low sectional genera on threefolds 35

curves with no line as component; essentially the reducible case looks
easy (as was the disconnected one) and reduces the problem to subcases
(1),...,(6). In (v) we used heavily the curvilinear assumption when we
used [1], p. 533; there it was used in an essential way the enumerative
formula for the number of trisecant lines to a curve in P*; this formula
is proved in [9] only for smooth curves. Summary: we do not claim,
even for (), to have checked all possible configurations, and we do
not claim that in the cases giving the families (ii), (iii), and (iv) of
the statements of 0.1 the non curvilinear sheaves arise only as limit of
curvilinear solutions. But there is a case in which both problems about
multisecant lines could be answered very easily, showing that no new
solution can arise; and this happens exactly if the singularities of E are
bad i.e. there is P € § such that even for general s € H°(E), (s),
has embedded dimension 3 at P; for instance this is the case if (8)o
is not locally a complete intersection at P and by (2) this condition
means that the fiber of E at P has dimension > 3. Assume that E
has such a bad point P; and consider cases (8) or (7); every line T in
V through P intersects C at P in a scheme length > 2; in (v) take as
T a line through P and another point of C (the only trouble arises if
C' is union of lines through P); in (8) to find the quadrisecant line it
should be sufficient to project from P and apply the genus formula for
plane curves and one of the available (even a very weak one) bound for
reducible space curves whose plane components have low degrees (but
we have not made all the numerical checkings). Exactly for the same
reasons it should be very easy to handle the case in which E is assumed
to be not curvilinear at two different points (or more).
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Abstract: A well known theorem of R. Nevanlinna [5] states that there are
at most two distinct meromorphic functions sharing three distinct values CM
(counting multiplicities). This does not hold, if one only demands sharing two
values CM and one IM (ignoring multiplicities). But in this case we are able
to show that there are at most three distinct functions. This result is sharp
in the sense that its conclusion does not hold, if one only demands sharing
one value CM and two IM. Besides, we will present some other extensions of
Nevanlinna’s theorem dealing with the case that there are only few zeros and
poles of the functions, or that there exists a nonempty set, which is ?shared”
by the functions. ‘ ’

1. Introduction

Given n > 2 meromorphic functions f,..., f, on C. We say that
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fi,..., fn share a value c € CU {oo} if all the sets C;={z€C:
: fi(2) = ¢}, j =1,...,n are equal. In the following it will be helpful to
make a distinction between sharing a value CM (counting multiplicities)
and IM (ignoring multiplicities). In the first case we have a k-fold c-
point of f; exactly at the same points of the complex plane where f;
takes a k-fold c-point for 4,5 = 1,...,n. Particularly, if ¢ is a value
not taken by fi,..., fn, this value is CM-shared. In the second case we
allow the multiplicities of the c-points to be different.

We assume that the reader is familiar with the notations and
standard results of Nevanlinna theory (see e.g. [3], [4]).

In this paper, S(r, f) denotes a quantity which is o(T'(r, f)) as
r — 00, possibly outside a set of finite Lebesgue measure. A frequently
used lemma is the following: If two nonconstant meromorphic functions
f and g share three values IM, then S(r, f) = S(r,g). (One can easily
prove this using the second fundamental theorem, see e.g. [4], p. 72.)

Beside the standard notations we will use the following: N(r, f)
denotes the counting function of the poles, where each pole will be
counted only once without regard to multiplicity. No(r,¢, f,g,h) is the
counting function of the only once counted common c-points of f,g and
h, again without regard to multiplicity. Ni(, f) counts the multiple
poles of f, that is, Ni(r,f) := N(r,f) — N(r, f). € is the set of all
E C [0,00) of finite Lebesgue measure.

2. Results

The following is a well known result of R. Nevanlinna ([5], p. 125).
Theorem 1. If three nonconstant meromorphic functions f,g,h share
three distinct values CM, then at least two of them are equal.

It is well-known, too, that the functions in general need not be
Moébius transformations of each other. Theorem 1 is sharp in the sense
that it is not correct for sharing two values CM and one value IM. To
see this, consider an entire function # and define

F= A S .
= Pti—epr T Pr1—eP) VT Fii_e?P "

Since e* # 0, oo for all complex z it is obvious that there are no zeros
of the three functions, which means, they share the 0-points CM, and
they share the poles CM, since the denominator is exactly the same for
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all of them. A short calculation gives:

f=1 & (f —1)(ef +1)% = 0;
g=1 & (f —-1)(f +1) =0;
h=1 & (ef —1)%(f +1) = 0.

This means f, g, h share 1 IM (not CM). (It is easily seen that none of
the three functions is a Mdbius transformation of another.)

Another direction to get results of the above kind without the
assumption of sharing three values gives the following theorem (whose
proof uses some ideas due to G. Brosch [1]).

Theorem 2. If there are three distinct meromorphic nonconstant func-
tions f,g and h with

(2'1) -ﬁ(r, f); F(”‘, 1/f) = S("', f);
(22) N(r,9), N(r,1/g) = 5(r,9);
(2.3) N(r,k), N(r,1/h) = S(r,R);

then there ezists a set E € £ such that

No(‘r,l,_f,g,h)
TR S /4

o= limeup

An immediate consequence is the following result.
Corollary 3. If there are three nonconstant meromorphic functions
fy9 and h that share 1-points IM and for which (2.1), (2.2), (2.3) hold,
then at least two of them are equal.

The inequality in Theorem 2 is sharp. This means that there are
three functions for which (2.1), (2.2), (2.3) and 7 = 1/4 hold. Put for
example

| f(z) = €*; g(z) = e7%; h(z) = e?=.
After an easy calculation one obtains

I(r,f) =r/m+ O(1) = T(r,g); T(r,h) = 2r/m 4+ O(1);
f=1&ef=1g=1;h=1& e* = +1.

Since there do not exist zeros or poles of the three functions, it follows
by the second fundamental theorem of R. Nevanlinna that 7 equals 1/4.

With the Corollary 3 we are able to prove the following
Theorem 4. If there are four nonconstant meromorphic functions
f,9,h and k that share three distinct values of C U {00}, two of them
CM and one IM, then at least two of them are equal.
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Theorem 4 is sharp in the same sense mentioned after Theorem 1.
To see this, let @ be an entire function and define

f=2*—1;9g= e_‘"(2e°‘ —1); h=e"2%(2e* —1); k= (2* — 1)2.

Similarly to the above reasoning it is seen that this four functions have
no poles, i.e., they share co CM, and that they share 0 IM (not CM).
An easy computatlon gives:

f=1 4:>2(e‘5‘—1) = 0;
g=1 & (e*=1) =0
h=1 & (e*—1)* =0
k=1 o 4e%(e* —1) =0.

This shows that the functions share 1-points IM (not CM).

For further details about the construction of such functions see

[6]. Other conditions on the functions were given by F. Gross and C.F.
Osgood [2].
Definition 5. (Preimage sharing) Let M be a finite, nonempty set
in C U {oo}. Two meromorphic functions f,g share the set M if it
follows from f(z) € M that g(z) € M and vice versa, with regard to
multiplicity. '

With this definition they gave
Theorem 6. If there are two nonconstant entire functions f,g of finite
order, which share 0 CM and the set {—1,41}, one of the following
equalities holds: f = +g or fg = £1.

It was shown independently by G. Brosch ([1], p. 48) and K.
Tohge ([7], p-251) that this result remains true for functions of infinite
order. They proved that this even holds if f and g are meromorphic
functions which share oo CM. We strengthen their result as follows.
Theorem 7. If there are two nonconstant meromorphic functions f,g
sharing oo IM, 0 CM and the set {—1,+1}, one of the following equal-
ities holds: f = g or fg = +£1.

For further results concerning unicity problems of meromorphic
functions see [6)].

8. Proofs

Proof of Theorem 2. Given three distinct nonconstant meromorphic
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functions f, g,k with (2.1) — (2.3), we have to show that < 1/4. Let
us define auxiliary functions

o = (fr —2757) - (5~ 23%);

g g-1
n 1 1
az = (& —2.5) — (4 -2 A);

. (% ~23%7) - (fr —275);

=f'/f; B2 =4g'/g; Bs = h'/h.
It follows from the lemma of the logarithmic derivative (see e.g. [4], p.
65) that .

m(r,ay) = S(r, f)+ S(r, 9);
(3.1) m(r,ay) = S(r,g) + S(r, h);

m(r,az) = S(r,h) + S(r, f). |
Because of (2.1) — (2.3) and the lemma of the logarithmic derivative it
follows that

(3.2) T(r,B1) = S(r, f); T(r,B2) = S(r,9); T(r,P3) = S(r,h).

Since f,g,h are nonconstant we have 3; # 0 for i = 1,2,3.
Let zo be a zero of f' but not of f. With N(r,1/f) = S(r, f) and (3.2)

we get
N(r,1/f" g(r ,1/f') = N(r,1/f) + 5(r, f)

(ry1/B1) + S(r, f)
T(r,B1)+ S(r f) S(r, f)-

This and a similar argument leads to

(3.3) N(r,1/f')=5(r,f); N(r,1/g') = S(r,9); N(r,1/h') = S(r, h).

Noting that 3; vanishes in multiple 1-points of f and using a similar
argument for 1-points of g and h, we get

(3.4) Ni(r, 75) = S(r, £); Ni(r, 525) = S(r,9); Na(r, 515) = S(r, ).

This shows that ”most” of the 1-points of the functions are simple ones.
By expanding the a; into their Laurent series it is easily shown

<
<

that

(3.5) a; (a2 and aj respectively) vanishes at simple common
1-points of f,g (g, h and h, f respectively).

If a; # 0, then (3.2) - (3.5), together with the first fundamental theo-
rem and the assumptions (2.1) and (2.2), give
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No(r,1,f,9,h) < N(r,1/e1)+ S(r, f) + S(r,9)
< T(r,a1)+5(r,f)+5(r,g)
=m(r,a1) + N(r,01) + S(r, f) + S(r, 9)
< NLI‘,l/(f - 1)) —'No(‘l‘,l,f,g,h) +N(r1f)+
+£(1‘,1/f’)_+ N(ril/(g - 1)) - NO(T711f7g7 h)+
+N(r,g)+N(r,1/g’)+5(r,f)+5(r,g)
<T(r,f)+T(r,g)+S(r, f)+5(r,9)—2No(r,1, f, 9, h).

Thus we have proved (with a similar argument for a;,a; # 0)

3No(r,1,f,9,h) < (L + o(1))(T(r, f) + T(r, g)) for @1 # 0;
(3.6)  3No(n1,f,9,h) < (1+0(1))(T(r,g) + T(r,h)) for o # 0;
3No(r,1,f,9,h) < (1 + o(1))(T(r,h) + T(r, f)) for a3 £ 0.

Now we distinguish the following four cases.
Case 1. a1,ay,a3 # 0; '
Case 2. ay =0; az,as Z 0;
Case 3. ai,az =0; az Z 0;
Case {. a1,as,a3 = 0. ‘
. We proceed to obtain 7 < 1/4 in each one of them.
Case 1. In this case (3.6) leads to

9No(‘r, 1, f1.q, h) < (2 + 0(1))(T(1‘, .f) + T(r’g) + T(Tv h))

Hence we get 7 < 2/9. This shows 7 <1/4.
Case 2. An easy calculation shows that a; = 0 is equivalent to f = Log
with a Mobius transformation L. Because of (2.1) and (2.2) we get
f=gor f=1/g. Since f = g gives a contradiction, we assume that
f=1/g. This means T(r,g) = T(r, )+ S(r f).  No(r,1, f,g,h) =
=8(r, f) + S(r,9) + S(r,h) means T = 0, which gives (2.4). Now let
No(r,1, f,9,h) # S(r, f) + S(r,9) + S(r,h). This, together with (3.6)
for a3 # 0 and N(r,1/(f — 1)) > No(r,1, f,g,h), yields
No(r,1,f,9,h)

1f)+T(r,9)+T(r,h)

J— : N (r,l,f,g,h)
= lmsup s G TSt )

r—oo,rZE

No(r1,f,9,h)
,f)+3No(1‘,1,‘f,g,h)-f-s(r,f)-f-s(r,h)
< No(r11!flglh)

- lim sup 4No(r1,f,9,h)+S(r,f)+S(r,h)
r—oo,r¢E

=1/4.

7 = limsup
r—oo,r¢F T(r

< limsup T

r—o0,T€¢E
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This gives r < 1/4.
Cases 8/4. a;,as = 0 yields
g=horg=1/h
and
g=forg=1/f,
which is a contradiction to our assumption that the three functions are
pairwise distinct.

Proof of Corollary 3. Assume there are three such functions f, g, h.
The second fundamental theorem in the N-version gives

T(r,f) < N(r,1/f)+ N(r,1/(f — 1)) + N(r, f) + S(r, )

= N(T‘,l/(_f - 1)) + S(”',f)

< T(r, f) + S(r, f).
This means N(r,1/(f — 1)) = T(r,f) + S(r,f). In the same way
N(r,1/(g—1)) = T(r,9)+S(r,g) and N(r, 1/(h—1)) = T(r,h)+S(r, k)
hold. Because of sharing 1-points, we conclude 7 = 1/3. Therefore The-
orem 2 gives a contradiction. {
Proof of Theorem 4. General assumption: There are four noncon-
stant, distinct functions f, g, h, k sharing 0, oo CM and 1 IM. Since the
functions share three values the equations S(r, f) = S(r,g) = S(r,h) =
= S(r,k) =: S(r) hold. It is convenient to define

W(T, 0) = W('ﬁ 1/f); N(ﬁ 1) = _N(r7 1/(f - 1))
Here it is of no interest whether these counting functions are defined
with f or g, because the functions f arid g share the zeros and 1-points.
Without loss of generality we can suppose that
(8.7) _N_(r, 0), W(Ta 1) # S(r).

This is valid because of Corollary 3.
We define the entire functions «, 3,7 by

(3.8) Flg=e f/h=eb; flk=em.
Since there are 1-points, we get
(3.9) o,8,v,a — B, o — v Z constant.

Further we define the meromorphic functions 4, B,C by
(3.10) H=s4==8£=C
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Since there are zeros, we get

(3.11) A,B,C,A/B,A/C,B/C # constant.
We get the following representations for the function g:
(312) g= ‘f:ela,
(3.13) | 9= griis=e’;
(3.14) 9= griistae’ .
We equate (3.12) with (3.13) and (3.12) with (3.14) and get
o e*(B—A)+(A—AB
(3.15) go—h = <X BZ';(B 2).
a— e*(C—A)+(A—AC
(3.16) ex—7 = L(C-A)HA-40)

A short computation gives the following equivalent representations:

(315) e = LLAENBoAB),
—a _ €'(A—C)+(C—AC
(3.16) Yo — (A1 -40)

From (3.15) and (3.15°) we conclude that e* and e? share the 1-points.
So we have three functions which have neither poles nor zeros, shar-
ing 1-points, and they are nonconstant and distinct because of (3.9).
Corollary 3 shows that this can not be true. So two of the exponential
functions have to be equal and this means with (3.7) that two of the
functions f, g, h,k have to be equal. This yields the expected contra-
diction and completes the proof. ¢

Proof of Theorem 7. Since f,g share oo IM, 0 CM and the set
{—1,1}, the functions F := f?, g := g2 share 0,1 CM and oo IM. Now

it is easily seen that
(3.17) S(r,F) = 5(r,G) = S(r, f) = 5(r, ) =+ S(r).

Case 1. N(r,f) # S(r).

At any pole of f, F and G have a multiple pole. Deﬁne-NzF’G('r) as the
counting function of the common multiple poles of F and G counted
only once. Thus we get

(3.18) NIPC(r) # 8(r).

Now we consider the following auxiliary function
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FI GI ! FI GI
=(T_F——T)—(ﬁ—‘cﬁ)"' F(F— 1)+G(G -0

Because of sharing 0,1 CM and oo IM we conculde from (3 17) and the

lemma of the logarithmic derivative

(3.19) T(r,B) = S(r).

The second representation of # shows that it vanishes at common mul-

tiple poles, so we get from (3.18) and (3.19) for 3 # 0
N;*%(r) < N(r,1/B) < T(r,B) + S(r) = §(r).

This is a contradiction and therefore we conclude 8 = 0. An easy
calculation shows that this is equivalent to F' = G. This yields f = +g.
Case 2. N(r,f) = S(r).

Since oo is shared by the two functions we have N(r,g) = S(r).-
Subcase 2.a. N(r,1/f) # S(r).

At any zero of f, F and G have a multiple zero. So in this case there
are many multiple zeros of F' and G. An analogous consideration as in
Case 1, here with the auxiliary function

F G
T=F1 T -1

yields 4 = 0, which is in this case equivalent to f = +g.
Subcase 2.b. N(r,1/f) = S(r).

Hence
(3.20) N(r,F), N(r,1/F), N(r,G), ¥(r,1/G) = 5(r)

is valid. From (3.20) we get F = G or FG = 1.

Otherwise assume that F' # G and FG # 1. Now define the function
H :=1/G. 1t is clear that F,G, H share 1-points and with (3.20) we
get

(3.21) N(r,H), N(r,1/H) = 5(r).

Since F,G, H share 1-points and because of (3.20) and (3.21) Corol-
lary 3 shows that two of the functions have to be equal. This gives a
contradiction to the above assumption that F # G and FG # 1 or to
the assumption that f,g are nonconstant. So we have shown F = G or
FG =1 and this leads to f = +g or fg = +1 and therefore our proof
is complete. {

Remark. K. Tohge has strengthened Theorem 6 in the followmg way:
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If f,g share 0, co CM and the set M = {c € C : ¢* = 1} for a given
integer n > 2, then f = dig or fg = dy with complez constants dy,d;
such that d? =1 and df =1 holds.

Tn a similar way as in the proof of Theorem 7 with F := f*and G := g
instead of F := f? and G := g2 one can easily prove that Tohge’s result
still remains true for sharing the poles IM instead of CM. It seems that
this can not be obtained by Tohge’s method.
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Abstract: The notion of D-conformal change in a para-Sasakian and a
special para-Sasakian manifold is introduced by G. Chiiman [4]. The D-
concircular change is a special kind of D-conformal change in a special para-
Sasakian manifold. It is introduced and studied in [2].

