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Abstract: We give an elementary proof of the fact that over a commutative

ring a projective module of constant finite rank is finitely generated.

Let P be a projective module over a commutative ring; a well-
known theorem of Kaplansky asserts that P is locally free (see [1]).
This allows one to define the rank of P at any prime ideal ¢ — it’s just
the cardinality of any basis for the free module P localized at g. A
fact which apparently is not as well known is that P must be finitely
generated if the rank of P is finite and constant as ¢ varies. Vasconcelos
gives a proof of this in [2] where he uses the wedge product to reduce
to the rank one case and employs an idempotent argument from there.
The purpose of this note is to give an elementary proof of this fact which
avoids the wedge product. We use induction and a familiar localization
argument to reduce to the rank zero case where the result is obvious.

Theorem. ([2], Proposition 1.3): Let R be a commutative ring and
P a projective R-module of constant finite rank. Then P is finitely
generated.
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Proof. Induct on n, the constant rank of P. If n = 0, then P is locally

zero, hence zero and therefore finitely generated (by the emtpy set).
Suppose n > 0 and the result is true for all projective modules

(over all commutative rings) of constant rank less than n. Since P is

projective, there exist R-modules F and K, with F free, sucht that

F=P@K.

Let I be the trace ideal of P i.e., the ideal of R generated by the set

{y € Rly = f(z) forsome z € P and f& Hom (P,R)}.

Then I = R. Indeed, suppose not. Then I C M for some maximal
ideal M C R. It readily follows that P C MF. Hence PC MPo MK
so P C MP. Thus P = MP. Since Py, i.e. P localized at M, is
finitely generated, Nakayama’s Lemma implies that Pp; = 0. Thus the
rank of P at M is zero, a contradiction. Therefore I = R.

It follows that there exist f; € Hom (P, R) and z; € P satisfying

(%) 1= fi(z1)+... + fr(z+).

We may assume that no f;(z;) is nilpotent by shortening (*) and re-
placing 1 by a unit in R.

Let S; be the multiplicatively closed subset of R generated by fi(z;).
Then for all 2+ we have induced homomorphisms on the localizations

o~

f‘i:PS."—)RS,'

(defined by f;(P/s,-) = fi(P)/5;) which, by construction, are surjective.
Thus for each 1, there exists a projective Rgs;-module K; satisfying

PS.- = Rs‘. o K;.

Since P has constant rank n, each K; has constant rank n — 1. By
induction, each K; is finitely generated, thus Ps, is finitely generated
(as an Rs;-module). By (x), P is finitely generated.

Remark. (i) The idea of using the trace ideal comes from Vasconce-
los’paper [2].

(i1) Let R be a countable direct product of fields and P the corre-
sponding countable direct sum. Then P is a projective R-module, its
rank at each prime is either zero or one and P is not finitely generated.
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Abstract: This paper deals with the construction of so-called LQJ',-splines
based on Lienhard’s interpolation method [see Lienhard].

1. Generalization of Lienhard’s interpolation
method

Let @ > 1 be an integer. In the space R™ (m > 1 integer) let n
distinct points P; = :z:g’) (i=1,...,n;7=1,...,m) be given. The sym-

bol :cg-i) denotes also the corresponding ordered m-tuple of coordinates,
or rather the vector which has these coordinates. Thus, the elements
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of the set R™ are either pionts or vectors, according to which of the
notions corresponds more to our conception in the given context. As
a rule, we use the notion of a point in situations when location in the
space R™ is discussed while the notion of a vector indicates that we are
interested in the direction.

We shall look for polynomials in the real variable ¢ of degree at most
K (not determined as yet)

(1.1) P(‘)(t)-—Za(‘)t" (i=1,..,n—1)
such that
(1.2) PO (-1) =2, PO (1) = 2+
L oTe] pli+1)
(1.3) e ()'Z{J GHX(-1) (¢=1,..,Q).

Conditions (1.2) guarantee that the interpolation arc parametrized with
the aid of the functions P,(:) (t) ( =1,...,m) passes through the sup-
porting points (nodes) P;, P;y;. Conditions (1.3) guarantee the fluent
transition from arc to arc, in the first till the @ derivatives. To sat-
isfy conditions (1.3) we have to know the values of the first till Q-th

derivatives of the functions P; )(t) at the points P;, P4, :

; @ d (i+1)
(_ﬁpgg( 1) = Dz; P()(l) Dz,

O R

Eap(')( ~1) = D%, dtQP(')(l) DY,

(3 _ Dl:cg.‘.),Dzz(') DQz(‘) Dm("‘*’l) Dlz (1+1)

by convention, Dz;

Dzmgﬂ-l) yeery D Qz(*1) ig the motation of these va.lues. The manner
of their determination will be discussed in Section 2. By (1.2), (1.3)
we have 2Q) + 2 definite conditions for every polynominal (1.1). With
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their aid each of these polynomials is thus uniquely determined as a
polynomial of degree at most K = 2Q + 1:

2Q+1

(1.5) P(t) = E al ek,

For the g-th derivative of the function Pg)(t) we have

2Q+1

(16) - P(’)(t) = kE k(k—1) ... (k—q+1)a{Pt*.

If we substitute the values ¢ = —1, 1 into (1.5), (1.6), we obtain (taking
into account (1.2), (1.4)) the following system of 2Q +2 linear equations
for the 2@ + 2 unknown coefficients a?,.) of the polynomial (1.5):

2Q+1

D (-1ka =2,
k=0

Y (-1 k(k=1) ... (k—g+1)aly = D12,

(1.7) (9=1,2,...,Q)
2Q+1
Z o) = o{+D),
2Q+1 . 3
3 k(k—1) ... (k- q+1)al) = DIEH,
k=q
(¢=1,2,...,Q).

We introduce the matrices

(1.8) Ay =(a$3,...,a8)0.),

i 1 i+1 i+ i
(19) X = (o0, Def ., DD, D, .. D)
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1 * +1
—(z() X‘u’ S' )) t'+1,j)"

(1.10) = (Dz(') D%g")),

The matrix of the coeffients of system (1.7), which is necessarily regular
in consequence of the uniqueness of the determination of the desired
polynomials, is denoted by the symbol Ag; it is a matrix of type (2Q+
+2,2Q + 2). Then the solution of system (1.7) is expressed in matrix
notation by the relation

(111) AL = Ag' o X3

Here the superscript T denotes the transposed matrices to matrices
(1.8), (1.9), and Aal is the inverse matrix of Ag. By (1.11) we then
have for polynomials (1.5) the expression

(1.12) PO(t) = (P(t)) = (L1, ,129+1) 0 AT.

Here we have identified the type (1,1) matrix (P;S:)(t)) with the element
PY(#).

2. Determination of the values Dox{", Dox{*"

Values of the first till the Q-th derivatives of the functions Pg)(t)
at the points P;, P;y; (cf. (1.4)) are determinated as follows: In the
plane with the rectangular coordinate system %,s; we construct the
points (2h,z(’+h)) —Q +p < h <Q— p, h integer.
Here the ﬁxed chosen integer p satisfies the inequality 0<p<
< Q—1. According to Fig. 1 the points determine uniquely the follow-
ing polynomial of degree at most 2Q) — 2p:

2Q—-2p

(2.1) 0pRO(W) = Y onbiith.
k=0
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With the aid of this polynomial we put

o d9 i ;
D% = —20pRO(0) = Q(Q - 1) ... 3.29,b5D.

5
m
i
| ! i
. 1Y oli +1) (i+2) -
TS CRRED ¢ i Lyl +Q-p)
T O R
i
l s .
I { !
2 ‘ 20-2p ¢

Fig. 1
The originality of Lienhard’s interpolation method consists precisely in
this approach to the determination of the values (2.2). The method |
yields the "missing” values of the derivatives in the mentioned manner
from the auxiliary polynomials (2.1). In brief, we will speak of the Lo,
interpolation method.

Since every coefficient of the polynomial (2.1) is a certain linear com-
i-Q+p)  _(i+Q-7)
yeoes T
D:vg-i), N DQ:cg.i) is also a certain linear combination of the same val-
ues. Therefore, there exists a matrix Bg , of type (Q,2Q —2p+1) such

that we have (see (1.10))

bination of the values :cg- , every derivative

IEERE L

kg (i-Q4+ i+Q-
(2.3) X5 = (a9, +9Py o BT
Then

(2.4) (=30, X5) =
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(" )

T
By

P

i-Q+ i+Q— i+ Q—p+1
(zg_ Q p),___’mg Q p),mg_ P ))o

1 Q_p+11

\o 00 /

~ where the unit in the first column stands in the (@ — p + 1)-st row.
Analogously we have

i+1 *
(2:5) (2§, X1 5) =
/0 0...0 \
T
_ . (i-Q+p) (i+Q—-p) _(i+Q—p+1) By,
= (=3 yerer T = )o 1 Q. Q-p+2
\o /

where the unit in the first column stands now in the (@ —p+2)-nd row.
Employing (2.4), (2.5) it is then possible to express (1.9) in the form

Xij _ (mgj—QﬂJ), . ’x§i+Q—p)’z§i+Q—p+l)) o

Q+2
(0 0 0...0 \
BT
(2.6) o o
T —
1 0 | BE, Q-p+1
0 1 Q-p+2
\o 0...0 0 /
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Substitution of (2.6) into (1.11) yields

(i-Q+p)
(=7
T _
(27) A‘I»J _Cva o (i+Q—p) ?
.
2
\w§i+Q—p+1)/
where T Q-p+1 Q-p+2
0 ... 1 0 ... 0
(1 o)
BQ,p :
—~1 . :
(28) Cop=45" o | o ... ¢ 1 ... 0]Q+2.
E : BQ)P
\ 0 )

3. Grouping of nodes

In the case of a unclosed interpolation curve we construct groups
consisting of 2Q — 2p + 2 points each from the given nodes P, ..., P,:

Group 1: PQ_p+1,...,P3,P_2,P1,P2,P3,...,PQ_p+2,
(3.1) ] Group 2: PQ_p,...,Pg,Pl,Pz,P;;,P.g,...,'PQ__p_{.a,

Group (n-1): Pa_gip—1,-..sPu—s,Po_z, Pu_s, Pa,
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In this grouping we replace the eventually "missing” points by those
points which are obtained by the "mirror image” of the given points
with respect to the point P;, or to the point P,.

For instance, for n = 3, Q = 2, p = 0 we form the following groups of
six points each:

Group 1: P;,Pz,Pl,Pz,Ps,Pz,
Group 2: P, P, Py, Py, Py, Py

If formula (2.7) is applied to group 1 now, we obtain by (1.12) the
polynomials P,(})(t) (7 = 1,...,m) which parametrize the arc P, P,.
Similarly we obtain the other arcs.
Then the unclosed interpolation curve P, P, ... P,_; P, is composed of
these arcs.

In the case of a closed interpolation curve PP, ... P, P, we construct
the nodes as follows:

Group 1: Pp_Q4pt1y-++yFPn-1,Pn, P1, P2, Ps,..., P43,
Group 2: Pn_Q+p+2, e ,Pn,Pl,Pz,Pg,P4, v ,PQ_p+3, (32)
GI'O'llp 3: Pﬂ—Q+P+3" .- ,Pl,Pz,Ps,P4,,P5,... 7PQ—p+41‘ i

.........................................................

In this grouping we replace the eventually "missing” points by those
points which follow in one or other direction the point P;, or P,.

4. The interpolation method L,,

In formula (1.11) we have in this case

2 1 2 -1
1 (-3 -1 3 ~1°
4 0 -1 0 1
1 1 -1 1

(4.1) A;l‘ =

To determine matnx By, of type (1.3) (cf. (2.3)) we fit ,tht:; pblynomial
l,oRi’,.)(t) (cf. (2.1)) to the points (2h,z§'+h)), h = -1,0,1, and put
D:cs.’) =1,0 bg.'l) in accordance with (2.2). Then we obtain (¢f. (2.3))
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(4.2) Xij = (zgx—l)’zg_s),zg_-ﬂ)) o Bg:o,
- where
1
(4.3) - Byg = Z(—I,O,l).

By (2.8) and with the aid of (4.3) we than have

2 1 2 -1 0 400
1 (-3 -1 3 -1 1 [ -1 o010

(44 Cu=7| ¢ 5 ¢ 1 ° 1 0 01 0
1 1 -1 1 0 -1 0 1

Multiplication of these matrices and substitution into (2.7) yield

(i-1)

-1 9 9 -1 ”z,)
r_ | 1 -11 11 -1 z;’
-1 3 -3 1 z{_,-m

J

Example 1. In the plane R? let us consider the points P, = (0,0),
P, =(2,3), Ps = (15,—6), Py = (2,-10), Ps = (10,5). In Fig. 2 the
unclosed interpolation curve P, P, Ps P, Ps is shown. The parametric

equations of the individual arcs of this interpolation curve are obtained
using formulas (4.5) and (1.12) (for Q@ = 1).
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Flg 2 :
It can be shown that in the cases of the mterpola.tmn methods L2 0
and L, ; we have

-9 =75 450 450 -75 9
-13 81 -562 562 —81 13

1 |-10 78 -68 -68 78 -—10
(46)  Cao= 768 18 -—106 228 —228 106 —18 |’
1 -3 2 2 -3 1
\ -5 .25- -50 50 -25 5
and : .' |
-2 18 18 -2
3 -25 25 -3
L, 1 | 2 -2 -2 2
(4.7)' . 202',1‘—3—2' -4 12 -12 4.

respectively.
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5. An alternative determination of the values

Dex(?, Dax{+Y

Instead of (2.3) we now put

where Mg = (m;,...,mg) is a non-zero constant matrix ' while

bg.l), . ,b§"+1) are vectors which are undetermined as yet. It can be

shown that
‘ ( L \ . { zgi—Q+p) \
(_t'+§:2~p)
(5.2) A7 = Cow || Do | - ° m;lq—ru) ’
. A J 1
\ - / \ é; )
b;

where Cgq,p is the matrix (2.8), and further

(00

0
T .
| Mo
(53) |
Do=43"0 | o 0 | Q+2
0 R
. MT
: 2
\ 0 )

Here A-! is the inverse to the matrix Ag of the coefficients of the
system ?1.7). ‘ ~
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6. The unclosed interpolation Lg, — spline

According to (5.2) the relation
(6.1) PO(t) = (1,8,4%,...,429+1) o AT

(see (1.12)) yields, upon dlfferentla.tlon and substitution of the values
t =1, —1, the relation

d — P{tD (1)

&
4% e
(6.2) P(1) = —— P

for ¢ =1,...,Q (cf. (1.3)). Further differentiation and substitution of
the values t =1, —1 yield

do+1

dt@+1 P(l) (1) =

(6.3)

= —O(a§ NP, o) b ) 4 gy (MY,

9

+1
d? P(1.+1)

(6.4) T B (-1 =

- F(mgi-%pﬂ)’ e 7z§'i+q-p+2)) — g2(M )b§-i+1) —~ h(M )b§i+2);

here F' and G are certain linear combinations of the values in the
parantheses while f, gl, g2, h are certain linear forms of the point
M = (mq,...,mq) € R®. Since we wish to construct an interpolation
spline of degree 2Q) + 1, we compare expressions (6.3), (6.4). Then we
obtain the following equahty between vectors of the space R™:

(6.5) f(M)b(I) + g(M)b(H-l) + h(M)b(H'z) — p(i)

where g = g1 + g2, F+ G = P; %) Let the form g differ from zero at
least at one point, let us denote

(6.6) Y1 = {M € R%|g(M) # 0}.
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For i = 1,...,mn — 1, (6.5) is a system of n-1 linear equations in the

unknown bg-l),...,bg-"+1). Therefore we add to the system (6.5) the
following boundary conditions (one as the first equation, the other as
the last equation):

(6.7) g(MID + e = 25, d;5 + g(M)BY =

where c;,d;, z; and u; are real numbers. Then the resulting system will
be of the form

g(M)bg-l) + cjb§-2) = z;,
FOOE + (M + h(M)B) =iV,
(6.8) FOED + gD+ h(ME = 5P,

FOMBTT 4 g(MB™ 4 (MBI =p(nD)
it + g(MBY) =y,
The matrix of the coefficients of system (6.8) is

g(M) ¢ 0 . 0 0 0

(M) g(M) h(M) ... 0 0 0
(6.9) EQupii = | «vvverieeiiiiiiiii e e
0 0 0 ... f(M) g(M) h(M)
0 0 0 ... 0 & gM)

Assume that the set
(6.10) Y = {M e R |g(M)| > |f(M)| + |h(M)]}

is nonempty. Then this set is a part of the set (6.6). For an arbitrary
point M € Y and for

(6.11) lej| < lg(M)], |d;] < |g(M)]

the matrix (6.9) has a dominant main diagonal, i.e. it is regular. Then
the system of equations (6.8) is uniquely solvable.
Then the individual arcs of an unclosed interpolation spline
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P1 P2 P,, 1P, are constructed as follows We form groups of 2Q—-
—2p + 2 points each of the given nodes Py, P,,..., P, (see (3.1)). If
formula (6.5) is applied to the first group of points and to the vectors
bgl),bgz), we obtain, by (6.1), the polynomials P,(,:)(t) 7=1,...,m)
which parametrize the arc P, P,. Similarly we obtain the other arcs.
The desired interpolation splixie P P,...P, P, is then composed of
the mentioned arcs. To be more exact, we shall speak of the so-called
Lq p-spline of degree 2Q + 1 since we have started from the Lg , Lien-
hard interpolation method in the derivation (see Section 2). The be-
haviour of this spline may be modified by the choice of the feasible
point M € Y (see (6.10)), the feasible numbers c;, d; (see (6.11)) and
the numbers 2;,u;.

In contradistinction to the LQ+1,p mterpola.tlon method which uses
polynomials of degree at most 2Q + 3 and which guarantees the continu-
ity of the first till (Q+1)-st derivatives (see (1.3) forg = 1,...Q+1) the
Lg p-spline has identical properties (with reference to the derivatives)
while polynomials of degree at most 2Q) + 1 are sufficient.

Example 2. In the plane R? let us consider the same nodes as in
Example 1. The unclosed interpolation L, ¢-spline P, P, P3P, P; for
my =1/12, ¢; = d;j = z; = u; = 0 is shown in Fig. 3.

" Fig.3
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7. The closed interpolation Lg -spline

When constructing the closed interpolation Lg p-spline
PP, ... P, P, we group the nodes Py, P,,..., P, according to (3.2). To
the equations (6.5) fori = 1,...,n — 1 we add an additional equation
for i = n and two boundary conditions

(7.1) bg-l) — b§ﬂ+1)’ bg-z) — b§n+2).
Acéording to (6.5), for © = n and (7.1) we have
" =

= F(z{"" ) Grt9mrt)y 4 galn@te) | p(ntmetl)y

“s ey J'
O+ g (U 1 D 4 BN,

whence we obtain

J

= F(a{P™ D Gty g ()Y — m(a)b?

3 H
Le. dOF1P{P(1)/dt+! = d9+1 P{(—1)/dt+? (see (6.3), (6.4) for i =

=n).

_G(z(.n—Q+p)’ e ,x§n+Q-—p+1)) + f(M)bgn) + g1 (M)b§n+1) =

Further, by (6.2) we have, for i = n, qu,(,?)(l)/dtq = qu,(,})(——l)/dtq
for ¢ = 1,...,Q. Instead of system (6.8) for the case of the unclosed
interpolation Lg ,-spline we now have the following system of equations:

g(MP? + (M) = p{)

FOORD + gl + h(M) =7,

FOOEY + g(MPP + r(MBD =,

() T SRR
2 FOMBY 4 g(M)bﬁ-"; - h(M)b(ﬁ-":)’ =p§-")“”,

R(M B + FORY + g =p{M

The matrix of coefficients of system (7.2) is
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g(M) RM) O ... 0 f(M)
(M) g(M) RM) ... 0 0
(7.3)  Fomi=| 0 f(M) gM) ... 0 0

K(M) 0 0 ... f(M) g(M)

For an arbitrary point M € Y (see (6.10)) the matrix (7.3) has a dom-
inant main diagonal, i.e. it is regular. Then the system of equations
(7.2) is uniquely solvable.