In this paper, we introduce the D-conharmonic change, an another
special kind of D-conformal change in a special para-Sasakian manifold. We
obtain the tensor field invariant under this change and discuss the manifolds
for which this tensor field vanishes.

1. A special para-Sasakian manifold and the
D-conformal change.

Let us consider an n-dimensional differentiable manifold M with
a positive definite Riemannian metric g;;. We suppose that M admits
a unit covariant vector field 7; satisfying

(11) Vil = E(_gij + 771'77]')1 E= il,
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where 7; denotes the covariant differentiation with respect to g;; and
indices take the values 1,2,...,n. If we put

& =g*m, ¥i=E, di = gadl,
we have

gij¢;¢g = 9pq — "Ip7g; "‘bij = ‘l,bji, ra,nk(qp:”.) =n—1.

The relations (1.2) show that M is an almost paracontact Rieman-
nian manifold (v, £,7,9). Because of (1.1), it is a special para-Sasakian
manifold [7).

' There is in M an (n-1)-dimensional distribution D defined by a
Pfaffian equation n = 0 and called the D-distribution. Assume in M
two para-Sasakian structures (,€,n,g) and (*¢,*¢, *n,*g) satisfy

(1.3) { |95 = €095 + (27— & )min
| =g, = el mmeetw,  e=1

where « and o are functions. Then (v,§,7,g9) and (*¥,*¢,*n, *g) have
the same D-distribution. The relation (1.3) is called by Chiiman [4] a
D-conformal change of (,£,7m,9). When the function a is constant,
(1.3) is called a D-homothetic change. G. Chiiman proved [4] that if
a para-Sasakian manifold is not special (i.e. ¥? # (n — 1)?), then any
D-conformal change is necessarily D-homothetic. That is why non D-
homothetic D-conformal change occurs only in a special para-Sasakian
manifold.

By the change (1.3), M is also transformed into an almost para-
contact Riemannian manifold. Furthermore, if 1/'; = ;¢ is invariant
under the change (1.3), then a special para-Sasakian M is transformed
into a special para-Sasakian manifold. Hereafter, we consider the D-
conformal change (1.3) satisfying

"/); = VJ.££7 *¢; = *V’; E‘.,

where *v/ is covariant differentiation with respect to *g;; in a special
para-Sasakian manifold M. By [4] we have

(1.4) i = 0p€Pni, Eapé? =1—¢€%, o0;=\j0o, ai=a.
From (1.3) we get
(15) *gji — e—2agij + (e—2a _ e—2a)£i£j (*gij*gjk — 5;:)
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Thus, in a spec1a.1 pa.ra.-Sasaklan manifold, we have the following rela-
tion between *{ -} and { -} (cf. [4]):

(1.6) {2} = {1} + i (6} — mit*) + as(8 — mj&) — oM (g — mimj )+
+e(e?77 — e7)(gij — mim; )€™ + ojmit™.

Let R, jih,.R;j and R denote the Riemannian curvature tensor, the
Ricci tensor and the scalar curvature of the manifold M respectively.

Then the tensor field
(17) Bk]zh Rk]th - (nTNIzz)_%%—_S)(gHb‘;‘ - g.‘i‘ib‘li:)_*_
+.55 [Rui(8} — ;") — Rj(8} — mut™) + (grs — mimi) R~

~(gi — mim) RE] + (g (grimi € — giimeé® + mam:b — mjmi8k)

is invariant under any D-conformal change in a special para-Sasakian
manifold (n > 4) (cf. [4]).

In §4 we shall need the following
Theorem A. ([1]) Let M be an n-dimensional special para-Sasakian
manifold. Then M is transformed into a manzfold of constant curvature
—1 by a D-conformal change if and only if Bk;: =0 (n>4).

Also, we note that in a special para-Sasakian manifold M, we have
the followmg equations

(18) Rkji Ny = Gri?; — 95iMk, IZJ‘I.E‘l = _(n - 1)17.7

2. The D-conharmonic change in a special para-
Sasakian manifold.

In a special para-Sasakian manifold M, the Pfaffian equation 5 =
= 0 is completely integrable. The integral manifolds of 7 = 0 are called
the level surfaces. In a local coordinate system of M, each level surface
N is expressed by parametric equations

zh = z"(ux).

Here and in the sequel the Greek indeces have the range (1,2,...,n—1).

Putting B} = g" we have

(2.1) 7:Bi =0
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while for the induced Riemannian metric g,, on N we have

(2.2) » . Gvu = B:'/B},;.qi.‘iv
23y g = g"* B, B} + £'¢,
where (") = (gpw)*. Also

(2.4) . -~ WuBi =hut,

where v/, is the operator of the covariant differentiation with respect
to gy, and h,, is the second fundamental tensor of N.

It is easy to see that each level surface N is totally umbilical. In
fact, differentiating (2.1) along N and using (1.1), (2.2) and (2.4), we
find h,, = €g,,. Therefore (2.4) can be written in the form

(2.5) VuBl = Egut'.
If we put
B = g*gn BE,
we have
(2.6) BYBj =6 —m;¢%, BYBL=6% Brh=0.

The D-conformal change (1.3) induces in N the conformal change

* _ J2a
(2.7) vy = € "Gupu,
where *g,, = *g,-,-Bf,Bl’; and a is now considered as a function of u* in

N. If this conformal change satisfies a,, = g, ,, where ¢ is a function
of u* and

— 1 w _ w _ L wy
oy =\vo, —oya, + 20 gy, 0y, =\4a, o =g7"a,

then (2.7) is the concircular transformation (cf. [8]). Using this T.
Adati and G. Chiiman in [2] defined and studied D-concircular trans-
formations.

In this paper we suppose that the conformal change (2.7) is con-
harmonic one (cf. [6]), i.e. we suppose that the function a in (2.7)
satisifies

(2.8) ay#g”ﬂ' — 0'

Using this, we shall define the D-conharmonic change in M.
From a, = Bf‘a,- and (2.5), we have (cf. [1])
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oy = BZB;;(vja,- + EapéPygij).
On the other hand, using (2.3), we find
a0 = gt aya,= g"* B} Bjaia; = (¢ — £'¢i)aia; =
= opa? — (apéP)?
and taking (1.4) into account, we get
va,,,,‘, = BiB;[vja; — aja; + 3(apa? — €2 + 1)gjil. »
Therefore
aug™* = (g7 — £&)[Vjo — ejeq + 3(apa? — e +1)gi;] = 0.

Thus, the D-conformal change (1.3) induces conharmonic changes
on each level surface if and only if

(2.9) (g1J - flfJ)[VJaii_ ajo; + ;(apap — €27 + 1)911] = O

Definition. The D-conformal change (1.3) satlsfymg (2.9) is called a
D-conharmonic change.
The condition (2. 9) can be written in the form

99 (Vi — aiej) — Vit 't + (ap€?)? + L(n — 1)(apa® — € +1) = 0,

or, using (1.4), in the form

(2.10) gij(VJa‘ — a;a;) — VjaiEi + (1 — e” )2+
+= (n —1)(apa®? — €% + 1)=0.

On the other hand, differentiating the second equation (1.4) and
using (1.1), we get

(Vja;)fi —Eaj + Ea,-f"nj = —Eaje"
Therefore
(Vi)é'e = —€a;tie”
Substituting this into (2.10), we obtain

(2.11) ' g"-"'(VJozl a;aj) + EoptPe” + (1 — €)%+
(n—l)(a ap—ez"+1)—0

Also, (2.9) can be expressed as follows
Viei(g — £¢7) + 25lavat + (auf?)? + §(n— 1)(1 = €27) = 0,
from which, taking into account (1.4), we get
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(212)  vjeu(g — £¢7) + 252 azat + B — 2¢7 — 230e? = 0.

3. The second access to the notion of the
D-conharmonic change.

Let us consider a function 4 in M. It is, in the level surface N, a
function of the coordinates u*. If this last function satisfies

gt VVA# =0, Au = V;LA’

it is said to be a karmonic functionin N (cf. [6]). Let us search for the
corresponding condition in M. Since

A, = Bj A, A=A
and (2.5), we have
WAy = BLB] ViAi + Eguu A€,
from which, in view of (2.3), we have
g** oAy = (g9 — £°¢7) Vi Ai + &(n — 1) AL

Thus, the function A is the harmonic function on each level surface

if and only if

(3.1) (97 — €7¢) vjdi + &(n — 1)A:{* = 0.
Now, let us consider in M the function
*A = e?P2 4,

where p is a suitable constant and A is a function satisfying (3.1). Let
us look for the condition upon a ensuring that

(3'2) (*gji _ *Ej *&i)* V; *A,- + E_(’n _ 1)*At*£t =0.
We have
(3.3) *A; = e*P*(2pa; A + A;),
(3.4) *v; *Ai = e2P*[(4p*cia; +2p *Vje ) A+2p(aj Ai+ i dj) +*V; Ail-

Using (1.6), we compute
*Vi o = Vi — 2050 + (aymi + ainy)élas 4 (gi5 — mins)owa’—
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—&(e?*77 — e7)(gij = nin; )€ er — ojmi€ten
and
YWV Ai = Vidi — (a4 + 0A;) + (am; + aym; )E0 A+
+(9i; — minj)at A — E(e**77 — €7 )(gi; — min; )€ A — oMt A,
Substituting this into (3.4), we find

*Vi*Ai = e2P*{2pA[Vj0; + 2(p — 1)y + (ajni + aimj)étas+
+(gij — min;)ewa’ — E(e2*77 — €7 )(gij — min; )€ — oymitias]+
+ VJ'A,' + (2p — 1)(a,~A,- + a,-AJ-) + (ajn,- + amj)ftAt+
+(gi; — mimj)Ara’ — E(e2*77 — e7)(gi; — mim; )€1 A: — ojmi L7},

Using (1.3) and (1.5), we have
*gij _ *Ei *Ej = e—2a(gij - Eié’])

(’."g.‘ii :_'*Ej*fi)* V; *Ai —
=P {2pA[Tjai(g" —£¢7) +(2p + n — B)asat — 2(p — 1)(€rer)?—
o —&(n — 1)(e?*% — e%)¢toy]+ _
+ VA9 — £6) + (4p £ n — )atAy — 22p — f'art? A,
—&(n —1)(e?*77 — e%)¢ A, ).
Now, if we use (3.3) and take € = +1 in (1.3), we find

E(n — 1)*A,%¢* = &(n — 1)e??*7(2pa,£T A + A, ¢Y).

Therefore,

Therefore
(*gj‘l _ *EJ*E:)*VJ *A,' + E(n _ 1)*At*£t —
=2pA{ez(”_1)"‘[v_.,-«:x,-(_q‘J —&¢7)+(2p+n - 3)ayat—2(p — 1)(£fay)?—

(3.5) —&(n —})(ez‘.’_." —e%)€a,] + e?P*"7g(n — 1)¢ta, }+
+H{elP02[; 4:(g" — £°¢7) + (4p +n — 3)at Ay — 2(2p — 1)Ea,P A,—
—&(n —1)(e**77 — )P A,] + €272 75(n — 1)¢P A, }.

If we choose the constant p = — 2 and take into account (1.4),
the expression in the second bracket of (3.5) reduces to

PG Ai(g" — £¢7) + &(n — 1)¢*44),
and so, (3.5) becomes
(*g% — ) VA + E(n — 1)*4, ¢ =
= 2pA{* PV Gr04(g7 — E7€7) + 25t anat + B (fay)?—
—&(n—1)(e?*° - e”) o] + &(n — 1)e??* ¢ ay }+
+eX P02 4i(g% — €18) + E(n — 1)€*44],
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from which we find that (3.2) follows from (3.1) if and only if
2P~ ia4(g% — E¢°) + 27 v+
+1_t;12-_le2(p—1)a(£tat)2 _ E('n _ 1)62(p—1)a(e;2a—a . Ca)ftat‘i‘
+é(n — 1)e*P*¢ta, = 0.
In view of (1.4), the last condition can be written as follows
e[ 0;(g7 — EE7) + 2 agal]+
+Eziie2(p—1)a(1 _ e«7')2 - (n _ 1)(e2pa—or _ e2(}':-—1)oz+a'))(]_ _ ea)+
» +(n —1)e?P*=7(1.— €7) = 0,
from which we get (2.12). Thus, we have

Theorem. Let A be a function in M and let *A = e~ "7 %A. Then the
conditions (3.1) and (3.2) are equivalent if and only if the D-conformal
change (1.3) with € = +1 is D-conharmonic.

4. D-conharmonic curvature tensor

Let us denote by *Rkjl-h, *R;; and *R the Riemannian curvature
tensor, the Ricci tensor and the scalar curvature of metric *g respec-

tively. Then we have ([1], (3.18) and (3.19)):

(4.1) Ryt — gkl +0;i8} = Ry — guib? + gjubh+
+oui(6F — niE*) — aji(6F — mé®) + (gri — mami)ed — (955 — mjmi)ak,
(4.2) *Rji + (n —1)"gji = Rji+(n—1)gj — (n — 3)ayi — a,*(g5: —m5m:),

where

(4.3) oz = Vi — ajo; — £e”(a;n; + ainj )+
+3(apo? — €27 +1)(gji — nm:) + (Ee”0p€P — €7 + ).

From (4.2) we get
(4.4) o} = sy iR +n(n —1) — 'R +n(n — 1)]}.
But from (4.3) we find

dt = ajig’ = ¢ (Viai — aiaj) — 28e”¢ia;+
+%(" —1)(apaP — €27 + 1) + (e%0,€P — €27 + 1),

or, using the second equation (1.4),
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attzgj"(vja,-—aja,-)—i—( T —1)2+ %(n — 1)(ap'a?—ez"’+1)+€_e"ap£?.

Thus, for a D-conharmonic change, . accordlng to (2.11) we have
at =0, and so by (4.2)

aj; = 725[Rji+ (n— l)gji] ~ a5 Rii+(n— 1) "gjil-
Substituting this into (41) we find

Rei" = "ni8} + 0558} + T (0B + (n ~ 1) (8] —057€") -
=Ry + (n = 1)g5l(6F — )+
+(*gki - *ﬂk*ﬂi)[*R;-" + ('n - 1)5”’] (*_9_71, _ *nji*ﬂz)[*Rt + (n _ 1)52‘]} _
o= Rk;: — grib} + 9565+ , ‘
g {TRis + (n— 1w (8 — ms€) — [Byi + (n ~ Dgsl (6} — mug*)+
+(grs — mems)[BY + (n — 1)8F] — (gi — mjms)[RY + (n — 1)67].

Let us put- , _ _
| Ey;i" = Ry — guib? + g;ibh+
ﬂ—S{[R’“ +(n— )gki](5h - ﬂlgh) —[Rji +(n— 1)9#](5]; - "kah)"l-
R + (n = 1)8}](gns =) = [RY + (n = 1)6 )95 — myms)},

or

(4.5) Ekjih = Rkjih + 242 (ki) — g5i0%)—

— 2= (grimi€* — gjimet™ + 62mems — Spmimi)+

g [Rui(82 —m;i€") — Rji(8} —mué™) + RE (gri —mami) — RE (i =mimi)]-

Then we have the
Theorem. Let M be an n-dimensional apeczal para-Sasakian mani-
fold and n > 4. Then the tensor field E is invariant under a D-
conharmonic change o
The tensor field E,e ji is called the D-conharmonic curvature tensor
field in a special para-Sasakian manifold n > 3.

k]:

Let us suppose that M is a manifold of constant curvature —1,
i.e.
R,‘:j‘-’,t = g,,,-&}‘ - g,-,-&{;.
Then :
Rji = —(n —1)gjs.

Substituting this into (4.5), we find Ekj‘.h = 0. Thﬁs, if the special

para-Sasakian manifold. is a manifold:of-constant curvature —1, then
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its D-conharmonic curvature tensor vanishes.

Now, we shall investigate the reverse case. To do that, we note
first that contracting (4.5) with respect to h and k, we find -

(4.6) E,;’ = Eji = —5n(n ~1) + R](th 7373).

Using (4.5) and (4.6), we can express the D-conformal curvature
tensor (1.7), as follows

(4.7 B,m = Ep;i" + 25(Bubl — Eji82)+
+(n 2)(n—3)[n(n ]‘)+R](gkanE _gjlnkf )

Now, suppose that E ;" = 0 Then E_,, = 0 too, and from (4.6)
we get. .

48) n(n—1)+R 0.

Therefore, Bkj,-h = 0, from which follows, according Theorem A, that
M can be transformed into a manifold *M of constant curvature —1 by

a D-conformal change (1.3). This change i is conharmonic one. In fact,
for *M we have

th

Bji* = "0uib} = 05i6k,
from which
*Rji = —(n —1)%g;; ~ and *R = —n(n —1).

Substituting this and (4.8) into (4.4), we find o, = 0. But the
D-conformal change (1.3) satisfying a,* = 0 is also D-conharmonic.
Thus, we have ‘ -
Theorem. A necessary and sufficient condition that an n-dimensional
(n > 4) special para-Sasakian manifold may be transformed into a mani-
fold of conatant curvature —1 by a suitable conharmonic trana_forma.twn,
i Elm =0.

Let us denote by K, ,  and K,, the curvature tensor and Ricci
tensor of N respectively. Between tensors of M and N, the followmg
relations are known (cf. [3]):

(49) B:B;B:‘BkvapA = Rkjih - gki6;l + gjiazi
(4.10) B;B;"‘Klly. = Rj; + (n — 1)gj.

Also, in view of (2.2), (2.3) and (2.6), we have
(4.11) 9" = ¢ B!'BY, 9vuB! BY = gij — min;
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and
(4.12) K’ B!BY = R} 4 (n —1)8k.
Now, using (2.6), (4.9), (4.10), (4.11) and (4.12), it is easily proved
that
(4.13) Z,,,* B¢ B!B!B% = E, ..,

where 7, “A is the conharmonic curvature tensor of level surface N ,
i.e. (cf. [6])
ZvaA = wa&A + ;,,.1__3(gUVKAu - gV#KAw + 63le£ - EQKV#)
From (4.13), we have
Theorem. The tensor field Ekji’l of a special para-Sasakian manifold

vanishes if and only if ZW“A = 0 in every level surface, i.e. if and only
if each level surface is conharmonicly flat.
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Zusammenfassung: Gegenstand der vorliegenden Arbeit ist ein raumlicher
Mechanismus, bestehend aus vier starren Koérpern, die iiber vier Parallelo-
grammegelenke so miteinander verbunden sind, dafl eine geschlossene kinema-
tische Kette entsteht. Ein Parallelogrammgelenk ist ein spezielles Viergelenk,
das als Einzelgelenk aufgefafit wird und die Kurzbezeichnung II erhilt. Ziel
der Arbeit ist die Berechnung der drei ﬁbertragungsfunktionen des homo-
genen 4I[-Paralleltrieb-Mechanismus, der durch gleiche Gelenkabmessungen
und gleiche Lageparameter der Gelenke in den Gliedkérpern gekennzeichnet
ist.

1. Einleitung

Wegen der grundlegenden Bedeutung fiir die Roboter- bzw. die
Manipulator-Technik waren die rAumlichen Mechanismen (nullter Ord-
nung) in den letzten Jahren haufig Gegenstand wissenschaftlicher Un-
tersuchungen. Mit der Ver6ffentlichung der Arbeit von H. Y. Lee und
Ch. G. Liang [2] haben diese Untersuchungen, soweit sie die Kinematik
der raumlichen Mechanismen betreffen, einen vorliufigen Hohepunkt
erreicht. Diesen beiden Autoren ist es erstmals gelungen, die Haupt-
ubertragungsfunktion des allgemeinen, aus sieben Gliedern und sieben
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Drehgelenken bestehenden 7R Mechanismus nullter Ordnung in der
endgiiltigen Form anzugeben: Die gleich Null gesetzte Determinante
einer 8 X 8 Matrix fithrt auf eine in den Tangens des halben Eingangs-
bzw. des Ausgangswinkels algebraische Gleichung 16-ter Ordnung.

In den bekannt gewordenen Arbeiten iiber raumliche Mechanis-
men werden ausschliefllich Mechanismen mit Drehgelenken (R), Pris-
mengelenken (P), Zylindergelenken (C), Kugelgelenken (G) und
Schraubgelenken (H) analytisch behandelt. In der Robotertechnik kom-
men die R und die P-Gelenke am haufigsten zur Anwendung. Bei den
ebenen Manipulatoren (z.B. den Hebebiihnen) werden auch sogenannte
Parallelogrammgelenke verwendet [4]. Ein Parallelogrammgelenk ist ein
Viergelenk mit besonderen Abmessungen. Ein solches Viergelenk kann
auch als Einzelgelenk aufgefafit werden, das zwei starre Korper mit
einem relativen Freiheitsgrad aneinander bindet. Die Relativbahnen
der Punkte von zwei so verbundenen Kérpern sind kongruente Kreise,
die Relativbewegung ist translatorisch. Wir werden dieses Einzelgelenk
Parallelogramm-Gelenk nennen und mit der Kurzbezeichnung II verse-
hen. II-Gelenke vermégen P-Gelenke bei entsprechender Auslegung
iiberall zu ersetzen, und haben gegeniiber diesen technologisch gesehen
den Vorteil, daB die Fiithrungsbahn nicht ungeschiitzt ist. Abgesehen
davon aber ist es jedenfalls von theoretischem Interesse, Mechanismen
die teilweise oder ausschliefllich II-Gelenke enthalten, zu untersuchen.

Es ist zu erwarten, dal der Ersatz eines P-Gelenkes in einem
Raummechanismus durch ein II-Gelenk, die Ordnung der algebraisier-
ten I"Jbertragungsfunktion betrachtlich erh6ht; so kann z.B. vermutet
werden, daB der 5RII-Mechanismus auf eine Ubertragungsfunktion min-
destens 32.ter Ordnung fithrt. Diese Fragen sollen in einigen Folgear-
beiten abgehandelt werden.

In der vorliegenden Arbeit wird der einfachste Mechanismus mit
nur II-Gelenken untersucht, das ist der homogene 4II-Mechanismus,
dessen Gelenke gleiche Abmessungen und gleiche Lageparameter in den
Gliedkorpern besitzen. i ' -

2. Das Parallelogramm-Gelenk

Die Abb. 1 zeigt das Parallelogramm-Gelenk und die relevanten
Parameter. Die festen Systemparameter a;, o;, 8;, ©;, h; und der
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(variable) Lageparameter o; bestimmen die Lage der im Gliedkiirper
K; fixierten Vektorbasis (O,-,E'S)) in der Vektorbasis (O;_1, gli- 1)) in
K; ,.

EAY

e, 4
i ‘- ll: — {3
ﬂxfﬁ"g' Uut " - € (®
~ I "L"I'i“
\ A ;‘W{I‘p;‘-yﬂ%‘ :
o; o ”iﬂ!‘ﬂ”L n
i (i
é’l(‘—l) 81 ' € ( )
i &
N
a;
K"_ ~(i—-1)
*(.--122’0;_/ &
€2
Abb.1

Das Parallelogramm-Gelenk 11

Die orthonormierten Vektoren e( ) é'z,('), e in K; kénnen als Linear-

kombinationen der Basisvektoren e(’ 1) "(' 1),6'3(' D in K;_; darge-
stellt werden. Mit den drei Ma.tnzen

é’l('.) € l(i_ 1) cos O; | sin O, cos o; | sin O; sin o;
(l)g(i) = é’z(i) g‘(i_l) = é’z('._l) A; :=|—sin©;| cos ©; cosa; | cos O; sin a;
é’a(i) é’a(i—l) (s —sinog CO8 o

148t sich die gegenseitige Abhéngigkeit der Basisvektoren in der folgen-
den Form anschreiben:

(2) € = 4,66-1)  baw. €01 = 4, Te(®

Die Matrix 4; ist eine orthogonale Matrix d.h. es gilt A7 = ﬁl,-T.
Mit dem Drehwinkel @i und dem Einheitsvektor €; in.der Dreh-
achse kann der Drehtensor R;, der die Einheitsvektoren é'o(f_l) in die
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Einheitsvetkoren € 28 {iberfithrt, in der folgenden Weise dargestellt wer-
den [ I:
(3) —'(1—1)TR —*(1 -1) _ (1)TR —0(1.)

= exp(cp,n,x) = cos cp,I + sin ga,('r'i,-x) + (1 — cos p;)(7;7;)-

Aus R; 0 e(" nT - "(‘)T =€ e li— 1)TR é'("'l) o€ g(i-UT — q(’_l)TR =
£ = BTe(-D = 4, 201 folgt
(4) R.T — A'

Der Vergleich der Koordinaten von 4; und R; T liefert fiir die
Koordinaten n( ) des Einheitsvektors 7i; sowohl in der Basis (O;, "'(’))
als auch in der Basis (O;_1,€ _’(1 )) zunachst

ng D sin p; = (1/2) sin a;(1 + cos ©;)
(5) ng ) sinp; = —(1/2) sin a; sin ©;

ng 9 sin @i = (1/2)sin ©;(1 + cos a;).
Fiir den Drehwinkel ¢; erhilt man aus tr(R;T) = tr(4;):
(6) ¢; = +arccos[(1 + cos a;)(1 + cos ©;)/2 — 1].

Die Wahl des Vorzeichens von ¢; ist belanglos, weil sich mit dem Vor-
zeichen von ¢; auch das Vorzeichen des Einheitsvektors 7i; andert.

3. Der homogene Paralleltrieb-Mechanismus 41

Fiir kinematische Ketten, bestehend aus n Gliedkérpern die iiber
g Gelenke verbunden sind gilt die Zwanglaufbedingung

F=1=3f;+k(Q+1).

Hierin bezeichnen ) = g — n die Ordnung, k den Grundfreiheitsgrad
aller Gliedkdrper und Xf; die Summe der relativen Freiheitsgrade der
Gliedkdrper die die, sie verbindenden Gelenke zulassen. Fir kinema-
tische Ketten nullter Ordnung mit Gelenken die nur einen relativen
Freiheitsgrad zulassen gilt demnach: Xf; = n = g. In einem Parallel-
trieb-Mechanismus sind samtliche Gelenke II-Gelenke, die Gliedkorper
konnen sich daher nur noch ohne Richtungsinderungen, d.h. nur trans-
latorisch bewegen, ihr Grundfreiheitsgrad ist daher gleich 3. Damit
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erhilt man fiir den rdumlichen Paralleltrieb-Mechanismus nullter Ord-
nung: n = 4. Unter einem homogenen 4II-Mechanismus wird hier ein
Paralleltrieb-Mechanismus mit gleichen Gelenken verstanden. Dem-
nach gilt fiir diesen speziellen Mechanismus

(7) a; =a, a;=0a, 8; =23, @,'2‘-@, h,"=h 1=1-=>4.

Die Koordinaten des Drehtensors und des Einheitsvektors in der Dreh-
achse und der Drehwinkel selbst, sind dann in allen vier Koordinaten-

systemen (O;, é’,,(f)) gleich grof:
®) Bi=B, n® =na pizp i=1:d.

Die vier aufeinanderfolgenden Drehungen mit dem Drehtensor R.
fithren die Basisvektoren in sich selbst zuriick. Aus

RoRoRoRogli—UT = gG-1T fg]gy
(9) Rq‘:Izexp(4<p'r'i><)=>4(,a=27r=><p=7r/2.

Die Winkel a und © kénnen beim homogenen 4II-Mechanismus
nicht unabhingig von einander gewihlt werden. Denn mit ¢ = /2
erhalt man aus (6) den Zusammenhang

(10) (14 cosa)(l + cos©) = 2.

Diese Bedingungsgleichung beschrinkt die Werte fiir & und fiir © auf
den Bereich

—r/2<a, O <7/2.

Unter Berucksu:htlgung von (10) erhélt man fiir die in den vier Ko-

ordinatensystemen (O,,'na ) gleichen Koordinaten des Richtungsvek-
tors der Drehachse

(11) ny = tan(a/2), n, = —tan(a/2)-tan(0/2), ns = tan(0/2).

Nur eine der Koordinaten von 7 kann also frei zwischen +1 und —1

gewahlt werden. Zwischen den Koordinaten von 7 bestehen die Bezie-

hungen: n; = —nins, n2(1+n2) =1 -n2 ng(1 +n?) =1 -2
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Abb. 2.

Der homogene 4I[-Mechanismus (Liniensymmetrische Bauart,
Blickrichtung von 72)

4. Das Grundgleichungssystem

Von noch zu besprechenden Sonderfillen abgesehen, ist der homo-
gene 4I1-Mechanismus zwanglaufig. Die drei Ubertragungsfunktionen
sind aus drei voneinander unabhangigen Gleichungen, die die Lagewin-
kel o, 03, 03 und o4 enthalten, zu berechnen. Diese Gleichungen liefert
die vektorielle Schiebedingung. Diese lautet:

7= [é'l(l) + 51(2) + 51(3) + €1(4)]a-|— [é*s(l) + é'a(?) + 6*3(3) + 5*3(4)]3+
+h[€1(1) cos oy + E'L,(l) sinoy] + h[é’l(z) cos oy + é'z(z) sinoy |+

+h[€1(3) cosog + 6,2(3) sin 03] + h[é'1(4) cosoy + 6'2(4) sinoy| = 0.

Mit P +e®P1e® e o I+R+R2+RYoeM =
= 4iiii o M)

und N +eP e+ —(I+R+RE+RY) oM =

= 4111172:
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—

= 477 0 D) = dngit
sowie der Abkiirzung
(12) T = é‘l(i) cos o; + é'z(i) COs 0;
kann die SchieBbedingung in der folgenden Form angeschrieben werden:
(13) 5= A4(ny &+ ng L)+ 7 + 7y + 73 + 7 = 0.

Um die vorhandenen Symmetrien méglichst in Rechnung zu stel-
len, soll der Vektor 5 nach den drei Richtungen zerlegt werden, die die
orthonormalen Vektoren

(14) i, fi= (&Y ~maA)/y/T=nf, f=Rofi =
= x fi = (&7 — mii)//1—n2

bestimmen. Die in (13) vorkommenden Einheitsvektoren konnen als
Linearkombinationen der Vektoren 7@, fi, f, wie folgt dargestellt werden

(Abb. 3): '

Abb.3
>(1)

Darstellung der Vektoren €; ' und €, ’ in der
Vektorbasis ('fi, f1, _fz)

(1) .

'6_3‘1(1) =ny7 + m.ﬁi Ezsl):n27_i+ 1-—n§§'1=
= naii + 4/1 — n2(cos Bf; + sin B f3)
(15) &P =mia+1-nifi, & = nyii+ /1—ndgy =
= nyii + /1 = n2(— sinBf; + cos Bf;)
€1(3) = ’nlﬁ— \/m?fiv é‘2(3) = nzﬁ— \ 1 —n2§1 -
= ngii — /T~ n}(cos B; + sin B f3)
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51(4) = nlﬁ— \/1 _ni.f-;a é’l’(é)f nzﬁ:— -ol _ngjz -
=nyf — /1 — ng(— sinfBf; + COSﬂfz)

Der hierin auftretende Winkel 8 kann aus den Koordinaten n;,n; und
ng berechnet werden:

Aus fiog = cosf = (é’l(l) —nym) o (é’l(z) — nyit)/4/(1 — n2)(1 — n)
folgt 4/1 — nZ cos B = n?ng/4/1 — n? und aus (f; X g1 )o7i = sin (3 erhalt
man /1 —nZsinfB = n3/4/1 — ni.

Mit Hilfe dieser Formeln kann die Zerlegung des Nullvektors &
nach den Richtungen 7, fi und f; durchgefiihrt werden. Als Ergebnis

erhilt man die folgenden drei Gleichungen:

(16) 4[ny(a/h) + n3(s/h)] + ny1(cos oy + cos o3 + cos g3 + cos o4 )+
+ny(sinoy + sinoy +sinoy +sinoy) =0

1 —n2?)(coso; — cosoy) + ng[ni(sinoy —sinog) — (sinoy —sinoy)] =0
1 1

1 —n2?)(cosoy — cosas) + nsg[n2(sinoy —sinoy) — (sinog —sino; )] =0
1 A 1

Es erweist sich als vorteilhaft nun anstelle der Lagewinkel o; neue
Lagewinkel 7; durch

(1m) i=0;+0/2

einzufithren. FErsetzt man ndmlich in (16) o; durch 7 — ©/2 und
beriicksichtigt, dafl einerseits ng = tan(©/2) und andererseits die Be-
ziehungen nyng = —ny und n?(1 + n?) = 1 — n? gelten, dann erhalt
man — nach Addition bzw. Subtraktion der letzten beiden Gleichungen
— unter Einfiihrung eines neuen Parameters K

(18) K = 4[ny(a/h) + ns(s/h)]/(n14/1 +n3)

den sehr viel durchsichtigeren Gleichungssatz fiir die Lagewinkel 7;:

K +costy +cosTg +cosTg +costy =10
(19) (sinTy — sinTs) + ns(cos T —cosy) =0
(sinTy — sinTy) + n3(cos s — cos 1) = 0.

Dieses Grundgleichungssystem, das nur zwei Systemparameter

enthilt, 1aBt bereits einiges von der Struktur der zu bestimmenden
Ubertragungsfunktionen erkennen.
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5. Folgerungen aus dem Grundgleichungssystem

Die erste Gleichung (19) zeigt, dafl reelle Werte fiir die Lagewinkel
7; sich nur ergeben konnen, wenn der Parameter K der folgenden Be-
dingung geniigt
(20) -4 < K <4.

Die Grenzwerte von K sind den aus (19) ablesbaren Punktlésungen
T; = 0 bzw. 7; = +7 zugeordnet, der entsprechende 4II-Mechanismus
ist nur "infinitesimal” beweglich.

Erfillen die Lagewinkel 7; (i = 1 4) das Gleichungssystem (19)
mit dem Parameterpaar K, ng, dann erfiillen die Winkel 7; = 7; + 7
dieses Glelchungssystem fiir das Parameterpaar — K, ng, und die Winkel
I =T1,Ts = T4, T3 = 73 und T4 = 1, erfiillen es fiir das Parameterpaar
K, —n3. Demnach kann der Variationsbereich von K und n3 z.B. auf
(0 +4) x (0 +1) beschrinkt werden.

Das Grundgleichungssystem (19) geht bei zyklischer Vertauschung
der Lagewinkel 7; in sich selbst iiber. Wir bezeichnen die aus (19) durch
Elimination von je zwei Winkeln zu ermittelnden Ubertragungsfunktm—
nen mit f(7y,7) = 0, g(73,71) = 0 und h(74,7;). Aus der zyklischen
Vertauschbarkeit der Winkel ist auf

(21) f(r2,m1) = f(11,7) = h(re,71) = 0

zu schlieflen, d.h. der Graph 74(71) geht aus 75(7;) durch Spiegelung an
der Geraden 73 = 73 und der Umbenennung von 73 in 74 hervor. Ferner
zeigt die zyklische Vertauschung

(22) 9(73,m1) = g(m1,73) = 0,

daB der Graph 73(7;) symmetrisch ist in bezug auf die Gerade 75 = 5.
Das Grundgleichungssystem (19) 1t neben der zyklischen Vertau-
schung aber auch noch eine andere Variablenvertauschung zu, namlich:

L= —T8, T2 T2, T§ — —T1, Ty = —T4.
Demnach gelten auch die Beziehungen f(r2,7) = f(—7,—73) = 0,
9(t3,11) = g(—m1,—7) = 0 und h(ry,7) = h(—74,—73) = 0. Mit
den zyklischen Vertauschungen f(—mp,—73) = f(—71,—72) = 0 und
0 = h(—74,—73) = h(—71, —74) erhilt man dann

(23) f(TzaTl) = f(—‘"h —"'2) =0, 9(7’3,7'1) = y(—Tl,—Ta) =0,
h(te,71) = h(—71,—14) = 0,
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d.h., die Graphen der drei Ubertragungsfunktionen sind beziiglich ihrer
Querdiagonalen (17 = —71,7s = —T1, 74 = —71) symmetrisch.