Example 3. In the space R? let us consider the points P; = (5,0,0),
P, = (10,5,5), Py = (0,10,15), P, = (-5,3,8). The closed interpo-
lation L ¢-spline Py P, P3Py P; for m; =1 /12 is shown in axonometric
projection in Fig. 4. For the sake of simplicity, the symbol P; is also
used here to denote the axonometric projection of a node while the
symbol P] denotes its axonometric first projection.

R

<0

Sy

n

Fig. 4

Example 4. Let us construct a closed L3 o-spline P, P,P; P, P, with
the same nodes as in Example 3. For chosen m; = 1/12, my = 1/4 the
constructed curve is shown in axonometric projection in Fig. 5.
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Fig. 5
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Abstract: We prove some new arithmetical properties of sums of the form
ogZg + a1y + - + apr, where Qy,Q1,"*,Q, are non-gero S-integers
and £9,Z1, -+, Ty are S-units in a given algebraic number field K. By
using a result of Evertse and Gyodry [6] on weighted S-unit equations, we
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results for 1 = 1 by means of Baker’s method and its Pp-adic analogue. As
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a consequence, we get some information about the arithmetical properties of
the solutions of certain decomposable form equations as well as of the terms

of recursive sequences.

1. Ineffective results

Let K be an algebraic number field of degree d with ring of in-
tegers Ok and let Mg be the set of places (i.e. equivalence classes of
multiplicative valuations) on K. A place v is called finite if v contains
only non-archimedian valuations, and infinite otherwise. Let S be a
finite subset of Mg containing all infinite places. A number a € K is
called an S-integer (resp. an S-unit) if |a|, < 1 (resp. |al, = 1) for
every valuation | |, from a place v € Mg \ S. The S-integers form a
ring which is called the ring of S-integers and is denoted by Os. The
S-units form a multiplicative group which is denoted by O%. For each
B € Og \ {0}, we write

Ns(8) = [] 18

vES

which is a positive rational integer called the S-norm of 3. If in parti-
cular S consists exactly of the infinite places then Ngs(8) = |Ng,q(B8)!-

Let n > 1 be an integer. Denote by P™(K) the n-dimensional pro-
jective space over K, that is the set of all (n+1)-tuples (20,21, **, %)
with z; € K, where two tuples are identical if they differ by a non-zero
scalar multiple. Further, we denote by P"(0%) the set of
(20,21, +,2a) With z; € Os™. For given a = (ag,a1,++,an) € (Os\
\{0})**1, we consider those # € Os which can be represented in the
form

(1) B =oagzo+1zy + -+ apzn with zg,21,-+,2, € Os%.

Van der Poorten and Schlickewei [8] and Evertse [5|, independently,
proved that for given non-zero 8 € Ogs, the equation (1) has at most
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finitely many solutions such that

(2) Z a;;z;; # 0 for each subset {i;,---,i,} of {0,1,---,n}.

i=1

Later, Evertse and Gyo6ry [6] proved that there is a constant C' de-
pending only on K,S and n but not on a such that the number of
solutions of (1) having property (2) is at most C. The proofs of these
results of (8], [5] and [6] involve the p-adic analogue of the Thue-Siegel-
Roth-Schmidt method. Very recently, Everest [2], [3] gave an asymp-
totic formula for the number of z = (z¢,21,-+-,2,) € P*(O%) with
Ns(agzo + -+ anz,) < g and (2) as ¢ — co. Tijdeman and Wang
[15] applied the above result of Evertse and Gyéry [6] to simultaneous
weighted sums of elements of finitely generated mulitplicative groups.
As another application, we shall deduce the following theorem.

For a rational integer v with |v| > 1, we denote by P(v) the
greatest prime factor of v and we write P(0) = P(+1) = 1. In what
follows in 1, Cy( ), Cs( ),--- will denote positive numbers depending
only on parameters occuring between parantheses.

Theorem 1. Let P > 1 be an integer. The number of values Ns(B)
with 8 € Os end P(Ns(B)) < P for which (1) holds is at most C,(K,
S, P, n).

It is a remarkable fact that C; does not depend on the coefficients
Qg,Qy, - *,0y,in (1). We remark that in general we are not able to make
Oy explicit. This is due to the non-explicit character of the number
C = C(K,S,n) mentioned above. Further, we note that in Theorem
1 all # are taken into account which are represented in the form (1)
(independently of the fact that (2) holds or not).

It follows from the above mentioned results of [8] or [5] that the
set of values Ng(f8) with B € Og and (1) is not bounded. Theorem 1
implies immediately the following result.

Corollary 1. P(Ns(8)) — oo as Ns(8) — oo with 8 € Os and (1).

For n = 1, we shall give in 2 effective and quantitive versions of
this assertion. We note that Corollary 1 can also be deduced from the
results of [8] or [5]. We shall now give a consequence of Corollary 1 to
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decomposable form equations. Let
F(X)=F(X1, ,Xm) € Os[X1, -, Xm]

be a decomposable form in m > 2 variables which factorises into linear
forms, say I(X),+-,ln(X) over K. For a non-zero element b of Og,
we consider the decomposable form equation '

(3) F(g-):F(zla""zm)zbin 31,"',$mEOs-

Corollary 2. Suppose that for some i with 1 < 1 < m, X; can be
ezpressed as a linear combination of I;(X),--- An(X). If (3) has in-
finitely many solutions and if Ns(z;) is unbounded for the solutions
z = (21, --,2m) of (3) then, for these solutions, P(Ns(=zi)) is also
unbounded.

Important examples to which Corollary 2 can be applied are the
full norm form equations, i.e. equations of the form

F(z) = N(z1 + w2z + -t wpzy)=b in z1,---,2, €Z

where {l,ws,---,wn} is a basis of Q(wz,--+,wn) over Q. In this case,
every X; can be expressed as a linear combination of the linear factors of
F, and if the equation is solvable and n > 3 or n = 2 and Q(w,) is real,
then it has infinitely many solutions z = (z1,-++,2n). Then max|z;|
is obviously unbounded. Moreover, it follows from a recent result of
Everest [4] that, for these solutions, |z;| is unbounded for each i, and
hence Corollary 2 implies that P(z;) is not bounded. For effective and
quantitive versions of this assertion with m = 2, n = 2, see Corollary 4.

We shall now prove Theorem 1. As was mentioned above, the
proof will be based on the following result on weighted unit equations.
Let af,---,al, € K\ {0}. A solution of the S-unit equation

(4) ahzo+ -+ apTy =1 in zg,21,++,2n € OF
is called degenerate if ajzg + - -+ + a),z,, has a vanishing subsum, and

non-degenerate otherwise. Now, we state the following theorem of
Evertse and Gyéry [6].
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Lemma 1. The number of non-degenerate solutions of (4) is at most

Cz(K, S,n).

As was mentioned above, the number C; cannot be made explicit
by means of the method of proof used in [6]. At the last conference on
Diophantine approximations in Oberwolfach (March 14-18, 1988), H.P.
Schlickewei announced that in the special case when K = Q and S is
generated by s distinct prime numbers, he is able to make explicit

C2(Q, §,m) = (8(s + 1)) (++1)”,

Using this explicit value of C,, in this special case we can make C,
explicit in Theorem 1.

Proof of Theorem 1. It is enough to deal with the case § # 0. If
B € Os \ {0} is represented in the form (1), then it is also represented
by a non-empty subsum of agz¢ + - - - + @z, which has no non-empty
vanishing subsum. Since agz¢ + - - + anz, has at most 2**! subsums,
it will be sufficient to prove the assertion for those 3 for which (1) holds
and agz¢ + - -+ + apz, has no vanishing subsum.

Let S’ be the smallest subset of Mx with S’ D S such that all
elements 8 € Os \ {0} with P(Ns(B)) < P belong to O%,. It is easy to
see that S is finite and depends only on K, S and P. If 8 € Os \ {0}
with P(Ns(3)) < P is represented in the form (1), then we have

1 =ao(zo/B) + -+ an(zn/B) where z;/8 € O%.

Hence, it follows from Lemma 1 that there exists a subset U, of
(O%)**! of cardinality at most C3(K,S',n) < C4(K, S, P,n) with the
following property: If 8 € Og \ {0} with P(Ng(8)) < P such that

(5)

B = apzo+- -+ anz, and agzo+---+apz, has no vanishing subsum,

then (307 T 1311) = 7’(281 T ’z?z) for some VRS Ofgr, and (28, T 1321) €
€ Us. Fix such a tuple (z3,---,z2) € U, and suppose that ' € O\ {0}
with P(Ng(8')) < P is another element such that

B' =agzy+ -+ axz, holds, agzy + - -+ anz,
(6) has no vanishing subsum and (zj,---,z.) =
=7'(z),--+,2) with some 7' € O%,.

1n
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Then, it follows that (=§,---,2,) = 1'/n(z0, -, zx) and hence we have
n'/n € O%. But this, together with (5) and (6), implies that g'=
= (n'/n)B and so Ns(B') = Ns(B). Consequently, the number of va-
lues Ns(B) with 8 € Og \ {0} for which (1), (2) and P(Ns(B)) < P
hold does not exceed the cardinality of Uy which is bounded above by
Cs(K,S,P,n). &

Proof of Corollary 2. Suppose that
(7) Xi= Ciy lix (l) +o ey l‘l'k (l)

for some distinct 15, - -,ix and ¢;,,- - -, ¢;, € K\{0}. By assumption, (3)
has infinitely many solutions z = (21, *,%m) and Ng(z;) is unbounded
for these solutions. Then it follows from (3) that, for these solutions,
l;;(z) can assume only finitely many values apart from a factor from

% J=1,---,k. Consequently, there is a subset x of solutions z =
= (21, +*,Zm) of (3) with unbounded Ns(z;) such that, for each of
these solutions, l;; (z) = 6;;u;; with some fixed 6;; € K \ {0} and with
u;j € 0%,7=1,---,k. Thereisa t€ N for which ay; :=1c;;6;; €
€ Os\ {0} for j =1,---,k. Now (7) implies that

(8) tr; = o ui, + -0+ o Ui,
For k =1, this gives
Ns(z;)Ns(t) = Ng(tz;) = Ns(ay,)
which implies that Ng(z;) is bounded. For k > 2, Corollary 1 can be
applied to (8). Then Corollary 1 together with the unboundedness of

Ns(z;) implies that P(Ng(tz;)) is unbounded, whence P(Ns(z;)) is
also unbounded. ¢

2. Effective results

In this section, we consider the effective versions of Corollary 1 for
n = 1 and some of their consequences. Let K, Ok, d, S, Og and O%
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have the same meaning as in 1. For given a = (ao, 1) € (Os \ {0})?,
consider now those 8 € Og \ {0} which can be represented in the form

(9) B = agze + ayz; with zg,z; € O%.

Then it follows from an effective result of Gyéry ([7], Lemma 6) on
S-unit equations that

(10) P(Ns(B)) > CsloglogNs(8)

provided that Ns(8) > Cs, where Cs, Cs are effectively computable
positive numbers depending only on K, § and a. The proof of the
above mentioned result of [7] involves Baker’s theory on linear forms in
logarithms and its p-adic analogue. By using the same theory as well
as its p-adic analogue we shall prove the following improvement of (10).

For a rational integer v with |v| > 1, we denote by Q(v) the
greatest square free factor of v and we set Q(0) = Q(£1) = 1.

Theorem 2. There are effectively computable positive numbers Cy, Cs,
depending only on K, S and a, such that if (9) and Ns(B) > C; hold
then

(loglogNs(5))>
logloglog Ns(8)

It follows from a well-known result (cf. [9]) that, for large Ng(3),
logQ(Ns(B)) < 1.02P(Ns(8)).

This, together with (11), implies

(11) Q(Ns(B)) > exp{Cs

}

(loglogN's(5))?
logloglogNs(3)

P(Ns(B)) > Cy

with some effectively computable positive number C; = Cy(K, S, ).
For some applications, it will be more convenient to consider (9)
and state Theorem 2 in a slightly different form. In what follows, C;¢( ),
C11( ), - will denote effectively computable positive numbers depend-
ing only on parameters occuring between parantheses. For brevity, we

write N(B) for N ,o(B),8 € K. We denote by £ the multiplicative
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semigroup O% N Ok, by |a| the maximum of the absolute values of the
conjugates of an algebraic number a, and by H(a) the (usual) height
of a (i.e. maximum of the absolute values of the coefficients of the
minimal defining polynomial of a over Z). There is a positive integer a
with a < Ci4(a) such that aa; € Ok and |aa;| < Ci;(a) for i = 0, 1.
Further, for each pair z¢,z; satisfying (9), there is an z € £ such that
z z; € L for i = 0,1. Hence, we may assume without loss of generality

that, in (9), @ = (ay,a;) € (Ok \ {0})?, B € Ok \ {0} and
(9" B = agzg + arz; with ze,2; € L.
Further, it is easy to see that we may also assume that
(12) min(ord,(x¢),ord,(x1)) < C12(K,S)

for every prime ideal p in Ok. Since |N(B)| > Ng(B8) and, for large
Ns(B), Q(Ns(B)) = C1sQ(N(B)) with some C15 = C15(K, 5, a), Theo-

rem 2 immediatly follows from the following.

Theorem 3. Suppose that § € Ok \ {0} is represented in the form (9’)
with (12) and |[N(B)| > e=°. Then

(loglog| N (8)])*
(13) log QNN 2 Cua ot logIN (B)

where C14 1s an effectively computable positive number depending only

on K, S and a.

Theorem 3 with K = Q is due to Shorey [11]. Theorem 3 and
Theorem 4 below will be proved in 8. To formulate Theorem 4, we
write in (9’)

(14) X = max(fzo], |11, )

and
P, = P(Nk/q(B))-

Further, we set

(15 p={2 i d=1,

d if d>1.
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The following result is an analogue of Corollary 1.2 of [13] which was
established in the case K = Q.

Theorem 4. There are effectively compuiable positive numbers Ci5,
Cie, depending only on K, S and @, such that if (9°) and (12) hold then

(16)  log(J] max(|z{7],12{7)) < C15 PP+ (loglogX )/ log( Py + 1)

where the product is taken over all the embeddings of K in C and
(17) log H(Z2) < C1s P (loglog X )/ log(P1 + 1).
0

We establish now some consequences of Theorem 3 and 4. Let
g, U1, and s be algebraic numbers such that

Uy = TUp—1 + SUy_g for m =2,3,.--.

We assume that the companion polynomial X2 —7X —s to the sequence
{um}_, has distinct non-zero roots a and f such that a/f is not a
root of unity. Then, it is easy to see (cf. {13], Ch. B) that

(18) Uy = aa™ + 0™ for m=0,1,2,.--

where
uoff — uy U] — UgQ
a= ———, b= ——7—.
g —a B —a
Then {u,,}2°_, is called a non-degenerate binary recursive sequence of
algebraic numbers. There exists an effectively computable number C,

depending only on the sequence {un,}oo_, such that
Uy # 0 for m > Cyy.

Let K = Q(uo,u1,a,5). Observe that u,, € K for m > 0. We write

Am
NK/Q(um) = -IZ for m Z 017

where A4,, and B,, > 0 are relatively prime rational integers. Then, as
an immediate consequence of Theorem 4, we derive the following result
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which extends a result of Stewart [14].}

Corollary 3. Let {u,}3_, be a non-degenerate binary recursive se-
quence of algebraic numbers. Let a and B be roots of the companion
polynomial of the sequence {um}oo- Let K = Q(uo,u1,a,) and let
D be given by (15). Then, there ezists an effectively computable number
Cis > 0 depending only on the sequence {um}o_o such that

(19) P(Am) _>_ Clsml/D+1 if m Z Clg.

Proof of Corollary 3. Let k be the least positive integer such that
ka, kb, ka und k@ are algebraic integers. By considering the sequence
{k™*+1u,}2_,, there is no loss of generality in assuming that a,b,a
and (3 are elements of Ox. We write

([«*],[8*]) = [n] with =€ Ok

and
a; =7 tab, By =x71p"

where k denotes the class number of K. Then a;, f1 € Ok satisfy
([a1],[B1]) = [1] and a1 /B is not a root of unity. Putting m = m;h4+m,
with m;,mz € Z,0 < my < h and a; = a™?a, by = B™2b in (18), we
see that

(20) ™, = g at + b AT

Now we apply (17) to the right hand side of (20) to complete the proof
of Corollary 3. ¢

Remark. For a non-degenerate binary recursive sequence {tm }m—o
with ug, u1, v, 8 € Z, Shorey [11] showed that

(21) log Q(um) > Cie(log m)z(loglogm)”1 if m > Cayo,

1 In the proofs of [14] and [12] on lower bounds for P(uy) and P(up /up), we
need to replace the assertions of van der Poorten by the theorems of Yu on
p-adic linear forms in logarithms. In view of this, d should be replaced by D
in these estimates. A similar remark applies to [13, Chapters 2,3]:
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where C19 > 0 and Cy¢ are effectively computable numbers depending
only on the sequence {um, }5o_,. In fact, Shorey [11] proved the estimate
(21) for M])- with m > n and u, # 0. We note that our Theorem 3
above is an extension of (21).

Next, we derive from Theorems 3 and 4 the following result which’
is an effective and quantitive version of Corollary 2 with m = 2. Com-
pare this with Theorem 5.2 of [13].

Corollary 4. Let A > 0 be a rational integer. Suppose that a,b,c are
rational integers satisfying ac # 0 and b®> — 4ac # 0. Let = and y be
non-zero rational integers satisfying

(22) P(az® + bzy + cy?) < A.
Then we have

(a) There ezists an effectively computable number Cy; > 0 depending
only on a,b,c and A such that

(23) P(z) > Ca(log |2])'/°, P(y) > Cu(loglyl)*/*.

(b) There ezists an effectively computable number Cyz > 0 depending
only on a,b,c and A such that :

(loglogz')? (loglogy')z
> NS e > P
(24) log Q(z) > 02’ loglogloga' ’ log Q(y) = 21ogloglogy’

where z' = max(|z|,e®) and y' = max(|y|, e®).

Let a be a real algebraic number of degree 2. For n > 0, we write
Pn/qn for the n-th convergent in the continued fraction expansion of a.
It is clear that the assumptions of Corollary 4 are satisfied with = p,,,
Yy = qn. Therefore, the estimates (23) and (24) with ¢ = p,, y = ¢, are
valid. In fact, this particular case of Corollary 4 is a consequence of the
estimates (19) and (21) on the greatest prime factor and the greatest
square free factor of a non-degenerate binary recursive sequence.

Proof of Corollary 4. There is no loss of generality in assuming that
a = 1. Let a and B be non-zero distinct algebraic integers satisfying

(25) 2% +bey + ey’ = (z — ay)(z - By).
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We set K = Q(a). Then D = 2. Let p;,---, p: be the set of all prime
ideals in K which divide rational primes not exceeding N(af)A and we
write £ for the set of all non-zero elements of O which have no prime
ideal divisor different from g, -, p;. Then we observe from (22) and
(25) that B(z — ay), a(z — By), (z — ay) and (—z + By) are elements
of L. Furthermore, we observe that

(26) (B — a)z = B(z — ay) + a(—z + fy)
and
(27) (B —a)y = (2 —ay) + (- + By).

(a) We apply Theorem 4 with ap = a; =1, 2o = f(z — ay) and z; =
= a(—« + PBy). For this, we observe from (26) that X given by (14)
satisfies 2X > |(8 — a)z|. Now, we derive from (16) that P(z) >
> Cy;(log |z|)*/3. Similarly, the estimate for P(y) follows from (27).
(b) We apply Theorem 3 with z = B(z — ay), z; = a(—z + By), as
well as 2o = z — ay, £; = —z + By, to obtain (24). ¢

3. Proofs of Theorems 3 and 4

We keep the notation of §2. In what follows, Ch3,Cay, -+ will
denote effectively computable positive numbers which, unless otherwise
stated, depend only on K, S and a. First we prove Theorem 3. Suppose
that § € Ok \ {0} is represented in the form (9’) with a = (a;, ;) €
€ (Ok \ {0})?, zo, 21 € £ and (12). We may assume that |N(8)| > Cas
with C»3 sufficiently large. Further, we can write (cf. [13], Ch. A)

(28) z; = piny* --'T]:""ﬂ':i'l coom? for {=0,1,
where a;,1,---,a;r € &, b;1,--+,b;, are non-negative rational integers
for:i=0,1,

(29) ma‘x(m7W7m’ T |771'|7 I"rlly T |7r,|) < 024(K7 5)7
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{m, --,n-} is a maximal system of independent units in Ok and the
principal ideals [r],-- -, [7,] are the h-th powers of the prime ideals in
Ok corresponding to the finite places in S. Here h denotes the class
number of K.

Theorem 3 is an immediate consequence of the following result.

Lemma 2. Let 8 € Ok \ {0} be represented in the form (9’) with the
properties (12), (28), (29) and |[N(B)| > Cas. Further, suppose that

(30) log P(N(B)) < (loglog|N(8)])*.

Then, there ezists Cays > 0 such that

loglog| N (B)|
1>C
,%, = " logloglog| N (8)|

P2 (log |N(8))C 25

where p runs through rational primes.

Proof. We may assume that

loglog| N (B)|
31 1<e ’
(31) 2 < GegogIN (B

P2 (log |N(B)])*

where € is an effectively computable positive number with € < 1 which
depends only on K,S and a and which will be chosen suitably later.
Thus, we allow C3 to depend also on e.

Denote by P the set of all prime ideals in Ok, and put

(32) Py = {p € P|plp for some positive rational prime

p < (log |N{8)|)}

and

(33) P. = {p € P|p|p for some rational prime p with

(log [N(B)])* < p < exp{(loglog|N(8)|)*}}.
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Then p € P; UP; for each prime ideal divisor p of 3. The product of A
ideals from any fixed ideal class (modulo the group of principal ideals)
is a principal ideal. Hence 3 can be written in the form

(34) B=p-B2 with 81,8, € Ok

so that all ‘prime ideal divisors of #; belong to P; and f; is divisible by
at most h(h — 1) prime ideals (with multiplicities) from P;. Further,
this, together with (30) and (31), implies

'd 'd
B =pyr™ v

where p} is a unit in Og,v],--,7; are non-units in Ok and d,---,d;
are non-negative rational integers such that

loglog| N ()|
logloglog| N (B)|

(35) i S 0256 + 027

and
log |N(7})| < Cas(loglog|N(B)[)? for j=1,---,t.

Consequently, we apply Lemma A.15 of [13] to find associates 1, -,7:
of 71,--+,7i, respectively, such that

(36) log [7;] < Cas(loglog|N(B)])? for j=1,--,t.
Further, on multiplying both sides of (9’) by an appropriate unit and

applying again Lemma A.15 of [13] to ¢ and z;, there is no loss of
generality in assuming that

(37) Ba =4 v,

(38) loglﬂ_ll < Csolog |N(B1)]

and (12), (28), (29) hold. Also, observe that

(39)  d; < (log IN(B:)])/log2 < 2log [N(B)| for j=1,-,t.
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Let in (28),

(40) V =:max |ai;l, W =:max bi;,
i=0,1 i=0,1

and we put

(41) U =: max(V,W).

In view of |N(B)| > C,3, we have U > C3; with some Cj; sufficiently
large. We apply an estimate of Yu ([16], Theorem 1’) on p-adic linear

forms in logarithms to derive from (9’), (28), (29), (12), (40) and (41)
that

(42) ord,,(8) < Cs2 PP(log U)/ log p,

where p is a prime ideal in P; U P, dividing a rational prime p. Now,
we apply (42), (32) and Theorem 9 of [9] to derive that

log [N (B1) < (log [N (B)])%* log U
whence, by (38),

(43) log |B:] < Cso(log |N(8)])°> log U.

Let p be a prime ideal divisor of m; in Og. We apply again
Theorem 1’ of Yu [16] on p-adic linear forms in logarithms to 8 — oz
to derive from (9’), (28), (29), (12), (40), (41), (39), (36) and (35) that
(44) bo,1 < (log [N (8)])%*+ (log U)*.

Repeated applications of estimates for p-adic linear forms in logarithms
provide the estimate (44) for all b; j withi =0,1and j=1,---,s. Thus

(45) W < (log [N (B)) % (log U)*.
If U < W2, then we observe from (45) that

W < (log |N(8)])*%*+, U < (log |N(B)])*“>
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which, together with (9°), (28), (29) and |N(8)| > C»s, implies that
log |[N(B)| < (log|N(B)|)¥“>+* which is not possible if € < (8Csq)~ 1.

Thus, we assume that

(46) U>w?2,

Then, by (41), (9°), (28), (29) and |N(B)| > Cas,
(47) U=V and U > (log|N(B)|)}/2.

There is no loss of generality in assuming that |a; ;| = V. We write
from (28) that, for each embedding o of K in C,

- i
ao,; log [0\ | = —log [p{")| +log|a{"| — 3 bo ;|mi"].
J
i=1

j=1

This, together with (47), (29) and (46), implies (cf. also [13], Ch. A)
that .
U=V < Css(log|zo| + U?).

Therefore, in view of (47) and |N(8)] > Cas
(48) log [zo| > CssU.
On the other hand, we see from (28) and (46) that
(49) " log|N(zo)| < Cs:W < Cs7UY2.

By (46), we have d > 2. Further, in view of (48), (49), (47) and
|IN(B)| > C23 we may assume that there exists an embedding o of K
in C such that

CB 6

dU.

(50) log ag”] < ~
Now, apply Theorem 2 of Baker [1] on linear forms in logarithms to
obtain from (9), (28), (29), (34), (37), (43), (36), (39), (35), (41) and
(47) that

(51) log |(@oz0 )| = log |8) — (ar21)()]| >
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> (log [N (8)])%** (log U)*.
Finally, we combine (50) and (51) to derive that

U < (log |N(B)])*

which, in view of (47), is not possible if € < (4Csg)™'. Finally, we set
¢ = min((8Cs4) ™!, (4C3s)7 1, 1) and Cy5 = €/2 to complete the proof of
Lerama 2. §

Proof of Theorem 4. Suppose that § € Ok \ {0} and z¢,2; € L
satisfying (9’) and (12). Then, as we have seen above, we may also
assume that (28) and (29) hold. Let V,W,U and X be defined by (40),
(41) and (14), respectively. Then, using some arguments from the above
proof, it is easy to see that

We apply Theorem 2 of Baker [1] on linear forms in logarithms to derive
form (9°), (12), (28), (29) and (52) that

(53)  IN(B)| > Cuo [ max(|anzo)?], |(az 1 )(])(log X) =,

where the product is taken over all the embeddings ¢ of K in C. On
the other hand, it follows from (42), (52) and Theorem 9 of [9] that

(54) log | N (8)] < Cs2 P°* (loglog X )/ log(P1 + 1).

We combine (53) and (54) to derive (16). Finally, (17) follows from
(16) and Lemma C of [10]. ¢
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Abstract: Let m> n>>1 be natural numbers such that m-n is odd; we prove

m—n+1

that the identity ™ = z™ implies @ = I in rings with unity.

Moreover we describe the free ring corresponding to ™ = z, where n=2%

1. Preliminaries

During the last forty years the investigation of rings with polyno-
mial identitities became a very important branch of ring theory. The
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pioneering papers are due to Jacobson ([3], [4]). He proved that a ring
satisfying 2" = 2 (n > 2) is commutative (in fact he proved a stronger
version of this result). In the present note we introduce the notion of
(m,n)-Boolean rings by generalizing Jacobson’s above identity. The
structure of (m,n)-Boolean rings heavily depends on the parity of the
difference m — n. Our main result is a reduction theorem for the odd
case. Another reduction theorem for the z® = z (n > 2) case will
be also stated. Finally, in the n = 2! case we describe the free ring
statisfying ™ = z.

2. Reduction theorems for (m,n)-Boolean rings

Given two natural numbers m > n > 1, a ring R is said to be

(m,n)-Boblean if z™ = z™ for all z € R.

Theorem 2.1. Let R be an (m,n)-Boolean ring with unity, where m—n
is odd. Then R is (m—n+1,1)-Boolean (and by Jacobson’s well-known
theorem we also get the commutativy of R).

Proof. On applying 2™ = z™ to ¢ = —1g we obtain 1p + 1z = 0,
i.e. that 2z = 0 for all z € R. Now we prove that R has no nilpotent
element. Let k > 2 be*an integer and suppose that z*¥ = 0 and z*=1 #£ 0
for a nilpotent z ¢ R. Using the binomial " theorem, (1p + z*~! ™=
= (1r + «*71)" gives that 1 + mz*~! = 1 + nz*~!, whence we get
(m —n)z*~! = 0. The odd parity of m—n gives that zF 1=
= (m—mn)z*¥~! = 0, a contradiction. The absence of nilpotent elements
enables us to use a theorem of Andrunakievich and Rjabuhin (see [1]).
According to this theorem R is a subdirect product of domains (i.e. not
necessarily commutative rings without zero divisors) R; (s € I). Since
R; is a factor of R, the identity z™ = z™ remains true in R;. But it
can easily be seen that in a domain z™ = 2™ implies z™"t! = 2.
Hence any subdirect product of the rings R; (i € I) will also satisfy
g™l =z, §

Remark. In the case of even m —n we cannot expect such a reduction
theorem. Forinstance Z;; and the ring of 2x2 upper triangular matrices
over a Boolean ring are examples of (4,2)-Boolean rings, the former has
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a nilpotent element and the latter is non-commutative.

Theorem 2.2. An (n,1)-Boolean ring R is (n*,1)-Boolean, where
n* —1 = lem.{p* — 1|p is prime, p* — 1 is a divisor of n —1}.

Remark. The authors believe that this result is not essentially new,
however we were not able to find a reference. Related investigations

can be found in [2], [6] and [7].

Proof. We can proceed similarly to the proof of Th. 2.1. A domain
satisfies :1: = z if and only if it is a finite field of the form GF(p*),
where p* — 1 is a divisor of n — 1. This result is explicit in [6] and in
[5]. Since each subdirect factor R; of R satisfies 2™ = z, we get that
their subdirect product R will also satisfy the same 1dentity.<>

Remark. An immediate application of Th. 2.1. and Th. 2.2. can give
the following reduction result. Let R be a (16,11)-Boolean ring with
unity, then Th. 2.1. gives (16,11) = (6,1), and Th. 2.2. gives (6,1)
= (2,1), where 2 = 6*. Thus we get that R is a Boolean ring in the
classical sense.

3. The free (2!,1)-Boolean ring

Theorem 3.1. Let n = 2%, then the free (n,1)-Boolean ring generated
by a non-void set X can be obtained as the semigroup ring Z3(S:),
where S is the free semigroup on X with defining relations ™ = = and
Ty = y<.

Proof. Using the polynomial theorem and the well known fact that
polynomial coefficients of the form ﬁ—; (where n = 28 =14; +iy+

+...414; and 1 <1, <n —1 for some v) are even integers, we obtain
that Z,(S:) satisfies 2" = z.

In order to prove universality let f : X — R be a set mapping with
R an (n,1)-Boolean ring. Since the multiplicative semigroup R* of R
satisfies €™ = z and zy = yz (by Jacobson’s theorem) there is unique
semigroup-homomorphic extension ¢ of f making the diagram (3.1)
commute ‘
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Sa

o
X ¥

(3.1) \R*

Now it is easy to see that the definiton @( ) 7ic0) = ) mnop(o)
o€ESy oc€ES,

with i, = n, + (2) € Z; is correct and gives a Z3(S;) — R ring-

homomorphism making (3.2) commute (we need 2R = 0!)

Since the subset 5(X) C Z;(S,) generates Z5(S;) as a ring, the unicity
of @ is clear. ¢
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Abstract: It is proved for any 0 < 8 < 1 and any graph G = (V,E)

there exists an ordering V1, V2, ...,v|y| of vertices of G such that either
for every 1 € {1 |V|} the set {vl, . 'U,'} dominates in G all but at
most |V| ,3 vertices, or for every j € {1 cey lV‘} the set {'Ul, ‘DJ}

dominates in the complement G of G all but at most |V|(1 - ﬂ)’ vertices.

Let X be a subset of the vertex-set of a graph G = (V, E) and
Ne(X)=XU{y e V|3z € X : (z,y) € E}. Let us say that X is
B-dominating in G, if |V \ Ng(X)| < V|- B8'%Xl. By @ we denote the
complement of G.

Erdos and Ha_]nal [1] conjectured that for any positive integer
t and any graph G = (V, E) with |V| > t either there exists a 0.5-
dominating set X in G with |X| = ¢ or there exists a (1-0.5)-dominating
set Y in G with |Y| = t. Erdds, Faudree, Gyarfis and Schelp [2] proved
that this conjecture remains true even if we put any 0 < 8 < 1 instead

of 0.5.
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The aim of the present note is to prove the following somewhat
stronger statement, which was obtained independently of [2].

Proposition 1. For any 0 < 8 < 1 and any graph G = (V, E) either

there ezists a numbering vy,va,...,vjv| of the vertices of G such that
the set {vy,v3,...,v;} is B-dominating in G for everyi € {1,...,|V|},
or there ezists a numbering ui,us,...,u)y| of the verlices af G such

that the set {u;,ug,...,u;} is (1 — ) dominating in G for every j €
e {1,...,|V]}

Proposition 1 is a consequence of the following proposmon (To
see thls, apply Proposition 2 to the bipartite graph G = (X,Y; E)
where G is obtained from G = (V, E) as follows: |X| = |[Y| = |V| and
(zi,y;) € E iff (v;,v;) € E).

Proposition 2. Let G = (X,Y; E) be a bipartite graph with parts X
and Y, and 0 < B < 1. Then at least one of the following assertions is
true:

(a) there is a numbering z,,z,,. ,:c|X of the vertices of X such that
Y\ Ne({z1,23,...,z:)| < [V] - B
for every i € {1,...,|X]|};
b) there is a numbering y1,¥2,...,y|y| of the vertices of Y such that
Y]

(1) X\ Na({y1,92, .-,y H)l < | X|(1 - BY
for every j € {1,...,|Y]}.

Proof. We try to construct the proper numbering of vertices of X,
using the following Procedure 1.
BEGIN. Let Xo :=0;1i:=1;
Stepi. If i = |X| + 1, then END. If there is z € X \ X;_; such that
(Y \ No(Xi-1)) \ Ne({z})] £ BIY \ Ng(Xi-1)| (in particular, if
Y\ Ng(X;_1) = 0), then set z; := z, X; := X;_; U{z;} and go to Step
i+ 1. Else END.

If the Procedure stops on Step t and ¢ = |X| + 1, then Assertion
(a) of our Proposition 2 is true. Let ¢t < |X| and Yy = Y \ Ng(X¢-1).
Then Y, # @ and, by the construction, for z € X we have

(2) [¥o N Ng(z)| < (1 - B)[Yol.
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The following Procedure £ will make it possible to number the
vertices of Yy properly.
BEGIN. Step k(1 < k < |Yy|). Before Step k the vertices y1,...,yx-1 €
€ Y, are chosen that the inequality (1) is fullfilled for j = 1,2,...,k—1
and, denoting Yi_; = Yo\{v1,..-,¥r-1}, for anyze€

k—1
€ X\ Ng({w1,---,¥yx-1}) = ) Na(y;) N X the inequality
)

(3) INa({z}) N Yi—1] < (1 - B)[Yi-|

holds. Note that for k = 1, (3) follows from (2). If X C Ng({v:1,-.-,
,Yk—1}), then choose an arbitrary y € Ye—_1, y& := ¥, Y& := Y1 \ {ys}
and go to Step k + 1. Suppose ﬂ:;ll Ne({y;}) N X # 0. Due to (3),
there exists y € Yi_; such that

k-1 k—1
@ 1) NoliwsH N X nNa({s)] < (1-8)| (] Ne({y;})) n X

Set yx : =y, Yx := Yi—1 \ {yz}- Notice that (4) implies the validity of
(1) for j = k. Because of (3), we have

(5) INe({z})NYi| = [Na({z}) NYii| =1 < (1 = B)|Vh—a| - 1<
< (1 - B)|Yx]

k
for every z € () Ne({y;}) N X. To to Step k + 1, knowing that for
j=1
that Step inequality (3) holds, since now (5) holds. END.

Thus, on completion of Procedure 2 the vertices of Yy will be
numbered properly. But, according to (2), Ng(Ys) D X. Thus, the
vertices of Y \ Yy we can number by |Yy| + 1,...,|Y| in an arbitrary
order.

Remark. Evidently, a polynomial time via |X| + |Y| is sufficient for
numbering X or Y.
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In this paper, we discuss finite undirected simple graphs. For any
undefined term see [2] and [10]. For a graph G, we denote by V(G)
and E(G) the vertex set and edge set of G, respectively. For v € V(G),
let Ng(v) be the set of vertices (neighbours) adjacent to v in G and,
more generally, Ng(S) = |J,cs No(v) and Ng(S8) = Ng(S) U S for
S CV(G). f X C V(G), then [X] (resp., G — X) denotes the subgraph
of G induced by X (resp., V(G) — X). We write G — z instead of
G—{z}ifz € V(G).

The vertex v of G is an end vertex of G if dg(v) = 1, where
dg(z) = |Ng(z)| is the degree of z € V(). An edge incident with an
end vertex of G is called an end edge of G. For a graph G, let (G)
(Ee(G), resp.) be the set of end vertices (end edges, resp.) of G. A
vertex v of a connected graph G is called a cut vertex of G if G — v
contains more components than G. Let C(G) be the set of cut vertices
of G. For v € V(G), let NCg(v) = Ng(v) — C(G). A connected graph
with no cut vertices is called a block. A block of a graph G is a subgraph
of G which is itself a block and which is maximal with respect to that
property. A graph G is called a block graph if every block of G is a
complete graph. In this paper, we define an exterior block of 2 graph G
as a block containing at least one non-cut vertex of G. For a graph G,
the corona G o K; of G and K, is the supergraph of G obtained from
G by adding, for every vertex z of GG, exactly one new vertex adjacent
to = only. Note that a graph H is the corona of some graph G and K,
if and only if E.(H) is a perfect matching of H.

A set D C V(@) is a dominating set of G if Ng(v)ND # 0 for every
v € V(@) ~— D, and is an independent set of G if Ng(v)ND = { for every
v € D. Let i(G) and a(G) (7(G) and I'(G), resp.) denote the minimum
and maximum cardinalities of a maximal independent set (a minimal
dominating set, resp.) in G. A graph G is said to be well covered if
every maximal independent set in G is a maximum independent set. A
graph G is said to be well dominated [7] if every minimal dominating
set in (G is a minimum dominating set. Equivalently, G is a well covered
(dominated, resp.) graph if i(G) = a(G) (7(G) = I'(G), resp.).

Well covered graphs were introduced by Plummer in 1970 [11].
Until now, however, only a few classes of well covered graphs have
been characterized. For example, Ravindra [12] gave a characteriza-
tion of well covered bipartite graphs. Recently Finbow, Hartnell, and
Nowakowski in [7], [8], and [9] have completely described well covered
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and well dominated graphs of girth at least 5, well dominated bipartite
graphs, and well covered graphs containing neither a cycle Cy nor a
cycle C5 as a subgraph. For related results the reader is referred to [1],
[3-6], and [13-15]. In this paper, it is shown that for a block graph G
one of the four equations y(G) = a(@), 7(G) = I'(G), i(G) = aG),
i(G) = I'(G) holds if and only if the other three hold. Structural
characterizations of well covered and well dominated block graphs are
given. Similar results for unicyclic graphs are presented.

In the sequel, we will need the following simple results and obser-
vations.

Proposition 1. For any graph G,
2(G) <i(G) < a(G) <T(G).

Proof. It follows at once from the simple observation that every ma-
ximal independent set in G is a minimal dominating set in G. ¢

This proposition implies that every well dominated graph is well
covered. The converse implication is not necessarily true (see, for ex-
ample, Theorems 2 and 3 below). The next proposition implies that the
corona of any graph G (and K;) is a well dominated graph. Theorem
1, among other things, proves that every well covered block graph is
well dominated.