6. Nichtzwangsldufige homogene 41-Mechanismen

Der ebene homogene 4II-Mechanismus (Abb. 4) ist gekennzeich-
net durch ® = 7/2. Die erste Gleichung von (19) kann mit (18) wie
folgt angeschrieben werden:

4[ni(a/h)+ns(s/h)]+ny y/1+n?(cos 11 +cos 5+ cos T3+ cos 74)=0

Mit ng = tan®/2 = 1 und n; = 0 erhélt man daraus: s = 0. Die
vier Winkel 7; miissen nur den beiden letzten Gleichungen von (19) mit
ng = 1 geniigen. Diese sind gleichwertig dem Gleichungssatz

cos 0y — sinoy — cosog + sinoy = 0

sinoy + cosgg —sinog —cosog = 0
der im allgemeinen nur die Losung o3 = 01, 04 = o2 zuldft, o2 ist im
allgemeinen unabhangig von o, der ebene 4II-Mechanismus besitzt
zwei Freiheitsgrade. Wahlt man allerdings o3 = konst und oy =
= —n/2 + o3, dann besitzt der Mechanismus immer noch einen Frei-
heitsgrad wobei oy = 7/2 + oy wird.

Abb.4 Abb.5

Der ebene homogene Der raumliche homogene

411-Mechanismus (F = 2) 411-Mechanismus (F = 2)

Einen zweiten homogenen 4II-Mechanismus mit zwei Freiheits-
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graden (Abb. 5) erhilt man mit den Systemparametern a = 7/2 und
a = 0. In diesem Falle stimmen die Lagewinkel 7; und o; iiberein
(© = 0) und die Gleichungen, die sie zu erfiillen haben, sind die folgen-

den:

(24) Coso1 + cos0y + cosog +cosoy =0

sinog = sino;, sinoy = sin oy

Diese Gleichungen lassen zwei qualitativ sehr verschiedene Losun-
gen zu, namlich
(25) oc=+mwrtoy, 03 =01, og=0=+mw+0o; und

(26) oy =47 — 01, 04 =+7 — 03

Die erste Losung entspricht einem zwangslaufigen Mechanismus, und
die zweite einem mit zwei Freiheitsgraden. Der durch (a = 0) A (a = 0)
charakterisierte homogene 4II-Mechanismus ist insofern bemerkenswert
als er beim Durchgang durch eine besondere Lage (0; = +m/2) den
Freiheitsgrad dndert.

7. Die I“Jbertragungfunktionen

Bevor an die allgemeine Losung des Grundgleichungssystems he-
rangegangen wird, soll die enthaltene, explizite angebbare Losung ge-
sondert betrachtet werden. Es handelt sich dabei um die ﬁbertragungs—
funktionen des liniensymmetrischen homogenen 4II-Mechanismus
(Abb. 2).

Setzt man in (16) 73 = 71 und 74 = 73, dann sind die letzten beiden
Gleichungen von (16) bereits erfiillt und die erste vereinfacht sich zur
unmittelbar auflosbaren Gleichung: ’

(K/2) + cos 3 + cos 1y = 0.
Die Ubertragungsfunktionen des, beziiglich der Drehachse (die der Ein-

heitsvektor 7 richtungsmafig angibt) liniensymmetrischen homogenen
4I1-Mechanismus ergeben sich auf diese Weise zu:

(27) m(n) = :tarccos[—(-’i{— + cos 1)}, 73(1'1)‘ =11, Ta(11) = 12(71).
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)

-

Abb.6
Die ﬁbertragungsfunktion To (T1 ) bzw. 02 (0'1 )

des liniensymmetrischen homogenen 4II-Mechanismus

Diese Ubertragungsfunktionen, dargestellt in den . Lagewinkeln 7; sind
unabhingig von dem Systemparameter ny. Die Ubertragungsfunktm-
nen in den urspriinglich gewahlten Lageparameter erhialt man gemaf
(17) durch Verschiebung des Koordinatenursprungs in beiden Richtun-
gen um ©/2 = arctanny (Abb. 6).

Die allgemeine Losung des Grundgleichungssystems (19) und da-
mit die Ubertragungsfunktionen der nichtsymmetrischen 4II-Mechanis-
men konnen nur in impliziter Form angegeben werden. Die Elimination
von zwei Winkeln aus den drei Gleichungen (19) gelingt in zwei Schrit-
ten: Zuerst kdnnen aus (19) zwei Gleichungen gewonnen werden, die
einen Lagewinkel nicht enthalten und die im Sinus und im Cosinus der
restlichen drei Lagewinkel linear sind. Aus diesen beiden Gleichungen
kann dann mit Hilfe der Euler-Sylvesterschen Resultanten-Methode [3]
der zweite Lagewinkel eliminiert werden.

Das Grundgleichungssystem (19) soll zunachst in der Form einer
Matrizengleichung angeschrieben werden. Mit der Abkiirzung

(28) c=+/1—n2

und den Matrizen
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ef=11/0]0

17 =[]0 [ m Jeorn+ [0] 1 [ 0] sin
(29) k2" =[c[ns | 0 |cosma+ [0] 0 [-1]sinm
ka"=|c | 0 [-ng|cosms+ [0]-1] 0]sinm
b= [ons | 0 Jeosrat [0] 0] 1] sinm
nimmt (19) folgende Gestalt an
(30) eKc+ki+ks+ks+ka=0.

Die hier eingefiihrten k; Matrizen sind (nichtorthogonale) Einheits-

Spaltenmatrizen, d.h. es gilt, unabhingig vom Lagenwinkel 7; der ki
festlegt:

(31) ETki=1  (i=1+4)

~ ~

Die Matrizen

T _
w1” = |—n3 0 [+ ngz —n3 c 0

32
( ) wal = |—ng| 0 |—¢ wel =| —nzg | —c| 0

sind ebenfalls Einheits-Spaltenmatrizen die auBerdem folgende Ortho-
gonalitatsbedingungen:

(33) wiTki=0 (i=1+4)

erfilllen. Mit (31) und (33) kann aus (30) auf zweifache Weise ein

Lagenwinkel so eliminiert werden, daB man Gleichungen erhilt die im
Sinus und Cosinus der verbleibenden Winkel linear sind. Aus

‘LUsT&s =0= —E’sT(EKC+&1 +k2+ky) und
ks"ks=1=(cKct+ki+ka+ka)T(eKetki+katks)
ergeben sich die folgenden zwei 3-freien Gleichungen
(34) ns(K +2cosT1) + (nscosm, —sinm,) + (nscosTe +sinTy) =0

(35) 1+ c2K2/2 + c’K(cos 71 + cos73) + (c? cos 71 + ng sinTy ) cos o —
—nycosTy 8inTy + [¢*K 4 c?cos Ty — nysinmy + (2 — nl) cos T3] cos 4+
+[ns cos 7y — sinTy]sinTy = 0.
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Mit
(36) z4 = tan(74/2)
und den Spaltenmatrizen
n3(K — 1)+ 2cos 71 + cos 1z — sin 7y
Ci1—
14+ (K - 1)(K/2+cosmi) + [c?(K — 1) + nd]cos 2+
+ngsin 11 + sin(r2 — 71)] + ¢ cos 71 cos T3
2
(87)  cz2=
n3Cc08 Ty — SIN T3
n3(K +1+42costy + costz) —sinTy
cC3 —

1+c3(K +1)(K/2+cosm) + [¢2(K + 1) — nd]cos 2+
+n3[—sinTy + sin(rz — 71)] + ¢? cos Ty cos T2

erhilt man anstelle von (34) und (35) die Matrizengleichung
(38) c12it+ezater=0.

Um den Zusammenhang der Lagewinkel 7, und 7 zu erhalten
ist daraus ¢4 zu eliminieren und das kann mit Hilfe der Resultanten-
Methode bewerkstelligt werden.

Fafit man die Potenzen von z4 (bis zur dritten Ordnung) zu der
Spaltenmatrize ¢4 zusammen und bildet mit Hilfe der ¢ ;-Matrizen die
4 x 4 Resultantenmatrix M

z}
z2 0 c
1 v €1[C2(¢Ca
Tq = M:
(39)
T4 C1|c2jes| 0
Ty

so muB fiir diese Matrizen aufgrund von (38) die lineare homogene Glei-
chung

(40) Mz,=0
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von M verschwindet
(41) det M = 0.

Diese Gleichung stellt den Zusammenhang zwischen dem Eingangswin-
kel 1 bzw. oy = 7 — ©/2 und dem Ausgangswinkel 75 bzw. o, =
=173 — 0/2 her.

Ersetzt man 7 und ; durch

(42) ¢, = tan(1/2), z; = tan(r/2),

dann erhilt man eine algebraische Gleichung 8-ter Ordnung in den
neuen Variablen z; und z,:

(43) det M(mz(22),7(21)) = F(23,2,) = 0.

Diese Gleichung erlaubt die Abspaltung des in z; und in z; quadrati-
schen Faktors

(44) Fy(22,21) = (K/2)(1 + 23)(1 + 22) + 2 — (2% + 23)
der, gleich Null gesetzt, die bereits angegebene erste f]bertragungsfunk-
tion des liniensymmetrischen homogenen 4I1-Mechanismus liefert.

Die ﬁbertragungsfunktion der nichtsymmetrischen homogenen 411-
Mechanismen bestimmen demnach eine algebraische Gleichung 6-ter
Ordnung.

Wegen der zyklischen Vertauschbarkeit der Argumente z; gilt

(45) F(z2,2,) = F(z1,24) = H(z4,z1) =0,

d.h., mit der ersten ﬁbertragungsfunktion ist auch bereits die dritte
bestimmt.

Bei der Berechnung der zweiten ﬁbertragungsfunktion G(zs,z1)=
= 0 kann in ganz analoger Weise wie bei der Berechnung von F(z,,z,)=
= 0 vorgegangen werden. Allerdings ist mit der Kenntnis von zusam-
mengehorigen Werten z3,z4,2; bzw. T3, T4, 71 der Lagewinkel 73 aus
den beiden letzten Gleichungen von (19) bereits eindeutig zu bestim-
men:

(46) sinTy = sin 1 + ns(cos T3 — cos Ts)

cos 73 = cos Ty — (1/n3)(sinT, — sin7y)
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8. Rechenergebnisse

Die Abb. 7 gibt die Rechenergebnisse fiir einen bestimmten Sys-
temparameter-Satz wieder. Die Annahme o = —© fiihrt iber (10) auf

a =arccos /2 —1= 65.53019°,

_Abb. 7

Die drei Ubertragungsfunktionen des
homogenenen 411-Mechanismus mit
den Systemparametern:

a 1
a 65.53019
3 5
o -65.53019
h 8

ng = tan(0/2) = —0,6435942, n; = —ns, K = 4[nja/h + nss/h]/

/(n14/1 + n?) = —1.681792.

Der Mechanismus besitzt zwei nichtsymmetrische Bauarten. Bei an-
deren Parametersitzen zeigt sich, dafl entweder keine oder gleich vier
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nichtsymmetrische Bauarten méglich sind.
Abb. 8 zeigt die Ubertragungsfunktionen nichtsymmetrischer Bau-

arten von verschiedenen 4II-Mechanismen (mit gleichem ny und unglei-
chen K-Werten).

) Abb.8
Die Ubertragungsfunktio-
nen von homogenen 4 Mechanismen
nichtsymmetrischer Bauart:
ng =-0.6435942, K—-2,-1,0,1,2.

Die Graphen der Abbildungen 6,7 und 8 hat cand.ing. G. Moravi
aufgrund eines von Dr. P. Dietmaier und ihm entwickelten Rechenpro-
gramms erstellt, wofir ich ihm herzlich Dank sage.
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Abstract: For a recent integral of Bobillo and Carrillo 1987, which sub-
sumes the Daniell integral and the Dunford-Schwartz integration with respect
to finitely additive measures, convergence theorems are obrtained, using lo-
cal convergence in measure. Furthermore the relations between the Bobillo-
Carrillo integral, the abstract Riemann integral and the Bourbaki integral are

discussed.

For a semiring §) of sets from an arbirtrary set X and p:§ —
— [0,00) only finitely additive an analogue R;(p,R) to the space of
Lebesgue-p-integrable functions L!(g,R) and its Lebesgue integral has
been introduced in Loomis [9], Dunford-Schwartz [5] and [8] and for
which, following Loomis [9], we use the terms Riemann-u-integrable
and Riemann-u-integral. The question, whether corresponding analo-
goues to the Daniell extension process, but without or weaker conti-
nuity assumptions on the elementary integral, exist, has been treated
by Aumann [1], Loomis [9] and Gould [7]. Aumann’s results are ap-
plicable only after the construction of a suitable integral seminorm; in
Gould’s paper [7] Stone’s axiom is assumed, his results are therefore
subsumed by the abstract Riemann integral (see for example [8], p.57,
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268); Loomis [9] works without Stone’s axiom, but still his three exten-
sion processes are only of Riemann power, for example if one starts with
the Riemann integral on the continuous real-valued functions with com-
pact support Co(R,R) or with the step functions S(f2,R) corresponding
to the ring () generated by the intervals [a,b) C R one gets R;(u|},R)
and not L'(uz,R).

The situation is different with the integral I : B — R introduced
recently by Bobillo and Carrillo [3]. It works for arbitrary function vec-
tor lattices B and non-negative linear I : B — IR, and yields the usual
L' in the two special cases above. In this note we prove convergence
theorems for this integral, using an appropriate local ”convergence in
measure”. In the case of Lebesgue’s convergence theorem (§1 and 3),
our results subsume the corresponding result for R; (;l.,ﬁ) (85); regard-
ing the Monotone convergence theorem only a somewhat weaker version
is true in B (§2). If p : @ — [0, 00) is o-additive, then the convergence
used here is for sequences more general than pointwise convergence; if
additionally € is a §-ring, then B = R; = L' modulo nulfunctions (§5
and 6) and one gets the usual Lebesgue convegence theorem. As an
application we give in §5 a short proof of the recent result of Bobillo
and Carrillo [4] that always Ry C B modulo nulfunctions, in §6 we
formulate a converse for the Lebesgue case, and discuss the possible
relations between B, R;, L' and the Bourbaki extension.

Notations. R := {—oo}U reals R U {oo} = [—00,00]; we extend the
usual + in R to all of R xR by

(1) oo+ (—00) = (~00) + 0o := 0,00 + (—~00) = (~00) + 00 := o0,
00 + (—00) = (—o00) 4 00 1= —o0,

r—s:=r+(—8),r-s:=r+(-s8),r -3 =1+ (—8) for r,s €eR.
With r V s := max(r,s), A := min and r Nt := (r At) V(—t) one has
forr,s€eR,0<teR

(2) rNt—snNt] <2(|r—s|At), IrAt—sAt]<|r—s|,
|th—th|<|r—a|,

for further properties used below see also Aumann’s paper [1], p. 442
(*a —* ¢). In all of the following we assume, with arbitrary set X

(3) X # 0, B function vector lattice CRX,I:B —R linear, I > 0,
i.e. under the on X pointwise defined +, r', =,<, A, V, | | B is real
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linear space of functions f : X — R containing with f, g also f A g,
fVag, |fl,and 0 < I(f)if 0 < f € B, where |f|(z) := |f(z)| for z € X.

From Bobillo’s and Carillo’s paper [3] we need the following de-
finitions and results: Bt := {g € (—o00, 0o]*: to each z € X exist
hn € B with h, < g and h,(z) — g(z)},

(4) I'*(k) := sup{I(h) : h € B and h < k}, with sup@ := —o0, k € ﬁx,
with It(k)TI+(l) < I*(k*1) for k,l € R"; B~ : —B*, I(k) =
= —I*(=k), By = {p € B* : I*(p +g) = I'*(p) + I*(g) for all

T(k) == inf{I*(p) : k < ¢ € By}, with inf@ := oo,k ¢ R ;
I(k) := —I(—k),= sup{I (=) : ¢ € By, —p < k}.

(6) T(k+1) < T(k)+I(1) for k,l e R™,

(7) I*(k) < I(k) <T(k) < I~(k) foranykeR",

(5)

I*,I,T are monotone (increasing) on R™.

The elements of B := {k € R* I(k) = I(k) € R}, = B, in [3],
are called I-summable; B is a lattice, containing with f, g also lfl, rf
with r €R, and any h : X — R with h(z) = f(z) + g(z) only for those
z, for which f(z) € R and g(z) € R (a slight extension of Theorem
5.2 of [3]), then I(rf) = vI(f), I(h) = I(f) + I(g), where [ := I =1
on B; B is closed under +, +, 4. B is dense in B with respect to
||k||r := I(|k|). BeyyU B(_y C B, where B") := {g € B*:

: I+(g) < oo}, By:=By N B(+), B(_) = —B4). IIF is the maximal
extension of I|B in the sense of Aumann [1] p.443 with respect to the
integral(semi)norm I.

1. Dominated convergence

To get convergence theorems also in the finitely additive case, a.e.
or everywhere convergence is not sufficient; as in Dunford-Schwartz’s
work [5] (p. 101 — 104) one has to use a kind of convergence in measure,

but localized (see §§4,5):
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For any T : [0,00]% — [0,00], arbitrary nets (k;)ics with k; € R” for
i € J = directed set, arbitrary k E]ﬁx we need
Definition 1. k; — k(T') means for each fixed h € B with 0 < h one
has T'(|k; — k| A k) — 0 (where e.g. 0o — 0o = 0 by (1)).
Lemma 1. If ki, k € R, (k:) net with I(Jk; — k|) — 0, then T(k;) —
— I(k), I(k;) — I(k), k; — k(I).
Proof. With (5) there are z; € By with k; — k < |ks — k| <
and I+(z,) — 0. Then k; < k42, I(k;) < I(k + z;) < I(k) + I(z.)
by (6), lim I(k) < I(k). Similarly k — k; < z;, k < ki+z, I(k) <
< IT(k; )+ I(z), I(k) < hmI(k ), or I(k;) — I(k), also if I(k) = Foo.
Since I(|(—ki) — (—k)|) = I(|ki — k|) — 0 and I(-1) = —I(l), the
I-statement follows. {
Lemma 2. If k;,k eR”, ¢ € B, (k:) net with k; — k(T) and ¢ < k;
for i € J, then lim I(k;) > I(k). If k; < ¢, everything else unchanged,
then li_mf(k,-) < I(k).
Proof. First withp =0: I [e€B,, 0<-I<k;:=kVO0, I:
=k;A(—1)>0,by (2) one hask; =k — k+(7), Lok A (=)=
= —I(I), 0 < (<=1) = l; < -1 < some hy € B by definition of BY, so
I(J(=1) = 4]) — 0. By Lemma 1 one has I(k;) > I(l;) — I(-1) or
LmI(k;) > I(-1) = —I(l), since [ was arbitrary > —k4, imI(k;) >
> sup{—I*(1)} = —T(—k) = I(ks) > L(k).