Proposition 2. For any graph G,
(G0 K1) = i(G 0 K1) = a(G 0 K1) = T(G 0 K3) = [V(G)|.

Proof. After Proposition 1, it is enough to show that every minimal
dominating set in G o K; has exactly |V(G)| vertices. Let D be a
minimal dominating set in G o K;. For a vertex z € V(G), let T be
the only neighbour of z in Q(G o K;). It is clear from the definition
of G o K; that the sets {z,z}, ¢ € V(G), form a disjoint partition of
V(G o K;). Therefore the minimality of D implies that |[DN{z,z}| =1
for every ¢ € V(G). Hence |D| = |V(G)|. ¢

Proposition 3. [2]. An independent set I of a graph G is mazimum
if and only if
INa(J)NI| 2 |J]|
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for every independent subset J of V(G)-1. ¢

Corollary 1. Every vertez of a well covered block graph G belongs to
at most one exterior block of G.

Proof. Suppose, to the contrary, that a vertex v belongs to at least two
exterior blocks of @, say B; and B,. Let I be a maximal independent
set which contains v, and let v; € V(B;) — C(G) for i = 1,2. Then
|Na({vi,v2}) N I| = [{v}| < [{v1,v2}] and therefore, by Proposition 3,
I is not a maximum independent set in G which is impossible in a well
covered graph. <

Corollary 2. Let v be a cut vertez in a well covered block graph G. If
the set NCg(v) is not empty, then every two vertices of NCg(v) are
adjacent. :

Proof. Suppose, to the contrary, that two vertices v1 and v of NCg(v)
are not adjacent. Then they belong to different exterior blocks of G,
say B; and B,. Clearly, v belongs to B; and B, which (according to
Corollary 1) is impossible in a well covered graph. ¢

Proposition 4. If G is a well covered graph and I is an independent
set in G, then G — N(I) is well covered.

Proof. Immediate by contradiction. ¢

J Now we are prepared to give characterizations of well covered and
well dominated block graphs.

Theorem 1. For a block graph G, the following statements are equi-
valent:

(1) 7(G) =T(@);

(il) 7(G) = o(G);

(iii) i(G) = «(G);

(iv) i(G) = I(G);

(v) The vertez sets V(G,),.. - V(G¥) of the exterior blocks of G form
a disjoint partition of V(Q); '

(vi) The induced subgraph [NCg(v)] of G is nonempty and complete
every cut vertez v of G. '
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Proof. The implications (i) = (i), (ii) = (iii), (i) = (iv), and (iv) =
= (iii) follow at once from Proposition 1. We will show the implications
(iii) = (v), (v) = (i), (v) = (vi), and (vi) = (v).

(iii) = (v). Suppose that the implication (iii) = (v) is false and
let G be a well covered block graph with minimum number of vertices
in which the vertex sets V(G4),...,V(G4) of the exterior blocks of G
do not form a disjoint partition of V(@). According to Corollary 1, the
sets V(G1),...,V(Gy) are mutually disjoint. The choice of ¢ implies
that G is connected and its diameter d is greater than three. Let P —
= (vo,v1,...,v4) be any longest path without triangular chords in G,
and let B; be that block of G which contains the vertices vi—1 and v;
of P(i = 1,...,d). From Corollary 1 and the choice of P it follows
that the blocks Bi,..., By are different, {v1,...,v4-1} C C(@), B,
is an exterior block of G, and B; and B, are the only blocks of G
which contain the vertex v;. In addition, the choice of G' makes it
obvious that v; and v, are the only vertices of B;. Let us consider the
connected block graph H = G — Ng(vs) = G — V(B:). Since H is well
covered (by Proposition 4) and has fewer vertices than G, the vertex
sets V(H1),...,V(H;) of the exterior blocks Hy,...,H; of H form a
disjoint partition of V(H).

We now claim that v, is not a cut vertex of H. For if not, then
By, Hy,...,Hj are the exterior blocks of G and their vertex sets V(B,),
V(H,y),...,V(H;) form a disjoint partition of V(G), a contradiction.
This implies the desired claim. In a similar manner, we find that every
vertex of B3 — v, is a cut vertex of H. From the above it follows that
Bj is one of the exterior blocks of H, say By = H,, and Bj is not an
exterior block of G. Hence By, Hy,... ,Hj_1 are the exterior blocks of
G and the sets V(B,), V(H,),..., V(Hj-1) form a disjoint partition of
V(G) — V(Bj3).

We now show that the graph G has maximal independent sets of
~ different cardinalities. Take exactly one vertex u; from the set V(H;)-
—C(H) (i =1,...,1). From the properties of the blocks B,,H,,...,H,
it follows that u; = vy and I = {vo,v2,u1,...,4;_1} is a maximal inde-
pendent set in G. On the other hand, let V(Bs) — {v2} =A{=1,...,2,}.
Since Bj; is an exterior block of H and each z; is a cut vertex of H,
there exists a nonexterior block F; of H that contains zi(i=1,...,p).
Let z; be any vertex of F; — z; and let H j: be the exterior block of
H that contains z;(1 = 1,..., p). Without loss of generality, we may




60 J. Topp, L. Volkmann

assume that {i1,...,i,} = {1,...,p}. It is not hard to observe that
the set I' = {vi,21,...,2p,Upt1,.-.,%l—1} is & maximal independent
set in G. (The graph in Figur 1 illustrates these constructions.) Since
|I'| # |I|, G is not a well covered graph, a contradiction. This proves
the implication (iii) = (v).

(v) = (i). Assume that (v) holds. Since V(G;) — C(G) # 0, we
may choose exactly one vertex z; from the set V(G;)—C(G) (i=
=1,...,k) and form the set D = {&1,...,2;}. (v) implies that D is a
dominating set in G. We claim that 4(G) = |D| = k. Suppose, to the
contrary, that there exists a dominating set D; in G such that |D;| < k.
Then it follows from (v) that D; NV(G;,) = 0 for some iy € {1,...,k},
which implies that 2;, € D; and Ng(zi,) N D1 =0 (since Ng(wi,) C
C V(Gi,)), a contradiction. This proves that v(G) = k. Similarly, we
claim that T'(G) = |D| = k. Suppose indirectly that there is a minimal
dominating set Do in G such that |[Dz| > k. Then (v) implies that |[DaN
V(G;,)| > 2 for some j; € {1,...,k} and, in addition, D, N V(G;) # 0
for each 1 € {1,...,k}. Let v be any vertex of D; N V(Gj,), and let
D, = D, — {v}. Clearly, D} is a dominating set in G and contains
one vertex less than D, which is impossible since D, was a minimal
dominating set in G. Therefore ['(G) = k. Consequently v(G) = I'(G).

(v) = (vi). Assume that (v) holds and let v be a cut vertex of
G. By (v), the vertex v belongs to V(G;) for some i € {1,...,k}.
Since the set V(G;) — C(G@) is nonempty and v is adjacent to every
vertex of V(G;) — C(G), the set NCg(v) is nonempty. Hence, the
subgraph [NCg(v)] is nonempty and complete (by Corollary 2 and the
equivalence of (v) and (iii)).

(vi) = (v). Assume that (vi) holds. First let us observe that
the sets V(G1),...,V(G) are disjoint. For if not, then there exist
i,5 € {1,...,k}, 1 # j, and a vertex v such that v € V(G;) N V(G;).
Certainly, v is a cut vertex of G and since the sets NCg(v) N V(G;),
NCg(v)NV(G;) are nonempty, the subgraph [NCg(v)] is not complete.
This contradicts our assumption. Hence, the sets V(G;),...,V(Gy) are
disjoint and it remains to show that V(G) = Ule V(G;). To prove this
it is sufficient to show that C(G) C Ule V(G:), since Uf’:l V(Gi) C
V(@) and V(@)-C(G) C Ule V(G;) from the definition of the graphs
Gi,...,Gg. It follows from (vi) that for every v € C(G), [NCq(v)] is
a subgraph of exactly one of the graphs G1,...,Gk. This implies that
every v € C(G) belongs to exactly one of the graphs Gy,...,G and
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therefore C(G) C Uf=1 V(G;). This proves the implication (vi) = (v)
and completes the proof of the theorem. ¢

B,

Ve =1Us

Figure 1

From Theorem 1 we can immediately deduce the following corol-
lary for trees.

Corollary 3. For a tree T, each of the statements (i) — (vi) of Theorem
1 is equivalent to the statement

(vii) T = K; or T = Ro K, for some tree R. {

‘Theorem 1 and Proposition 1 imply that for a block graph G, each
of the equations v(G) = I'(G), 7(G) = a(G), i(G) = a(G), i(G) = I'G)
implies each of the equations v(G) = i(G) and a(G) = I'(G@). The
converse is not true. This can be seen with iae aid of the graph K; 2

The final section of this paper is devoted to characterizations of
well dominated and well convered unicyclic graphs. Let us recall that
a unicyclic graph is a connected graph with exactly one cycle. Let I
denote the set of all unicyclic graphs. For G € U, we denote by Cg
the unique cycle of G, and by g(G) the length of Cg, i.e., g(@) is the
girth-of G. Let KU be the subfamily of &, where G € KU if and only if
G = HoK; for some H € Y. In what follows, it is helpful to note that a
graph G belongs to the set KU if and only if G is a unicyclic graph and
the sets of the family {{v,u} : vu € E.(G)} form a disjoint partition
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of the set V(G). Similarly we define the subfamilies S3,Ss, and S5 of
U. A graph G is in the family of S5 if G is a unicyclic graph of girth
3 in which the unique cycle Cg has 1 or 2 vertices of degree three or
more and the sets of the family {V(Cg)} U {{v,u} : vu € E.(G)} form
a disjoint partition of the set V(G). A graph G is in the family S if
G is a unicyclic graph of girth 4, the unique cycle Cg of G contains
exactly two adjacent vertices of degree two (in G), say a and b, and the
set {ab} U E.(G) is a perfect matching of G. Finally, a graph G is in
the family S; if G is a unicyclic graph of girth 5, the unique cycle Cg of
G does not contain two adjacent vertices of degree three or more, and
the sets of the family {V(Cg)} U {{v,u} : vu € E.(G)} form a disjoint
partition of the set V(G). (The graphs G3,Gj3, and G4 in Figure 2
belong to S, S4, and Ss, respectively.)

P P L Do

Figure 2
Proposition 5. For any G € 83, 7(G) = T'(G).

Proof. Since every graph G in Sy is a block graph in which the unique
cycle Cg = Cs of G and the subgraphs generated by the end edges
of G are the exterior blocks of G and their vertex sets form a disjoint
partition of V(G), the result follows from Theorem 1. ¢

Proposition 8. For any G € Sy, Y(G) = |E.(G)| and i(G) = a(G) =
—T(G) = |E(G)] +1.

Proof. For G € 8, let Cg be the unique cycle of G, and let a and b
be the adjacent vertices of degree two (in G). Let D be any minimal

dominating set in G. It follows from the minimality of D that |Dn
N{v,u}| = 1 for each vu € E.(G) and |DN{a,b}| < 1. Therefore, since
the sets of the family {{a,b}} U {{v,u} : vu € E.(G)} form a disjoint
partition of V(G), |E.(G)| £ v(G) < |D| £ I(G) < |E,(G)| + 1. From
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this and from the fact that the sets Ng(Q(G)) (of cardinality |E.(G)I)
and Q(G) U {a} (of cardinality |E.(G)| + 1) are minimal dominating
sets in G, we obtain'y(G) = |E.(G)| and I'(G) = |E.(G)| + 1. Similar
analysis shows that every maximal independent set of G has exactly

|E.(G)| + 1 vertices. Thus, i(G) = a(G) = |E(G)| +1. ¢
Proposition 7. For any G € S5, 7(G) = I'(G) = |E.(G)| + 2.

Proof. For G € S5, let Cg be the unique cycle of G, and let D be any
minimal dominating set in G. We need only - observe that |D|=
= |E.(G)| + 2. Because the sets of the family {V(Cq)}U{{v,u} : vu €
€ E.(@)} form a disjoint partition of V(G) and Dis a minimal domina-
ting set in G, we find |D| = |DNV(Ca)|+ Zyuck.(a)| D N{v,u}| = [DN
NV(Ce)| + |E.(G)|. Simple observations show that |[D N V(Cg)| = 2,
and so, |D| = |E.(G)| + 2, as required. ¢

Proposition 8. Let G be a unicyclic graph with g(G) > 5. Then the
following statements are equivalent:

(i) (G)=T(G);
(i) (G)=«(G);
(i) (G) =T(G);
(iv) i(G) = o(G);
(v) GE{Cs,Cr}USsU{HoK,:HeU and g(H) > 5}.

Proof. The implications (i) = (i1), (i) = (i), (ii) = (iv) and
(ili) = (iv) immediately follow from Proposition 1. The implication
(v) = (i) is obvious if G € {C5s,C+} and follows from Propositions 7
and 2if G € Ss U{H o K, : H € U with g(H) > 5}. Finally, it is a
simple matter to obtain the implication (iv) = (v) from [8, Corollary
4] (see also [7]). ¢

Theorem 2. For a unicyclic graph G, the followiﬁg statements are
equivalent: '

@ (6 =T(E)
(i) (G) = a(G);
(111) GE{C3,C4505,C7}U’CUUS3U85.
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Proof. The implication (i) = (ii) follows from Proposition 1. The
equivalence of (ii) and (iii) has been proved in [15]. By Propositions 2,
5 and 7, the implication (iii) = (i) is true for every graph GE¢€
€ KU U Ss U S5. Finally, it is straightforward to verify that the cycles
Cs, C4, Cs and C7 are well dominated. ¢

As a consequence of Theorem 2 and Proposition 1 we see that for
a unicyclic graph G, each of the equations v(G) = i(G), i(G) = a(G),
i(G) =I'(G), a(G) =T(QG) follow from each of the equations v(G) =
=I'G) and 4(G) = a(G). The graphs G; and Gy (shown in Figure 2)
prove that the converse is not necessarily true.

The next theorem presents necessary and sufficient conditions for
a unicyclic graph to be well covered. The proof is based on the following
proposition.

Proposition 9 [12]. A bipartite graph G without isolated vertices is
well covered if and only if G has a perfect matching M and, for every
edge vu € M, the subgraph induced by the set Ng({v,u}) is a complete
bipartite graph. ¢

Theorem 3. For a unicyclic graph G, the following statements are
equivalent:

(i) i(G)=T(G);
i) i(G)=a(G);
(i) G €{Cs,Cs,Cs,Cry UKUUSs US4 U Ss.

Proof. The implications (i) = (ii) and (iii) = (i) easily follow from
Theorem 2 and Propositions 1 and 6. Thus it remains to prove the
implication (ii) = (iii).

Assume that G is a unicyclic graph and 1(G) = a(G) Let Cg be
the unique cycle of G, and let E.(G) be the set of end edges of G. We
split the proof into three parts, based on the girth g(G@) of G.

Case 1. If g(G) > 5, then G € {C5,C7} U S5 U KU (by Proposition 8).
Case 2. Assume that g(G) = 4. Then G is bipartite and therefore by
Proposition 9, G has a perfect matching M such that for every edge
vu € M, the subgraph induced by Ng({v,u}) is a complete bipartite
graph. We will show that either G = C4 of G € KU U S,;. In order
to prove this, let us assume that G # Cy4. It is clear that E.(G) C M
and, in addition, G € KU if (and only if) M = E.(G). Thus assume
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that M # E.(G). We claim that M C E(Cg)U E.(G). For if not, then
M — (E(Cg)UE.(G)) # 0 and for any edge vueM — (E(Cg)V
UE.(G)), the sets Ng(v) — {u} and Ng(u) — {v} are not empty and
no vertex of Ng(v) — {u} is adjacent to a vertex of Ng(u) — {v}, so
[Ng({v,u})] is not a complete bipartite graph, a contradiction. We
therefore henceforth suppose that M C E(Cg) U E.(G) and M N
E(Cg) # 0. Certainly, |M N E(Cg)| = 1; otherwise |M N E(Cg)| = 2,
say M N.E(Cg) = {zy,wz}, and then, since G # Cs, at least one of
the subgraphs [Ng({z,y})] and [Ng({w, z})] is not a complete bipar-
tite graph, a contradiction. Let vu be the only edge of M N E(Cg).
Then M = {vu} U E.(G) and, moreover, [Ng(v)| = |[Ng(u)| = 2; oth-
erwise |[Ng(v)| > 3 or [Ng(u)| > 3 and then [Ng({v,u})] would not be
a complete bipartite graph, a contradiction. This implies that G € Ss.
Case 3. If g(G) = 3, then G is a well covered block graph. We will
show that either G = Cs or G € KU U Ss. Assume that G # Cs, and
let Gy,...,Gk be the exterior blocks of G. By Theorem 1, the vertex
sets V(G1),...,V(Gy) form a disjoint partition of V(G). If Cg is one
of the blocks Gy,...,G%, say Cg = G1, then {V(Gi),...,V(Gi)} =
= {V(Cg)} U {{v,u} : vu € E.(G)} and G € Ss. If Cg is not an
exterior block of G, then {V(G,),...,V(Gi)} = {{v,u} : vu € E.(G)}
and G € KU. This proves the implication (ii) = (iii) and completes
the proof of the theorem. ¢

In conclusion, let us note the according to Theorems 2 and 3, the
well covered unicyclic graphs which are not well dominated are precisely
those which belong to the family Sy.
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We are going to investigate problems of the following type: Let X
be a set, o a topological structure (e.g. a closure) on X,{X;:1€ I} a
system of subsets of X; assume that a richer structure (e.g. a proximity)
X; is given on each X;; we aim at finding a common eztension of these
structures, i.e. a structure X compatible with o such that ¥|X; = X;
(i € I), where X¥|X; denotes the restriction of ~' to X;. Two natural
necessary conditions for the existence of such an extension: (i) ¥; has
to be compatible with o|X;; and (ii) | X;NX; = X;|X;NX; (3,5 € I)
[assuming, of course, that for arbitrary structures ¢ and X' on X, and for
B C ACX, (i) Z|Ais compatible with |4 whenever ¥ is compatible
with o, and (ii) ¥|B = (X2|A)|B; these conditions will be evidently
satisfied in each particular case we are going to consider].

See [13] for a survey of the classical extension problem when |I| =
=1. ‘ .

§0 contains all the necessary definitions and notation (including
those needed only in Parts II to IV). §1 deals with the case when o is
a closure and Y a proximity.

In Part II, o will be again a closure, and ¥ a semi-uniformity, a
contiguity or a merotopy. ’

In Part III, o will be a proximity, and Y a contiguity or a mero-
topy.

The following cases will be investigated in Part IV: a) o is a pro-
Ximity, X a semi-uniformity, b) o is a semi-uniformity or a contiguity,
Y a merotopy.

Each of the above mentioned questions will be considered in three
variants: a) without separation axioms; b) for Riesz-type structures; c)
~ for Lodato-type structures.

"These problems clearly have category theoretical aspects, which
will not be investigated here. It would be interesting to find out the
category theoretical reasons for the similarity of some results, and for

the dissimilarity of others, cf. [13] Problem 72.

0. Preliminaries

All the unproved statements in this séction are either well-known
or trivial (usually both).
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0.1 Closures. A closure [2] on X is a function ¢ : exp X — exp X
such that, for A,B C X,

Cl. ¢(0) =

C2. A Cc(A),

C3. A C B implies ¢(4) C ¢(B),
C4. ¢(AUB) C ¢(A)Uc(B).

If, in additon, ¢(c(A)) = ¢(A) for every A C X then c is a topology.

The closure c is said to be symmetric [27] (semi-uniformizable
n [2]) if y € ¢({z}) implies ¢ € c({y}) for z,y € X; it is separated |T]
(semi-separated in [2], Dy in [27]) if ¢({z}) = {z} for 2 € X, and weakly
separated [8) if ¢ ¢ c(A) implies ¢({z})Nc(4) = 0. A symmetric closure
is weakly separated iff ¢ € ¢(A) implies ¢({z}) C c(A); this condition is
Axiom Hj in [27]. Separated implies weakly separated, which in turn
implies symmetric. A topology is separated iff it is T;, and weakly
separated iff it is symmetric iff it is S; in the sense of [6] (better known
as Ro, but we shall use the term S;-topology).

If cis a closure on X , and z € X then a c—nezghbourhood [2] of
z is a set V C X such that ¢ & ¢(X \ V); the c-neighbourhoods of
constitute the c-neighbourhood filter of z; a c-neighbourhood (sub)base
of z is a (sub)base for the c-neighbourhood filter of z. (Occasionally,
when there is no danger of confusion, the letter ¢ will be dropped from
these names; the same convention applies to other notions depending
on some structure.) For A C X, int. A denotes the set of all z € X such
that A is a neighbourhood of z. int 4 = X \ ¢(X \ 4).

If c and ¢’ are closures on X then c is said to be coarser than ¢
(¢' finer than ¢) if ¢'(4) C ¢(4) for A C X.

For Xy, C X, the restriction to X, of the closure ¢, denoted by
c|Xo, is defined by co(A) = ¢(A) N Xy (4 C X,), where ¢y = ¢|Xo; ¢o
is a closure on X, symmetric, (weakly) separated or topological if c is
so. If ¢’ is finer than c then ¢'| X, is finer than c|X,.

Denoting the c-neighbourhood filter of 2 € X by v(z), we say that
so(z) = v(z)| X, is the trace filter (on X;) of the point z, where, for
s CexpX,

s/ Xo={SNX,:85 €s},

called the trace (on Xo) of s. For z € X, so(X) coincides with the
co-neighbourhood filter of z, while so(2) = exp X, (the zero filter on
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X,) whenever z ¢ ¢(Xg). This means that, in general, only the trace.
~ filters of the points in ¢(X,) \ Xy will be of interest.

0.2 Proximities. A prozimity [2] (called basic proximity or Cech
proximity when the shorter term is reserved for proximities in the sense
of Efremovich) on X is a relation § C exp X x exp X such that, for
A,B,C,A",B'CcX

P1. AéB implies BéA,

P2. A6X implies A # 0,

P3. AN B # 0 implies A§B,

P4. A6B,AC A', B C B' imply A'6B',

P5. (AU B)8C implies that either AﬁC or BéC.

We wrlte § for non-§. Parantheses will often be omitted, e.g.: 4 U BéC.

. The relation A3 is a base for the relation § (this is in fact a sub-
base-like notion) provided that ‘
AéB iff there are n,m € N and sets 4;,B; C X
(1<i<m,1<j <m) such that A,‘,BB-

for each i and j, 4 = UA,,B UB

(N denotes the set of the positive mtegers ) Clearly, §cCcpB. IffBisa
base for §, and 3 satisfies Axioms P1 to P4 then § is a proximity; any
praximity is a base for itself. '

A proximity § induces a symmetric closure ¢ = ¢(§) defined by

z € c¢(A) iff {z}6A.

The proximity § is said to be Riesz [26] (SP" in [7], weakly Lodato
in [8]) if, with ¢ = ¢(§) :

PRi. AéB implies c(A) Ne(B)=10
and Lodato [25] (P,-relation in [23]) if
PLo. AéB implies ¢(A)éc(B).

PLo implies PRi. § is Riesz or Lodato iff there is a base 3 for § such that
ABB implies ¢(A4) N ¢(B) = O, respectively ¢(A)Be(B) [c(A)be(B)]. If &
is Riesz (Lodato) then ¢(6) is weakly separated (it is an S;-topology).
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For proximities § and §' on X, 6 is 'said to be coarser than §'
(8" finer than §) if § O &'. If B is a base for §, 8’ for §', and 8 D '
then § D §'; in particular, if 8 is a base for §, §' is a proximity, and
B C §' then § is coarser than §'. The finest proximity on X is called
discrete (ASB iff AN B # 0); the coarsest one is called indiscrete (A6 B
iff A# 0 +# B). A finer proximity induces a finer closure.

If Xy C X, the restriction By = | X, of the relation 3 is defined
for A,B C X, by AByB iff ABB. If 3 is a base for § then §|X, is a
base for §/Xy. The restriction of a (Riesz/Lodato) proximity is again
a (Riesz/Lodato) proximity. For a proximity §, §| X, induces c(6)|X,.
The restriction of a finer proximity is finer.

[If Bo = B|X,, we write By for non-Bp in Xy; this notation cannot
be misunderstood if our attention is restricted to relations f satisfying
axioms P1 to P4 (or just P2 and XAX if X # @), because then 3, as
well as 3, determines the fundamental set: it is | Jdomg8 = |J domj].

A filter s on X is said to be §-compressed [6,7] (or: s is a com-
pressed filter in the proximity space (X,8)) if A,B C X, A, B € secs
imply A6B, where

secs=secxs={ACX: ANS#0 (S €s)}.

The zero filter is compressed. A proximity § is Riesz iff each ¢(§)-
neighbourhood filter is §-compressed. If s is §-compressed then s|X is
5| Xo-compressed.

0.3 Semi-uniformities. A semi-uniformity [2] on X is a filter U
on X x X such that

Ul. each U € U is an entourage,i.e. A CU,
U2. U teUforUclU,

where A = Ay is the diagonal of X, and U ™! is the inverse of U:
Ax ={(2,2) 12 € X}, U™ = {(2,3) : g0z},
and Uy means (z,y) € U. For z € X and A C X we write
UlAl={y:3z € A,2Uy}, Uz =Ul[{=}].

A (sub)base for a semi-uniformity is to be understood as a fil-
ter (sub)base on X x X. The symmetric entourages contained by the
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semi-uniformity i form a base for /. Any non-empty collection S of
entourages is a subbase for a semi-uniformity, provided that for each
U €U, U~ contains some V € §; in particular, any non-empty collec-
tion of symmetric entourages is a subbase for some semi-uniformity.

A semi-uniformity U induces a proximity § = §(i) defined by

(1) AéB iff (AxB)NU#0 (Uel);
equivalently:
(2) AéB iff U[AJNB =0 for some U € U.

Hence U induces a closure c(U) = ¢(§(U)). {Uz : U € U} is the c(U)-
neighbourhood filter of z € X. In (1) and (2), U can be replaced by any
base for U. If § is a (sub)base for U then {Uz : U € §} is a (sub)base
for v(z) in c(U).

The semi-uniformity U is said to be Riesz if

URi. U € U implies A C intox. U,

where the (¢ X ¢)-neighbourhood filter of (z,y) € X x X is generated
by the filter base

{Gx H:Gev(z), HEev(y)}

and ¢ = ¢(U). U is said to be Lodato if
ULo. U € U implies int.x. U € U.

U is Riesz (Lodato) iff URi (ULo) holds with U replaced by a subbase;
U is Lodato iff it has a (sub)base consisting of open entourages. (A set
Ais c-openif A = intA; an open entourage is meant to be (c(U) x c(U))-
open.) ULo implies URi. If Y is Riesz (Lodato) then sois §({{). URi and
ULo fit naturally between the corresponding axioms for proximities and
merotopies, so they are probably known; nevertheless, we are unable to
cite a source.

For two semi-uniformities 4 and U’ on X, U is said to be coarser

than U' (U' finer than U) if U C U'; in this case §(U) is coarser than
su').
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‘ For Xy C X, the restriction U| X, of the semi-uniformity U to X
is defined by

ulXo = {UlXu :U € U}, U|X0 =Un (Xo X Xo)

U| X, is a semi-uniformity on X, satisfying 8§(U|Xo) = 6(U)|Xe. T U
is Riesz or Lodato then so is U|Xy. The restriction of a finer semi-
uniformity is finer.

A filter s on X is U-Cauchy if U € U implies § x S C U for
some S € s. (U can be replaced by a subbase in this definition.) If s
is U-Cauchy then it is §(U)-compressed, and s| X, is U|X,-Cauchy for
Xo C X. U is Riesz iff every ¢(U)-neighbourhood filter is Cauchy.

0.4 Merotopies. A merotopy [21] (quasi-uniformity in [19], Cech

nearness in [24]) on X is a non-empty collection M of covers of X such
that

M1. if c € M and c refines d then d € M,
M2. if ¢,d € M then ¢(N)d € M,

where

o(N{d={CND:Cec, Ded}.

({0} is a cover of X = 0; @ is not a cover of it. c refines d, or c is a
refinement of d, if for any C € c thereis a D € d with C C D.) M2 can
be replaced by

M2'. any two elements of M have a common refinement in M.

A subset B of a merotopy M is a base for M if every element of
M has a refinement in B; B satisfies Axiom M2'. Conversely, any non-
empty collection B of covers that satisfies M2' is a base for exactly one
merotopy M; a cover ¢ belongs to M iff it has a refinement in B.

For a finite non-empty family F of covers, we define (N)F as follows:

A€ (N)F if JA(c)ec (ceF), 4=n{d(c):ceF).

(If F = {c,d} and c # d then (N)F = ¢(N)d.) A subset S of a merotopy
M is a subbase for M if

{(N)F :0 # F C S, F is finite}
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is a base for M. Any non-empty collection of covers of X is a subbase
for exactly one merotopy on X.
A merotopy M induces a semi-uniformity ¢/(M), for which a base
B (the one consisting of all the symmetric elements of Z/(M)) is defined
by
B={U(c):ceM}, U(c)=|J{CxC:Cec}.

(Taking ¢ from a (sub)base only, we obtain a (sub)base for U(M).)
Hence M induces a proximity §(M) = §(i(M)) and a closure c¢(M) =
= ¢(§(M)). For § = 6§(M),

(1) ASB iff St(4,c)NB£0 (c €M),

where

St(4,c) = | J{C €c:AnC #0}.

{St(z,¢c) : ¢ € M} is the ¢(M) neighbourhood filter of z, where St(z, c) =
= St({z},c). M can be replaced by a base in (1). If S is a (sub)base
for M then {St(z,c) : c € S} is a (sub)base for v(z) in ¢(M).

A merotopy M on X is said to be Riesz (Riesz nearness in [3]) if

MRi. for each ¢ € M, int c is a cover of X,

where
inte =int.c = {int. C : C € c},

and ¢ = ¢(M). M is said to be Lodato (nearness in [16], Lodato nearness

in [24]) if
MLo. ¢ € M implies int c € M.

MLo implies MRi. M is Riesz (Lodato) iff MRi (MLo) holds for some
subbase for M; M is Lodato iff it has a subbase consisting of ¢(M)-open
covers. If M is Riesz (Lodato) then so is U{(M).

For two merotopies M and M’ on X, M is said to be coarser than
M’ (M' finer than M) if M C M'. If S is a subbase for M and S C M’
then M is coarser than M'. {{X}} is a base for the indiscrete (coarsest)
merotopy on X; the discrete (finest) merotopy on X consists of all the
covers of X. A finer merotopy induces a finer semi-uniformity.
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For Xo C X, the restriction M|X, of the merotopy M to X, is
defined by -

(2) M|Xo = {c|Xo : c € M}.

M|X, is a merotopy on X, satisfying U(M|X,) = U(M)|X,. If M is
replaced by a (sub)base then (2) yields a (sub)base for M|Xy. If M is
Riesz or Lodato then so is M|X,. The restriction of a finer merotopy is
finer.

A filter s on X is M- Cauchy [19]if sNc # 0 for ¢ € M (equivalently:
for ¢ € S, where S is a subbase for M). M-Cauchy filters are U(M)-
Cauchy as well. If s is M-Cauchy then s{X, is M| X,-Cauchy. M is Riesz
iff every ¢(M)-neighbourhood filter is M-Cauchy.

0.5 Contiguities. A contiguity (essentially [20,17]) on X is a non-
empty collection I' of finite covers of X such that

Col. if c € T, c refines d, and d is finite then d € T,
Co2. if ¢,d € T' then ¢(N)d € T

Base and subbase for a contiguity, Riesz and Lodato contiguities, finer
and coarser contiguities, the restriction I'| Xy of a contiguity, and TI'-
Cauchy filters are defined in the same way as for merotopies. (” Contigu-
ity” means a Lodato contiguity in [16].) The proximity § = §(T') induced
by I' is defined by 0.4 (1) (with I' substituted for M); ¢(T') = ¢(6(T’)) is
the closure induced by I'. (It is superfluous to define U(T') in the same
way as U(M), because U(T') is then uniquely determined by §(T).) The
analogues of all the statements for merotopies listed in 0.4 are valid for
contiguities, too. In addition, if S is a subbase for I' then

ABB iff St(4,c)NB#0 (c€S)

defines a base G for §(T).

For a merotopy M, the contiguity I'(M) induced by M consists
of the finite elements of M. If M is Riesz or Lodato then so is T'(M).
§(T'(M)) = 6(M) and I'(M)| X, = I'(M|X,). A finer merotopy induces a
finer contiguity. Any M-Cauchy filter is I'(M)-Cauchy. ‘

Contiguities as well as semi-uniformities are structures lying be-
tween merotopies and proximities. Neither of the structures I'(M) and
U(M) determines the other, and they together do not determine M.
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0.6 Conventions. A family of prozimities in the closure space (X, c)
is a system {6; : i € I}, where I is a (possibly empty) set of indices,
such that §; is a proximity on some X; C X, X # 0, X; # 0 (i € I),

and the two conditions mentioned in the introduction are fullfilled, i.e.

(1) (f)=clX; (i€,

(2) 5,'|X;ﬂXj=5j|X,'ﬂXj (i,jEI).

Where these conditions have to be referred to, we shall say that the
family of proximities is (the proximities §; are) (1) compatible and (2)
accordant. When speaking about a family of prozimities in a closure
space, it will be understood that the closure space is denoted by (X, c);
and I,6; and X; are used as above; moreover, ¢; = c|X;, int = int,,
int; = int,;, Int = intcx, Int; = int; xe;, Xij = X; N X, v(z) is the
c-neighbourhood filter of ¢ € X, s;(z) the c-trace filter of z € X on X;.
The expression ”the trace filters are compressed” means that s;(z) is §;-
compressed for each z € X and each 7 € I. An eztension of {§; : i € I}
(or of the proximities §;) is a proximity § on X such that ¢ = ¢(6) and
6; = 6| X; (+ € I). In case the proximities §; have an extension, we shall
also say that they can be extended.

Analogous terminology, notations and conventions will be used for
other kinds of structures, with &/ and U; standing for semi-uniformities,
I’ and T; for contiguities, M and M; for merotopies; ”compressed” will
be replaced by "Cauchy”. If the structure given on X is not a closure
then ¢ denotes the closure induced by it, and the notations derived from
c (int, s;(z), etc.) will be used as above.

1. Extending a family of proximities in a closure
space ,

A. WITHOUT SEPARATION AXIOMS

1.1 If a family of proximities can be extended in a closure space then
the closure clearly has to be symmetric. We are going to show that
this condition is sufficient, too. In fact, we construct the finest and the
coarsest extension.
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Definition. Given a family of proximities in a closure space, define
6! C exp X xexp X as follows. A 6! B iff one of the following conditions
holds:

@) ANe(B) #9,
(2) c(A)NB £ 9,
(3) AN X;6; BN X; for some

In case confusion seems to be possible, we write §'(c,d;), or, more
precisely, 6'(c, {6; : ¢ € I'}); in particular, §1(c) = 6*(c,0). ¢

Theorem. A family of prozimities in a symmetric closure space always
has eztensions; § is the finest one.

Proof. It is easy to see that §' is a proximity on X.

1° 6'|X; is coarser than §;. If A§;B then (3) holds, and therefore
A8'B.

2° §'|X; is finer than §;. Assume A(§'|X;)B; this means that
A6'B and A,B C X;. If (1) holds then A N¢;(B) # 0, so there is a
point z € ANc;(B); hence {z}§;B by the compatibility of §;, thus A§;B.
The case of (2) is analogous. Finally, if (3) holds, i.e. if ANX;6;BNX;
for some j then AN X;, BN X; C X;; implies AN X;6; BN X; by the
accordance, so A§;B again.

3° ¢(8*) is coarser than c. If € ¢(B) then (1) is satisfied with
A = {z}, so {z}6'B.

4° ¢(8') is finer than c. Assume z ¢ ¢(B); we have to show that
none of the conditions (1) to (3) holds with A = {z}. {¢} Nc(B) =0
is evident. For y € B, = ¢ ¢({y}), thus we have y ¢ ¢({z}) from the
symmetry of ¢, and so ¢({z}) N B = 0. Finally,

{:c} N X,'E,'B NnX; (i & I),

because the left hand side is empty if z ¢ X;, and, for z € X, = & ¢(B)
implies z ¢ ¢(B N X;) N X; = ¢;(B N X;), thus {«}§;B N X;.

5° §! is the finest extension. Let § be another extension; we have
to show that §' C §. Assume A§'B. If (1) holds then ¢ € ¢(B) for
some z € A, thus {}éB and A§ B; similarly, (2) implies A§ B. Finally,
from (3) we have AN X;6B N X; (since §|X; = §;), hence AéB again. ¢
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1.2 Our next aim is to construct the coarsest extension; its definition
will be a little bit more complicated than that of the finest one.

Definition. For a family of proximities in a closure space, let 4 be
a base for 6° C exp X x exp X, where ABB iff one of the following
conditions holds:

(1) |A| <1 and AN¢(B) =09,
(2) |B| <1 and ¢(4)NB =0,
(3) Ab;B for some i€ I.

The notations §°(c, 6;), etc. will be used as in Definition 1.1 (and similar
conventions will apply to all subsequent definitions). ¢

Theorem. A family of prozimities in a symmetric closure space always
has a coarsest extension, namely §°.

Proof. f clearly satisfies Axioms P1 to P4, so 8% is a proximity on X.

1° §°|X; is finer than §;. If A5;B then (3) holds, so ABB and
A8°B.

2° 6% X; is coarser than §;. B|X; is a base for 8%\ X;, so it is
enough to show that B|X; C 5;. Assume that AGB and 4,B C X;. If
(1) holds and A # @ then A = {2} for some z € X;; now z ¢ c(B), so
z ¢ c;(B), implying {«}8;B, i.e. A§;B. The case of (2) is analogous.
Finally, if A§;B for some j € I then 4,B C Xij, so Ab; B follows from
the accordance.

3° ¢(8°) is finer than c. If = ¢ ¢(B) then (1) holds with A = {=},
thus {z}3B and {z}§°B.

4° ¢(6°) is coarser than c. Assume {2}6°B. Then B can be

written as a finite union |J By such that {z}3B, for each n; it is now
n

enough to show that

(4) z ¢ C(Bn)a

because then ¢ ¢ ¢(B) by Axiom C4. If (1) holds (with A = {z} and
B = B,,) then (4) is evident. If (2) holds and By, # 0 then B, = {y},
and the symmetry of ¢ implies ¢ ¢ ¢({y}), which is the same as (4).
Finally, if {«}6; By, for some i then @ ¢ ¢i(Br), so z € X; and B, C X;
imply (4) again.
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5° §° is the coarsest extension. Let § be another extension; it is
enough to show that § C §. Assume AGB. If (1) holds and A # 0 then
A = {z} for some ¢ € X, and z ¢ ¢(B), implying A§B, which follows
in the same way from (2), too. Finally, if (3) holds then A§B again,
because §; = §|X;. ¢

Part 5° of the above proof uses only one half of the assumption
that § is an extension: §° is the coarsest one among those proximities
6 that induce a closure finer than ¢, and for which §|X; is finer than §;
(z € I). Similarly, é! is the finest one among those proximities § that
induce a closure coarser than ¢, and for which §|X; is coarser than §;
(t € I), see 5° in the proof of Theorem 1.1. These observations are of
some interest when compared with the results of §1C.

1.3 Recall that the proximities on a fixed set form a complete lattice
with respect to the relation finer/coarser, and the infimum and the
supremum of the proximities é[i] on X (¢ € I # @) can be described
as follows: inf (] = |J8[i], while [J§[z] is a base for sup 8[1], (see e.g.

[2] 38 A1 and 38 A.5, where the infimum is called supremum, and vice
versa). Infima and suprema of proximities commute with the restriction
to a subset (evident) as well as with taking the induced closure ([2] 38
B.3); constructions of infima and suprema of closures are not needed
here, see them e.g. in [2] 31 A.2 and 31 ex. 2.