In the general case, one can assume I(k) > —oo and —p =g €
€ B(4)- Then0 < [; :=k;+g — k+g(I), since |(r+t)—(s+1)| < |r—3s]
for r,s,t € R. So by the above lim I(l;) > I(k + g). Now for g € B,
k E]I_{X with I(k) > —oo one has

(8) I(k + g) = I(k) + I'*(g):

> follows from (6) since I = I = I'* on B; and + = + on the  right in
(8). If I € By with -l < k+g, then —(I+g) < k or I(k) = —I(—k) >
> It (l+g) = —IT(l)—I*(g); this implies I~ (1) = ~It(1) < I(k)+
+I*(g) or I(k + g) < I(k)+ I*(g). (8) applied to lim I(L;) > I(k + g)
yields lim I(k;) > I(k) since I1(g) €R.

The second statement of Lemma 2 follows from this since B
53 —p < —ki— k(I).O
Lemma 3. If ki, k E]EX, w€B, ki k(I)and k; —k > ¢ foric J,
then lim I(k;) > I(k) and im I(k;) > I(k); if instead k; — k < @, then
im I(k;) < I(k) and Gm I(k;) < I(k).
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Proof. If I(k) > —oo there is g € B4y with —g < k; one can assume
—¢ € B(y), then k; > k+p > —(g+ (—¢)) € B. Lemma 2 yields
lim I(k;) > I(k). Since k; —k — 0(I), Lemma 2 gives LmI(k; — k) > 0;
so to € > 0 there are 1, € J and z; € B4y with k; — k > —z; and
I(z:) = I™(z) <e,i >, for such i then I(k) < T(k:+ z) < I(k:)+
+I(2z;) < I(k:)+¢ by (6). The im-statements follow as in Lemma 2. &

Lemma 3 applied to [; := |k; — k|, I := 0 (and Lemma 1) yield
Theorem 1. If with k;, k € IEX, ¢ € B one has |k; — k| < ¢ for
i € J = directed set and k; — k(I), then I(|k; — k|) — 0, I(k;) — I(k)
I(k;) - I(k). O
Corollary 1. If ki, k € R, k| < p € B, k; — k(I), then I(k:) —
— (kN g), I(ks) — I(k N ).
Proof. ;N =k;,so k; » kN <p(T) by (2), ki —kNyp| < 2p. O
Corollary 2. If with the assumptions of Theorem 1 additionally k; €
€ B, then k € B, I(k;) — I(k). (Lebesgue’s convergence theorem for
B).
Corollary 3. If f; € B, k EIEX, fi = k(I), then k € B if and only if
I(|k|) < oo. Special case: fie B,k EIE—{X, I(|fi—k) > 0=k e B.
(B is I-closed).
Proof. "If": I(|k|) < oo is equivalent with |k| < some ¢ € B, so
|finp—k| <20, fing — kNy = k(I), f; Ny € B =lattice, Corollary
2. ¢

One has corresponding convergence theorems for B+ (and B4, =
Corollary 7 in §3):
Corollary 4.\ If in Lemma 2 additionally k; < k [resp. k < k], then

I(k;) — I(k) [resp. I(k;) — T(k)]. So if k € R”, ¢; € BY, € B with
¢ < gi <k and g; — k(I), then It(g;) — It (k) = I(k).

Proof. I(k;) < I(k), so El(k,—) < I(k),< limI(k;) by Lemma 2. Since
I =T on BY(—p < g € Bt withp ¢ B, implies 0 < g+ p, 0 <
S It(g+p) = It(g) + I (p), I(g) < I*(g)), if k; = g; € BT one gets
I+(g:) — L(k), but I*(g;) < I*(k) < I(k). &

In the above statements usually all assumptions are essential (see
however §3): Domination by ¢ € B(t) is in Theorem 1 /Corollary 2 not
enough: k; = 0, k = 1T of Example 2 below; similarly for Lemma 2
(ki = 1T, k = 0), Lemma 3, ”[ ]” of Corollary 4.

In Corollary 1 one cannot substitute k for kN (k; =0, k = 1T),
so Corollary 2 is false if only |k;| < ¢; in Corollary 3 the existence of

J
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a g € B(Y) with |k| < g cannot replace I(|k|) < oo, in Corollary 4
"g; < k” is essential: g; = 0, k = —1T'; the "if” in Corollary 3 also
becomes false for ”(f;) is || ||1-Cauchy, i.e. I(|f; — f;|) — 0” instead
of "I(|k]) < co”, contrary to the R;-spaces (§5) the B is in this sense
not closed (k = 17T'). In Corollary 4, ¢ € B cannot be weakened as in
Corollary 7 to ¢ € B(-), there exist counterexamples Bq, I, (see §5)
with g even o-additive.

2. Monotone convergence

For k,I,p € R we define k < I(T) by (k—1) := (k—1)Vv0 = 0(T)
and p = 0(I) by pn, := p — 0(I); by definition, k < I(I) & 0 < I — k(I).
Lemma 4. Ifk,l ¢ R with k < I(T) and I(k) < oo [resp. I(1) > —o0],
then I(k) < I(1) [resp. L(k) < I(1)].
Proof. If I(I) < oo to £ > 0 there is g € B4y with I < g and It(g) <
< I()+eresp. < —1/e, with (1) one has 0 < (k—g)+ < (k—1)4 — 0(I);
thereis p € B(;) withk <por (k—g)+ <(p—g)+ € B, so Theorem 1
yields I((k — g)+) = 0. Now k < g+(k — g)+, so I(k) < I(g9)+
+I((k —g)4+) = I(g) = I'*(g) < I(I) + € resp. —1/e. This applied to
(=1) < (=k)(I) yields I(k) < I(1). ¢
Lemma 5. If k;, k Eﬁx, (k:) increasing net (i.e. ki < k; ifi < j)
with k; — k(I), then k; < k(I) for i € J; if additionally I(k) > —oo,
then I(k;) < I(k), i € J; if furthermore I(k;,) > —oo for some iy then
I(k;) — I(k).
Proof. Ifi < 7,0 < (ki — k)4 < (kj — k)4 < |kj — k|, — 0(1), or
(k; — k)4+ = 0(I); Lemma 4 yields the second statement. In the last
there is go with B 3 —go < ki < kj if 49 < 7, I(k) < lim I(k;) by
Lemma 2, so I(k;) — I(k). ¢

Skipping a dualization of Lemma 5, we note, using Lemmas 3 -
5, the
Corollary 5. If k;, k € ]ﬁx, (k;) increasing net with k; — k(I),
I(Jk|) < o0, I(k;iy) > —oo for some iy and all I(k;) < oo, then —oc0 <
< I(k) = lim I(k;) <lim I(k;) = I(k) < oo.
Corollary 6. If fi € B, k Eﬁx, (f;) increasing net with f; — k(I),
I(|k]) < oo, then k € B, I(|fi — k|) — 0, I(fi) — I(k). (Monotone

convergence theorem for B).



Convergence theorems for a Daniell-Loomis integral 83

Proof. Corollary 3 gives k € B; f; <k(I) or 0 < k — fi(I) by Lemma
4; so (|t| —t)4 = 2(—t), implies |k — f;| < k — ;(T), Lemma 4/5 then
Tk~ £i) < I(k — £) = I(k) ~ I(£) 0. ¢ i
Again k,,, k € {0, +1T} with T of Example 2 show that eg I < oo
resp. I > —oo are essential in the above, also I(|k|) < oo cannot be
weakened to I(k) < oo in Corollary 6, even if additionally sup I(] fal) <
< o0; so the usual Monotone convergence theorem is false for B with
— (I) (it becomes true for a suitable extension of B which will be
treated elsewhere; see also §3). The "increasing” also cannot be omit-

ted (kn, = 1[n,n+1) — 0 (pz), §5).

3. Generalized dominated convergence

Lemma 6. If g € B with gA |h| € By for allh € B, then g € B,.
This is due to Bobillo and Carrillo [4], p. 261, Remark 2b. Here

g € B* can be weakened to: g € r* such that to each z € X with
g(z) # 0 there is h € B with h(z) # 0. For g € B the assumptions
gA|B|CBy,gABC B,,gA|B|C B are equivalent; without g € B+
however g A B C B does not imply g € B even if I*(g) < oo (see (11);
g = 1T of Ex. 2).

Theorem 2. If fi € B, g E_B"”, fi = g(I), theng € B ; if additonally
Lm I(f;+) < oo, then g € B.

Proof. With hg, h € B with hy < g and (2) one gets p; := (f; Vv ho)A

Ah — (gVho)Ah = gAR(I), p; € B, |p;| < |ho V |h|, Corollary 2 yields
gAh € B, I(p;) — I(gAh). Since BYABCBY and BtNnB-=
= B(4) by Guerrero-Carrillo ([4], p. 261, Rem. 2a), Lemma 6 shows
9 € By. Furthermore p; < f; 4 + |ho|, so I(gA h) =lim I(p;) <
<HmI(f;4+)+ I(Jhe|) =: co < oo independent of h € B, so I't(g) < oo,
Corollary 7. If g; € By, g and ¢ € BT with I't(q) < 00, —¢ < gi<g,
gi — g(I), then g € B, and It(g:;) > I'*(g). Special case: g; > @ € B.
Proof. If I*(g) = co, g € B,; else g; € B, then g € By by Theorem
2. The assumptions imply 0 < g;+¢ < g+ q and g; + ¢ — g+q(I) (see
before (8)), Corollary 4 yields I'(g;)+I*(q) = I*(g;+q) — It(g+q) =
= I*(g)+T¥() 0 )

Corollary 8. If f; € B, g € B, f; —» 9(I), go € BT with |f;| < go
for i € J and I'*(gy) < oo, then g € BN B, and I(|fi — g]) = 0,
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I(f:) — I(g)-

Proof. (See Addendum and Lemma 7' too). Ifk < g € Bt,pe By,
—p<k,then0<g+p, 0<It(g+p)=I"(g)+I"(p), I (~p)=
= —I*(p) < I*(g), or

(9) keR™, k <ge BF imply I(k) < I*(g) = L(g)-

Now fit+ < |fil < g0, s0 I(fit) < I*(go) and therefore g € B by
Theorem 2. Then k; := |fi — gl < go + |g]| < g0+ g+ 2ho € Bt with
ho € B, hy < g, I*(g0 + g +2|h[) = I'*(go) + I*(g) + 2I(|h{) since
g € B.(= BN Bt), < oo; one can apply Lemma 7', I*(k;) — 0; but
k; € B, and IX =TI on B by (12). ¢

Similar examples as above show that limI(f;) < oo does not suffice
in Theorem 2, f; + < go or I"(go) = oo do not imply I(f;) — I'(g)
in Corollary 8; g € BT is essential in Theorem 2 and Corollary 7 /8, an
analogue to Corollary 3 with I*(|k|)} < oo is false; replacing g; — g(I)
by — (I") or by I'*(g:) — I'*(g) does not imply g € B in Corollary 7
(g: = 0, g = go of Example 2), also I*(g) < oo is essential.
Lemma 7. Ifk; € R, go € B with k; < go forieJ and Fk;i—
— 0(I*), then Lim I't(k;) < 0; if additionally k; > 0 for i € J, then
I+(k,-) — 0.
Proof. For k Eﬁx, h € B one has
(10) It(k) = I*(kAR)+IT(k—k A h):

by definition of I* one has ”>” with =" if IT(k) = —oo; if p € B,
p <k thenpAhp—pAh € BwithpAh < kAR, p—pAh <
<k—kAh I(p)=I(pAR)+I(p—pAh) < It (kAR)+I*(k—kAh);
p being arbitrary, ”<” follows. Choosing h € B with h < go one gets
k; —k; AR < go — h, (10) yields I*(k;) < It (ki AR) + I (go — k) with
I*(go — k) = I (go) — I(h) < € for suitable h, all z. Definition 1 yields
Lemma 7.

Addendum. For the proof of Corollary 8 we define, for any k e]ﬁx,
with inf § = oo, sup @ = —o0

(11) I*X(k):=inf{I*(g): k< g€ B},
Ix(k):sup{I~(p):k>pe€ B~}
With the definition of I, I, By, B_ and (7) one gets

(12) It <I<min(Ix,I¥) < max(Ix,[X) < T<I- onR”.
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Lemma 7'. If0 < k; € ]ﬁx, ki < go € B, k; — 0(I), then
I* (k) — 0.

Proof. To € > 0 there exist gie € Bt with k; < gie < go and
I (gie) < I*(k:) +e. Sok; < kiAh+(gie —gie AR)if0 < h € B;
there exist 2; € By with k; A h < z; and I+(z,') < eif 1 > i, then
I*(gi,e) —& < TT(ks) < I (2i + (giye — giye AB)) = It(2) + I (gs o —
—gi,e NB) =I1(z;) + It(gie) — It(gie ARB) by (10) and using

(13) ifge BY,hc B,theng—gAh € BY.

So gi,. — O(I") with directed set J x (0, 00), Lemma 7 shows I'*(g; .) —
0, I+(gi,e) — 0, thus IX(k,) — 0. <>

There are analogues to Lemma 7/7 for certain certain other com-
binations from I, I, IX, I, I, for example: Lemma 7' still holds if
only k; — 0 (I%), provided B satisfies Stone’s axiom and I(hA %) — 0,
I(h—hAn)—>0asn—o00,0<hecB.

4. Improper integrals

Under some additional assumptions, B is closed with respect to
improper integrals, just as in the case of Riemann- or Lebesgue-inte-

gration ([8], p. 259/261):
(14) = S (B) means: (3),0<he€ B=hA1l and h—hAl€ B,
(15) = Coo = Coo(B,I): (14),0 <h € B= I(hAn) — I(R)

as n — oo.

(14) implies h At and h— h At € Byif0<he B,0<tecR. Stone’s
condition "0 < h € B = h Al € B” implies (14).
Lemma 8. S (B),0<g¢€ By, 0<teR imply gAt and g-—

—g At € B(4); conversely, Coo(B,T), 0 < k € R* with kAn € B, for
n=1,2,... imply k € By with I*(kAn)— I'*(k) as n — oo.

Proof. To g exist 0 < h, € B with I(h,) — I'(g), so I(|g— hn|) — 0;
I(|gAt—haAt]) < T(lg— hn|) — 0, implying g At € B, by definition of
B* and with BAt C Bt the gAt are in Bt ,s0 g1t € B*NB = B(4y;
similarly g—gAt € Bry). Ifall kAn € By, k € BT by the remark after
Lemma 6;if0 < h € B,kAhand kAnAh € BT with0 < kAh—kARA
An < h—hAn, Corollary 4 shows It (kAn) > It (kAhAn) — It(kAR),
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s I't (k) for suitable h, so I't(k An) — IT(k). If It(k) = oo, k € By;
else (k An) A h € By, which is min-closed by [3], p.248, Corollary 7
shows k Ah € B;. So k € By by Lemma 6. {

The first part of Lemma 8 becomes false if only g € By.

Theorem 3. If Coo(B, I) = (15) holds and k ¢ R, then k € B if and
only ifkNn € B forn = 1,2,... and sup{I(|kNn|) : n € N} < oo;
then I(|[k —kNn|) - 0, I(kNn) — I(k) (with kNn = (kAn)V(—n)).
Theorem 3 becomes false with k N h instead of k N n, even if
0<k<1,0<heB=Bqg,I=1I,asin (17) below, I(k A h) = 0:
k = 1T of Example 2, §5; so ”"improper” here is meant only with respect
to unbounded functions, not with respect to "unbounded support”.
Theorem 3 also becomes false without C, by
Example 1. X =N, B = {(2,)nen : lim(z,,/n) exists € R}, I = this
lim, k = (n?); k ¢ B, though X is a I-nulset, I(1X) = 0; even kAl € B
if h € B.
Proof of Theorem 3. "If": Since ky An=(kNn)s, k= ky — k_,
|k —kNn|=|k|— |k|An, one can assume k > 0. To k,:=kAn—
—kA(n—1) € B and € > 0 there are g, € B4y with k, < g, and
It (gn) < I(k,)+€27", n € N. By recursive definition there is a unique
sequence (2,,) with z, € By,

knt1 < Znt1 = gnt1 A(2(2n — 2n A 3)) A1 and
I(Zn) < I(gn)7 n E]N’ 21 = gi1:

Zn+1 € B(4) by Lemma 8 and the A-closedness of B(,y; if knt1(z) > 0,
there k > n, 1 =k, < z,, zp41 = 1 > kpyy. If wy, = B2 i
Wy € BT by [3], p. 246. One has w,, An = (2;'::"2:]-)/\71,: If z,(z) > 0
for some ¢ > m + 2n, z,_1(z) > 1 and thus z;(z) > 1/2if 1 < j < g,
implying ” = ”. Thus w,m An € B(4) for n €N by Lemma 8, again by
Lemma 8 the w, € B; with IT(w,) = nlLII;OI(wm An) <
< lim I(Em'*'z"zj) < EXI(g;) < ZXI(k;) + €. Since YLTk;j =k Amn,
27I(k;) < sup I(kAn) < oo, so It (w,) < 2 if m > m,. Then

0<k—-—kAn=23%3 ki <w,y implies T(|k—k/\n|) —0,keB. ¢

Corollary 9. If Co, = (15) holds, P C X, 1P € B, I(1P) = 0, then

coP € B with I(coP) = 0.