For i € I fixed, let us write §°(i] for §°(c,{é;}), and denote by
6°°[i] the coarsest proximity § on X (not necessarily compatible with
¢) for which §|X; = §;; this means that 46°°[i)B iff either A§;B or
A=0or B=0. Now we have, for I # 0,

1) 6 = sup & [i] = sup{ﬁo(c),s%p 6°°[4]}.

This could be checked looking at the constructions, but in fact it is
enough to know for the proof of (1) that proximities figuring in it do
exist: Denote by é' the proximity in the middle of (1), and by §" the
one on the right hand side of it. §° C §°[i] C 6°°[7] is evident, and so
is 6°[i] C 6°(c), therefore §° C §' C §". Moreover, ¢(§") is finer than
¢, and 6"|X; is finer than §;, because §°°[t]|X; = §;; hence §" C §° by
the remark at the end of 1.2 (and the construction of §° is not really
needed in that remark either: § U §° is an extension, so, §° being the
coarsest extension, we have § C § U §° C §°).
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Similarly, if 61[i] = §(¢,{6:}), and §'![i] denotes the finest pro-
ximity § on X (not necessarily compatible with ¢) for which §|X; = §;
(A8 [{]B iff AN X;6;BNX; or AN B # 0) then, for I #0,

(2) &' = inf §[i] = inf {51(c),i1}f §11i]}.

B. RIESZ PROXIMITIES IN A CLOSURE SPACE

1.4 If a family of proximities in a closure space has a Riesz extension
then each proximity is Riesz, the closure is weakly separated, and the
trace filters are compressed (because the neighbourhood filters have to
be compressed with respect to the extension). We are going to show
that these conditions are sufficient, too; there are again a finest and a
coarsest extension.

Definition. For a family of Riesz proximities in a weakly separated
closure space, let §, C exp X X exp X be defined as follows: Aé}B iff
either

(1) c(A)Ne(B)#0
or
(2) AN X;6;BNX; for somei. ¢

Lemma. Given a family of Riesz prozimities in a weakly separated
closure space, 8§} is a compatible Riesz prozimity on X; it is the finest
one among those Riesz prozimities § that induce a closure coarser than
¢, and for which §|X; is coarser than §; (i € I).

Proof. §}, is clearly a proximity on X.

1° 6L|X; is coarser than §;. If A§;B then (2) holds, implying
A8} B.

2° ¢(6},) is coarser than c. If z € ¢(B) then ¢({z})Nc(B) # @, so
{=}63,B by ().

3° ¢(6},) is finer than c. Assume z ¢ ¢(B); we have to show that
{z}8% B, i.e. that neither (1) nor (2) holds with A= {z}. ¢({z})n
Ne(B) = 0, since c is weakly separated. {z} N X;§;B N X; follows as in
4° of the proof of Theorem 1.1.
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4° &% is Riesz. If ASLB then (1) does not hold, and we have
already seen that ¢ = c(6}).

5° &} is finest. Let § be another Riesz proximity with &; C 6| X;

(4 € I) and ¢(6) coarser than c; we have to show that §; C §. Assume

A8, B. If (1) holds then c'(4) N ¢'(B) # @ where ¢' = ¢(§); now A§B,

because § is Riesz. If (2) holds then AN X;6§ BN X;, and so A B again.

. , o

Theorem. A family of Riesz prozimities in awéakly separated closure
space has a Riesz eztension iff the trace fillers are compressed; if so
then &}, is the finest Riesz eztension.

Proof. In view of the lemma, it is enough to show that if the trace
filters are compressed then 8}|X; is finer than &; (i € I). Assume
A§LB, A, B C X;. If (1) holds then, picking = € ¢(4) N ¢(B), we have
A, B € secs;(z), hence A§; B, because s;(z) is §;-compressed. On the
other hand, if ANX;§;BNX; for some j then Aé; B by the accordance,
just like in 2° of the proof of Theorem 1.1. ¢

If {int X; :i € I} covers X then it is not necessary to assume that
the trace filters are compressed. Indeed, if A, B C Xj, A, B € sec v(z),
z € int X; then X; € v(z), so AN X;, BN X; € sec v(z), implying
ANX;6;BNX; (since §; is Riesz); hence A§;B by the accordance.

Corollary. A femily of Riesz prozimities in a weakly separated closure
space has a Riesz extension iff

(3) . &KX (el

Proof. The necessity is obvious. Conversely, if (3) holds then each
si(z) is 6;-compressed, because it is compressed with respect to the
finer proximity 8%(c)|Xs; thus the theorem applies. ¢

1.5 Lemma. If §' and §" are prozimities such that c(§') = c(§"), §' is
Riesz, and §" is coarser than &' then §" is Riesz, too. §

Theorem. Under the hypotheses of Theorem 1.4, §° is the coarsest
Riesz extension.

Proof. Theorems 1.2 and 1.4, and the above lemma. ¢
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1.6 Assume that the conditions of Theorem 1.4 are satisfied. Similarly
to 1.3 (2),

(1) 6% = inf 64[i] = inf {5h(c),inf 8},

where 6}[i) = 6%(c,{8;}). Just like the other proximities in (1), §*[i]
is Riesz, since, with ¢! standing for ¢(§'[z]), we have ¢}(4) = AU¢;(AN
NX;). Concerning 1.3 (1), let us observe that §°°[i] cannot be replaced
by the ”coarsest Riesz proximity § on X for which §|X; = §,”, because
such a proximity may not exist: let |X| = 3, |Xo| = 2, and § be the
discrete proximity on Xj.

1.7 Observe that A8°(c)B iff either A is finite and AN ¢(B) = @ or B
is finite and ¢(A4) N B = 0. The next lemma will be needed in §1C.

Lemma. If ¢ is and S:-topology then §(c) is Lodato; if ¢ is a T;-
topology then 6°(c) is Lodato as well.

Proof. The first statement is evident. To prove the second one, assume
that ¢ is a T;-topology, and A§°{c)B. Then, say, A is finite and AN
Ne(B) = 0; hence ¢(A4) = A is finite, ¢(c(B)) = ¢(B), so ¢(4) 8§°(c)c(B).

¢

C. LODATO PROXIMITIES IN A CLOSURE SPACE

1.8 If a family of proximities in a closure space has a Lodato exten-
sion then each proximity is Lodato, the closure is an S;-topology, and
the trace filters are compressed (because a Lodato proximity is Riesz).
Somewhat suprisingly, these conditions are not sufficient:

Example. Let X = R?, ¢ be the Euclidean topology on X, X; = Rx
x{0}, X1 = X \ Xy, 6o the Euclidean proximity on X,, and § =
= 6%(¢)|X;. Now c is an S;-topology, §; is a Lodato proximity com-
patible with ¢;(z = 0,1), for 1 = 1 by Lemma 1.7. Moreover, the trace
filters are compressed, since the Euclidean proximity on X is a Lodato
extension of §y, while §;(c) is a Lodato extension of §;.

Assume that the family {6y, 6;} has a Lodato extension §. With
N'={n+2"":n € N}, consider A =N x (R\ {0}) and B =N' x (R)\
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\{0}). Now ¢(4) =N xR, ¢(B) = N' x R, hence 4§, B, and so A5B.
On the other hand, ¢(A) N Xo6oc(B) N Xy so that ¢(A4) N Xo6c(B) N X,
and ¢(A)éc(B), a contradiction. ¢

1.9 Definition. For a family of Lodato proximities in an S;-space, let
67 C exp X X exp X be defined as follows: A6} B iff either

(1) c(4)Ne(B) # 0
(2) c(A)N X;6;c(B) N X; for some i. ¢

Lemma. For a family of Lodato prozimities in an S-space, 61 is a
compatible Lodalo prozimity; it is the finest one among those Lodato

prozimities § on X that induce a closure coarser than c, and for which
8|X; is coarser than §; (i € I).

Proof. It is easy to see that 6} is a proximity on X.
1° §1|X; is coarser than §;. If A§;B then (2) holds, and so A8l B.
2° ¢(6}) is coarser than c. Just like in the proof of Lemma 1.4.
3° ¢(81) is finer than c. Assume z ¢ c¢(B); we have to show that
neither (1) nor (2) holds with A = {z}. ¢({z}) N ¢(B) = 0 because c is
S;.

(3) c({z}) N X,'S,'C(B) N X{

is evident if the left hand side is empty. Otherwise, one can take y €
€ c({z})NX;; now ¢({z}) = ¢({y}) (since cis S; ), thus (3) is equivalent
to

(4) ci({y})8ic(B) N X;.

¢ ¢ ¢(B) implies y € ¢(B) (again by S;), therefore y ¢ ¢(B)NX; =
= ci(¢(B) N X;), i.e. {y}bic(B) N X;, and so (4) holds indeed (as 6; is
Lodato).

4° §1 is Lodato. This is clear from ¢ = c(6}), since (1) and (2)
depend only on ¢(A) and ¢(B), and c is a topology.

5° 6} is finest. Let § be another Lodato proximity with &; C
C 6|X; (i € I) and ¢(6) coarser than ¢; we have to show that §} C é.
Assume A§}B. (1) implies ¢'(4) N ¢'(B) # @ where ¢' = ¢(§), thus
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(6 being Lodato) we have A§B. On the other hand, if (2) holds then
c(A) N X;6¢(B) N X;, so c(A)bc(B), implying A6B again.

1.10 Definition. For a family of Lodato proximities in an S;-space,
let 3 be a base for §) C expX x exp X, where ABB iff one of the
following conditions holds:

(1) A Cc({z}) for some z ¢ c¢(B), or A=0,
(2) B C c¢({z}) for some z & c¢(A), or B =0,
(3) there are 1, A', B' with A'6;B', A C ¢(A"'), B C ¢(B"). ¢

Lemma. If a family of Lodato prozimities is given in an S;-space, and
the trace filers are compressed then §7 is the coarsest one among those
compatible Lodato prozimities § on X for which §|X; is finer than §;
(z €I).

Proof. 1° §) is a proximity. B clearly satisfies Axioms P1, P2 and
P4. To prove P3, assume ABB. If (1) or (2) holds then AN B = §
follows from S;. If (3) holds then ¢(A') N ¢(B') = 0, because the trace
filters are compressed; hence AN B = () again, i.e. B fullfills P1 to P4.
Consequently, 60 is a proximity indeed.

2° §%|X; is finer than §;. If A§;B then (3) holds with A' = 4 and
B' = B, so AGB and A6} B.

3° ¢(8Y) is finer than c. If z € ¢(B) then (1) holds with A = {z},
thus {z}6! B.

4° ¢(8}) is coarser than c. Just as in 4° of the proof of Theorem
1.2, it is enough to show that {y}#B implies

(4) y & c(B).

If (1) holds (with A = {y}) then z ¢ ¢(B) and S; imply (4). If (2)
holds and B # 0 then from ¢ ¢ c¢({y}) and S; we have y ¢ c{z}),
which implies (4), since ¢({z}) = ¢(B) by S;. Finally, if (3) holds then
y € c(A"), B C ¢(B') and A'6;B’, thus ¢(A') N¢(B') = 0 (because the
trace filters are compressed), and y ¢ ¢(B') = c¢(c(B')) D ¢(B).

5° §% is Lodato. If ABB then c(A)Bc(B) follows directly from the
definition (taking into account that ¢ is a topology). Now 6} is Lodato,
since we have already seen that ¢ = ¢(6}).

6° 89 is coarsest. Let § be another compatible Lodato proximity

with §|X; C 6; (i € I); it is enough to show that § C &. If (1) holds
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then either A = 0, in which case A8B is evident, or {z}éB (since §
is compatible), hence ¢({z})éB (since § is Lodato), and so AéB. The
case of (2) is analogous. Finally, if (3) holds then A'é6B’, therefore
c(A')gc(B'), and A§B again. ¢

It is not ‘true that 6 is the coarsest one among those Lodato
proximities § that induce a closure finer than ¢, and for which §|X; is
finer than é; (2 € I), not even when I = {:

Example. Let (X,c) be the topological sum of two infinite indiscrete
spaces, and ¢' the discrete closure on X. Now ' is finer than ¢, but
63(c') = 6%(c') is not finer than 6 (c), since there are infinite sets A
and B with A6Y(c)B, while A2 (c')B for any pair of inifinite sets. ¢

1.11 Lemma. A family of Lodato prozimities in an S;-space has a
Lodato eztension iff §] C 63; if so then both §% and 61 are Lodato
ezlensions.

Proof. 1° Necessity. If § is a Lodato extension then 7 C § C 6% by
Lemmas 1.9 and 1.10 (the latter can be applied since the existence of
6 implies that the trace filters are compressed).

2° Sufficiency. If A8;B for some i then c¢(A4)8%c(B) by 1.10 (3),
so ¢(A)6}c(B), implying c(A) N ¢(B) = @ (because 6} is a proximity
by Lemma 1.9); this means that the trace filters are compressed and so
Lemma 1.10 applies as well as Lemma 1.9. Consequently, §7 and 61 are
compatible Lodato proximities, 67 |X; C 6; C 67|X;, and from 6} C 6%
we have also 5},|Xi - 52])(,-. Hence both 52 and 5}1 are extensions.

Theorem. A family of Lodato prozimities in an S;-space has a Lodato
eztension iff the trace filters are compressed, and, for any i,j € I,

(1) Ab8;B = C(A)ﬂngjC(B)ﬂXj;
if so then 89 is the coarsest and 6} is the finest Lodato eztension.
Remark: Observe that (1) is a strengthening of the accordance.

Proof. 1° Necessity. If ¢ is a Lodato extension then Aéb;B implies ASB,
hence ¢(A)éc(B) and ¢(A) N X;6¢(B) N X, thus the right hand side of
(1) holds.

2° Sufficiency. In consequence of Lemma 1.9, it is enough to prove
that 6} |X; is finer than §; (i € I). Assume that A6l B and 4,B C X;.
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£ 1.9 (1) holds then Aé6; B, because the trace filters are compressed. On
the other hand, if 1.9 (2) holds ie if ¢c(A)N R¢ §;¢(B)N X; for some
j then we have A§;B from (1).

3° 6% and 6} are Lodato extensions by the foregoing lemma; they
are coarsest, respectively finest by Lemmas 1.10 and 1.9. ¢

Corollary. A family of prozimities in an S,-space has a Lodato ezten-
sion iff {6;,6;} has a Lodato eztension for anyi,j € I. ¢

1.12 Corollary. A single Lodato prozimily given in an S;-space has
a Lodato eztension iff the trace filters are compressed.

Proof. 1.11 (1) is always satisfied for i = j, because c(S) NX; = ¢(S)
(S C X;), and §; is Lodato. ¢

1.13 Theorem. Let a family of Lodato prozimities be given in an
S1-space, assume that the trace filters are compressed, and

(1) (X \ X;)N(X;\Xy) =0 (4,5 €I

Then there ezists a Lodato extension.

Proof. We have to show that 1.11 (1) holds. Assume A§;B; it is
enough to consider the following three cases because then Axioms C4
and P5 can be applied:

a) 4,B C X;\ Xj;
b) A,B C Xij;
C) ACX,'\XJ', BCXij.

Case a). From (1) we have ¢(4)NX; C X;; and ¢(B)NX; C Xjj,
so, by the accordance, it is enough to prove that ¢(4) N X; 6; c(B) nX;j,
which is true, because ¢(4) N X; C ¢(4) N X; = c;(4), 51m11arly, c(B)N
NX; C ci(B), and §; is Lodato.

Case b). The accordance implies A§; B, so the right hand side of
1.11 (1) holds again, now because §; is Lodato

Case c). As in Case a), c(A) N X; C ¢;(A4), so ¢(4) N X; 6;B
(because §; is Lodato). The accordance 1mphes c(A)N X;$6;B, therefore
¢(A)N X;6;ci(B) (because §; is Lodato); ¢j(B) = ¢(B)N X completes
the proof. (}
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Corollary. Let a family of Lodato prozimities be given in an S;-space.
Assume that either each X; is open and the trace filters are compressed
or each X; is closed. Then there ezists a Lodato eztension.

Proof. ¢(X;\X;)N(X;\X;) does not change if ¢ is replaced by ¢|X;UX;;
X:\X; and X;\X; are disjoint closed (or open) sets in (X; U X}, ¢|X;U
UX;), thus (1) holds. ¢

If the sets X; form an open cover of X then we do not have to assume
that the trace filters are compressed, see after Theorem 1.4.

1.14 Assume that a non-empty family of Lodato proximities is given
in an S;-space. Similarly to 1.3 (2) and 1.6 (1), we have

(1) 6} = inf ;63 [i] = inf {8} (c), in 6 [i]},

where 67 [1] = 61 (c,{é;}), and inf;, denotes the infimum in the realm of
the Lodato proximities (recall that the Lodato proximities on X form
a complete lattice, see e.g. [7] (5.1); observe that §''[i] is Lodato).
The proof is the same as that of 1.3 (1) and 1.3 (2). The proximity in
the middle of (1) can be written as inf §}[i], because the infimum of
Lodato proximities inducing the same ‘closure is Lodato, too. However,

the right hand side of (1) cannot be replaced by inf{6} (c),inf §'1[i]}:

Example. Let X,c,Xq,80,A4 and B be as in Example 1.8, I = {0}.
Then Aé}(c)B, A§'*[0]B, but A§1B. ¢

If, in addition, the trace filters are compressed then

(2) 61 = sup 67 [i].

(The supremum of Lodato proximities is always Lodato, see e.g. [7]
(5.1).) An analogue of the right hand side of 1.3 (1) cannot be added
to (2), because, in general, there is no coarsest Lodato proximity § on

X for which §|X; = §; (see the example at the end of 1.6).

1.15 If the conditions of Theorem 1.11 are satisfied then we have the
following five extensions:

(1) §° D6 D6t o6, D8
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If I = @ then & = 67, and, assuming also that c is Ty, §° = &
(Lemma 1.7). If ¢ is T;, and each X; is closed then §° = 6% (look
at the definitions); similarly, if each X; is open then 6} = 6%. This
observation yields an alternative proof of Corollary 1.13 (only in T,-
spaces if the subsets are closed, but then we can get rid of T; using
a stock argument: switch over to the Ty-reflexion of (X,c), take an
extension there, and carry it back to (X, c)).

All the proximities in (1) can be, however, different if |I| = 1,
even when c is Ty:

Examples. a) In Example 1.14, A6} B, but A8%B.
b) Let X, ¢, X;,6,,4 and B be as in Example 1.8, I = {1}. Then
c(A)\ X18%(B)\ X1, but ¢(4)\ X182¢(B)\ X;. ¢

1.16 Concerning extensions of a single Efremovich prozimity, see [22],
[15] 3.25, [9] §4, [1], [10] §2, [12] 2.2., [14]. We know only the following
about simultaneously extending Efremovich proximities:

a) If {61,6,} is a family of Efremovich proximities in a topological
space, X = X; U X, either X; and X, are both open and the trace
filters are round, or X; and X, are both closed then {6;,6:} has an
Efremovich extension; this follows from [13] Remark 1.13 c). (A filter
s in the proximity space (X, c) is round [22] if for any S € s there is an
So € s with Sp6X \ §.)

b) The above statement is false for three proximities, even if the
subspaces are open-closed. (Essentially [13] Example 1.13b).)
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Abstract: Since the days of Gauss it has been known that continued fraction
algorithm admits an invariant measure. Its density may be written in the
form p(:l:) = f(l + :cf)_zdf. The aim of this paper is to give an explicit
expression for the density of 2-dimensional Jacobi-Perron algorithm. The
result is given as p(z,y) = ff(l +f(£,17):c +g(f, n)y)_xdn(f,n) where
the functions f and g are given by a limiting processs and & is a singular

measure.

0. Introduction

The Jacobi-Perron algorithm was introduced by C. G. Jacobi 1868
and later generalized by O. Perron 1907. The main point was the
attempt to extend Lagrange’s theorem to algebraic numbers of higher
degree, namely to characterize algebraic numbers by the periodicity of
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the algorithm. In spite of several efforts the problem still waits for its
solution (see L. Bernstein 1971, Bouhamza 1984).