Proof. (oP)Nn=mn-1P € B, I(JooP Nn|) = 0, Theorem 3. {
Corollary 9 is false without Co : P = X in Example 1, even

1X € B.
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5. Riemann-integrals

We consider now B, I arising from finitely additive set functions
i, with arbitrary set X # 0:

(16) = p|Q means: ( is a semiring from X, p : © — [0, 00)
is additive on

(17) Bq := step functions S(Q2,R), I,(h) := [ hdp, h € Bq,

where 5(Q,R) contains all h = X}a,, 4,, withn €N, a,, €R, 4, € 0,
aA:=aon A,:=00n X — A, [hdp = a1p(41) + -+ + anp(4,) (see
(8], p. 17); with p|Q one has (3) for Bg and I,, Bg satisfies Stone’s
axiom and Ce. In this situation one can define u-local convergence,
k; — k(p), [8] p. 69, which localizes the convergence in p-measure of
Dunford-Schwartz ([5], p. 104). By the Lemma in [8], p. 70, A 2.72, for
nets one gets with Definition 1 and I (k) =inf{I,(h): k < h € Bg}

Lemma 9. If p|Q holds and ks, k € R, then k; — k(p) if and only if
By Lemma 9 and (7), k; — k() always implies k; — k(I,); the
converse is in general false: X = [0,1), 2 = {[a,0) : 0 < a < b < 1},
p = Lebesgue measure on (), Q = rationals C X; then k,:=0—
— 1Q(L,) by §6, (38), but not — (). This is different for "Riemann-u-
integrable” functions: The space L(g,R) = L(X, Q, 4,R) of u-integrable
functions of Dunford-Schwartz ([5], I11.2.17, p.112) has been generalized
to Ry(p,R) resp. R;i(g,R) in [8], p.70, 199; if X € £, then L(p,R) =
= Ri(p,R), but even for X = R, @ = {[a,b)} and p = Lebesgue-
measure gy, on {1 the L(pz,R) strictly C Ri(ur,R), there are f €
€ R;(p,R) which are not equivalent. ,
Lemma 10. For p|Q and f;, f € Ry(pu,R) the convergences f; —
— f(p) and f; = f(I,) are equivalent.
Proof. If f; —» 0(I,), 0 < h € B := Bq, € > 0, there are i, = i, ,
z; = z; p € By with g; := |f;| Ah < z; and I'*(z;) < €,1 > 14,. Now g; €
€ R;(u,R), the g; are bounded with Q2-bounded support, so by [8],
A 7.114, p.257 the g; are ”proper Riemann-u-integrable”, i.e.
€ R;(p,R) = I, -closure of B in R* in the sense of Aumann [1]. For
g € Rl(1,R) one has almost by definition Riemann-p-integral [ gdu =
= I}t (g) = I,(g),s0 I, (g:) = I} (g:) < I}t (2:) < €,% > i,; by Lemma 9,
fi = 0(p). &




88 H. Ginzler

By Bobillo and Carrillo [4], R; (#,R) C Bq mod p-nulfunctions; a
slight generalization of this follows easily with the results of §1:
Corollary 10. If p|Q holds, then Ry(u,R) C Bg + {k € Ri(u,R) :
[ 1kldw = 0}. B
Proof. If 0 < f € R; := Ry(p,R), by [8]. A. 7.124 c, p. 259, there are
hn € B := Bg with 0 < hyp, < hpy1 < f, hn — f(p), Lu(ha) — [ fdu.
Then g := lim h, € B*, < f, and h, — g(u); Lemma 9, (7) and
Corollary 8 give g € B(4) C B, I(h,) — I(g) = [ fdu. Since (k,) is
Cauchy with respect to || - ||, := [|-|du, by definition ¢ € R;(u,R),
fgdp:limfhnduszdp.;ifOSk:zf—g,O:hn—hnak(p),
k € Ry(p,R), [|k|dp = 0. With f = f, — f_ and the linear and lattice
properties of Ry and B, [--dp and I = I, one gets (where f_ # 0,
f+ = 0, there the g, k for f, vanish too; one can arrange even g(z) # oo
for z € X): If f € Ri(p,R), then

(18) f=g+kg€ Ban Ri(u,R), k € Ri(u,R) with
Jlkldp =0, k = 0(n), [ fdu = I(g). ¢

R: C B mod p-nulfunctions of [4] is the only relation one has in
general between R; and Bg: There exists X, a semiring §) of sets from
X and an even o-additive p :  — {0,1} C R such that simultaneously
Rl(/"v]R)__ Ba 7& 93 Ba — (Ll(p'a]R) U RIQE"IR)) 7é 01 Ll(/-‘w]R) - (BQU
UR1(p,R)) # 0, (Ba N Li(p,R)) — Ry (p,R) # 0 and X = UQ. We give
only
Example 2. There is a semiring (), a o-additive p : 2 — {0,1},
aset T C X and a go € B with 1T = 0(u), so 1T € Ry (p,R),
but 1T ¢ Fn, though even 1T < go and I;"(go) =0: X :=Ny x1J,
Ny ={0,1,2,...}, J =[0,1) CR, 2 contains all M of the form {n} x E,
{n} x (J — E), F x {y} or (Ny — F) x {y} with 0 £ n € Ny, E
finite C J, 0 € F finite CINg, y € J; p : @ — {0,1} is defined by
p({n} x (J—E))=1,u(M)=0 for all other Me; T:=
= {0} x J, go = 1W with W = Uyecs4, with 4, = Ny x {y} if
y # all ynx, 4y, . = {0,k,k +1,...} X {yn s}, where the y, ; are
choosen as follows: forn € N, I, := (1 - 1,1 - #_1), Ynk € I, for
k=1,2,... with ypp # yn 1 if k # L Furthermore Bg C R;(1,R).
By definition h, := 0 — 1T(), but 1T ¢ B, B := Bg: Else I(1T) =
J1Tdp = 0 by Corollary 2, there is g € B, with 1T < g, It(g) <1/2,
by Lemma 1 of [2] and since B* N B = B(,) one can assume g = 1 M.
HJp:={yeJ:{0,n,n+1,---} x {y} C M, J =UPJ,, so one J,,
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is infinite; then I := 1({no} x (J — Jn,)) € BT with I*(I) = 0; smce
1({ng}xJ) < 1M+, onehas1 < IT(1M+1l) = IT(IM)+I1(l) < L+,
a contradiction. (I(17) = oo by Corollary 11.)

Finally B C R; by the following criteria, since one can easily
verify (c), for p(A) > 0 with (20), then —g € B+

If p|Q holds, the following conditions are equivalent for B := Bg,

I,:

(19) (a) B C Ry := Ry(p,R) (b) B4y C Ry
(c)if0<g<1AwithAcQ,gc B, then g € R;.

(20) = p[,0<g<14,4€Q, g€ By =,

= [9 € Ri(p,R) & 17(g) =T (g) & I (g) +IT(—g) = 0].

(19) follows from the closure properties of Ry ([8], A 7.124 (f) = (a), A
7.121, A 3.56) with Lemma 10 for p, + gn, B_ 3 —p, < f < g, € B,;
8], A 7.114 gives (20).

So generally R; ¢ Bg; we can however characterize the sets on
which R; C Bg. For this we need
Corollary 11. If u|Q holds and f € R;(p,R), then f € Bq if and only
if there is g € Bq with |f| < g; then [ fdu = I,(f).

Proof. Only "if”: g := |f| € Bq. For the "if”, one can assume f>0as
in the proof of Corollary 10; with h,, as there one has S hndp — [ fdu,
0< f—h,<g,ho = f(I,),s0o f € Bg and I,(f) = lim I,(h,) =
= [ fdp by Corollary 2. ¢

Definition 2 with p|Q : R(p) :=={M C X : f € Ry(»,R), f =0 on
X-M= fe -En}

R(p) is complete, i.e. if P C M € R(y), then P € R(p).
Theorem 4. If u|Q holds and M C X, then M € R(n) if and only if
1P € Bq for each strong p-nulset PC M.

Here P is called a strong p-nulset iff 1P € R;(p,R) and [1Pdu = 0,
or equivalently iff 1P — 0(I,) ([8], p. 69).

Proof of ”if”: By corollary X and as there we can assume 0 < f €
€ R;(p,R) with Jfdu =0, f = 0 outside M; with Theorem 3 it is
enough to show fAl € B, B = By, Coo(B, I, )holds since step functions
are bounded, so we assume f < 1. The P, :={z € X : f(z) > 1/n} are
strong p-nulsets C M, since 1P, < f = 0( ), so 1P, € B, I(1P,) =0
by Corollary 11, n ElN 0< f,, = fA2T* - fA2TRTI L 2"" w1 With
f = X{°fa; to € > 0 there are g, € By with 27"P,; < g, < 27",
I(gn) < €-27", using Lemma 8. So g := X%g, € Bt and l,, := Xlg; —
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— g uniformly on X; this implies I, — g(u), with I(l,) < € for n € N.
Then g € B, with I'*t(g) <¢,g€ B, by Corollary 7. Obviously f < g,
Corollary 11 yields f € B. ¢

Corollary 12. If u|Q} holds, R(u) of Definition 2 is a ring containing
all M C X to which there is g € B with 1M < g, especially

Qc{PCM:1Mc R (g, R)NBt} c{P C M :1M € Ba} C R(n).

Proof. Theorem 4, Corollary 11 and the linearity of — (I,) give the
"ring” and M € R(u) if 1M < g € B, B = Bg. One even has

(21) Rl(p,,][_{) NBT C B(+) C B:

If g€ Ry N BT, then g > some h € B, so one can assume g > 0; the
proof of Corollary 10 yields g € B,,. ¢

One can also show that R(u) is closed with respect to certain
countable unions: If M = UM, with 1M, € Bg, 1M, — lM(T“),
1M € B, then M € R(u). Special case: M = U{A,, € R(p) if
A, € Qand 1UT A,,, » 1M (u) (directly: Theorem 4, Corollary 7, 11).
M = X gives R;(¢,R) C Bq if one of the following conditions is true:

(22) 1P € Bg if P strong p-nulset
(23) * there are A,, € @ with X = U®4,, and 1(UT4,,) — 1X(1,)
(24) there is a locally finite countable {)-partition of X

(25) there are 4,, €  with X = U{®A4,, and u is o-additive on {}

(26) I*(1X) < oo (equivalently: p is bounded on the ring generated
by 2, or 1X € Bg, or 1X € Ry(p,R))

(27) all {} € ), z € X (equivalently: [0,00]X C Bf),
then even R;(u,R) = Bq by (19), (20), (21).

Example for (24) or (25): X =R®, u = Lebesgue measure u},
(28) 0 = Q= {[I7]a;,b;) : @; < bj, aj, b; €R}.

By (25) an ”example 2” with X = countable union of 4,, €  does not
exist.

Finally, one can always force R; (p.,]ﬁ) C some B with f cedp =
=I;:={D=(A-M)UP: A€ N, M and P strong p-nulsets},
v(D) := p(A), B = Bg, I = I,; then R;(v,R) = Ri(u,R), integrals
and strong nulsets coincide ([8], p.199, A 6.148).
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Also always 0 < f € Ry(p,R) = f € (Ba)i of [3], p.235, though
J fdp < I(f) if I(f) = oo ([4], p.263, Proposition 1).

6. Lebesgue-, Daniell- and Bourbaki-integrals

In this section we additonally assume Daniell’s continuity condi-
tion, = o-stetig in Floret’s work [6], p.43:

(29) (3) and I(h,) - 0if 0 < hpy1 < h, € B, n €N, with hn(z) -0
for each z € X

then the space L' := LY(B,I) := L*(B,I,R) C R* of Daniell-I-
integrable functions with integral extension J : L' — R is well defined
(e.g. [6], p. 77; Daniell- "summable” in Pfeffer’s work [10] (p. 60);

= closure of B in R* with respect to a suitable integral-seminorm in
Aumann’s paper [1] (p. 448 — 450)). Here one has an analogue to the
statement of Corollary 10:
Theorem 5. In the Daniell situation (29), B C L'(B,I)NBNR* 4B,
with B,, == {f € B: I(|f| =0}, and I = J on L' N B.
Our proof is fundamentally similar to that of Corollary 10, but more
involved and somewhat lengthy, so we omit it here.

Corresponding to the remarks before Example 2, B C L! + B,, is
the only generally true relation of this type:
Example 3. There is a o-algebra Q and a o-additive px : @ — {0,1}
such that

(30) R, (”’ﬁ) = Ll(“’ﬁ) = Ll(thI#) = Ll(“Jﬁ)gEﬂ:

X uncountable, 2 = {M C X : M or X — M countable and ¥ zo}, p =
Dirac measure §,, in zo € X, even 7-continuous (see after (35)). There
are also algebras () for Wlnch with p = §,,,

(31) RiCL' =Ly := L' + {k eR” k- 1A=0pu—a.e.
for each 4 € Q}CBn

Example 4. There is an algebra K and a o-additive p : K — [0,1]
such that

—_— — —X —_ =
(32) Ri(p,R)=BxCBk+{f€R :f=0p—a.e.}CL'(u|K,R)=Baq,,
i.e. L! differs from B by more than just Ll-nulfunctions (see (38)):
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X =[0,1], 2 =ring K generated by all intervals C X (thus {t} € K,
t € X), p = Lebesgue measure pl|K, Q1 = {[a,b)} of (28); here
L' = L}(Bk,I,) = usual {Lebesgue integrable f : X - R}, if G:=
i=U® (Prm,Tm+3"™), P := {rp,, : m €N} := rationals C X, B := By,
then 1IP.¢ B,1G ¢ B4+ {f =0pu—a.e}: In f = 1G 4+ p € B with
p =0 a.e. one can assume 0 < f < 1 since B is a lattice ([3], p. 252),
thus f and 1 — f € [0,00)* C BY, f € B(yy, 1 = IT(f) +I'T(1 - f),
IT(f) < [fdz = [1Gdz < %; by definition of G to each z € X and
€ >0 thereisy € (G—{p #0})N(z—e,z+¢€), fly) = 1, thus
It(1—f) = 0, a contradiction. B = R;(u|K,R) = Ry (p|Q,R) C L! =
= Bq, by (27) and (38).

By simple disjoint union one can combine Examples 2 — 4 into one
X, 2, p. Example 4 shows that a converse of Theorem 5 is false; it also
shows that the extension process B — B is in general not monotone in
B — contrary to the Lebesgue, Daniell and Bourbaki extensions.

Furthermore the convergence — (I) used here is in general not
comparable with that of L!, i.e. pointwise (almost everywhere) conver-
gence, not even in-the situation u|Q with o-additive p.

Only under additional assumptions can one say more:

If I|B is monotone-net-continuous, = Bourbaki-integral (Pfeffer
[10], p. 44), = 7—stetig (Floret [6], p.336), then the  space L7 :=
:= L7(B,I) = L"(B,I,R) of Bourbaki-I-integrable functions (L# in
[10], "L in [6], p.338) and the corresponding integral extension I7:
: L™ — R are well defined with L}(B,I,R) c L™(B,I,R), J = I"|L*;
then It is additive on B, i.e. By = B* and T = upper Bourbaki
integral (Bobillo-Carrillo (3], p. 247), thus

(33) (3), I 7-continuous on B => B = Bourbaki extension
I"(B,I,R), I = I",

Daniell-L}(B,I) =: L' ¢ B= L™ = L' + L, = L' + B, by [6] (p.
340) or our Theorem 5, n := nulfunctions, with C generally strict by
Example 3.

If B = Cy(X,R) with arbitrary Hausdorff space X, then any
nonnegative linear I : B — R is T-continuous ([6], p.337), L7 is defined
and (33) holds. With Pfeffer ([10], p.37) one gets for B = Cj :=
:= Cp(X,R) and any nonnegative linear I : Cy — R, automatically
T-continuous

(34) X locally compact, all open G C X are o-compact =
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= L(Co,I) = L™(Co,I) = Cy;

example: X =R", I =Riemann/Lebesgue integral (see (38)).
In the situation p : Q — [0, co) with o-additive p on the semiring
2, B = Bq,

(35) I, = [--dp is T-continuous on Bg iff p is T-additive
on ) (see (17))

(there are such p, @ = algebra, but x not 7-continuous — the converse
holds for rings). As a sufficient criterium on has:

If |2 = (16) holds, p is o-additive on  and if for any index set S

(36) to 4,4, €0, s€ S, with 4, D A, exist countable Sy C S,
- nulset P with {J,c5 4s = PU,cg, 4s

is true, then for B = Bg, I = I, of (17) one has with B,,, L; of Theorem
4, (33)

(37) __ I|B is T-continuous, . .
LY(B,I)=LY(u,R)CB=L"(B,])=L*+B, C Li(p,R):

By (36) w is T-additive on 2, by (35) I T-continuous on B; with (33)
and Theorem 5 it is enough to show B, C L, n. This being a local
property, it suffices to show that g € L' if 0< g<14,g€ B*, 4 € Q,
since then I (g) = [ gdu by (33); g € L* follows if g is p- measurable
and the latter is an immediate consequence of (36) and the deﬁmtlon
of BY.

Example 5. There is a ring 2 and a 7-additive p: 0 — [0,00) with
(36) and

ng:B = L"%le

X := disjoint U;esS; with S; := § := [0,1), 0, po as in Example 3,
Q; := 1 of (28) in S; and p; := Lebesgue measure uz, 0 <i < 1, ) :=
ring generated by U;es€i, p = p;i on Q; (36) for ur|Q; holds by the
remarks following: if f :=1 on all 0; € S; with i > 0, else f := 0, then
f€Libut I(f) = o0

The condition (36) follows from an abstract Vitali covering con-
dition for x|(; the latter is true for example for X =R™, u = Lebesgue
measure p7, {) = intervals 2, of (28); since here additionally X =
U A, with 4., € Q, one has L! = L.

We collect the above results with (27) and R; = L; for é-rings




94 H. Giinzler

([8], p- 265), L*(Co,I,,R) = L*(p|M,,R):
If Q, C X semiring C M,, := {Lebesgue-measurable sets C R™ with
finite L-measure}, @ € {Q,, X, M.}, p = p}, I = 1,, B = Bg or
Cy := Co(R™R) (see (17), (28)), X = R™ or more generally open
C IR™ with corresponding {1, - -, then the following L-spaces, and their
integrals, all coincide
(38) LY (plQ,R) = Ly(u|Q,R) = L'(B,I) = L"(Ba,,I) =

= LT(C(),I) = Cg = Bﬂ,. = BMn = Rl(}Lan,IR)
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Abstract: The aim of this note is to extend the theory of parallel differen-
tiable immersions to the piecewise linear case. Parallelism for differentiable
immersions has been established by H.R. Farran and S.A. Robertson [4] and
was studied in several subsequent papers ([3], [8] and [9]). It has strong re-
lations to the geometry of the normal bundle ([9]) and to the theory of focal
points ([7]).

We mainly shall concentrate on the 1-dimensional case, because there
good motivations can be obtained for the study of higher-dimensional poly-
hedra. The main results obtained in [3] and [8] for the parallelism of dif-
ferentiable curves can be transferred to the piecewise linear situation. The
arguments are rather elementary and therefore proofs are only sketched in
these cases.

The behaviour of polyhedral 2-manifolds in E® and E* with respect to
exterior parallelism is representative for that of higher-dimensional polyhedra.
In addition to the 1-dimensional case two local obstructions to the existence of
parallel polyhedra to a given one occur. In this context some kind of normal
curvature will be developed for polyhedra.

1. Parallel polygons

The introduction of the notion of parallelity for polygons can be
motivated by the construction of parallel differentiable curves in the
plane (or hypersurfaces in E™). There the evolute plays an important
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role for the regularity of this construction. To see the analogy in the
piecewise linear case look at the different situations in Figure 1, where
parallel polygons to P are obtained according to our subsequent defini-
tion:

1) The polygon Q corresponds to the regular case where the parallel
curve is located between the original one and its focal set.

2) The polygon S corresponds to the singular case, where the parallel
curve meets the nearest focal point of the original one.

3) The polygon T corresponds to the singular case, where the evolute
is met.

4) The polygon R corresponds to the regular case, where the focal set
remains between the parallel curve and the original one.

All these cases are exhibited for a rectangle in Figure 2. The
regular cases Q and R will be considered as parallel polygons to P
while the other cases S and T will not have this property. Also we shall
exclude the degenerate situation where the original polygon has angles
0 or .

Figure 1 Figure 2
Parallel rectangles

For the development of the general theory let P be a polygon
in Euclidean n-space E™, given by its vertices. ~{p;|i € I} and its
connecting oriented line segments s; = p;piy+1 from p; to p;+1, where
I =12,%or {i € Zlm < i < n} for some pairm,n € Z. We shall restrict
our considerations to the generic situation where the angle between s;_4
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and s; at p; lies between 0 and 7 for all 7 € I. At every vertex p; of P
there is a hyperplane of local symmetry through p; which divides the
angle between the oriented line segments from p; to p;_; and p;; into
equal parts. This hyperplane is called the symmetric normal of P at
Pi, denoted by N;. The intersection between N; and N;y, is called the
focal (n — 2)-plane F; of P at s; (if it exists) (see Figures 3a,b).

Figure 3a Figure 3b
Focal set and evolute Degenerated focal set
in the planar case in the spatial case

The focal planes of P can be used to construct a kind of evolute
for P. The following will show this in the planar case (see Figure 3a)
and can be generalized easily to higher dimensions: If F;_, and F; exist,
then take the connecting line segment between F;_; and F; on N; if they
are located on the same side of P, and take its closed complement in the
other case. If F; exists and F;_; does not exists then take the closed
halfline on N; which begins at F. and does not meet P. The similar
procedure is applied, if F;_; exists and F; does not. The resulting
composition of line segments and half lines gives the evolute of P.

Definition 1. Two polygons P= {p;|i € I} and Q= {gi € I} of the
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same combinatorial type are called parallel, if for every i € I p;pit1 is
parallel to g;g;+; and the symmetric normal of P at p; coincides with
that of Q at g;. ‘
Remark 1. Parallelism of polygons is an equivalence relation. Fur-
thermore parallel polygons have coinciding focal planes and evolutes.
Definition 2. A self-parallelism of a polygon P= {p;|i € I} is a per-
mutation o of the index set such that P oo := {p,(;)|i € I} has the
same line segments as P and is parallel to P.

Remark 2. The self-parallelisms of a polygon form a group under
composition of maps, the self-parallel group G(P) of P. Furthermore
it can be seen like in the differentiable case that this group must be
cyclic, because P is 1-dimensional.

Remark 3. If P and Q are parallel, then the lines which correspond
under this parallelism have constant distance from each other, not de-
pending on i € I. This implies that G(P) acts transitively and isomet-
rically on the point set which is obtained by the intersection of the lines
of P, corresponding to a given one under the operation of G(P), with
their common normal hyperplane. This set may be called the parallel
frame of P in our case (see [4] for the differentiable version).

B, _ B2
A \?-/

Figure 4

2. Polygons in the plane

The study of parallelism for polygons in the plane is rather simple
because the choice of the unit normals to the line segments of the poly-
gon is unique up to sign. First it should be observed that in this case
there are only three possibilities for the location of the corresponding
vertices and neighboring line segments (see Figure 4). Also, looking
at the orientations, we see that the cases A and B cannot occur si-
multaneously for the same polygon. In the case A the focal points on
the common symmetric normal lie outside of the segment from p; to g;
while in the cases B they must be in the interior of that segment.
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Now we shall mainly concentrate
on self-parallelisms of a closed
polygon P = {p;li € Z}. Ac-
cording to Remarks 2 and 3 a
parallel frame of P admits a tran-
sitive isometric operation of the
self-parallel group G(P) which
-can be assumed to be fixed point
free, if multiple coverings are ex-
cluded. This implies G(P) = Z,
in the non-trivial case, and thus
k must be even and the only non-
trivial self-parallelism is given by
o(i) =1+ k/2. Figure 5

Self-parallel octogon
in the plane

An explicit example for this situation is given by Figure 5. The
relation to plane curves of constant width [1] is given by the fact that
every closed tangent polygon to such a curve serves as an example for
a self-parallel polygon, if the set of osculating points always contains
both of the intersections of the corresponding binormal with the curve.
Similarly examples of self-parallel polygons with self-intersections can
be obtained from rosettes of constant width [2], for which explicit con-
structions have been given in [10]. Since case A of Figure 4 easily can
be excluded for closed self-parallel curves, we have
Theorem 1. Let P be a closed polygon in the plane admitting a
nontrivial self-parallelism. Then G(P) = Zy and for every i € Z; the
sides 3; and 8; 4/, have a common focal point given by the intersection
of the line segments from p; to p;, /2 and from p;. ;1 to p;yy J241- Q@
Corollary 1. Let P be a closed convez polygon admitting a nontrivi-
al self-parallelism. Then the evolute of P is contained in the convez
domain bounded by P. ¢
Remark 4. This corresponds to main results in [3] or [8]. Also by a
lengthy argument a little more general version of Corollary 1 can be
proved avoiding the assumption of convexity. Furthermore it can be
shown that in the non-closed case non-trivial self-parallelisms are not
possible.

Remark 5. Using methods established by P.C. Hammer and A. Sob-
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czyk ([5], [6]) it can be seen that every closed convex polygon with a
nontrivial self-parallelism admits an inscribed curve of constant width.

3. Normal holonomy of a polygon in space

The aim of this section is to establish some kind of parallel transfer
in the normal bundle of a polygon in 3-space and to exhibit its relation
to parallelism for polygons. Most constructions and results extend to
higher dimensions.

Let P = {p;|i € I} be a generic polygon in Euclidean 3-space with
sides 8;. Let A; be the reflection at the symmetric normal plane of P
at p;. A normal vector field along the subarc P'={piliec J}ofPisa
choice of normal vectors &; to s; for every i € J such that the segment
s; belongs to P.

Definition 3. A normal vector field {¢;}ics along the subarc P' of P
is called parallel, if &1 = Aip1(&) forall 5,i +1 € J. The parallel
transfer of the normal vector &;, at s;, to s;, is given by the value of
the parallel vector field along P' = {p;lio < i <4; + 1} at s;, which is
uniquely determined by its initial value §;, at s;,.

Remark 6. In the closed case P= {p;|i € Z,} the parallel transfer of
normal vectors along one period of P is a proper linear isometry of the

normal space of P at s; onto itself, given by H A;y,. Henceit isa

rotation around an angle a(P) which does not depend on i € Z;. This
angle is called the normal rotation angle of P.

Remark 7. Smoothing the vertices of P by small circles tangent to the
corresponding adjacent sides of P, we get a C'-curve having the same
differential geometric normal holonomy as P.

Example 1. a) Every closed

polygon contained in a plane 8

in ‘3-space has normal rota- 2
tion angle 0. The same is
true for closed tangent poly-
gons to a sphere and in par-
ticular for closed edge poly-
gons on Platonic solids.

N

Figure 6
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b) For a given 8 € (0, 7) a closed quadrangle with normal rotation angle
B is demonstrated in Figure 6. There the planes spanned by p;, ps, ps
and by p,, ps, ps are assumed to be perpendicular to each other.

c) The center polygon in Figure 7 is a closed hexagon with normal
rotation angle r. We conjecture that there is no quadrangle or pentagon
with this property.

Figure 7
Mobius strip bounded by a self-parallel 12-gon with a center hexagon.

Proposition 1. Two generic polygons P = {pili € I} and Q= {p;|i €
€ I} are parallel if and only if the segments p;q; and Pi+19i+1 have
equal normal parts &; with respect to s; for everyic I and if {¢&]ie I }
i3 a parallel normal vector field to P.

Proof. If P and Q are parallel then their sides with equal subscript are
parallel and the local symmetry with respect to the common symmet-
ric normal implies parallelism of the normal vector field given above.
Conversely, the assumed equality of the normal parts implies that the
corresponding sides are parallel. Since they constitute a parallel normal
vector field to P it is easily seen that the symmetric normal planes of
P and Q coincide at corresponding vertices. {

As in (8] this shows that non-vanishing normal rotation angle con-
stitutes an obstruction to the existence of parallel polygons. :
Corollary 2. A closed generic polygon admits a (non-identical) parallel
polygon if and only if it has vanishing normal rotation angle.

The sufficiency of the second condition is obtained as a special
case from the following

construction: Let a be the normal rotation angle of P = {pili € %;}.
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Assume a is a rational multiple of 27; a = 2xl/m with (I, m) relatively
prime, m = 1 for @ = 0. Let £; > 0 be such the ¢;-tube around p; V pi+1
does not meet the focal line of P at s;, and take € > 0 as the minimum
of these €;, i € 7. Choose some unit normal §; to s; and extend
it by parallel transfer of normal vectors to the m-fold covering of P.
By the assumption on the normal holonomy of P this gives a parallel
normal vector field {£;|i € Zgm} along the m-fold covering of P. The
line li 1y, i =1,...,k, v =0,...,m — 1, is obtained from p;vp;, by
parallel displacement about € k. Let gj := l;—1 Alj J € Zim, which
is non-empty by our construction. Then Q= {gj|j € Zim} defines a
closed polygon which is parallel to the m-fold covering of P and has
self-parallel group Z,, (see Figures 8,9). ¢

Corollary 3. For every natural number m there ezists a generic poly-
gon with self-parallel group Z,.

This follows directly from the given examples together with the
construction described above. ¢

Figure 8
Self-parallel 16-gon with self-parallel group Z4 and its
interpretation as an edge polygon on a PL-torus.

Remark 8. a) If the normal rotation angle of P is an irrational multiple
of 2r, then in a similar way an infinite polygon can be constructed
having self-parallel group Z and being everywhere dense on a tubular
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surface around P.

b) Considering higher dimensions than three, it can be observed that
only in the odd case obstructions to the existence of parallel polygons
may occur. In even dimensions there always exists a parallel polygon
to a given closed one because the corresponding normal holonomy map
has at least one fixed direction.

Theorem 2. Let P be a self-parallel polygon with k vertices and self-
parallel group 7Z,,, satisfying m > 3. Then k is an integer multiple of m
and there is a polygon C with k/m vertices, the center of P, from which
P can be reconstructed by the construction given above.

Proof. According to Remark 3 the set of line segments of P which
correspond to a given one are located in a regular way on a circular
cylinder. Intersecting the axes of these cylinders appropriately we shall
get a polygon C with k/m vertices. As in [8] it can be seen that the
focal lines of P remain outside of the convex hull of every m related
parallel segments of P. This leads to the conclusion that P is parallel
to the m-fold covering of C. ¢

=
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Figure 9
Self-parallel 30-gon with self-parallel group Zg and its interpretation
as an edge polygon on a PL-torus.

Remark 9. The same result can be shown in the case m — 2, if no
focal line meets the strip between the associated parallel lines of P.
Then P bounds a piecewise linear immersion of the M&bius strip (see
Figure 7). The case where this condition is not valid is also possible
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(see Figure 3).

Using arguments from the preceding proof and elementary geom-
etry we also get
Theorem 3. Let P be a self-parallel polygon with self-parallel group Zy
and center polygon Q. Then length (P) = k- length(Q)

4. Obstructions to exterior parallelism in higher
dimensions

A theory of exterior parallelism for piecewise linear submanifolds
of dimension greater than one in E™ can be developed only for special
types. There are two local obstructions which will be sketched by the
following considerations:

Let P = {V,£,S} be a polyhedral 2-manifold in E3 (possibly with
self-intersections) where V, € and S denote the sets of vertices, edges
and sides respectively. The existence of a polyhedral 2-manifold Q of
the same combinatorial type such that the corresponding sides of P and
Q are parallel and have constant distance from each other implies that
for all vertices of P (and Q) the following is satisfied:

Definition 4. A vertex p € V of the polyhedral 2-manifold P in E3is
called pa-admissible, if for all edges | € £ ending at p the planes, which
intersect the angle between the corresponding adjacent sides of P into
equal parts, have a common line. This line is uniquely determined and
called the symmetric normal of P at p.

~ For polyhedral 2-manifolds, having pa-admissible vertices only,
parallelism can be defined in the same way as in Definition 1. Exam-
ples for polyhedra possessing non-pa-admissible edges can be obtained
easily. Clearly, if only three edges end at some vertex, then this vertex
is pa-admissible. Sufficient and necessary for the pa-admissibility of a
vertex is that every four comsecutive unit normals (suitably oriented
and labelled) of the sides of P meeting at this vertex lie in a common
plane. Examples for polyhedra having pa-admissible vertices only are
given by the boundaries of the Platonic solids or the polyhedral tori ob-
tained by suitable connections of the vertices of a self-parallel polygon
(see Figures 8 and 9).

Using symmetric normals, focal points can be introduced as pre-
viously. These can be used to develop criteria for the construction of
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parallel polyhedra along fields of unit normals as above. Thus the focal
points of a suitably constructed polyhedral torus show some similarity
to the corresponding situation for the standard torus.

If we consider polyhedral 2-manifolds P in E*, we get an additional
obstruction to the existence of parallel polyhedra. This corresponds to
the fact that in the case of differentiable 2-manifolds in E* sometimes
parallel sections of the normal bundle do not exist, i.e., the normal
connection is not flat. The visualization in the piecewise linear case is
prepared by the following

Definition 5. Let P = {V, £, S} be a polyhedral 2-manifold in E*. For
a given p € Vlet k be the number of sides of P meeting at p, and choose
a cyclic labelling of these sides {s;]i € 7}, such that two consecutive
sides have a common edge at p. Let A; denote the linear map given
by the reflection at the 3-plane which divides the angle between s; and
8i+1 into equal parts. Then the normal curvature of P at p is given by

k
(p) = II 4:.

Remark 10. The normal curvature is a linear orientation preserving
isometry of the normal plane of 51, i.e. it is given by a rotation about
an angle a, the normal curvature angle of P at p. This angle is uniquely
determined up te sign. The definition of a parallel normal vector field
along some part of P can be given in the obvious way, but for the
existence of such a field on the simplex star around p, the vanishing
of the normal curvature angle at p is necessary and sufficient. Clearly
this represents another local obstruction to the existence of parallel
polyhedra.

'That the normal curvature angle can attain many values can be
seen from

Example 2. Take a quadrangle in 3-space with normal rotation angle
B € (0,7) (see Figure 6 and Example 1). Consider the line [ in 4-
space which is orthogonal this 3-space and passes through the center
of gravity of the quadrangle. Look at a point p on I as a vertex of a
polyhedral 2-manifold P having the simplex star around p bounded by
the given rectangle. If p lies in the 3-space of the quadrangle, then the
normal curvature angle of P at p vanishes. But if p tends to infinity,
then the normal curvature angle tends to +43.
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Abstract: This paper extends the work on matrix near-rings Mn(R), the
near-rings of nX n matrices over right near-rings with identity [3]. Our main
aim is to investigate matrix near-rings constructed over right near-rings, not
necessarily with identity. We show many similarities to the ring case. It is of
interest that one can find some striking contrasts as well. For example, unlike
the ring case, not all ideals of M ,,,(R) are full (Theorem 2.13), which solves
a problem posed in [3].

Introduction

Since the construction of matrix near-rings over arbitrary near-
rings by using a functional view of matrices [3], a number of very sat-
isfying structural results have been obtained ([1], [4], [5], [6], [7]). This
encourages one to believe that matrix near-rings will play a very im-
portant role in the theory of near-rings similar to the role played by
matrix rings in ring theory.

This work is divided into two sections. In Section 1 we deal with
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matrix near-rings constructed over near-rings which need not have an
identity element.

It turns out that the existence of an identity element in the base
near-ring R is an important condition (Theorem 1.19). Thus, like other
researchers in matrix near-ring theory, in Section 2 we will be studying
matrix near-rings M,(R), where R is a near-ring with identity.

1. In Meldrum and Van der Walt [3], matrix near-rings M,(R) are
defined over near-rings with identity, and without identity, separately.
We use their first definition for arbitrary near-rings, not necessarily
with identity.

Let R be a right near-ring and n € NN, the set of all natural
numbers. The direct sum of n copies of the group (R,+) is denoted
by R™. The elements of R™ are thought of as column vectors, but for
typographical reasons we write then in transposed form with pointed
brackets. We define elementary matrices

[j :R* - R™®
by
f:; :L,-f"';rj,for T ER, 1 S"’j STL

where ¢; and w; are jth coordinate injection and projection functions
and

fT(s) =rsforall s € R.

For typographical reasons, we use the symbol [r;i,j] for i
Definition 1.1. The near-ring of n X n matrices over R, denoted by
M, (R) is the subnear-ring of M(R"), the near-ring of all maps from
R™ to itself, generated by the set {[r;7,j]: 7 € R,1 <1, j <n}.