The ergodic theory for the Jacobi-Perron algorithm was devel-
opped along the lines already known for continued fractions (Schweiger
1973). For continued fractions the density of the (up to a constant fac-
tor) unique invariant measure which is equivalent to Lebesgue measure
has been known implicitly since the days of Gauss:

(0.1) o) = 1o
Let
(0.2) Te = % -]

be the map associated with continued fractions then for any measurable

[ st = [ o

T-E E

The associated transfer operator is given by

(0.3) (Ag)(=) =) ¥ [ k jlu z ] (k —::v)z'

The invariant density p then is characterized by the property Ap = p.

For the Jacobi-Perron algorithm it can be shown that there exists
a finite invariant measure g which is equivalent to Lebesgue measure
but no explicit expression comparable with (0.1) has been known. The
paper aims to give an explicit expression which is however more compli-
cated. Our approach will explain why this is to be expected. In order

to illustrate the basic ideas more clearly we restrict the discussion to
the case n = 2 but the arguments are valid in the general case.
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1. A heuristic approach

We first consider continued fractions (see Khintchine 1963)‘. Given
a sequence (kq,kz,...,ky) of digits we define p, and g, by

{Pn—1 Pn] ﬁ [0 1]
gn—-1 94n j=1 1 kJ

Then
(A"1)(2) = ) (g + n12) " =
(n)
- ;2 [1 + dn—1 ] h
(=) on
Here the sum runs over all admissible sequences (k;, kz,...,k,). Next

we define a seqence of measures (v,), n > 1, by

wal) = Y a2 .

(n) n

If v =lim v, exists, then

n— o0

/ =

should be the density of an invariant measure.
It is well known that

=t = [knakn—la cee akl]'
qn

We introduce K; :=k,41-;, 1 < j < n, and we define sequences (P,),
(@Qn),n=1,2,... by

IR

Qn——l Qn Jj=1 1 Kj
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Then gn—1 = P, and g, = Q. We define

P, dn-1

fni= 6_2: T gn
and for £ = [K1, K3,.. ]

fa(€) == fn

in an obvious manner. Then lim fn(€) = €. The measure v, may be

written as
(@) = 3 Q72 (f2)-
(n)

Since fn € B(Ki,-..,Kn), the cylinder determined by the digits
Ki,...,K,, it looks like a Riemann sum.
In fact one can prove

dA
log 2

dv =

where X denotes Lebesgue measure.
Now we consider the Jacobi-Perron algorithm for n = 2. The associated
map is given by

1
T(Z,y): [y‘_ah;"bl] )

z

a=ay)=[Y, b=by)= H .

z T

If a;(z,y) = a1(T7Y(=z,y)), bj(z,y) = by(T771(z,y)) then this se-

quence of digits is subject to the following conditions:

(11) 1 S bj, 0 S aj S bj;

(1.2) if a;=0b;, then 1<ajy.
Similarly one defines p,,, 7, gn by

Pn—2 Pn—-1 Pn n 0 0 1
(1.3) Tpez2 Tpe1 Tn | : = H 1 0 a;f.
j=1 0 1 bj

dn—-2 9n—-1 9Yn J
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Then
lim [&, 1.1] = (z,y).

B —r OO qn qn

We put

B ={(2,9): 0<z <y <1},
By :={(z,9):0<y<z<1}.

Then the transfer operator A is given by

(A¢)(m,y)=fj§bj¢[ i) s on By

’ 3
(1.4) b=1a=0 bty b+y) (b+y)
oo b—1
1 atz 1
(Ap)(z,y) b§=1:a§=0:¢ b+y' bty ) (b+y) on D2
Therefore

(1.5)  (A"1)(2,9) = ) (gn + Gn1y + gn2z) * =
(n)

-3
S (1 ety ) 7
(=) o I

Here the sum runs over all admissible sequences (a;,b;), 1 <j <n and
depends on (z,y). Again p(z,y) is the density of an invariant measure if
and only if p satisfies Kuzmin’s equation Ap = p. We define a sequence
of measure (v,,), n > 1 by

— -3 gn—-1 9n-—2
(16) ) =30 p (L2 2]

If again v := lim v, exists then

o= | ] el
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(where the domain of integration depends on (z,y)) should be the den-
sity of an invariant measure. To understand the following construction
we note that

-1
dn—1 — [bn +a, dn—2 + drn—3 ] :
dn . dn—1 dn—1

—1
gn—-2 Qn 2 [b +a " -2 + Qn—-3] .
n qn. 1 n—1 n—1

(L.7)

2. The basic construction

We now introduce a modified Jacobi-Perron algorithm. Actually
it is a change in notation only.

S(,n) == [_—B1+A17 i Bl] )

B, = Bi(§,n) == E‘] , A1 =A1(¢m) = B1 — [g] ,

Bj(é,m) := Bu(S77(&,m),  Aj(€&m) = Au(S7TH(Em)).
Then this sequence of digits is subject to the following conditions:

(2.1) 1<B;, 0<A4;<Bj;

(2.2) if 4; =0, then Aji1 < Bjyi.

The most important fact is the following observation:

Define (4;,B;) := (@nt1-j,bnt1-j)y 1 < j < n, then the sequence
(a;,b;), 1 < j < m, is admissible for T if and only if the sequence
(4;,B;), 1 < j < n, is admissible for S, in short: § is a dual or
backward algorithm for T (see Schweiger 1979, Ito 1986). Similarly to
(1.3) we define P, Ry, Qn by

P,y P, Pn n (0 0 1
(2.3) Rn.—2 R, = I] |1 0 B;j—4;
Qn—2 Q-n.-—-l Qn ji=1 0 1 Bj
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Again the property

i (grg:) =n

holds. Note that
5(6,177') = (6’77)

is equivalent to

1 B1—-A1+£]

€,n") = [B+n’ Bra

for appropriate A; and B;.
Next we define sequences ajn, Bjn, 0 < 7 < 2, n > 1 by the matrix

relation
0 1 0
1 ]
0 A B;

If (an+1_j,bn+1_j) = (An,Bn), 1 S ] S n, then

-1

i=1

1 n-1 ﬁln aln.
(2.4) ayn_1 Pan

Qg,n—1 ,B(Jn aO'n,

(25) n—2 = Qin, {Gn-1 =025y, Qqn = Ogn.

Note that v, may be rewritten as

(26) OB B

Qon Qon
(n)

Here the sum runs over all admissible sequences (4;,B;),1<j <n,
or over all admissiable sequences (A4;,B;), 1 < j < n, with the initial
condition 4; < Bj.

If &jn,ﬁjn, 0<37<2,n>1, are given by

A1,n-1 Pin Qin n 1 0
a3 n—-1 Ban Oan = H 0 1 ’
Ogn-1 Pon &on j=2 AJ B;
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then

(2.7) Qon aon Qon

%in _ O2n [BI+A1§2—"+ﬁ]

-
aon Qon Qon Con

-1
g?_’l [BI+A19;3.’1+222] ,
a

The relation (2.7) reflects (1.7).
For any finite admissible sequence (4;,B;), 1 < j < n, we define

(25) ai
fn = _’la = =

n +—
Qon ’ Qon

If (€,7) = ((4;,Bj), 7 > 1) is the expansmn of (¢,n) into an infinite
Jacobi-Perron a.lgonthm we define

fn(fﬁl) fm gn(ﬁ,n) = Gn
in the obvious way. Then we can prove the following:

Lemma 1. The following hmzt ezists:

Lim (fa(€,7),9a(&m)) =: (£(€,7),9(£;m))-

Proof. We follow an idea of R.Fischer 1972. Put =, := (fn,gn)-
Then
Tnt1 = KnTn + AnTn_1 + fnTn—2

where the weights are given by

K, = B'n.+1a0n
Bnii0on + Apagn_1 + 0on—2
An — Anao,n—l
Bpii10on + Anagn_1 + 0on-2
_ ag,n—2
Hin = Bptiaon + Anogn_1 + con—2 )

Therefore 7,1 lies in the triangle spanned by 7,_5, 7,1 and 7,,. Since
Qgn = Bpagn-1 + Po,n-1 clearly k, > %. Similarly

1 ! !
Tnt2 = KT + Aan7r'n.—-1 + PpTn—2-
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Here k!, = kpknt1 > %.
Put §(n) := max(||mn — mn-a||, |0 — Tn—2l, ||ma—1 — 7n—2]l).
The function §(n) is decreasing. We see

||7n = Tnga | < (1 — kq)8(n),

lmnts — Fng2ll < (1 = Kny1)b(n + 1),
1T — Tnga|| < (1 = &3,)8(n).

Hence §(n + 2) < $6(n).

Lemma 2. If
ron 1 B-A+¢
@,n%—[B+n, o ]
then
(2.8) f(&,n') = (B+ Af(&m) + g(¢,m)) 71,

9(&' ') = f(&n)(B + Af(&,m) + 9(é,m)) .

Proof. This follows immediately from (2.7).

Remark. The functions f and g are not continuous and not injective.
In the case of continued fractions the corresponding function reduces to

the identity f(€) = €.

With the help of the functions f and g we now define the sequence of
measures (k,) on B* by

() = [ B(FE),9nl€ 1) dmnlEs)

and the measure k on B* by

o) = [ B(F(€m)al€,m)an(é,n)

(if the limit measure exists).
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Lemma 3. Ifv ='1‘i_1£° vy, ezists then

de(€,1)

(2.9) dr(¢',') = (B + Af(&,m) +9(¢,7m))%

Proof. This again follows from

- P -~
Qon = B1ao1~. + A1a2n + ain-

Remark. If the map (¢&,7) — (f(€,m), g(§,7)) 1s absolutely continuous
then it is easily seen that ~

e, = D3 dn

has the transformation property (2.9).

3. The invariant measure

The heuristic considerations in section 1 now suggest:

Theorem 1. The density of the invariant measure i s given as follows:

[ dsem)
p(z,y)—l/ (1 + f(&my + g(&,m)=)? for(z,9) € Bu,

p@ﬂy=[/ dr(€,m) for (2,9) € Bs.
B}

(1 + f(& )y + g(é,m)z)

Here

Bf ={(&m):0<é < <1},
By ={(¢,m):0<n<¢< 1}
B* = B UB;.
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Proof. Remember that

B*(a, b) = {(f,ﬂ) : Al(fﬂ?) =a, Bl(fa”’) = b}'

Then

= U B*(a,b),

b=1 a=0
= U B*(b,b),
b=1

SB*(a,b) =B* if a>1,
SB*(0,b) =

The following identity is basic:

(1 +f(£,n) +g(€,17) )3 (y+0)° =

_ y 2f(¢m) *
B [1 bt af@n) ToEm b+ af(é,m)+ 9(&m) ]

(b + a‘f(£7"7) + 9(5,77))3-
Therefore we obtain (by use of relation (2.9))

// dr(€,m) _
)L+ fEmTE + 9 g)® (v +0)°

de(¢',7'") :
// (14 f(&n" )y + g(€',7')z)? foaxl

and

// dr(€,n) _
(1 + f(&n) 5 +9(&m) 75 (v + b)°

-] an(g', ') |
1+ F(&7" )y +9(¢',7')z)®
B*(0,b)
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Since

U UB (a,b) U GB*(o,b‘),’ A‘
- b -

= UB*(a,b) U UB* (0,8),

b=1 a=1

a comparison with (1.4) shows that p satis_ﬁes Kuzmin’s equation Ap =

Remark. The map

(v _ 1_ 1 b-—a+€]
5(93,%5,77)— [:B a"m b’b+f17’ . b+£

can be seen as the natural extension of T (see Ito 1986 Bosma-Jager-

-Wiedijk 1983). The measure

dz dy dx(é,n) .
(1+ F(&m)y +9(€m)e)®

is invariant with respect to €.

4. « is singular

As before we denote by u the invariant absolutely continuous pro-
bability measure for the map T. We introduce a new set function 7 as
follows: o ‘

7(B((a1,b1),--1(an,ba))) = [.L(B_((bn —ap,b,),. .., (b1 —aq,b1))).

Then it is checked easily that 7 is in fact an invariant measure for T'.
Furthermore 7 also is an ergodic measure. Therefore 7 = p or 7 and u
are mutually singular. We will prove that 7 = p is impossible.

Theorem 2. The measure T is singular with respect to p.
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Proof. Suppose the contrary, namely 7 = p. This means

p(B((a1,b1),...,(an,bn)) = p(B((bn — @nybn),. .., (b1 — ay,b1)))

for all admissible sequences.
It is well known that there is a constant D > 1 such that

D7gq;® < p(B((a1,b1),--.,(an,bn))) < Dgz*

and hence

D_IQ;:S < /‘(B((bn _anabn)1---7(bl - alabl))) S DQ;S
If in fact g = 7 we obtain
3
(4.1) D% < (%] < D%

But this is impossible. It is sufficient to take (aj,b;) =(0,1),1 <j<mn.
Then
ga ~a™ and Q, ~ A"

where a is the greatest root of 3 — 22 — 1 = 0 and f is the greatest
root of z* —2? — 2 —1=10. Then 1 < a < 3 and (4.1) cannot be true.

Remark. However the corresponding entropies coincide:
h(p,T) = h(r,T).
Corollary.

lim Gn =0 for almost all  (£,7) € B*.

n— oo aon

Proof. Since 7 is singular with respect to p the martingale convergence
theorem shows that

lim 7(B((a1,b1);. . ,(@n,bn))  lim [ gn ]3 —0

~~= u(B((a1,b1),...,(an,bp)) === -Q—"
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for (Lebesgue) almost all (z,y) € B. Therefore by symmetry we obtain

lim [gﬁ]s=0

n—> oo qn

for (Lebesgue) almost all (¢,7) € B*.
Finally note that ag, = gy,.

Remark. In the case of continued fractions it is well known that @, =
= ¢n. Therefore p(B(ky,...,kn))) = u(B(kn,...,k1))) for all admissi-

ble sequences.

Lemma. The limits v = lim v, resp. k = lim k, ezist.
N~ OO0

A — 00

Proof. It is sufficient to show that

lim v,(¢) =:v(¢)

n— oo

exists for any function 1 which is Lipschitz continuous on B*.

The map ®(¢,7) := (f(&,7), g(§,7m)) does not satisfy a Lipschitz con-
dition generally, but it satisfies an appropriate condition on cylinders.
The proof of lemma 1 shows that if

(6m), (6517) € B* (41, Br), .., (An, Bn)))

then
|8(&,7) — (€%, 77)|| << 6(n)

hence

[¥(2(&,m)) — $(B(E", NI << §(n).

An examination of the proof of Kuzmin’s theorem for J acobi-Perron
algorithm shows that the Lipschitz condition is used on cylinders only
(Schweiger - Waterman 1973). Therefore

Z¢ [q, [pn + Pn—1Y + Prn—2Z Tn +Tn_1y + Tn_2z ] ] _
() gn + @n—-1Y + gn—22% ’ n + qn-1Y + @n—-2Y

1 .
(qn + gn-1y + q-n.—zz)

— p(z,y)c(¥) as n — oo.
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Q[pn Tn.] _ [az'n aln]

- V=17 1"

dn qn Qon Ogn

Since the summation Y depends on (z,y) € B; resp. (z,y) € Bz we

(n)
take im  with (z,y) € By resp. 1)111%0

(=,)—+(0,0)

Note that

[+]

) with (z,y) € Bs.

If we write L; for the first limit and L, for the second limit then we
obtain as n — oo

Yo (22,22) =5 o Loy)

’
44 o a
(n) 0on on on

if the sum runs over all admissible sequences ((41,B1),...,(An,Bn))

and S [azn a1n] 13 — Ly c(¥)

b
[24 o (84

if the sum runs over all admissible sequences ((41, B1),...,(An,Bn))
with the additional condition 4; < B;.

Theorem 3. The limit measure k is singular with respect to Lebesgue
measure on B*.

Proof. Since

A(B*((AlvBl)v AR (An’B'n))) ~ Qy—;s,

this follows at once from Theorem 2 (applied to the measure 7 trans-
posed to §) or its Corollary.

Remark. Since € maps the set B((a1,b1),...,(@n,bs)) x B* onto
BxB*((bp—an,bpn),-..,(b1—a1,b1))) (if an < b,), well known theorems
from ergodic theory (see Friedman 1970) show that ¢ does not admit a
finite invariant measure equivalent to Lebesgue measure on B x B*.
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Abstract: An algorithm is provided in order to decide whether a given
phenotype system is a factor-union system and to construct a corresponding

factor-union representation (if such a representation exists).

Factor-union phenotype systems were introduced by Cotterman
(cf. [1]). A characterization of such systems was given in [2]. In [4]
Markowsky provided an algorithm in order to decide whether a given
phenotype system is a factor-union system and to construct a corre-
sponding factor-union representation (if such a representation exists).
The aim of this paper is to present another such algorithm which is
very simple.
In the following let G denote a fixed non-empty finite set (of genes)
and put M := {4 € 2%|1 < |4| < 2}. The following two definitions
are essentailly a "more algebraic” reformulation of the corresponding
definitions originally given by Cotterman (cf. [1]).
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Definition 1. By a phenotype sysiem (with respect to G) one means
an equivalence relation on M.

In the following let a denote a fixed phenotype system.

Definition 2. By a factor-union representation (FU-representation)
of a on means an ordered pair (F, f) where F' is some set (of so-called
"factors”) and f is a mapping from G to 2F such that {(4,B)¢

€ M?| U f(z) = U f(z)} = a}. ais called a factor-union system

(FU- .sy.stem) if there emsts an FU-representation of a.

In the following, for every # C (26\{0})? let <> denote the congru-
ence on (25\{0},U) generated by 8.

Remark 1. <a> is the transitive hull of {(AU C,B U C)|(4, B) €
€ a;C C G}.

Remark 2. Let (F, f) be an FU-representation of a. Since (29\{0},U)
is the free semilattice with free generating set G (every g € G is here
identified with the one-element set {g}), f can be extended to a homo-
morhism g from (29\{0},U) to (2¥,U). Now kerg is a congruence on
(26\{0},U) and < (kerg) N M? >C kerg. Here, in general, equal-
ity does not hold as can be seen from the following example: Put
G := {a,b,c,d} (a,b,c,d mutually distinct), F := {1,2,3,4,5} and

= {(a,{1,2}), (5,{2,3}), (¢,{3,4}), (d,{1,2,3,5})}. Then (F,f)
is an FU-representation of {{a}}? U {{b}}? U {{c}}? U {{d}, {a,d},
{6,d}}?U{{a,}}2 U{{a, }}U{{b, c}}’ U{{c,d}}*, < (kerg)N M? >=
= {{a}}? u{{6}}*U{{c}}* U{{d}, {a,d}, {b,d}, {a,b,d}}* U{{a,b}}U
U{{a7 c}}2 U{{bv c}}z U{{e,d},{a,c, d}7{b’ ¢, d}1{a'7 b,c, d}}2 U{{a,?b, c}}2
and ker g =< (kerg) N M? > U{{a,c}, {a,b, c}}*.

Definition 3. By a (join-)semilaitice on means a commutative idem-
potent semigroup, i.e. an algebra (S,V) of type 2 in which the laws
zVy=yVez,zVe=zand (eVy)Vz==2zV(yVz) hold. The cor-
responding partial order < is defined by e <y iff e Vy =y (z,y € S).
a € S is called meet-irreducible if for all z,y € S with Ay = a it holds
a € {z,y} (A denotes the infimum with respect to <).

The aim of this paper is to prove the following
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Theorem.
(1) a is an FU-system iff <a> NM? = a.
(ii) If <a> NM? = a and if L denotes the set of all meet-irreducible
elements of the (join-)semilattice (26\{0},V)/ <a> then (L, {(z,
{y € Ly # [{z}] <a>})|z € G}) is an FU-representation of .

The proof of the theorem makes use of the following

Proposition (cf. [3]). Let (S,V) be a finite join-semilattice and let L
denote the set of all meet-irreducible elements of (S,V). Then {(z,{y €
€ L|y Z z})lz € S} is an injective homomorphism from (S,V) to
(25,0).

Proof. Put f := {(z,{y € Lly # z})|z € S}. Since S is finite,
every element a of S is the meet of elements of L and hence the meet
of all elements of L which are > a. This shows injectivity of f. A
straightforward calculation yields f(zVy) = f(z)Uf(y) forall z,y € S.

Proof of the Theorem. First assume o to be an FU-system. Then
there exists an FU-representation (F,f) of a. Let g denote the ho-
momorphism from (26\{0},U) to (2F, U) extending f. (This homo-
morphism exists according to Remark 2 following Definition 2.) Then
kerg is a congruence on (2%\{0},U) and since (F,f) is an FU-re-
presentation of a, a = (kerg) N M2. Because of a C kerg we have
<o>C kerg and hence a C<o> NM? C (kerg) N M? = a which shows
<a> NM? = a. Conversely, assume <a> NM? = a. Let L denote
the set of all meet-irreducible elements of (26\{0},U)/ <a> and put
h:= {(z,{y € Lly # =})|= € (26\{0})/ <a>}. Then, according to the
above proposition, k is an injective homomorphism from ((2%\{0})/
<o>, U) to (25,U). Now for all 4, B € M the following are equivalent:

U h({z}] <a>) = U h([{z}] <a>), h(|4] <a>) = h((B] <a>),

[A] <a>= [B] <a>, (A B) €<a>, (A,B) € a. This completes the
proof of the theorem.

Remark. The FU-systems (with respect to G) are exactly the restric-
tions of the congruences of (26\{0},U) (or of (2¢,U)) to M; for let B
be some congruence of (26\{0},U) and suppose a = 8 N M2. Then
a C f and hence <a>C (. From this we conclude a C<a> NM? C
C BN M? = a whence a =< a > NM?, i.e. ais an FU-system.
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The above theorem gives rise to the following

Algorithm. Construct the undirected graph (with vertex-set 2¢\{0})
corresponding to a. Next construct in an obvious graph-theoretical
manner <a> as the transitive hull of {(AUC,BUC)|(4,B) € o;C C
C G}. Then check if <a> NM? = a. If this is the case then construct
the Hasse-diagram of (26\{0},U)/ <a> in order to obtain the FU-re-
presentation of a described within the above theorem.

Example (human ABO blood group system). Put G := {4, B, 0} and
o = {{A},{4,01}* U {{B}, {B,0}}? U {{0}}* U {{4, B}}?. Then
<a>= aU{{4,B},{4,B,0}}? and hence <a> NM? = a. Therefore
a is an FU-system. The above theorem yields the FU-representation
({a,5, ¢}, {(4, 15}, (B, {a}), (0, 0)}) of & where a = [{A}] <a>, b i=
:= [{B}] <a> and ¢ := [{4, B}] <a>.

Remark. From the above theorem it follows that if & is an FU-system
(with respect to @) then there exists an FU-representation (F, f) of
a with |F| < 2!l — 1. Knowing this, the problem whether a is an
FU-system or not can be decided in a finite number of steps. (Take an
arbitrary fixed set of cardinality 2/G! — 1 as the set of possible factors.)
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Abstract: We improve on an example of Fletcher, Hejcman and Hun-
saker [4] for a non-completely regular quiet-uniformity: our example is quasi-

metrizable.

1. Introduction

Doitchinov [2,3] introduced a class of quasi-metrics, respectively
quasi-uniformities, admitting a satisfactory theory of completeness and
completion. We shall only deal here with these classes, and not with
completions. See [5] for basic definitions concerning quasi-metrics and
quasi-uniformities.
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Definitions. A sequence pair (a filter pair) is an ordered pair of se-
quences (of filters).

The sequence pair (< 2 >,< yn, >) in the quasi-metric space
(X,d) is Chauchy if for any € > 0, there is an m € N such that
d(zk,yn) <€ (k,n >m). A filter pair (f,g) in the quasi-uniform space
(X,U) is Chauchy if for any U € U, there are F € f and G € g with
FxGcCU.

The quasi-metric d is balanced [2] if for any Chauchy sequence pair
(< zx >, < yn >), and for any z,y € X, we have

(1) d(z,y) < sup d(z,yn) + sup d(zk,y)-

(Equivalently: one can write limsup instead of sup.) The T;-quasi-
uniformity U is quiet [3] provided that for any U € U thereisa V € U
such that if z,y € X, (f,g) is a Cauchy filter pair, Vz € g,V 'y € f,
then zUy. (See [1] §§7 — 8 for related notions.) ¢

The notions of a balanced quasi-metric and of a quiet quasi-
uniformity are in close connexion: if d is balanced then U(d) is quiet
([3] p. 6); it is also pointed out in [3] that the quietness of ¢(d) can be
reformulated in terms of d, namely: U(d) is quiet iff for any ¢ > 0 there
is a § > 0 such that d(z,y) < € whenever there is a Cauchy sequence
pair (< z >,< yp >) with d(z,y,) < § (n € N) and d(z,y) < §
(k € N).

Conversely, if U is quasi-metrizable and quiet then it can be in-
duced by a quasi-metric d satisfying a condition strictly stronger than
the one in the preceding paragraph, but strictly weaker than the one in
the definition of balanced quasi-metrics: there is a constant C such that
for any Cauchy sequence pair (< 2 >,< yn >), and for any z,y € X,

(2) d(z,y) < C(sup d(z,yn) + sup d(z,y)).

A routine application of the Metrization Lemma ([6], 6.12) gives this
with C = 8; taking then d' = {/d with some j € N, (2) will be sat-
isfied for d' with C = {/8; i.e. for any C > 1, there is a quasi-metric
compatible with & such that (2) holds with this C.

The topology induced by a balanced quasi-metric is completely
regular [2], while a quiet quasi-uniformity induces a regular topology
(Doitchinov, cited in [4]). Considering the similarity of the two notions,
it is somewhat surprising that, as shown by an example of Fletcher,
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Hejcman and Hunsaker [4], a quiet quasi-uniformity is not necessarily
completely regular.

The aim of this note is to give a similar example, which, in ad-
dition, is quasi-metrizable. Observe that the two notions are now even
closer to each other: compare (1) and (2), where, as we have seen, one

can take C =1+ ¢.

2. The example

Let Q denote the set of the rationals, Ng = NU{0}, @; =]i,1+1[NQ
(2 € Ny), € the Euclidean topology on Q. For a convergent sequence s in
Q, denote its £-limit by A(s). Let an injection v : @ — N be fixed. Take
a maximal almost disjoint collection A, of strictly decreasing sequences
in Qg that £-converge to some point in Q). For a sequence s =< z; >

in Qy, and for eachiE]No,let s+i~—< zj+1>. Define A; = {s +1:
‘SGAO} (ZEN%A UA‘HQ UQ‘H —{W}UQUA. Fori e N

and 8 =< ¢; >€ A,,let st =< 21——:1:, >. Now Af = {s*:s € A;} is a
maximal almost disjoint collection of increasing sequences in Q;_; that
E-converge to some point in Q;_;, while A;_; is a similar collection
of decreasing sequences, and A; ; U A} is clearly almost disjoint, too.
Define a function d on X x X as follows:

l/i if :c=w,yEA,'UQ,'_1,iEN,

y—Mz) if yezeAd, vy) > (A=),
d(z,y) = Mz*)—y if z€ A4, ycc*, v(y)>v(A(z*)),

0 if z=y,

1 otherwise.

Claim 1. d is a non-Archimedian quasi-metric.

Proof. In the second line of the definiton, y is in a decreasing se-
quence tending to A(z), hence the value of d is positive in this case,
and similarly in the third line. So we have only to check that

d(z, z) < max{d(z,y),d(y, 2)}.
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This is evident if the right hand side is 1 or ¢ = y or y = z; otherwise
z=w,y € A; for some: € N, and z € Q;_; U Q;, thus the right hand
side is > 1/i, and the left hand sideis 1/i or 1/(1 + 1). ¢

Claim 2. The topology T (d) is regular.

Proof. All the open balls round points different form w are closed
(because if #;,z, are distinct points in A then z; Uz} and z; U z} are
almost disjoint), while

{wluJMiu@):jeN

i=j
is a neighbourhood base of w consisting of closed sets. ¢

Claim 3. Any T(d)-neighbourhood of the T(d)-closure of an interval
in QQ; contains an interval in Q;_;.

Proof. Let 0# H =]a,b[NQ;, ¢*=2i—a, b*=2i-b, H*=
=]b*, a*[NQ;-1, F the T(d)-closure of H,G a T(d)-neighbourhood of
F. Now s € F whenever s € A; with A(s) € H, thus each ¢t € A} with
A(t) € H* is almost contained by G.

Assume indirectly that G does not contain a subinterval of H*.
Then we can pick a strictly increasing sequence in H* \ G that &-
converges to some point of H*, contradicting the maximality of the

almost disjoint collection A¥. ¢
Claim 4. T(d) is not completely regular.

Proof. If f is a continuous real function on X, and f(w) > 0 then,
according to Claim 3, there is a ¢ € Qo with f(q) > 0; thus w and Q,
cannot be separated by a continuous function. ¢

Claim 5. The topology T(d™') is discrete.

Proof. For y € Q;, choose € > 0 such that z €|ly—e, y+¢[N(Q:\{y}) =
= v(z) > v(y), and assume also that € < 1/(i + 1). Then the d~!-ball
of radius € round y is equal to {y} (see the condition on v(y) in the
definiton of d). The points outside @ are evidently isolated. ¢
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Claim 6. If (f,g) is a U(d)-Cauchy filter pair then {z} € f for some
z € X, and g T(d)-converges to z.

Proof. It is enough to show that f contains a singleton, because the
second assertion is then clear from the definition of the Cauchy property.

Choose F € f and G € g such that
(3) d(z,y)<1 (z€F, yei).

Now if F is finite then f contains a smallest element Fy, and, according
to the Cauchy property, g 7(d)-converges to each element of Fy, i.e. F,
is a one-point set, since 7(d) is T3. On the other hand, if F is infinite
then there are different points z1,z5 € F N A, because (3) implies that
|[FNQ| <1. Thus from (3) we have

GC({z}UzyUz)N({z2} Uz, Uz}) € g,

and this intersection is finite by the almost disjointness, i.e. thereis a
point z € Ng. According to the Cauchy property, f 7(d~!)-converges
to z, and then Claim 5 implies that {z} € f. ¢

Claim 7. The quasi-uniformity U(d) is quiet.

Proof. Let U; = {(z,y) : d(z,y) <1/j}. We are going to show that the
condition in the deﬁntlon of quietness holds for U = U; and V = Uiy
Take a filter pair (f,g) with {z} € f and g 7(d)-converging to z (by
Claim 6, all the Cauchy filter pairs are of this form). We have to show
that if U; 1z € gand U, _Hy € f then zU;y; this is a consequence of the
following statement: if

(4) d(z,vs) <1/(7+1)  (n€N),
(5) d(z,y2) <1/n  (n€N),
(6) d(z,y) <1/(j +1)

then

() d(z,y) < 1/

It is indeed enough to prove that (4), (5) and (6) imply (7): if U;1z € g
then points y, € U;41 satisfying (5) can be chosen because g converges
to 2, and then (4) holds evidently; moreover, UJ_Hy € fimplies (6), and
a:UJy is equivalent to (7).
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If z = w then (4) and (5) imply z = w, thus (7) follows from (6).
If z € Q then y = z = y; by (6) and (5), thus (7) follows from (4).
Finally, assume that z € A; for some ¢ € N. From (4), (5) and the
almost disjointness we have ¢ = z or z = w. (6) implies (7) in the first
case; on the other hand, if z = w then, by (58), y1 € @;—1 UQ;UA;, thus
d(z,y1) is either 1/1 or 1/(i + 1), hence (4) implies 7 > j; according to
(6), y € Qi_1 UQ; U 4, thus d(z,y) <1/i <i/j. ¢

Remarks. a) Similarly to the example in [4], our example is complete
in the sense of Doitchinov [3]. (Clear from Claim 6, since, by definition,
the completeness of i means that the second element of any Cauchy
filter pair is 7 (U )-convergent.)

b) The topology 7(d) can be regarded as a special case of a gen-
eral construction from [7], and it was very likely described long before.

(Added in proof. See the addition in proof in [7]).
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Abstract: Let {X.,,,nZl} be a sequence of associated random variables

with zero mean, and let S, ; = > Xiy ... X5, k21, We
1<4;1 <...<ix <n
present sufficient conditions for the distribution and moment convergence of

Sn,k / Var(Sp,1), to the distribution and moments of Hj (N ) / k!, where H is
the Hermite polynomial of degree k and N is a standard normal variable.

1. Introduction

Let {X,,n > 1} be a sequence of random variables, defined on
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some probability space (2,3, P), such that EX,, = 0, EX2 < oo,
n>1.
Let us put:

© Sg=0, Sa=) Xi o2 =ES2, n>1,
. . k=1
Sak= Y  XyXiy...Xi, k21
1S‘i1<...<iksn

Yn,k = Sn,k/o'ns U;‘:. = Zth/U?L

i=1

Let us observe that S, ; = S,.
Let Hy(z) denote the Hermite polynomial of degree k, defined by

(5) exo(=5212) = (1) Bulaexp(—2/2)
One can note that setting Ho(z) = 1 we have

Hk+1 = ZHk(Z) — ka—l(Z)y k 2 1.

Let N denote a standard normal variable.-

In this paper we study convergence of distributions and moments
of the sequence {Y,,n > 1} to the distribution and moments of
Hy(N)/k!. This problem has been studied by Teicher [5] in the case
when {X,,n > 1} is a sequence of square-integrable martingale diffe-
rences. We investigate sequences {X,,n > 1} that satisfy a condition
of positive dependence called association.

We recall that a collection {Xj,...,X,} of random variables is
associated if for any two coordinatewise nondecreasing functions fi, fo
on R"™ such that f; = fi(X1,...,X,) has finite variance for i = 1,2,
thus Cov(ﬁ,ﬁ,) > 0 holds. An infinite collection is associated if every
finite subcollection is associated (cf. [4]).

Recently many papers have been published concerning weak con-
vergence of the sequence {Y51,n > 1} to the distribution of H;(N)
(cf. [2] and the references given there). But, as we know, there are no
results concerning weak convergence of the sequence (¥, x,n > 1) for
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associated sequences. The convergence of moments of {Yn,k, n > 1} has
not been studied yet, even in the case k = 1. The results presented in
this paper fill in this gap.

2. Results

Studying limit properties of associated sequences we need the fol-
lowing coefficient

u(n) = sup Z Cov(X;, Xr), meNuU({0}.

Jtli—k|2n

In what follows we will use the following conditions
(1) lLm E(UX)P =1,
(2) sup E|X, |?P+5 = M < oo,
(3) (n) =0(n"~ (2P+6/2"2)(2?+6)/'5), and u(1) < oo,
(4) inf n~'ol >0,

Theorem 1. Let {X,,n > 1} be a sequence of associated random
variables such that EX, = 0 and EXZ2 < oo, n > 1. If for some p > 1
and § € (0,1) the conditions (2), (3) and (4) hold, then

D

(5) Sn/on—N as n — oo,
and
(6) E|S./0,|** — E|N|*? as n — oo.

Theorem 2. Let {X,,,n > 1} be a sequence of associated random
variables such that EX,, =0 and EX2 < 0o, n > 1. If for some p > 1
and § € (0,1) the conditions (1), (2), (3) and (4) hold then for every
keN

(7 Yn,k—lz)Hk(N)/k! as n — oo,
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and
(8) E|Y, +|?/* — E|H(N)/E*'* as n — .
3. Proofs

Proof to Theorem 1. By (4) 0% — oo as n — oo. Thus, by (2) and
(4), we get the Lyapunov condition of order 2p + §

n . )
0';2;,_6 ZEIX‘I'.|2P+6 < nMa_ZP"E —

o i=1
= M(n/c2)o 2P D=6 0 as n— oo.

Hence the Lindeberg condition of order 2p + 6 holds and therefore the
classical Lindeberg condition is satisfied:

(9) —2ZE|X|2 [|X|>a’ne]——>0 ‘as n — 00 forevery e > 0.

S o
Taking into account (3), (4) and (9), by Theorem 3 of Birkel [2] we have
(3)- ‘

By (4) we have n/o® < C < oo for some constant C and every n € N.
Thus applying Theorem 1 of Birkel [3] we get

2p+6/2 _ 2P+5/2 2p+6/2
E|S, /0‘| if}}ﬁ?{ E]5n+m Sm I /

< Bn(2P+5/2)/2/( )(2P+5/2)/2 < K,

Where K is a constant not dependJng on n.
Thus the sequence {|Sn/on|??,n > 1} is uniformly integrable : so, by
Theorem 5.4 of Billingsley [1] we get (6)

Proof of Theorem 2. In order to obtain (7) it suffices, by Remark 1
of Teicher [5], to prove the following three assertions:
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() Sn/on-2oN,
G) vzt
(iii) max |X,-|/an—£—>0 as n — oo.

(i) follows from Theorem 1.
To prove (ii), we first show that

(10) EU: -1 as n— oo.

Clearly:

12 BUZ = o ?E(X2+...+X2) =1-02 3 Y Cov(X;,X;) >

1<i#j<n
>1-20.2% u(y) >1-20,2 ) u(j).

But by assumption (3), for sufficiently large j we have

u(j) < C/5(1+6/4),

oo

thus ) u(j) < oo, and therefore
j=1

12EU£ZI-2U;ZZ§1u(j)—>1 as n — 00.

By (1) and (10), applying Lemma 1 of Teicher [5] we get

E|UZ -1 - 0 as n — oo, thus U,zl—P—>1 as n — oo.

To prove (iii) let us observe that under our assumptions the Lyapunov
conditon holds and therefore

Plmax |X;|/on 2 €] < ;PHX;I/an > €] <

n
< 5_21’_60;21’_6 E:E|X,-[2P""‘s — 0 as n — oo.

=1
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Thus (i), (ii) and (iii) hold hence (7) is satisfied.

By Theorem 1 we have (8) in the case k = 1. Taking into account
condition (1) and applying Lemma 1 of Teicher [5] we get the uniform
integrability of the sequence {UZ?,n > 1}. From the proof of Theorem
1 the sequence {|Y,|?*?,n > 1} is umformly integrable, where Y,, = Yn 1
Let us observe that

|2Yn [P = |V} — URJP < 2°(|Ya|*? + UZP),

thus the sequence {|Y,2|?, n > 1} is uniformly integrable. This fact
and (7) yields (8) in the case k = 2.

Now we proceed by induction on k.
Assume that (8) holds for m = 1,2,...,k then by (7) and Theorem
5.4 of Billingsley [1], the sequence {|Ynm|2p/ ™ n > 1} is uniformly
integrable for m = 1,2,...,k. For 0 < j < k we ha.ve

Yo kmi ) (Xi/on) | < (k= 5)/(k + 1)|Yp s [FF/ B9

1=1

(G +1)/(k + 1) Y (Xifon BV,

=1

and

Yo ks Z(X oY T2/ ) < ¢ (

i=1

i\ 2P/ .
-7) |V o PP/ =9 4

E+1

j +1 2p/(k+1) mn . )
+C (k n 1) | Z(Xi/a'n)1+1|2P/(J+1) <
i=1

<cC (lYn,k—jlz”/(k_j) +1 Z(Xi/an)jfllz”/““)) :

i=1

where C = 22p/(k+1),
Let us observe that for 1 < j < k we have

n n p
|ZX3'+1|2P/(J'+1) < (Z X,?)
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Thus taking into account the uniform integrability of {U%,n > 1} and
{|Yn,m[?*/™,n > 1}, for m = 1,2,...,k, and the above inequalities we
see that the sequence

(Yanes 3 (K an) 1221040 5 > 1}
=1

is uniformly integrable for 0 < j < k.
Now using the equality

(k4 1)Ynpr1 = Y (1) Yau-j (i(xi/dn)j+l)

3=0

we get the uniform integrability of the sequence
{IYn,k+1|2p/(k+1)’n Z 1} )

this together with (7) implies (8) in the case m = k+1, which completes
the proof of Theorem 2.
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