We emphasise that R need not have an identity in this definition.
We wish to carry over the additive laws of M,(R) to R.
Definition 1.2. [6] An R-module G is called a connected R-module if
for any gi1,g2 in G, there are g in G and z,y in R such that g; = zg
and g2 = yg.
Lemma 1.3. Let G be a connected R-module. If (R,+) € V, a variety
of additive groups, then G € V.
Proof. Let w(z1,...,2p) be alaw of V. If g1,...,9p, € G then there
exists g in G and z1,...,%p in R such that g; = r19,...,9, = 7,9, by
3.2 of [6]. Now w(g1,...,9p) = Og by 12.9 of [2], the hypothesis and
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2.12 of [2]. So the law w(z1,...,2z,) holds in G. This is true for all the
laws of V. Hence G € V. ¢
Theorem 1.4. Let (R,+) be a connected R-module. Then (R,+) eV
if and only if (M,(R),+) € V.
Proof. The necessary condition follows by Lemma 8 of [1] and the
converse follows from 3.3 of [6] and Lemma 1.3. ¢

The following are some immediate consequences of this result.
Corollary 1.5. Let (R,+) be a connected R-module. Then (R,+) is
in V if and only if (M,(R),+) is in V, where V is one of abelian,
nilpotent or soluble. {

We have analogous resuits to Lemma 1.3 and to Corollary 1.5 for
a monogenic K-module as every monogenic R-module is connected.

To extend Theorem 9 of [1], we first state a rewording of 12.9, [2].

Lemma 1.6. Let w(v1,...,v,) be a word in p variables Vlyeery Vp.
Then w(z1,...,2)a = w(zia,...,2,a) where T1,...,2p € Mu(R)
and a € R™. { ’

We remind the reader here that if I is an ideal of R, then It is
the ideal of M,(R) generated by {[a;%,5]; a € I, 1 < i, 7 < n} and
IM'={X e M,(R); XaecIforallzc R™} is also an ideal of M, (R).
Also, if J is an ideal of M,(R), then J, := {a € B; a = 7;Xa, for
some j,1 <j<n, X € J,a € R"} is an ideal of R. These results and
definitions come from [3].

Theorem 1.7. Let R be a near-ring and I an ideal of R. If(I,+) eV,
then (I*,+) e V.

Proof. Exactly the same method of proof as for Theorem 1.3, and
Lemma 1.6 enable us to get this result. ¢

We shall show in Theorem 2.4. that in the case of near-rings with
identity the converse of the above statement also holds.

Lemma 1.8. w([a1;4,7]),...,[ap;1,5]) = [w(ai,...,ap); i, j] where
aj,...,ap, ERand 1<, 5 <m.

Proof. By using induction on the length g of the word w(vy,...,vp),
and 3.1 (1) of (3], we get what we want. ¢

Theorem 1.9. Let R be a near-ring and I be an ideal of R. If(I,+) €
€V, then (IT,+)c V.

Proof. Immediate from Proposition 1 of [7] and Theorem 1.7. ¢

Some immediate consequences of Theorems 1.7 and 1.9 are as
follows.

Corollary 1.10. Let R be a near-ring aud I be an ideal of R. If (I,+)
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is in V, then (IT,+) and (I*,+) are in V where V is one of abelian,
nilpotent or soluble. &

The next result we aim to prove is
Theorem 1.11. If R is distributive over I, then My,(R) is distributive
over I*.

The proof will be based on the following lemmas.
Lemma 1.12. If R is distributive over I, then

za+yb=yb+ za

where z,y € R and a,b € 1.

Proof. Expand (z+y)(a+b), first using the hypothesis, then the right
distributivity of R and vice versa.

Lemma 1.13. If R is disiributive over I, then

(254, 5] + [y; &, 118 = [y; &, 1B + [=31, ja
where 2,y € R, a,f € R™ and 1 <1,3,k,l <n.
Proof. Follows from 3.1 of [2], [3], Lemma 1.12 and simple calcula-
tion. ¢

Lemma 1.14. Let R be a zero-symmetric near-ring. If R is distributive
over I, then

Xa+YB=YB+ Xa

where X,Y € Mnp(R) and a,B € I™.

Proof. Follows by induction on w(X) + w(Y), Lemma 1.13 and 2.16
of [2], 3.2 of [3] and 4.1 of [3]. ¢

Lemma 1.15. If R is distributive over I, then

[2;1,5)(a + B) = [2i4,5]a + [2;1,5]8

wherez € R, a,f € I" and 1 <14, j <m.

Proof. Simple calculation. ¢

Lemma 1.16. If R is a zero-symmetric near-ring and R is distributive
over I, then My(R) is distributive over I™.

Proof. Let X € M,(R) and a,8 € I*. By using induction on the
weight w(X) of X, Lemmas 1.15, 1.14, 2.16 of [2] and 4.1 of [3], we can
show that

X(a+B8)=Xa+XB.0

We are now able to prove Theorem 1.11.
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Proof of Theorem 1.11. Let X € Mu(R), A,B € I*, a € R™.
Then X(A + B)a = X(Aa + Ba). Now the rest of the proof follows
immediately from Lemma 1.16 and the definition of I'*. ¢
Theorem 1.17. Let R be a zero-symmetric near-ring. If R is distribu-
tive over I, then M, (R) is distributive over I.
Proof. Immediate from Proposition 1 of [7] and Theorem 1.11. ¢
Corollary 1.18. If R is distributive then M,(R) is distributive. <
We conclude this section with a result which shows the conve-
nience of considering the case in which R has an identity element. Re-
call that if R is a near-ring with identity then the map I — I* is an
injection. .
Theorem 1.19. The map I — I* need not be an injection, in general.
Proof. Let R be a zero-symmetric near-ring without identity and I be
a non-trivial proper ideal of R such that zy € I for all z,y in R; we
aim to show that R* = I*. Let X € M,(R). By using induction on
the weight w(X) of X, and 2.16 of [2], 3.2 and 4.1 of [3], we can show
that X € I*. ¢

2. We start this section with a couple of results which show the simi-
larities to the ring case. R is, henceforth, a near-ring with identity.
Theorem 2.1. Let R be a zero-symmetric near-ring. If n > 1, then
M,.(R) cannot be integral.

Proof. Assume the result to be false and choose two non-zero ele-
ments, say  and y, of R. The hypothesis and 3.1 (3) of [3] imply that
[#;4,5][y; k, 1] = 0if j # k. Therefore [z;1,5] = 0 or [y; k,1] = 0. Hence
z =0 or y = 0. This is a contradiction. ¢

Theorem 2.2. A sum of distinct matriz units Ew, 1<k <mn, isan
idempotent in M, (R).

Proof. E;; for i =1,2,...,n is an idempotent, by 3.1 (3) of [3]. By
right distributivity in My(R) and 3.1 (5) of [3], it can be seen easily
that

(Bu+...+Ey)(Euu+...+ Eu)=E; +...+ Ey.

This completes the proof. ¢

Corollary 2.3. If n > 1, then M,(R) cannot be a local near-ring.
Our next result takes Theorem 1.7 further.

Theorem 2.4. (I,+) € V if and only if (I,+)evV.

Proof. We use a technique similar to that of the proof of Lemma 1.3.
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Proposition 1 of [7], the definition of I, the hypothesis, and Lemma
1.8 give us the desired result. ¢
Theorem 2.5. (I,+) €V if and only if (I*,+) € V.
Proof. Only the converse needs a proof which is exactly the same as
that of the above result. ¢
Corollary 2.8. (I,+) is in V if and only if (I*,+) is in V, if and only
if (I*,4) is in V, where V is one of abelian, nilpotent or soluble. O

R is, henceforth, assumed to be a zero-symmetric near-ring.
Theorem 2.7. If J is an ideal of Mn(R), then R is disiribulive over
J. if and only if M,(R) is distributive over J.
Proof. Let X € M,(R) and 4,B € J. By Proposition 3 of [7],
4.6 of [3] and Theorem 1.11, we get X(A + B) = XA+ XB. To
prove the sufficiency, let z € R, a,b € J.. By 4.5 of [3], 3.1 of [3]
and the hypothesis, we get [z(a + b);1,1] = [za + zb;1,1]. Hence
z(a +b) =za+zb. ¢

" Exactly the same method of proof as for the sufficiency of the

condition of Theorem 2.7 enables us to show the converse of Theorems
1.11 and 1.17.
Theorem 2.8. R is distributive over I if and only if M,(R) is dis-
tributive over I*. §
Theorem 2.9. R is distributive over I if and only if M,(R) is dis-
tributive over IT.

To end, we answer the question posed in [3]: Does, in general,
M_.(R) possess ideals which are not full?

First we establish the following lemmas.
Lemma 2.10. If IT = I* for any ideal I of R then all ideals of M,(R)
are full.
Proof. If J is an ideal of M,(R), it can be seen easily that J = (J,)*
(by 4.6 of [3], the hypothesis and Proposition 3 of [7]). ¢

Furthermore
Lemma 2.11. It = I* for each ideal I of R if and only if all ideals of
M, (R) are full.
Proof. For sufficiency, take an ideal It of M,(R). IT = L* for
some ideal L of R. We aim to show that I = L. Let a € L, then
[a;1,1] € It = L*, therefore a € L. Now Proposition 1 of [7], the
hypothesis and Proposition 2 of [7] imply L C I. This completes the
proof. &
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Lemma 2.12. If there ezists an ideal I of R such that It # I* then
not all ideals of M,(R) are full.

Proof. Assume that all ideals of M,(R) are full. Then I+ = I* for
each ideal I of R by Lemma 2.11. This contradicts the hypothesis. ¢
Theorem 2.13. In general M, (R) possesses ideals which are not full.
Proof. Immediate from Lemma 2.12 and Example 4 of [7]. ¢
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Abstract: Two fixed point theorems for Markov operators on (L)-spaces are
proven: first under the assumption of existence of positive lower element A
for the Markov operator P, i.e. H(P"’d—h)_” —0 for all probability distri-
butions d, and second under the assumption of existence of prositive upper
element h for P, i.e. ”h” <2 and ”(P"’d—h)+H —0 for all probability dis-
tributions d. Both of them are abstract version of Lasota-Yorke theorems for
Markov operators on L! but their proofs are something different.

Let L be a (L)-space, i.e. Banach lattice in which the norm has
the following properties

la] < [b] = [la]| < [[8]],
@20,520=|latbl|=lal]| +|[]],
where
la| =at +a7,at =aV0,a" =(-a) V0.

Lemma 1. Ifa,b€ L,a >0, 5> 0, then
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lla — 8] = llall - |I3]| + 2lI(a — )~ [ = [13]] = |lal| + 2[|(a — b)*]I.
Proof. It is true because
|I(a = 8)* | + |18l = ll(a — B) + (a — B)~ + b|| = ||al| + [|(a — B)7]|. ©
Denote by
L+={GEL:G>0}
the set of all positive elements of L and by
L,={deLy:|d=1}
the set of all probability distributions of L.
A linear mapping P : L — L is called a Markov operator on L iff
P(L,) C Ly.
Every Markov operator P on a (L)-space L has the following properties
Pa > 0, ||Pa|| = ||a|| for a € L4
Pa<Pbfora<b
(Pa)* < Pat, (Pa)~ < Pa~
|Pa| < Plal, ||Pal| < |a]l.
An element h € L will be called a lower element for the Markov
operator P iff
lim ||(P"d — h)~|| = 0 for every d € L,.
n—oo

Denote by Hj the set of all lower elements for a Markov operator P.
Theorem 1. If the set Hy is nonempty, then the Markov operator P
has a unique fized probability distribution dy. Moreover

P"d — dy for alld € L,.

We begin the proof of this theorem with a set of lemmas.
Lemma 2. If h € Hy, then ||h|| < 1.
Proof. For d € L, and n € N we have

h < P*d+ (P"d—h)~
and consequently
Ial] <1+ [[(P*d—R)~|. ¢

Lemma 3. If h € HyN Ly, then h is a unique fized probability distri-
bution for P and P™"d — h for alld € L,.
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Proof. By Lemma 1 we have for all d € L,

||[P™d — h|| = 2||(P™d — R)~|| — 0.
So
P*h —» h, P"*1hp 5 h

and by continuity of P
Ptlp o Ph.

Hence Ph = h. Now if h is a fixed probability distribution too, then
h = P"h — h.

Finally h=h. O
Lemma 4. If h1,h2 € Ho, then hl \ h2 € Ho.
Proof. It is obvious that h; V hy € L. For the proof that

H(Pﬂ'd— hl vV hz)_” — 0
it is enough to verify that
I(d =By V ha)~ || < [|(d — hy)~|| + |[(d — hg)~ H
for d € L,. It is true because

(d—hyVhy)” =(hyVhy—d)VO< (hy — d)v0+(hz—d)v0—
=(d - hi)~ +(d hz)_

Lemma 5. If h € Hy, then Ph € H,.
Proof. It is obvious that Ph € L. Now observe that

(P — PR)™|| < ||P(P""d ~ h)~|| = |[(P™d — h)~|| - 0. &

Lemma 6. If h € Hy and Ph = h, then (2 — ||h||)k € H,.

Proof. Let z = ||h|| and assume that 2 < 1. For a given d € L,
consider the sequence

ra=(1—2)"1(P"d - h).
Since h € Hy we have ||r;|| — 0 and (see Lemma 1)
il = 1420 — ) (PR - B o 1.
Therefore, for any given € > 0 there exists m € N such that

llrmll < €/8, llrmll <1+ €/4.
For
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8 = (rml/llrmll) — *m
we have

llell = ll(Irm|/llrmll) — lrm| + 2 - vl < (llrm]l = 1) + 2[lr ]l < /2
and 7, + 8 € L,. Since h € Hy we hafre
|(P™(rm + 8) — h)~|| < £/2 for n > ne(m).

Multiplication by 1 — z € (0,1) gives

[|((P**™d — h+ (1 —z)P"s — (1 — z)h)"|| < €/2 for n > no(m).
Consequently for n > ng(m)

I(P™F™d — (2 —z)h)~ || < e/2+ (1 —=2)||P"s|| < /2 + |ls]| < e
Finally (2 — z)h € Hy. ¢
Proof of Theorem 1. Let (see Lemma 2)

zog = sup{||h||: h € Ho} >0
and {hn} be a sequence of lower elements such that |[hn|| = zo. Re-
placing, if necessary, {h,,} by the sequence {h,} defined by
hy=hy, hny1 =hpVhpy1,nEN
we get an increasing sequence of lower elements (see Lemma 4) such
that ||hs|| — 2. Since
lhm = hall = ||hm || — llhall <€

for m > n > no(e), there exists hg € Ly such that h, — hy and
[|ho|| = 0. Moreover hy € Hy, because

I(P™d — ho)~|| < [|(P™d — ha) || + |0 — hall

for all d € L, and n,k € N. Finally hy is the largest element in H,.
Suppose it is not. Then there exists h € H; such that the inequality
h < hg is not true and for the lower element h = hV hq we have ||h|| >
> z¢ which is impossible. Now by Lemma 5, Phy € H, and conse-
quently Phy < hy. Moreover Phy = hy, because the operator P pre-
serves the norm on L. Therefore, according to Lemma 6, (2 —z¢)ho €
€ Hy. Hence (2 — z9)ho < ho and consequently (2 — zo)ho = ho,
because zg < 1 (see Lemma 2). Finally ||h¢|| = 1 and applying Lemma
3 finishes the proof. {
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An element h € L will be called an upper element for the Markov
operator P iff ||h|| < 2 and

lim ||(P"d — h)*|| = 0 for every d € L,.

Denote by H? the set of all upper elements for the Markov operator P.
Theorem 2. If the set H® is non-empty, then the Markov operator P
has a unique fized probability distribution dy. Moreover P™d — dy for
alld € L,.
Lemma 7. If h € H®, then ||h|| > 1 and Ph € H°. If hy,h, € HO,
then hy A hy € HO.

The proofs of these facts are analogous to the proofs of Lemmas
2,4 and 5. ¢
Lemma 8. If the set H® is non-empty, then for all dy,d, € L,

Jim [IP"(d - )] =o0.
Proof. Fix two arbitra.ry probability distributions d; and d;. For a =
= d; — d; we have

lla*|l = lla~[l = llal|/2 = @

because
la*|| +1=la* + dp|| = [la+ a* + dy|| = ||la= + dy|| = [|a—|| + 1.
Assume for a moment that o > 0 and h € H°. Then

IPal| = a||(P™(a* /&) — k) — (P™(a” /) — h)]| <
< of[|P™(a™ /) = k|| + [|[P™(a™/a) — h])).

Since at/a, a” Ja € L, then there exists n; € N such that

(P (a™ /) — BY*I| < (2 - [|A]])/4,
(P (a™/a) — R)*|| < (2~ ||n])/4.

Therefore, by ’Lemma 1
IP"a|| < |lal| [|R]|/2.
For a = 0 this inequality is obvious. Finally, for d;, d, € L, we have
||P™(dy — d)|| < ||d1 — da]| [|R]|/2.
In the same way we can find a ny € N such that
[P ¥7(dy — dy)|| < ||[P™dy — P™rdy|||R]|/2 < (|dy — da|(]]R]|/2)?
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becaise P preserves the norm on L. After k steps we obtain

||Prattma(dy — dy)]| < |ldy — d|I(]IRI1/2)*,

where ny,...,n; are suitable choosen natural members. Hence
lim ||Prit-trr(d; —dy)|| =0
n—oo

and since the sequence {||P"a.||r} is decreasing, for a € L, we get
Tim [|P(d: — )| = 0. 0
Proof of Theorem 2. For h € H® we define the decreasing sequence
{hy} of upper elements (see Lemma 7) by
hy = h, hot1 = hn A Phn, n €N,
Since the sequence {||hn||} is decreasing and bounded, and
lhm — k]l = [[hm|| = ||hal| <€

for m > n > my(e), there exists h® € Lt such that h, — h® and
[|h®|| < 2. Moreover h® € H®, because

I(Pmd = R)FII < [[(P™d — hae)* || + [[he — B°|

foralld € L, and n,k € N. An element h? is a fixed point of P, because
from inequality hn4y < Phy we have h® < Ph° and because ||[Ph°|| =
= ||h?]| the inequality h® </PA® is impossible. Finally &° = h®/||h%|| is
a fixed probability distribution of P. Moreover by Lemma 8 we have

||P"d — d°|| - 0 as n — oo

for all d € L,, and consequently if d! is a fixed probability distribution
of P too then

|ld* — d°|| = ||P™(d! — d°)]| = 0,
which finishes the proof. ¢
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